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Abstract. We propose a unified framework for establishing existence of nonparametric M-
estimators, computing the corresponding estimates, and proving their strong consistency when
the class of functions is exceptionally rich. In particular, the framework addresses situations
where the class of functions is complex involving information and assumptions about shape,
pointwise bounds, location of modes, height at modes, location of level-sets, values of moments,
size of subgradients, continuity, distance to a “prior” function, multivariate total positivity, and
any combination of the above. The class might be engineered to perform well in a specific
setting even in the presence of little data. The framework views the class of functions as a
subset of a particular metric space of upper semicontinuous functions under the Attouch-Wets
distance. In addition to allowing a systematic treatment of numerous M-estimators, the frame-
work yields consistency of plug-in estimators of modes of densities, maximizers of regression
functions, level-sets of classifiers, and related quantities, and also enables computation by means
of approximating parametric classes. We establish consistency through a one-sided law of large
numbers, here extended to sieves, that relaxes assumptions of uniform laws, while ensuring global
approximations even under model misspecification.
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1 Introduction

It is apparent that the class of functions from which nonparametric M-estimators are selected
should incorporate non-data information about the stochastic phenomenon under consideration

and also modeling assumptions the statistician would like to explore. In applications, the class
can become complex involving shape restrictions, bounds on moments, slopes, modes, and sup-

ports, limits on tail characteristics, constraints on the distance to a “prior” distribution, and so
on. The class might be engineered to perform well in a particular setting; statistical learning
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is often carried out with highly engineered estimators. An ability to consider rich classes of
functions leads to novel estimators that even in the presence of relatively little data can produce

reasonable results.
Numerous theoretical and practical challenges arise when considering M-estimators selected

from rich classes of functions on IRd, which may even be misspecified, as we need to analyze

and solve infinite-dimensional random optimization problems with nontrivial constraints. In this
article, we leverage and extend results from Variational Analysis to build a unified framework for

establishing existence of such constrained M-estimators, computing the corresponding estimates,
and proving their strong consistency. We also show strong consistency of plug-in estimators

of modes of densities, maximizers of regression functions, level-sets of classifiers, and related
quantities that likewise account for a variety of constraints. In contrast to “classical” analysis,

Variational Analysis centers on functions that abruptly change due to constraints and other
sources of nonsmoothness and therefore emerges as a natural tool for examining M-estimators

selected from rich classes of functions.

1.1 Setting and Challenges

Given d0-dimensional random vectors X1, X2, . . . , Xn, we consider constrained M-estimators
of the form

f̂n ∈ εn- argminf∈Fn

1

n

n
∑

j=1

ψ(Xj, f) + πn(f), (1)

where F n is a class of candidate functions on IRd, or a subset thereof, possibly varying with n
(sieved), ψ is a loss function such as ψ(x, f) = − log f(x) (maximum likelihood (ML) estimation

of densities) and ψ((x, y), f) = (y−f(x))2 (least-squares (LS) regression), πn is a penalty function
possibly introduced for the purpose of smoothing and regularization, and the inclusion of εn ≥ 0

indicates that near-minimizers are permitted. We focus on the iid case, but extensions to non-iid
samples is possible within our framework.

The Grenander estimator, the ML estimator over log-concave densities, and the LS regres-

sion function under convexity, just to mention a few constrained M-estimators, certainly exist.
However, existence is not automatic. For rich classes of functions, it is rather common to have

an empty set of minimizers in (1); Section 2 furnishes examples. The extensive literature on
M-estimators establishes consistency under rather general conditions (see, e.g., [44, Thm. 3.2.2,

Cor. 3.2.3], [46, Thm. 5.7], and [45, Thms. 4.3, 4.8]). Standard arguments pass through uniform
convergence of n−1

∑n
j=1 ψ(X

j , ·) to IE[ψ(X1, ·)], almost surely or in probability, on a sufficiently

large class of functions, which in turn reduces to checking integrability and total boundedness
of the class under an appropriate (pseudo-)metric, the latter being equivalent to finite metric

entropy. It has long been recognized that uniform convergence is unnecessarily strong; already
Wald [49] adopted a weaker one-sided condition. In the central case of ML estimation of densities,

an upper bound on ψ(x, f) = − log f(x) may not be available and typically force reformulations
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in terms of ψ(x, f) = − log(f(x) + f 0(x))/2f 0(x) and similar expressions, where f 0 is some
reference density. Uniform convergence also gives rise to measurability issues, which may require

statements in terms of outer measures [44].
In the presence of rich classes of functions, it becomes nontrivial to compute estimates as

there are no general algorithm for (1). Approximations in terms of basis functions are not easily

constructed because the class of functions may neither be a linear space nor a convex set.

1.2 Contributions

In this article, we address the challenges of existence, consistency, and computations of con-

strained M-estimators by viewing the class of functions under consideration as a subset of a
particular metric space of upper-semicontinuous (usc) functions equipped with the Attouch-Wets

(aw)-distance1. Although viewing M-estimators as minimizers of empirical processes indexed by
a metric space is standard, our particular choice is novel. The only precursors are [32, 34], which

hint to developments in this direction without a systematic treatment. Three main advantages
emerge from the choice of metric space: (i) A unified and disciplined approach to rich classes

of functions becomes possible as the aw-distance can be used across M-estimators. (ii) Consis-

tency of plug-in estimators of modes of densities, maximizers of regression functions, level-sets
of classifiers, and related quantities follows immediately from consistency of the underlying esti-

mators. (iii) Computation of estimates becomes viable because usc functions, even when defined
on unbounded sets, can be approximated by certain parametric classes to an arbitrary level of

accuracy in the aw-distance. Moreover, the unified treatment of rich classes of functions allows
for a majority of algorithmic components to be transferred from one M-estimator to another.

We bypass uniform laws of large numbers (LLN) and accompanying metric entropy calcula-
tions, and instead rely on a one-sided lsc-LLN for which upper bounds on the loss function ψ

becomes superfluous. Thus, concern about density values near zero and the need for reformu-
lations in ML estimation vanish. Challenges related to measurability reduces to simple checks

on the loss function that can be stated in elementary terms. Already Wald [49] and Huber [21]
recognized the one-sided nature of (1) and this perspective was subsequently formalized and

refined under the name epi-convergence; see [15, 50, 33] for results in the parametric case and
also [29, Ch. 7]. In the nonparametric case, the use of epi-convergence to establish consistency

of M-estimators appears to be limited to [12], which considers ML estimators of densities that

are selected from closed sets in some separable Hilbert space. Moreover, either the support of
the densities are bounded and the Hilbert space is a reproducing kernel space or all densities

are uniformly bounded from above and away from zero. Sieves are not permitted. The Hilbert
space setting is problematic as one cannot rely on (strong) compactness to ensure existence of

estimators and their cluster points, and weak compactness essentially limits the scope to convex
classes of functions. In addition to going much beyond ML estimation, our particular choice

1The aw-distance quantifies distances between sets, in this case hypographs (also called subgraphs) and the
name hypo-distance is sometimes used; see Sec. 3.
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of metric space addresses issues about existence. We also provide a novel consistency result
that extends the reach of the lsc-LLN to sieves, which is of independent interest in optimization

theory.
Without insisting on uniform approximations, the lsc-LLN establishes convergence in some

sense across the whole class of functions. Thus, consistency results are not hampered by model

misspecification or other circumstances under which an estimator is constrained away from an
actual (true) function. They only need to be interpreted appropriately, for example in terms of

minimization of Kullback-Leibler divergence. It also becomes immaterial whether the estimator
and the actual function are unique. Under misspecification in ML estimation, just to mention one

case, there can easily be an uncountable number of densities that have the same Kullback-Leibler
divergence to the one from which the data is generated. Our results still hold.

We construct an algorithm for (1) that under moderate assumptions produces an estimate in
a finite number of iterations if εn > 0 and to converge to an estimate otherwise. The algorithm

permits the use of a wide variety of state-of-the-art optimization subroutines. We demonstrate
the framework in a small study of ML estimation over densities on [0, 1]2 that satisfy point-

wise upper and lower bounds, have nonunique modes covering two specific points, are Lipschitz
continuous, and are subject to smoothing penalties.

In our framework, conditions for existence and consistency of estimators essentially reduce to
checking that the class of functions F n is closed under the aw-distance. It is well known that the

class of concave densities is closed in this sense. We establish that many other natural classes of

functions are also closed in the aw-distance. Specifically, we show this for classes defined by con-
vexity, log-concavity, monotonicity, s-concavity, monotone transformations, Lipschitz continuity,

pointwise upper and lower bounds, location of modes, height at modes, location of level-sets,
values of moments, size of subgradients, splines, multivariate total positivity of order two, and

any combination of the above, possibly under additional assumptions. To the best of our knowl-
edge, no prior study has established existence and consistency ofM-estimators for such a variety

of constraints.
We defer the systematic treatment of rates of convergence for M-estimators within the pro-

posed framework. Still, because covering numbers of bounded subsets of usc functions under the
aw-distance are known [31], it is immediately clear that under certain (strong) assumptions rate

results can be obtained (see [31] for preliminary examples), but these are presently not as sharp
as those available by means of empirical process theory.

Section 2 provides motivating examples and a small empirical study. Main results follow in
Section 3. Section 4 establishes the closedness of a variety of function classes under the aw-

distance. Section 5 states an algorithm for (1) and Section 6 gives additional examples. The

paper ends with intermediate results and proofs in Section 7.
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2 Motivation and Examples

The study is motivated, in part, by estimation in the presence of relatively little data. In such

contexts, constraints in the form of well-selected classes of functions over which to optimize may
become useful. Although statistical models often aspire to be tuning-free (see for example [7]),

models in statistical learning and related application areas are far from being free of tuning [28].
We follow that recent trend by considering novel nonparametric estimators defined by complex

constraints, many of which might be tuned to address specific settings.

2.1 Role of Constraints

Analysis using integral-type metrics such as those defined by L2 and Hellinger distances leads

to many of the well-known results for LS regression and ML estimation of densities. How-

ever, difficulties arise with the introduction of constraints, especially related to closedness and
compactness of the class of function under consideration. For example, consider the class of

bi-constant densities on [0, 1], with each density having one value on [0, 1/2] and potentially an-
other value on (1/2, 1], that also must satisfy f(x) < 3/2 for all x ∈ [0, 1]. When the number of

samples in [0, 1/2] is sufficiently different from that in (1/2, 1], the ML estimator over this class
does not exist as the value of the density in the interval with the more samples would be pushed

up towards the unattainable upper bound. The break-down is caused by a class of densities that
is not closed. Although rather obvious here, the situation becomes nontrivial in nonparametric

cases involving rich classes of functions that may even be misspecified. In fact, already the ML
estimators over unimodal densities on IR [3] and over log-concave densities on IRd for n ≤ d [14]

fail to exist.
For another example, suppose that the definition of a class includes the constraint that

the maximizers of the functions should contain a given point in IRd. This constraint conveys
information or assumption about the location of modes in the density setting and “peaks” in a

regression problem. A sequence of estimates satisfying this constraint may have L2 and Hellinger

limits that violate it; the constraint is not closed under these metrics. Even the simple constraint
that f(x̄) ≥ 1 for a given x̄ ∈ IRd, which is a constraint on a level-set of f , would not be closed.

However, the constraints on maximizers and such level-sets are indeed closed in the aw-distance;
see Section 2.2 and, more comprehensively, Section 3.4.

Constraints related to maximizers, maxima, and level-sets motivate the choice of the aw-
distance in a profound way as neither pointwise nor uniform convergence would be satisfactory

with regard to those: Pointwise convergence fails to ensure convergence of maximizers and
uniform convergence applies essentially only to continuous functions defined on compact sets.
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2.2 Example Formulation and Result

As a concrete example of a rich class of densities in ML estimation on IRd, suppose that α, κ ≥ 0;
C,D ⊂ IRd; I ⊂ [0,∞] is closed; g, h : IRd → [0,∞), with h being usc and also satisfying
∫

h(x)dx <∞; and

F =
{

f : IRd → [0,∞]
∣

∣

∣
f usc,

∫

f(x)dx = 1, (2)

C ⊂ argmaxx∈IRd f(x), D ⊂ lev≥α f, supx∈IRd f(x) ∈ I,

g(x) ≤ f(x) ≤ h(x), |f(x)− f(y)| ≤ κ‖x− y‖2, ∀x, y ∈ IRd
}

,

where lev≥α f = {x ∈ IRd | f(x) ≥ α} is an upper level-set of f . The second line restricts
the consideration to densities with (global) modes covering C and “high-probability regions”

covering D. Neither C nor D need to be singletons. Although there are some efforts towards
accounting for information about the location of modes (see for example [13]), the generality of

these constraints is unprecedented. The third line permits nearly arbitrary pointwise bounds.
In settings with little data but substantial experience about what an estimate “should” look

like, such constraints can be helpful modeling tools. The last constraint restricts the class to
Lipschitz continuous functions with modulus κ.

Properties of the ML estimator on this class is stated next. Section 7 furnishes the proof and
those of most subsequent results. Let IN = {1, 2, . . . }.

2.1 Proposition Suppose that X1, X2, . . . are iid random vectors, each distributed according
to a density f 0 : IRd → [0,∞], F in (2) is nonempty, and {εn ≥ 0, n ∈ IN} → 0. Then the

following hold almost surely:

(i) For all n ∈ IN , there exists f̂n ∈ εn- argminf∈F{−n
−1

∑n
j=1 log f(X

j)}.

(ii) Every cluster point (under the aw-distance) of {f̂n, n ∈ IN}, of which there is at least one,
minimizes the Kullback-Leibler divergence to f 0 over the class F .

(iii) If f 0 ∈ F , then f 0 is the limit (under the aw-distance) of {f̂n, n ∈ IN}.

The proposition establishes that despite the rather rich class, ML estimators exists and they
are consistent, even under model misspecification, which is especially relevant in the presence

of many constraints. The specific case examined here is only an illustration. Section 3 provides
general results along these lines. The framework aims to simplify the analysis of new estimators

constructed by adding and/or removing constraints. As we see below, the analysis reduces largely
to checking closedness and nonemptiness.
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2.3 Empirical Results

We consider ML estimation of the mixture of three uniform densities on [0, 1]2 depicted in Figure
1(left). The resulting mixture density f 0 has height f 0(x) = 3 for x in the areas colored yellow

and f 0(x) = 0.6150 elsewhere. Using a sample of size 100 shown in Figure 1(right), we compute
a penalized ML estimate over the class of functions

F =
{

f : [0, 1]2 → [α, β]
∣

∣

∣

∫

f(x)dx = 1, {x̄, ȳ} ⊂ argmaxx∈[0,1]2 f(x),

|f(x)− f(y)| ≤ κ‖x− y‖2, ∀x, y ∈ [0, 1]2,

piecewise affine on simplicial complex partition
}

.

A simplicial complex partition divides [0, 1]2 into N equally sized triangles; see Section 5 for

details and the fact that optimization over F can be reduced to solving a finite-dimensional
convex problem. As discussed there, F can be viewed as an approximation, introduced for

computational reasons, of the class obtained from F by relaxing the piecewise affine restriction.
We also adopt the penalty term π(f) = λ

∑N
k=1 ‖gi‖1, where gi is the gradient of the ith affine

function defining f . In the results reported here, κ = 100 with x̄ = (0.4702, 0.4657) and ȳ =
(0.7746, 0.7773). We observe that F is misspecified as f 0 is not Lipschitz continuous.

x1
0 0.2 0.4 0.6 0.8 1

x2

0

0.2

0.4

0.6

0.8

1

Figure 1: Top view of actual density (left) and sample of size n = 100 (right).

Figure 2 illustrates the effect of including the argmax-constraint for the case with λ = 0.05,

α = 0.0001, β = 10000, and N = 200. In the left portion of the figure, the argmax-constraint

is not used and, visually, the errors are large. In the right portion, the argmax-constraint is
included and indications of the actual density emerges. This and other experiments show that

argmax-constraints regularize the estimates in some sense.
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Figure 2: Estimates using n = 100 without (left) and with (right) argmax-constraint.

If α is increased to 0.3075 and β lowered to 4.5, i.e., 50% below and above the lowest and

highest point of f 0, the estimate with argmax-constraint is slightly improved; see Figure 3(left)
for a top-view of the resulting density. The estimates are quite insensitive to the choice of x̄

and ȳ. Over 25 replications with x̄ randomly selected from the box constituting the left portion
of argmaxx∈[0,1]2 f

0(x) and with ȳ randomly selected from the right box, 22 estimates resemble

strongly that in Figure 3(left). The remaining three blur together the two peaks of f 0. Still, the
KL-divergence between f̂n and f 0 remains close: the mean across the 25 replications is 0.177

and the standard deviation is 0.005. Naturally, a sample size of n = 1000 improves the estimates
significantly; see Figure 3(right), where now λ = 0.02 and N = 800 are used.

Figure 3: Estimates using sample size n = 100 (left) and n = 1000 (right).
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partition without penalty (λ = 0) with penalty (λ > 0)
size N n = 100 n = 1000 n = 10000 n = 100 n = 1000 n = 10000

200 0.7 0.8 1.0 1.0 1.0 1.3
800 1.7 1.7 1.9 10.4 10.3 9.6
3200 6.6 11.7 14.8 38.5 29.1 22.0

Table 1: Computing times in seconds.

Table 1 summarizes typical computing times on a 2.60GHz laptop using IPOPT [48] under

varying partition size N , sample size n, and penalty parameter; α and β are as before. The
solver is not tuned for the specific problem instances and times can certainly be improved. In

most cases, the run times are at most a few seconds. Interestingly, they are nearly constant in
the sample size n as the size of the optimization problem is independent of n; see Section 5.2.

Though, run times grow with partition size N . We observe that a piecewise affine density on a
partition of [0, 1]2 with size N has 3N parameters that needs to be optimized. Thus, the last

row in the table implies overfitting to some extent. The longer run times with penalties (λ > 0)

are caused by additional optimization variables introduced in implementation of the nonsmooth
penalty term. There are well-known techniques for mitigating this effect, but they are not

explored here. Still, the table indicates the level of computational complexity for constrained
M-estimator of this kind. Section 5 includes further discussion.

3 Existence and Consistency

After defining the aw-distance and establishing preliminary properties, this section turns to the
main results on existence and consistency of estimators.

3.1 Attouch-Wets Distance

Throughout, we consider functions defined on a nonempty and closed set S ⊂ IRd, which may
be the whole of IRd. In the density setting, S could be thought of as a support. However, we

permit densities to have the value zero, so prior knowledge of the support is not required. The
class F n in (1) is viewed as a subset of the (extended real-valued) usc functions on S, which is

denoted by

usc-fcns(S) = {f : S → IR | f usc and f 6≡ −∞}, with IR = [−∞,∞].

Thus, f ∈ usc-fcns(S) if and only if the hypograph hypo f = {(x, α) ∈ S × IR | f(x) ≥ α} is a

nonempty closed subset of IRd×IR. The class of usc functions is rich enough for most applications.
We equip usc-fcns(S) with the aw-distance, which quantifies the distance between hypographs.

Figure 4 shows hypo fn with shading and it appears “close” to hypo f . Specifically, let dist(z, A)

9
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Figure 4: Hypographs of distribution (left), density (middle), and regression functions (right).

be the usual point-to-set distance between a point z ∈ IRd × IR and a set A ⊂ IRd × IR; any
norm ‖ · ‖ can be used. Let zctr ∈ S × IR. The choice of norm and zctr influence the numerical

value of the aw-distance, but the resulting topology on usc-fcns(S) remains unchanged and thus
all the stated results as well. For f, g ∈ usc-fcns(S), the aw-distance is defined as

dl(f, g) =

∫ ∞

0

dlρ(f, g)e
−ρdρ,

where, for ρ ≥ 0,

dlρ(f, g) = max
{

∣

∣dist(z, hypo f)− dist(z, hypo g)
∣

∣

∣

∣

∣
‖z − zctr‖ ≤ ρ

}

.

Indeed, (usc-fcns(S), dl) is a complete separable metric space, for which closed and bounded

subsets are compact [29, Prop. 4.45, Thm. 7.58]. Boundedness can be verified by the inequality
dl(f, g) ≤ 1+max{dist(zctr, hypo f), dist(zctr, hypo g)} [30, Prop. 3.1]. The aw-distance metrizes

hypo-convergence: for fn, f ∈ usc-fcns(S),

fn hypo-converges to f ⇐⇒ hypo fn set-converges to hypo f

⇐⇒

{

∀xn → x, limsup fn(xn) ≤ f(x)

∀x ∃xn → x, liminf fn(xn) ≥ f(x)
(3)

⇐⇒ dl(fn, f) → 0; simply denoted by fn → f.

Set-convergence is in the sense of Painlevé-Kuratowski2; see [29, Ch. 7].
Distribution functions hypo-converge if and only if they converge weakly [38, 37, 35] as

illustrated in Figure 4(left). Figure 4(middle, right) hints to the fact that modes and maximizers

of hypo-converging densities and regression functions converge to those of limiting functions; see
Section 3.4.

2The outer limit of a sequence of sets {An, n ∈ IN} in a topological space, denoted by OutLimAn, is the
collection of points to which a subsequence of {an ∈ An, n ∈ IN} converges. The inner limit, denoted by
InnLimAn, is the collection of points to which a sequence {an ∈ An, n ∈ IN} converges. If both limits exist and
are equal to A, we say that {An, n ∈ IN} set-converges to A and write An → A or LimAn = A.
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In general, fn → f does not guarantee pointwise convergence; only limsup fn(x) ≤ f(x)
holds for all x ∈ S by (3). This issue surfaces in the analysis of (semi)continuity properties of

functions on usc-fcns(S). For x̄ ∈ S and ρ ≥ 0, let IB(x̄, ρ) = {x ∈ S | ‖x̄− x‖ ≤ ρ}. We recall
that {fn, n ∈ IN} ⊂ usc-fcns(S) is equi-usc at x̄ ∈ S when liminf fn(x̄) → ∞ or when for every

ρ, ε ∈ (0,∞), there exists n̄ ∈ IN and δ > 0 such that

supx∈IB(x̄,δ) f
n(x) ≤ max{fn(x̄) + ε,−ρ} for all n ≥ n̄.

A class F ⊂ usc-fcns(S) is equi-usc at x̄ ∈ S when every sequence {fn ∈ F, n ∈ IN} is equi-usc
at x̄. The main consequence of this property is that hypo-convergence implies pointwise conver-

gence [29, Thm. 7.10]:

3.1 Proposition (pointwise convergence). If {fn, n ∈ IN} ⊂ usc-fcns(S) is equi-usc at x̄ ∈ S,
then fn → f ∈ usc-fcns(S) implies fn(x̄) → f(x̄).

Although the property is nontrivial, many interesting classes of functions are equi-usc at all,
or “most,” points in S as seen next. Let intA denote the interior of A ⊂ IRd. A log-concave

function f = eg for some concave function g : S → IR.

3.2 Proposition (sufficient conditions for equi-usc). Any one of the following conditions suffice

for the functions {fn, n ∈ IN} ⊂ usc-fcns(S) to be equi-usc at x̄ ∈ S.

(i) The functions are nonnegative, fn → f ∈ usc-fcns(S), and f(x̄) = 0.

(ii) The functions are concave, fn → f ∈ usc-fcns(S), and x̄ ∈ int{x ∈ S | f(x) > −∞}.

(iii) The functions are log-concave, fn → f ∈ usc-fcns(S), and x̄ ∈ int{x ∈ S | f(x) > 0}.

(iv) The functions are nondecreasing3 (alternatively, nonincreasing), fn → f ∈ usc-fcns(S),

and f is continuous at x̄ ∈ intS.

(v) The functions are locally Lipschitz continuous at x̄ with common modulus, i.e., there exist

δ > 0 and κ ∈ [0,∞) such that |fn(x)− fn(x̄)| ≤ κ‖x− x̄‖ for all x ∈ IB(x̄, δ) and n ∈ IN .

Although the aw-distance cannot generally be related to some of the other common metrics,
the Hellinger and L2 distances tend to zero whenever the aw-distance vanishes under equi-usc

and integrability assumptions.

3.3 Proposition (connections with other metrics). Suppose that {f, fn, n ∈ IN} ⊂ usc-fcns(S),

fn → f , and for some (measurable) g : S → [0,∞], |fn(x)| ≤ g(x) for all x ∈ S and n ∈ IN .
Then,

3Monotonicity of functions on S are always with respect to the partial order induced by inequalities interpreted
componentwise, i.e., f ∈ usc-fcns(S) is nondecreasing (nonincreasing) if x ≤ y implies fn(x) ≤ (≥)fn(y).
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(i) L2
P (f

n, f) =
∫ (

fn(x)− f(x)
)2
dP (x) → 0 provided

∫

g2(x)dP (x) <∞ and {fn, n ∈ IN} is

equi-usc at P -a.e. x ∈ S;

(ii) H2(fn, f) = 1
2

∫

(
√

fn(x) −
√

f(x))2dx → 0 provided that fn ≥ 0,
∫

g(x)dx < ∞, and
{fn, n ∈ IN} is equi-usc at Lebesgue-a.e. x ∈ S.

3.2 Existence

Our first main result establishes that existence of an estimator reduces to having a semi-
continuity property for the loss and penalty functions and a closed and bounded class of functions

in the aw-distance.

We recall that a function ϕ : F → IR defined on a closed subset F of usc-fcns(S) is lower-
semicontinuous (lsc) if liminf ϕ(fn) ≥ ϕ(f) for all fn ∈ F → f . To clarify earlier notation4, let

ε- argminf∈F ϕ(f) = {f ∈ F | ϕ(f) ≤ infg∈F ϕ(g) + ε}.
Although our focus is on the existence of M-estimators, i.e., minimizers of losses under

an empirical distribution, occasionally we consider general distributions and thereby also treat
approximation problems. We consider the following general setting [29, Ch. 14]: For a closed

F ⊂ usc-fcns(S) and a complete probability space (S0,B0, P 0), with S0 ⊂ IRd0 , we say that
ψ : S0 × F → IR is a random lsc function if for all x ∈ S0, ψ(x, ·) is lsc and ψ is measurable

with respect to the product sigma-algebra5 on S0 × F . A random lsc function ψ : S0 × F → IR
is locally inf-integrable if for all f ∈ F there exists ρ > 0 such that6

∫

infg∈F{ψ(x, g) | dl(f, g) ≤
ρ}dP 0(x) > −∞.

3.4 Theorem (existence of approximation). Suppose that ε ≥ 0 and F is a nonempty, closed,

and bounded subset of usc-fcns(S) and (S0,B0, P 0) is a complete probability space. If ψ :
S0 × F → IR is a locally inf-integrable random lsc function and π : F → (−∞,∞] is lsc, then

ε- argminf∈F

∫

ψ(x, f)dP 0(x) + π(f) 6= ∅

and inf
f∈F

∫

ψ(x, f)dP 0(x) + π(f) > −∞.

3.5 Corollary (existence of estimator). Suppose that ε ≥ 0, {xj ∈ IRd0 , j = 1, . . . , n},
and F is a nonempty, closed, and bounded subset of usc-fcns(S). If π : F → (−∞,∞] and
ψ(xj , ·) : F → (−∞,∞] are lsc for all j, then

ε- argminf∈F

1

n

n
∑

j=1

ψ(xj , f) + π(f) 6= ∅ and inf
f∈F

1

n

n
∑

j=1

ψ(xj , f) + π(f) > −∞.

4Throughout we use the common extended real-valued calculus: 0 · ∞ = 0, α · ∞ = ∞ for α > 0, α+∞ = ∞
for α ∈ IR, and α−∞ = −∞ for α ∈ [−∞,∞); see [29, Sec. 1.E].

5For F , we adopt the Borel sigma-algebra under dl.
6With ∞−∞ = ∞, the integral of any measurable function is well-defined. In particular, the present integrand

is measurable [29, Thm. 14.37], [12, Prop. 6.3].
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For F to be bounded it suffices that there are x ∈ S and α ∈ IR such that for all f ∈ F ,
f(x) ≥ α, which becomes trivial for densities and distribution functions. As we see below,

the condition can sometimes be removed. Many natural classes are closed as indicated in the
introduction and detailed in Section 4. The common penalty function π(f) = supx∈S |f(x)| is
lsc (cf. Proposition 4.7). Familiar loss functions satisfy the lsc requirement too, at least under

certain assumptions. Several examples are furnished including some involving support vector
machines (SVM). The class in the next corollary considers concave classifiers in a “band” that

are also subject to constraints on the location of level-sets.

3.6 Corollary (existence of concave SVM classifier). For g : S → (−∞,∞], h ∈ usc-fcns(S),
α ∈ IR, and C ⊂ IRd, suppose that {yj ∈ {−1, 1}, xj ∈ int S, j = 1, . . . , n} and F = {f ∈
usc-fcns(S) | f concave, g(x) ≤ f(x) ≤ h(x) ∀x ∈ S, C ⊂ lev≥α f}. Then, as long as F is
nonempty,

argminf∈F

1

n

n
∑

j=1

max
{

0, 1− yjf(xj)
}

6= ∅.

When classification errors of different types need to be treated separately, a Neyman-Pearson
model leads to the following setting [4, 5, 40].

3.7 Corollary (existence of robust Neyman-Pearson classifier). Suppose that {xj ∈ S, j = 1,

. . . , n} and {zi ∈ S, i = 1, . . . , m} are associated with +1 and −1 labels, respectively, and F
is a nonempty closed subset of usc-fcns(S). Then, for open sets {Z i ⊂ IRd, i = 1, . . . , m}, with
zi ∈ Z i,

argminf∈F

{ 1

n

n
∑

j=1

max
{

0, 1− f(xj)
}

∣

∣

∣
f(z) ≤ 0 ∀z ∈ Z i, i = 1, . . . , m

}

6= ∅.

The corollary establishes the existence of an estimator, defined by a broad class F , that

minimizes hinge loss across the +1 labels and tolerates no training error across the −1 labels

even after perturbations within sets Z i.

3.8 Corollary (existence of ML estimator). If F is a nonempty closed subset of usc-fcns(S)

consisting of nonnegative functions, ε ≥ 0, {xj ∈ S, j = 1, . . . , n}, and f(xj) <∞ for all j and

f ∈ F , then

ε- argminf∈F −
1

n

n
∑

j=1

log f(xj) 6= ∅ and inf
f∈F

−
1

n

n
∑

j=1

log f(xj) > −∞.

We observe that the corollary actually applies to any f : S → [0,∞] and not only densities7.
This fact is beneficial in analysis of estimators for which the integral-to-one constraint is relaxed,

7We extend α 7→ logα to [0,∞] by assigning the end points −∞ and ∞, respectively.
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for example, due to computational concerns. Nevertheless, the constraint enters in many settings
and needs a closer examination.

If F is the class of normal densities with mean zero and positive standard deviation, then F
is not closed because there is a sequence in F hypo-converging to a degenerate density with zero

standard deviation. Similarly, if F is the class of normal densities with standard deviation one,

then closedness fails again since one can construct densities in F hypo-converging to the zero
function. Also classes of bounded densities on a compact set S may not be closed. Elimination of

such pathological cases is required for a class of densities to be closed. Proposition 2.1 furnishes
a concrete example, while Proposition 4.8 shows that if F is equi-usc at Lebesgue-a.e. x ∈ S

and an integrability condition holds, then
∫

f(x)dx = 1 is closed under hypo-convergence. The
log-concave class exhibits an equi-usc property as established in Proposition 3.2. It is therefore

not surprising that the ML estimator over this class exists under a mild condition on the sample
[14]; see Proposition 6.2 below.

3.9 Corollary (LS regression). Suppose that F is a nonempty closed subset of usc-fcns(S). If

{yj ∈ IR, xj ∈ S, j = 1, . . . , n} and F is equi-usc at xj , j = 1, . . . , n, then

argminf∈F

1

n

n
∑

j=1

(yj − f(xj))2 6= ∅.

Proposition 3.2 gives various sufficient conditions for a class of functions to be equi-usc. The

concave functions are equi-usc at “most” points according to that proposition and a variant
of LS regression that also includes pointwise upper and lower bound, for example introduced

to engineer desirable estimates in high-dimensional settings, does indeed exists. This can be
established using the same arguments as those supporting Corollary 3.6.

In special cases with relatively simple constraints such as only monotonicity or only convex-
ity, existence of LS estimators are well-known; see [39, 41]. The key feature of these special

cases is that they reduce in some sense to finite-dimensional problems expressed in terms of
the heights θj = f(xj), j = 1, . . . , n, and the limit of sequence of such heights generated by

feasible functions can easily be shown to be extendable to a feasible function. In the presence of

nontrivial constraints that impose restrictions on f at points other than the design points, the
situation is more complicated and our systematic approach has merit. In particular, starting

from a closed equi-usc class, one can build up closed equi-usc classes through set operations that
preserve closedness such as intersections and thereby construct novel estimators that will exist

by Corollary 3.9.

3.3 Consistency

Our second main result establishes that consistency follows essentially from lower-semicontinuity

and one-sided integrability of the loss function and the closedness of the class under consideration.
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3.10 Theorem (consistency). Suppose that X1, X2, . . . are iid random vectors with values in
S0 ⊂ IRd0 , F is a closed subset of usc-fcns(S), ψ : S0 × F → IR is a locally inf-integrable

random lsc function, and πn : F → [0,∞) satisfies πn(fn) → 0 for every convergent sequence
{fn ∈ F, n ∈ IN}. Then, the following hold almost surely:

(i) For all {εn ≥ 0, n ∈ IN} → 0,

OutLim
(

εn- argminf∈F

1

n

n
∑

j=1

ψ(Xj, f) + πn(f)
)

⊂ argminf∈F IE[ψ(X
1, f)].

(ii) There exists {εn ≥ 0, n ∈ IN} → 0, such that

(

εn- argminf∈F

1

n

n
∑

j=1

ψ(Xj, f) + πn(f)
)

→ argminf∈F IE[ψ(X
1, f)]

provided that IE[ψ(X1, f)] <∞ for at least one f ∈ F and F is bounded.

The first conclusion of Theorem 3.10 guarantees that every cluster point of sequences con-
structed from near-minimizers of n−1

∑n
j=1 ψ(X

j , ·) + πn is contained in argminf∈F IE[ψ(X
1, f)]

provided that εn vanishes.
Since argminf∈F IE[ψ(X

1, f)] may not be a singleton, especially under model misspecification,

there might be a strict inclusion in the first conclusion. For example, let S = S0 = [0, 1],

F = {f | f(x) = 1 for x ∈ [0, 1), f(1) ∈ [1, 2]}, the actual density f 0 be uniform on S, and
πn(f) = n−1 supx∈S f(x). Then, almost surely, argminf∈F −n−1

∑n
j=1 log f(X

j) + πn(f) = {f 0},
a strict subset of argminf∈F IE[− log f(X1)] = F . In this example, the difficulty is caused by
effects on a set of Lebesgue measure zero. However, in more complicated situations, the concern

may be more prevalent. An example is furnished by the same f 0, S, and S0, but with F =
{g1, g2}, where g1(x) = 1+ δ for x ∈ [0, 1/2] and g1(x) = 1− δ for x ∈ (1/2, 1], and g2(x) = 1− δ
for x ∈ [0, 1/2] and g2(x) = 1 + δ for x ∈ (1/2, 1], where δ ∈ (0, 1), and πn(f) = n−1/2f(0). The
actual density f 0 is outside F . Then, almost surely, OutLim{argminf∈F −n−1

∑n
j=1 log f(X

j) +

πn(f)} = {g2}, a strict subset of argminf∈F IE[− log f(X1)] = F .
The second conclusion in Theorem 3.10 guarantees that if εn tends to zero sufficiently slowly,

then the inclusion cannot be strict; near-minimizers of n−1
∑n

j=1 ψ(X
j, ·) + πn set-converge to

argminf∈F IE[ψ(X
1, f)]. Thus, in this sense, estimators can converge to any function in the latter

argmin.
A comparison with the common approach to consistency laid out, for example, in [44, Sec.

3.2.1] is illuminating. In our notation, [44, Cor. 3.2.3] states roughly that if (i) n−1
∑n

j=1 ψ(X
j, f)

converges in probability to IE[ψ(X1, f)] uniformly in f across F , which is permitted to be any

metric space, and (ii) IE[ψ(X1, ·)] has a well-separated (unique) minimizer f 0 on F , then f̂n
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converges in probability to f 0. The ability to handle an arbitrary metric space is an advantage
over Theorem 3.10, but also burdens the user with verifying the well-separability of f 0 in the

chosen metric. We do not insist on a unique minimizer as discussed above. The required uniform
weak law of large numbers would typically need ψ(X1, f) to be integrable. In contrast, Theorem

3.10 insists only on a one-sided integrability condition, which is trivially satisfied when ψ(x, f)

is uniformly bounded from below across x ∈ S0 and f ∈ F as would be the case for hinge-loss,
least-squares, and other common loss functions.

3.11 Corollary (consistency for concave SVM classifier). For g : IRd → (−∞,∞], h ∈
usc-fcns(IRd), γ ∈ IR, and C ⊂ IRd, suppose that (X1, Y 1), (X2, Y 2), . . . are iid random vectors

in IRd × {−1, 1} and F = {f ∈ usc-fcns(IRd) | f concave, g(x) ≤ f(x) ≤ h(x) ∀x ∈ IRd, C ⊂
lev≥γ f}.

If {εn ≥ 0, n ∈ IN} → 0 and

f̂n ∈ εn- argminf∈F

1

n

n
∑

j=1

max{0, 1− Y jf(Xj)},

then, almost surely, {f̂n, n ∈ IN} has at least one cluster point and every such point f ⋆ satisfies

f ⋆ ∈ argminf∈F IE
[

max{0, 1− Y 1f(X1)}
]

.

Moreover, for a subsequence {nk, k ∈ IN} with f̂nk → f ⋆ and β < α ∈ IR,

OutLimk

(

lev≥α f̂
nk
)

⊂ lev≥α f
⋆ and InnLimk

(

lev≥β f̂
nk
)

⊃ lev≥α f
⋆.

We note that the upper level-sets of f̂n, which are central in the practical use of the classifier
(especially for α = 0), indeed approximate the “true” level-set lev≥α f

⋆. Without additional

assumptions, we are unable to permit β = α because it is fundamentally difficult to estimate
lev≥α f

⋆ when f ⋆(x) = α on a set of positive measure. For consistency of SVM defined over a

subset of a reproducing kernel Hilbert space, we refer to [43].
The Kullback-Leibler divergence

K(g; f) =

∫

g(x)
[

log g(x)− log f(x)
]

dx for (measurable) f, g : S → [0,∞]

enters in ML estimation of densities.

3.12 Corollary (consistency in ML estimation). Suppose that X1, X2, . . . are iid random
vectors, each distributed according to a density f 0 : S → [0,∞], F is a closed subset of

usc-fcns(S) with nonnegative functions, and for every f ∈ F there exists ρ > 0 such that

IE[supg∈F{log g(X
1) | dl(f, g) ≤ ρ}] <∞. If {εn ≥ 0, n ∈ IN} → 0 and

f̂n ∈ εn- argminf∈F −
1

n

n
∑

j=1

log f(Xj),
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then, almost surely, {f̂n, n ∈ IN} has at least one cluster point and every such point f ⋆ satisfies

f ⋆ ∈ argminf∈F K(f 0; f).

Under the additional assumption that F contains only densities and f 0 ∈ F , we also have that

f ⋆(x) = f 0(x) for Lebesgue-a.e. x ∈ S.

It is obvious that when there exists an α ∈ IR such that f(x) ≤ α for all f ∈ F , then the
expectation assumption is satisfied. In particular, such an α exists if for some κ ∈ [0,∞) the

class F ⊂ {f : S → [0,∞] |
∫

f(x)dx = 1, |f(x)− f(y)| ≤ κ‖x− y‖2 ∀x, y ∈ S}. Alternatively,
if X1 is integrable and there exist α, β ∈ IR such that f(x) ≤ exp(α + β‖x‖∞) for all f ∈ F ,

then again the expectation assumption in the corollary is satisfied.
We next turn the attention to LS regression. Suppose that we are given the random design

model
Y j = f 0(Xj) + Zj, j = 1, 2, . . . ,

where the iid random vectors X1, X2, . . . take values in the closed set S ⊂ IRd, the iid zero-
mean and finite-variance random variables Z1, Z2, . . . are also independent of X1, X2, . . . , and

f 0 : S → IR is an unknown function to be estimated based on observations of (X1, Y 1). Let

L2
P (f, g) =

∫

(

f(x)− g(x)
)2
dP (x),

where P is the distribution of X1. Consistency in the aw-distance is stated next; see [18] for

consistency in the empirical L2 sense.

3.13 Corollary (consistency in LS regression). Suppose that {εn ≥ 0, n ∈ IN} → 0 and F is a
closed subset of usc-fcns(S) equi-usc at every x ∈ S. For the random design model above and

f̂n ∈ εn- argminf∈F

1

n

n
∑

j=1

(

Y j − f(Xj)
)2
,

we have, almost surely, that every cluster point f ⋆ of {f̂n, n ∈ IN} satisfies

f ⋆ ∈ argminf∈F L
2
P (f, f

0).

If inff∈F IE[(Y
1 − f(X1))2] < ∞, which occurs in particular when f 0 ∈ F , then {f̂n, n ∈ IN}

has at least one cluster point.

When f 0 ∈ F , we also have that f ⋆(x) = f 0(x) for P -a.e. x ∈ S.

We next turn to consistency in the presence of sieves, i.e., the class of functions F n varies with
n. The importance of sieves is well-documented and prior studies include [11, 10, 20, 19, 9, 6];

see also [47, Thms. 8.4 and 8.12].
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3.14 Theorem (consistency; sieves). Suppose that X1, X2, . . . are iid random vectors with
values in S0 ⊂ IRd0 , F is a closed subset of usc-fcns(S), F n ⊂ F , ψ : S0 × F → IR is a locally

inf-integrable random lsc function, πn : F → [0,∞) satisfies πn(fn) → 0 for every convergent
sequence {fn ∈ F, n ∈ IN}, and δ > 0. If {εn ≥ 0, n ∈ IN} → 0, then

OutLim
(

εn- argminf∈Fn
δ

1

n

n
∑

j=1

ψ(Xj , f) + πn(f)
)

⊂
{

f ∈ F∞
δ

∣

∣ IE[ψ(X1, f)] ≤ infg∈LimFn IE[ψ(X1, g)]
}

a.s.,

where F n
δ = {f ∈ F | infg∈Fn dl(f, g) ≤ δ} and F∞

δ is defined similarly with F n replaced

by LimF n. In particular, if LimF n = F , then the right-hand side of the inclusion equals

argminf∈F IE[ψ(X
1, f)].

The assumptions of the theorem are nearly identical to those of Theorem 3.10. The main

difference is that consistency is ensured for estimators that are near-minimizers of a slightly

relaxed problem over the class F n
δ and not over F n. This relaxation is potentially beneficial from

a computationally point of view (see Section 5.1).

Theorem 3.14 guarantees that estimators selected from such relaxed classes will be consis-
tent in some sense. Specifically, every cluster point of the estimators is at least as “good” as

infg∈LimFn IE[ψ(X1, g)] and is also in F∞
δ . If F n eventually “fills” F , consistency takes place in

the usual sense.

To illustrate one application area, we specialize the theorem for ML estimation of densities,
while retaining some of its notation.

3.15 Corollary (consistency in ML estimation; sieves). Suppose that X1, X2, . . . are iid ran-

dom vectors, each distributed according to a density f 0 : S → [0,∞], F is a closed subset of

usc-fcns(S) consisting of densities, F n ⊂ F , and for every f ∈ F there exists ρ > 0 such that
IE[supg∈F{log g(X

1) | dl(f, g) ≤ ρ}] <∞. If δ > 0, {εn ≥ 0, n ∈ IN} → 0, f 0 ∈ LimF n, and

f̂n ∈ εn- argminf∈Fn
δ
−
1

n

n
∑

j=1

log f(Xj),

then, almost surely, {f̂n, n ∈ IN} has at least one cluster point and every such point f ⋆ satisfies

K(f 0; f ⋆) = 0 and f ⋆ ∈ F∞
δ .

Thus, f ⋆(x) = f 0(x) for Lebesgue-a.e. x ∈ S.

3.4 Plug-In Estimators

Among the many plug-in estimators that can be constructed from density estimators, those of

modes, near-modes, height of modes, and high-likelihood events are especially accessible within
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our framework because strong consistency is automatically inherited from that of the density
estimator. Similarly, plug-in estimators of “peaks” of regression functions and level-sets of

classifiers will also be consistent. Maxima and maximizers of regression functions are important,
especially in engineering design where “surrogate models” are built using regression and that are

subsequently maximized to find an optimal design or decision.

We recall that ε- argmaxx∈S f(x) = {y ∈ S | f(y) ≥ supx∈S f(x)−ε} for ε ≥ 0 and f : S → IR.
Thus, f(x⋆) = ∞ when x⋆ ∈ ε- argmaxx∈S f(x) and supx∈S f(x) = ∞. If f is a density, then

argmaxx∈S f(x) is the set of modes of f , δ- argmaxx∈S f(x) is a set of near-modes, and lev≥α f
is a set of high-likelihood events. We stress that modes are defined here as global maximizers of

densities. Extension to a more inclusive definition is possible but omitted.

3.16 Theorem (plug-in estimators of modes and related quantities). Suppose that estimators
f̂n → f 0 almost surely, with estimates being functions in usc-fcns(S). If {δn ≥ 0, n ∈ IN} → δ

and {αn ∈ IR, n ∈ IN} → α, then the plug-in estimators

m̂n ∈ δn- argmaxx∈S f̂
n(x) and l̂n ∈ lev≥αn f̂n

are consistent in the sense that almost surely δ- argmaxx∈S f
0(x) and lev≥α f

0 contain every
cluster point of {m̂n, n ∈ IN} and {l̂n, n ∈ IN}, respectively.

Moreover, if there is a compact B ⊂ S such that for all n argmaxx∈S f̂
n(x) ∩ B 6= ∅ almost

surely, then the plug-in estimator

ĥn = supx∈S f̂
n(x) → supx∈S f

0(x) almost surely.

The theorem provides foundations for a rich class of constrained estimators for modes, near-

modes, height of modes, and high-likelihood events and similar quantities for regression functions
and classifiers. We observe that the theorem holds even if f 0 fails to have a unique maximizer.

Convergence of densities in the sense of L1, L2, Hellinger, and Kullback-Leibler as well as point-
wise convergence fails to ensure convergence of modes and related quantities without additional

assumptions.

4 Closed Classes

The central technical challenge associated with applying our existence and consistency theo-
rems is often to establish that the class of functions under consideration is a closed subset of

usc-fcns(S). The analysis is significantly simplified by the fact that any intersection of closed
sets is also closed. Thus, it suffices to examine each individual requirement of a class separately.

It is well known that the limit of a hypo-converging sequence of concave functions must

also be concave and thus the class of concave functions is closed [29, Prop. 4.15]. In this
section, we provide numerous results for other classes. We note that S is necessarily convex

when f ∈ usc-fcns(S) is convex, concave, or log-concave.
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4.1 Proposition (convexity and (log-)concavity). For {f, fn, n ∈ IN} ⊂ usc-fcns(S) and fn →
f , we have:

(i) If {fn, n ∈ IN} are concave, then f is concave. Moreover, if the functions are finite-valued,

κ ≥ 0, and ‖v‖2 ≤ κ for every subgradient v ∈ ∂fn(x) and x ∈ S, then ‖v‖2 ≤ κ for every
v ∈ ∂f(x) and x ∈ S.

(ii) If {fn ≥ 0, n ∈ IN} are log-concave, then f is log-concave.

(iii) If {fn, n ∈ IN} are convex and intS is nonempty, then f is convex.

The additional assumption about intS being nonempty for the convex case is caused by the
fact that the aw-distance is inherently tied to hypographs, which makes the treatment of convex

functions slightly more delicate than that of concave functions.
Transformations of convex and concave functions beyond the log-concave case lead to the

rich class of s-concave densities; see for example [42, 22].

4.2 Proposition (monotone transformations). For a continuous nondecreasing function h0 :

IR → IR, let h : IR → IR have h(y) = h0(y) if y ∈ IR, h(−∞) = inf ȳ∈IR h0(ȳ), and h(∞) =
supȳ∈IR h0(ȳ). Then, for {g

n : S → IR, n ∈ IN}, with h ◦ gn ∈ usc-fcns(S) → f ∈ usc-fcns(S), the

following hold:

(i) If {gn, n ∈ IN} are concave, then f = h ◦ g for some concave g : S → IR.

(ii) If {gn, n ∈ IN} are convex and intS is nonempty, then f = h ◦ g for some convex g : S → IR.

Since h ◦ g with h nonincreasing and g convex can be written as h̃ ◦ g̃ with h̃ nondecreasing

and g̃ concave, the proposition also addresses nonincreasing functions and in fact all s-concave
functions. This ensures closedness for classes of functions under such shape restrictions.

4.3 Proposition (monotonicity). For {f, fn, n ∈ IN} ⊂ usc-fcns(S) and fn → f , we have:

(i) If fn is nondecreasing in the sense that fn(x) ≤ fn(y) for x ∈ S, y ∈ intS, with x ≤ y,

then f is also nondecreasing in the same sense.

If S is a box8, then intS can be replaced by S.

(ii) If fn is nonincreasing in the sense that fn(x) ≥ fn(y) for x ∈ intS, y ∈ S, with x ≤ y,

then f is also nonincreasing in the same sense.

If S is a box, then int S can be replaced by S.

8A box in IRd is of the form S = [α1, β2]× . . . [αd, βd], with −∞ ≤ αi < βi ≤ ∞, where in the case of αi = −∞
and βi = ∞ the closed intervals are replaced by (half)open intervals. Its dimension is therefore d.
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The limit of a hypo-converging sequence of nondecreasing functions is not necessarily non-
decreasing for arbitrary S. Consider S = {(x1, x2) ∈ IR2 | x1 = x2, 0 ≤ x1, x2 ≤ 1} ∪ {(2, 0)},
f(x) = fn(x) = 0 if x = (2, 0), and f(x) = 1 and fn(x) = min{1, n(x1+x2)} otherwise. Clearly,
x = (0, 0) ≤ y = (2, 0), but f(x) = 1 > f(y) = 0. Meanwhile, fn(x) = fn(y) = 0 for all n at

these two points and it is nondecreasing elsewhere too. Still, fn → f .

We recall that f : S → IR is Lipschitz continuous with modulus κ when |f(x) − f(y)| ≤
κ‖x− y‖ for all x, y ∈ S.

4.4 Proposition (Lipschitz continuity). Suppose that {f, fn, n ∈ IN} ⊂ usc-fcns(S), fn → f ,
and {fn, n ∈ IN} are Lipschitz continuous with common modulus κ. Then, f is also Lipschitz

continuous with modulus κ.

4.5 Proposition (pointwise bounds). Suppose that g : S → IR, h ∈ usc-fcns (S), {f, fn, n ∈
IN} ⊂ usc-fcns(S), and fn → f . If g(x) ≤ fn(x) ≤ h(x) for all n ∈ IN and x ∈ S, then

g(x) ≤ f(x) ≤ h(x) for all x ∈ S.

A function f : S → IR is in the class of multivariate totally positive functions of order two
when f(x)f(y) ≤ f(min{x, y})f(max{x, y}) for all x, y ∈ S; see for example [17]. The min and

max are taken componentwise.

4.6 Proposition (multivariate total positivity of order two). If {fn, n ∈ IN} ⊂ usc-fcns(S) is
equi-usc at x̄ ∈ S, the functions fn are multivariate totally positive of order two, and fn → f ∈
usc-fcns(S), then f is multivariate totally positive of order two.

Penalty terms and constraints are often defined in terms of sup-functions and integrals. Their
(semi)-continuity properties are recorded next.

4.7 Proposition (lsc of sup-norm). If F ⊂ usc-fcns(S) and g : IR→ IR is lsc9, then π : F → IR

defined by π(f) = supx∈S g(f(x)) is lsc.

In particular, f 7→ supx∈S |f(x)| is lsc because this corresponds to having g(y) = |y| for y ∈ IR
and g(y) = ∞ for y = −∞ and ∞ in the proposition.

4.8 Proposition (integral quantities). If {fn, n ∈ IN} ⊂ usc-fcns(S) is equi-usc at Lebesgue-

a.e. x ∈ S, fn → f ∈ usc-fcns(S), and for some (measurable) g : S → [0,∞], |fn(x)| ≤ g(x) for
all x ∈ S and n ∈ IN , then

(i)
∫

fn(x)dx→
∫

f(x)dx provided
∫

g(x)dx <∞;

(ii)
∫

xfn(x)dx→
∫

xf(x)dx provided
∫

‖x‖g(x)dx <∞.

We end the section with an example of approximating and/or evolving moment information

in the definition of a function class.

9g : IR → IR is lsc if liminf g(yn) ≥ g(y) for every yn → y ∈ IR.
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4.9 Proposition (moment information.) Suppose that C ⊂ Cn ⊂ IRd are closed, F 0 ⊂
usc-fcns(S) is closed and equi-usc at every x ∈ S, and there is a function g : S → [0,∞]

with
∫

‖x‖g(x)dx <∞ and |f(x)| ≤ g(x) for all x ∈ S and f ∈ F 0. Let

F =
{

f ∈ F 0
∣

∣

∣

∫

xf(x)dx ∈ C
}

and F n =
{

f ∈ F 0
∣

∣

∣

∫

xf(x)dx ∈ Cn
}

.

If Cn set-converges to C, then F n set-converges to F .

5 Estimation Algorithm

For given data x1, . . . , xn ∈ S0 ⊂ IRd0 , there are no general algorithms available for finding a
function in

ε- argminf∈F

1

n

n
∑

j=1

ψ(xj , f) + π(f). (4)

In this section, we provide an algorithm for this purpose that combines the need for approxi-
mation of functions in usc-fcns(S) with the use of state-of-the-art solvers for finite-dimensional

optimization.
Suppose that πν is an approximation of π and F ν is an approximation of F involving only

functions that are described by a finite number of parameters, i.e., F ν is a parametric class.
(The sample size n is fixed and we therefore let ν ∈ IN index sequences.) We assume that

the statistician finds the class F appropriate and, for example, believes it balances over- and
underfitting. Consequently, the goal becomes to find a function in (4). The approximation F ν is

introduced for computational reasons and is often selected as close to F as possible, only limited
by the computing resources available.

Estimation Algorithm.

Step 0. Set ν = 1.

Step 1. Find f ν ∈ εν- argminf∈F ν
1
n

∑n
j=1 ψ(x

j , f) + πν(f).

Step 2. Replace ν by ν + 1 and go to Step 1.

This seemingly simple algorithm captures a large variety of situations. It constructs a se-

quence of functions that approximate those in (4) by allowing a tolerance εν that may be larger
than ε and by resorting to approximations F ν and πν of the actual quantities F and π. The

difficulty in carrying out Step 1 depends on many factors, but since F ν consists only of func-

tions described by a finite number of parameters it reduces to finite-dimensional optimization
for which there are a large number of solvers available. Section 5.2 shows that we often end up

with convex problems.
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The algorithm permits the strategy of initially considering coarse approximations in Step
1 with subsequent refinement. Since iteration number ν has f ν−1 available for warm-staring

the computations of f ν , the amount of computational work required by a solver in Step 1 is
often low. In essence, the algorithm can make much progress towards (4) using relatively coarse

approximations.

5.1 Theorem (convergence of algorithm). Suppose that x1, . . . , xn ∈ IRd0 , F ν , F ⊂ F 0 ⊂
usc-fcns(S) are closed, ψ(xj , ·) : F 0 → (−∞,∞] is continuous for all j, and π, πν : F 0 → IR
satisfy πν(gν) → π(g) whenever gν ∈ F 0 → g. Moreover, let {εν ≥ 0, ν ∈ IN} → ε∞, LimF ν =

F , and {f ν, ν ∈ IN} be generated by the Estimation Algorithm.

(i) If ε∞ ≤ ε, then (4) contains every cluster point of {f ν , ν ∈ IN}.

(ii) If ε∞ < ε, F ν ⊂ F , F 0 is bounded, and there exists g ∈ F such that ψ(xj , g) < ∞ for all
j, then (4) contains f ν̄ for some finite ν̄.

When ε > 0, item (ii) of the theorem establishes that we obtain an estimate in a finite number

of iterations of the Estimation Algorithm as long as F ν approximates F from the “inside.”
Although not the only possibility, such inner approximations are the primary forms as seen in

Section 5.1.
The main technical and practical challenge associated with the Estimation Algorithm is the

construction of a parametric class F ν that set-converges to F . Since F can be a rich class of usc
functions, standard approaches (see for example [27, 25, 26]) may fail and we leverage instead a

tailored approximation theory for usc-fcns(S).

5.1 Parametric Class of Epi-Splines

Epi-splines is a parametric class that is dense in usc-fcns(S) after a sign change and furnish

the building blocks for constructing a parametric class F ν that approximates F . In essence, an
epi-spline on S ⊂ IRd is a piecewise polynomial function that is defined in terms of a partition of

S consisting of N disjoint open subsets that is dense in S. On each such subset, the epi-spline

is a polynomial function. Outside these subsets, the epi-spline is defined by the lower limit
of function values making epi-splines lsc; see [34, 30, 33]. Although approximation theory for

epi-splines exists for noncompact S, arbitrary partitions, and higher-order polynomials, we here
develop the possibilities in the statistical setting for a compact polyhedral S ⊂ IRd, simplicial

complex partitions, and first-degree polynomials.
We denote by clA the closure of a set A ⊂ IRd. A collection R = {Rk}

N
k=1 of open subsets

of S is a simplicial complex partition of S if clR1, . . . , clRN are simplexes10, ∪N
k=1 clRk = S,

10A simplex in IRd is the convex hull of d + 1 points x0, x1, . . . , xd ∈ IRd, with x1 − x0, x2 − x0, . . . , xd − x0

linearly independent.
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and Rk ∩ Rl = ∅, k 6= l. Suppose that {Rν = (Rν
1 , . . . , R

ν
Nν), ν ∈ IN} is a collection of simplicial

complex partition of S with mesh size maxk=1,...,Nν supx,y∈Rν
k
‖x− y‖ → 0 as ν → ∞.

A first-order epi-spline s on a simplicial complex partition R = {Rk}
N
k=1 is a real-valued

function that on each Rk is affine and that satisfies liminf s(xν) = s(x) for all xν → x. Let

e-spl(R) be the collection of all such epi-splines. We deduce from [34, 30] that

⋃

ν∈IN

{

f : S → IR
∣

∣ f = −s, s ∈ e-spl(Rν)
}

is dense in
(

usc-fcns(S), dl
)

.

In the context of the Estimation Algorithm and Theorem 5.1, this fact underpins several
approaches to constructing a parametric class F ν that set-converges to F . For example, suppose

that F is solid11, then F ν = F ∩ e-spl(Rν) → F as can be established by a standard triangular
array argument. One particular class of functions that always will be solid is F n

δ in Theorem

3.14 provided that it is a subset of a convex F 0. For example, F 0 can be taken to be {f ∈
usc-fcns(S) | f(x) ≥ α ∀x ∈ S}, which is convex, so this is no real limitation. Consequently, the

relaxation of F n to F n
δ in Theorem 3.14 not only facilitates consistency of an estimator, it also

supports the development of computational methods.

5.2 Examples of Formulations

If F ν is defined in terms of first-order epi-splines on a partition of S ⊂ IRd consisting of Nν open
sets, then each function in F ν is characterized by Nν(d + 1) parameters. Consequently, Step 1

of the Estimation Algorithm amounts to approximately solving an optimization problem with
Nν(d+ 1) variables. The number of variables is independent of the sample size n. The number

of open sets Nν would usually grow with d, but when the growth is slow the number of variables

is manageable for modern optimization solvers even for moderately large d.
Among the numerous formulations of the problem in Step 1 of the Estimation Algorithm,

we illustrate one based on first-order epi-splines with a simplicial complex partition, which is
also used in Section 2.3. Suppose that c0k, c

1
k, . . . , c

d
k ∈ IRd are the vertexes of the kth simplex

of a simplicial complex partition of S ⊂ IRd with N simplexes. A first-order epi-spline is then
fully defined by its height at these vertexes. Let hik ∈ IR be the height at cik, i = 0, 1, . . . , d,

k = 1, . . . , N . These N(d + 1) variables are to be optimized. (Optimization over such “tent
poles” is familiar in ML estimation over log-concave densities, but then they are located at the

data points and not according to simplexes as here; see for example [7].) We next give specific
expressions for typical objective and constraint functions.

In ML estimation of densities, the loss expressed in terms of the optimization variables
becomes

−
1

n

n
∑

j=1

log f(xj) = −
1

n

n
∑

j=1

log
d

∑

i=0

µi
jh

i
kj
,

11A set A is solid if cl(intA) = A.
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where kj is the simplex in which data point xj is located and the scalars {µi
j, i = 0, 1, . . . , d, j =

1, . . . , n} can be precomputed by solving xj =
∑d

i=0 µ
i
jc

i
kj
. The loss is therefore convex in the

optimization variables.
The requirement that functions are nonnegativity is implemented by the constraints hik ≥ 0

for all i = 0, 1, . . . , d, k = 1, . . . , N , which define a polyhedral feasible set.
The requirement that functions integrate to one is implemented by

∫

f(x)dx =
1

d+ 1

N
∑

k=1

αk

d
∑

i=0

hik = 1,

where αk is the hyper-volume of the kth simplex.
The requirement that functions should have their argmax covering a given point x⋆ is imple-

mented by the constraints

d
∑

i=0

ηihik⋆ ≥ hi
′

k for all i′ = 0, 1, . . . , d, k = 1, . . . , N,

where k⋆ is the simplex in which x⋆ is located and the scalars {ηi, i = 0, 1, . . . , d} can be

precomputed by solving x⋆ =
∑d

i=0 η
icik⋆ . The constraints form a polyhedral feasible set.

Implementation of continuity, Lipschitz continuity, concavity, and many other conditions also
lead to polyhedral feasible sets. Consequently, ML estimation of densities on a compact polyhe-

dral set S ⊂ IRd under a large variety of constraints can be achieved by optimization of a convex
function over a polyhedral feasible sets for which highly efficient solvers are available. A switch

to LS regression, would result in a convex quadratic function to minimize, with many of the
constraints remaining unchanged. In that case, specialized quadratic optimization solvers apply.
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6 Appendix: Additional Examples

This section discusses existence of solutions of approximation problems for the already well-

understood classes of monotone and of log-concave functions. We give proofs passing through
the metric space (usc-fcns(S), dl) to further illustrate the framework.

6.1 Proposition (existence of monotone LS approximation). For a box S ⊂ IRd, suppose that

F = {f ∈ usc-fcns(S) | f nondecreasing} and P is an absolutely continuous distribution on
S × IR. Then,

argminf∈F

∫

(y − f(x))2dP (x, y) 6= ∅.

Proof. By Proposition 4.3, F is closed. Suppose that fn ∈ F → f . LetD = {x ∈ intS | f is discontinuous at x}.
In view of Propositions 3.2(iv) and 3.1, fn(x) → f(x) for all x ∈ intS \D. Thus, (y−fn(x))2 →
(y − f(x))2 for all such x and all y ∈ IR. By [24], D has Lebesgue measure zero and the same

holds for S\intS. Then, by Fatou’s Lemma, liminf
∫

(y−fn(x))2dP (x, y) ≥
∫

(y−f(x))2dP (x, y)
and f 7→

∫

(y − f(x))2dP (x, y) is lsc on F . Its lower level-sets are compact at every finite level

(cf. the argument in the proof of Corollary 3.7) and the conclusion follows.

The next result is in [14], but we provide a proof with some novel elements: the log-likelihood
criterion function is shown to be lsc on the enlarged class of log-concave functions that integrate

to values in [0, 1].

6.2 Proposition (existence of log-concave ML estimator). Suppose that F = {f ∈ usc-fcns(IRd) | f ≥
0, log-concave}. Then, for any probability distribution P on IRd,

argminf∈F

{

∫

− log f(x)dP (x)
∣

∣

∣

∫

f(x)dx = 1
}

6= ∅

if and only if
∫

‖x‖dP (x) <∞ and P (H) < 1 for all hyperplane H ⊂ IRd.

Proof. For fn ∈ F → f , Proposition 4.1(ii) establishes that f is log-concave. Moreover,
fn(x) → f(x) for all x ∈ int{x ∈ IRd | f(x) > 0} and also when f(x) = 0 by Propositions 3.1

and 3.2. The subset of IRd that fails outside both of these cases has Lebesgue measure zero so
fn(x) → f(x) for Lebesgue-a.e. x ∈ IRd. Fatou’s Lemma gives that liminf

∫

fn(x)dx ≥
∫

f(x)dx.

Thus, F≤ = {f ∈ F |
∫

f(x)dx ≤ 1} is closed and actually compact because all functions in F
are nonnegative.

We show that ϕ(f) =
∫

− log f(x)dP (x) is lsc as a function on (F≤, dl). Let fn ∈ F≤ → f .

We consider two cases: a)
∫

f(x)dx = γ > 0. Then, γ−1f is a log-concave density and by [8,
Lem. 1] there are ξ0 ∈ IR and ξ1 ∈ (0,∞) such that f(x) ≤ exp(ξ0 − ξ1‖x‖) for all x ∈ IRd.

Let ε = supx∈IRd f(x)/4, which then must be positive, and ρ ∈ (2ε,∞) such that f(x) ≤ ε for
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‖x‖2 ≥ ρ/2. (Here, we adopt the Euclidean norm, with the correspond balls denoted by IB2(x, δ),
to simplify a reference to [29].) Hypo-convergence is locally uniform in the following sense [29,

Thm. 4.10]: there is n̄ such that for n ≥ n̄,

hypo fn ∩ IB2(0, ρ) ⊂ hypo f + IB2(0, ε)

hypo f ∩ IB2(0, ρ) ⊂ hypo fn + IB2(0, ε).

Take (x, fn(x)) with ‖x‖2 = ρ. If fn(x) > ρ, then (x, ρ) ∈ hypo fn ∩ IB2(0, ρ) and there exists

(y, β) ∈ hypo f such that ‖x − y‖2 ≤ ε and |ρ − β| ≤ ε. Thus, f(y) ≥ β ≥ ρ − ε > ε.
However, f(y) ≤ ε because ‖y‖2 ≥ ρ/2 and we have reached a contradiction. Thus, fn(x) ≤ ρ,

(x, fn(x)) ∈ hypo fn ∩ IB2(0, ρ), and there is (y, β) ∈ hypo f such that ‖x − y‖2 ≤ ε and
|fn(x) − β| ≤ ε. This leads to fn(x) ≤ β + ε ≤ f(y) + ε ≤ 2ε for all n ≥ n̄. The choice of ρ

ensures that x̄ ∈ argmaxx∈IRd f(x) with ‖x̄‖2 ≤ ρ/2 exists. By (3), there is xn → x̄ such that
fn(xn) → f(x̄) = 4ε. Thus, for some n∗ ≥ n̄, ‖xn‖2 ≤ 3ρ/4 and fn(xn) ≥ 3ε for all n ≥ n∗. Since

we also have fn(x) ≤ 2ε for ‖x‖2 = ρ, argmaxx∈IRd fn(x) ⊂ IB2(0, 3ρ/4) for all n ≥ n∗. By [29,
Thm. 7.31], this implies that supx∈IRd fn(x) → supx∈IRd f(x). Consequently, for sufficiently large

n,
∫

− log fn(x)dP (x) ≥
∫

− log[2 supx̄∈IRd f(x̄)]dP (x) > −∞, which then furnishes an integrable

lower for application of Fatou’s lemma: liminf
∫

− log fn(x)dP (x) ≥
∫

liminf[− log fn(x)]dP (x).
Since liminf − log fn(x) ≥ − log f(x) for all x ∈ IRd by (3), we conclude that ϕ is lsc at points

f ∈ F≤ with
∫

f(x)dx > 0. This fact holds for any P .
Next, we consider b)

∫

f(x)dx = 0 and now it becomes essential to limit the scope to P

with the stated properties. Let D = {x ∈ IRd | f(x) > 0}, which then has Lebesgue measure
zero (because

∫

f(x)dx = 0) and intD = ∅. Since D is also convex by the log-concavity of f , it

lies in an affine subspace of IRd of dimension less than d, i.e., D is a subset of some hyperplane
H ⊂ IRd. Consequently, the first term of

ϕ(f) =

∫

x 6∈D

− log f(x)dP (x) +

∫

x∈D

− log f(x)dP (x)

integrates to ∞ in view of the assumption on P . The convention ∞ − α = ∞ for any α ∈ IR

implies that ϕ(f) = ∞ regardless of the value of the second term. It remains to show that

ϕ(fn) → ∞ when fn ∈ F≤ → f . Since ϕ(fn) = ∞ when
∫

fn(x)dx = 0 as just argued,
we assume without loss of generality that

∫

fn(x)dx > 0 for all n. In fact, those integrals

can be assumed to be one because, with
∫

fn(x)dx = γn,
∫

− log fn(x)dP (x) = − log γn +
∫

− log(fn(x)/γn)dP (x) → ∞ when the last term tends to ∞.

Each sn = supx∈IRd fn(x), n ∈ IN , is finite (cf. [8, Lem. 1]), but the sequence could be
unbounded. If supn∈IN s

n is also finite, then

ϕ(fn) =

∫

f(x)=0,fn(x)≤1

− log fn(x)dP (x) +

∫

f(x)>0,fn(x)≤1

− log fn(x)dP (x)

+

∫

fn(x)>1

− log fn(x)dP (x) → ∞;
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the first term tends to ∞ because fn(x) → 0 when f(x) = 0 by Proposition 3.2(i) and the
last term is bounded from below uniformly in n. Hence, suppose that sn → ∞. For η > 0,

τn = log sn, and σn = exp(−ητn),

∫

− log fn(x)dP (x) ≥ ητnP (IRd \ lev≥σn fn)− τnP (lev≥σn fn)

= (η + 1)τn
( η

η + 1
− P (lev≥σn fn)

)

.

By [14, Lem. 4.1], the Lebesgue measure of lev≥σn fn is no greater than

(1 + η)d(τn)d exp(−τn)/

∫ (1+η)τn

0

td exp(−t)dt→ 0

as sn (and τn) tends to infinity for any given η > 0. Moreover, [14, Lem. 2.1] establishes that

P (lev≥σn fn) < η/(η+1) when the Lebesgue measure of lev≥σn fn is sufficiently low and η suffi-
ciently high. (This fact relies critically on the assumption on P .) Thus,

∫

− log fn(x)dP (x) → ∞
when sn → ∞ and ϕ is lsc (in fact continuous) at f when

∫

f(x)dx = 0.
In summary, we have shown that ϕ is lsc on the compact set F≤. Thus, there exists f ⋆ ∈

argminf∈F≤
ϕ(f). Trivially, there is f ∈ F≤ with finite ϕ(f), which implies that ϕ(f ⋆) <∞ and,

as argued above,
∫

f ⋆(x)dx = γ > 0. Since ϕ(f ⋆/γ) ≤ ϕ(f ⋆), f ⋆/γ ∈ argminf∈F{ϕ(f) |
∫

f(x)dx =

1}.
For the necessity of the conditions on P we refer to [14].

7 Appendix: Intermediate Results and Proofs

This section includes proofs of all the results in the paper.

Proof of Proposition 2.1. By Proposition 3.2(v), F is equi-usc at all x ∈ IRd. Proposition
4.8(i) ensures that the integral constraint is closed. Theorem 3.16 as well as Propositions 4.4 and

4.5 establish that the other constraints are closed too. Consequently, F is compact. Corollary

3.8 applies and confirms (i). Corollary 3.12 and the discussion immediately after it establish (ii).
When f 0 ∈ F , then every cluster point of {f̂n, n ∈ IN} must deviate from f 0 at most on set of

Lebesgue measure zero. For Lipschitz continuous functions this means that the functions must
be identical and (iii) holds.

Proof of Proposition 3.2. When fn → f , it suffices by [29, Thm. 7.10] to establish that

fn(x̄) → f(x̄). In view of (3), (i) is trivial. Items (ii,iii) follow by [29, Thm. 7.17]. For (iv), we

only prove the nondecreasing case as a nearly identical argument establishes the conclusion for
nonincreasing functions. Let ε > 0. Since x̄ ∈ intS and f is continuous at x̄, there exist ȳ ∈ S,

with ȳi < x̄i for i = 1, . . . , d, and f(ȳ) ≥ f(x̄)−ε. Moreover, for some xn ∈ S → ȳ, fn(xn) → f(ȳ)
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by (3). Since xn ≤ x̄ for sufficiently large n, liminf fn(x̄) ≥ liminf fn(xn) = f(ȳ) ≥ f(x̄) − ε.
Since ε is arbitrary, the conclusion follows because limsup fn(x̄) ≤ f(x̄) already by (3). For (v),

consider the definition of equi-usc. The Lipschitz condition ensures that there is δ ∈ (0,∞) with
fn(x) ≤ fn(x̄) + κ‖x− x̄‖ for all n ∈ IN and x ∈ IB(x̄, δ). Let ε > 0. If κ = 0, then set δ′ = δ.

Otherwise, set δ′ = min{ε/κ, δ}. In either case, supx∈IB(x̄,δ′) f
n(x) ≤ fn(x̄) + κδ′ ≤ fn(x̄) + ε.

Proof of Proposition 3.3. In view of Proposition 3.1, the result follows directly from appli-

cations of the Dominated Convergence Theorem.

Proof of Theorem 3.4. A trivial generalization of Fatou’s Lemma shows that
∫

ψ(x, ·)dP 0(x)
is lsc on F (see for example [12, Appendix]). Since for all f ∈ F ,

∫

ψ(x, f)dP 0(x) and π(f)

exceed −∞,
∫

ψ(x, ·)dP 0(x) + π is lsc on F . All lsc functions defined on a compact set attain
their infima.

Proof of Corollary 3.5. The function n−1
∑n

j=1 ψ(x
j , ·) + π is lsc on F because each term in

the sum involves a lsc function that is never −∞. All lsc functions defined on a compact set

attain their infima.

Proof of Corollary 3.6. By Propositions 4.1(i) and 4.5 as well as Theorem 3.16, F is closed.

It is also bounded; see the remark after Corollary 3.5. Since g > −∞ and xj ∈ intS, it
is also equi-usc at xj , j = 1, . . . , n, by Proposition 3.2(ii). Thus, in view of Proposition 3.1

f 7→ max{0, 1 − yjf(xj)} is continuous on F for all j and the conclusion follows by Corollary
3.5.

Proof of Corollary 3.7. Let ϕ(f) = n−1
∑n

j=1max{0, 1 − f(xj)}, f ∈ F , and fn ∈ F → f .
By (3), limsup fn(xj) ≤ f(xj) and liminf(max{0, 1 − fn(xj)}) ≥ max{0, 1 − f(xj)} for all j =

1, . . . , n, which implies that ϕ is lsc on F . Since Z i is open, liminf(supx∈Zi fn(x)) ≥ supx∈Zi f(x)
by [29, Prop. 7.29]. Thus, F 0 = {f ∈ F | supx∈Zi f(x) ≤ 0, i = 1, . . . , m} is closed. For g ∈ F ,

suppose that {fn ∈ F, n ∈ IN} is such that dl(fn, g) → ∞. Then, hypo fn set-converges to ∅,
which implies fn(xj) → −∞ for all j and ϕ(fn) → ∞. Consequently, {f ∈ F | ϕ(f) ≤ α} is

bounded for α ∈ IR. Since it is also closed by virtue of ϕ being lsc, these level-sets are actually
compact. A lsc function with compact level-set attains it infimum.

Proof of Corollary 3.8. Let fn ∈ F → f . By (3), limsup fn(xj) ≤ f(xj) for all j so
liminf − log fn(xj) ≥ − log f(xj). Thus, f 7→ −n−1

∑n
j=1 log f(x

j) is lsc on F . The conclusion

then follows by Corollary 3.5.

Proof of Corollary 3.9. In view of Proposition 3.1, f 7→
∑n

j=1(y
j − f(xj))2 is continuous on

F . An argument similar to the one in the proof of Corollary 3.7 yields that this function has
compact level-sets.

The proof of Theorem 3.10 relies on an lsc-LLN, essentially in [1, 23], that ensures almost sure
epi-convergence of empirical processes indexed on a polish space. For completeness, we include

the statement as well as a new proof, which is simpler than that in [1]. It follows the arguments
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in [23] for ergodic processes, but takes advantage of the present iid setting. The statement is
made slightly more general than needed without complication.

7.1 Proposition (lsc-LLN). Suppose that (Y, dY ) is a complete separable (polish) metric space,
(Ξ,A, P ) is a complete12 probability space, and ψ : Ξ×Y → IR is a locally inf-integrable random

lsc function13. If ξ1, ξ2, . . . is a sequence of iid random elements that take values in Ξ with
distribution P , then almost surely

1

n

n
∑

j=1

ψ(ξj, ·) epi-converges IE[ψ(ξ1, ·)],

which is equivalent to having for all y ∈ Y ,

∀yn → y, liminf
1

n

n
∑

j=1

ψ(ξj, yn) ≥ IE[ψ(ξ1, y)]

∃yn → y, limsup
1

n

n
∑

j=1

ψ(ξj, yn) ≤ IE[ψ(ξ1, y)].

Proof. A slight generalization of Fatou’s Lemma (see [12, Appendix]) ensures that IE[ψ(ξ1, ·)]
is lsc. Let D̄ ⊂ Y × IR be a countable dense subset of the epigraph epi IE[ψ(ξ1, ·)], with epi h =

{(y, y0) ∈ Y × IR | h(y) ≤ y0}, which may be empty. Moreover, let D ⊂ Y be a countable dense
subset of Y that contains the projection of D̄ on Y and Q+ be the nonnegative rational numbers.

For y ∈ D and r ∈ Q+, we define πy,r : Ξ → IR by setting

πy,r(ξ) = infy′∈IBo(y,r) ψ(ξ, y
′) if r > 0 and πy,0(ξ) = ψ(ξ, y),

where IBo(y, r) = {y′ ∈ Y | dY (y
′, y) < r}. By Theorem 3.4 in [23], every such πy,r is an extended

real-valued random variable defined on the probability space (Ξ,A, P ). Since ψ is locally inf-

integrable, it follows that for every y ∈ D there is a closed neighborhood Vy of y and ry ∈ (0,∞)
such that

IBo(y, r) ⊂ Vy and IE[πy,r] ≥

∫

infy′∈Vy
ψ(ξ, y′)dP (ξ) > −∞ for r ∈ [0, ry].

Let (Ξ∞,A∞, P∞) be the product space constructed from (Ξ,A, P ) in the usual manner. For
every y ∈ D and r ∈ [0, ry] ∩ Q+, a standard law of large numbers for extended real-valued

random variables (see for example [16, Thms. 7.1,7.2]) ensures that

1

n

n
∑

j=1

πy,r(ξ
j) → IE[πy,r] for P

∞-a.e. (ξ1, ξ2, . . . ) ∈ Ξ∞.

12In view of [23], the result (but not our proof) holds without completeness.
13The definitions of Section 3.2 carry over to the more general context here.
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Since {πy,r | y ∈ D, r ∈ [0, ry] ∩ Q+} is a countable collection of random variables, there exists
Ξ∞
0 ⊂ Ξ∞ such that P (Ξ∞

0 ) = 1 and

1

n

n
∑

j=1

πy,r(ξ
j) → IE[πy,r] for all (ξ

1, ξ2, . . . ) ∈ Ξ∞
0 and y ∈ D, r ∈ [0, ry] ∩Q+.

We proceed by establishing the liminf and limsup conditions of the theorem. First, suppose
that yn → y. There exist n̄k ∈ IN , zk ∈ D, and rk ∈ [0, ry] ∩ Q+, k ∈ IN , such that zk → y,

rk → 0,
IBo(zk, rk) ⊃ IBo(zk+1, rk+1), and yn ∈ IBo(zk, rk) for n ≥ n̄k, k ∈ IN.

We temporarily fix k. Then, for n ≥ n̄k and (ξ1, ξ2, . . . ) ∈ Ξ∞
0 ,

1

n

n
∑

j=1

ψ(ξj, yn) ≥
1

n

n
∑

j=1

infy′∈IBo(zk,rk) ψ(ξ
j, y′) =

1

n

n
∑

j=1

πzk ,rk(ξ
j) → IE[πzk,rk ].

The nestedness of the balls, implies that πzk,rk ≤ πzk+1,rk+1 for all k. Moreover the lsc of ψ(ξ, ·)
implies that for all ξ ∈ Ξ, πzk,rk(ξ) → πy,0(ξ) = ψ(ξ, y). Thus, in view of the Monotone

Convergence Theorem, IE[πzk,rk ] → IE[ψ(ξ1, y)]. We have establish that for (ξ1, ξ2, . . . ) ∈ Ξ∞
0 ,

liminf n−1
∑n

j=1 ψ(ξ
j, yn) ≥ IE[ψ(ξ1, y)].

Second, for every y ∈ Y , we construct a sequence yn → y such that for (ξ1, ξ2, . . . ) ∈ Ξ∞
0 ,

limsup n−1
∑n

j=1 ψ(ξ
j, yn) ≤ IE[ψ(ξ1, y)].

Suppose that y ∈ D. Then, the claim holds because for (ξ1, ξ2, . . . ) ∈ Ξ∞
0

limsup
1

n

n
∑

j=1

ψ(ξj, y) =
1

n

n
∑

j=1

πy,0(ξ
j) → IE[πy,0] = IE[ψ(ξ1, y)].

Fix (ξ1, ξ2, . . . ) ∈ Ξ∞
0 and let h : Y → IR be the unique lsc functions that has as epigraph

the set OutLim{epin−1
∑n

j=1 ψ(ξ
j, ·)}. Thus, the prior equality is equivalent to having h(y) ≤

IE[ψ(ξ1, y)], which then holds for all y ∈ D. Consequently, {(y, α) ∈ Y ×IR | h(y) ≤ α, y ∈ D} ⊂
epi IE[ψ(ξ1, ·)]. Since h is lsc and epi IE[ψ(ξ1, ·)] is closed, we have after taking the closure on
both sides that epi h ⊂ epi IE[ψ(ξ1, ·)] and also h(y) ≤ IE[ψ(ξ1, y) for all y. By construction of h,

this implies that for all y there exists yn → y such that limsup n−1
∑n

j=1 ψ(ξ
j, yn) ≤ IE[ψ(ξ1, y)]

and the conclusion holds.

Proof of Theorem 3.10. If F is empty, the results hold trivially. Suppose that F is nonempty.
By [29, Prop. 4.45, Thm. 7.58], (usc-fcns(S), dl) is a complete separable metric space. By

virtue of being a closed subset, F forms another complete separable metric space (F, dl). Let
ϕn(f) = n−1

∑n
j=1 ψ(X

j , f) + πn(f) and ϕ(f) = IE[ψ(X1, f)], f ∈ F . Proposition 7.1 applied

with this metric space establishes that n−1
∑n

j=1 ψ(X
j, ·) epi-converges to ϕ a.s. Moreover, for

all fn ∈ F → f ,

liminf ϕn(fn) ≥ liminf
1

n

n
∑

j=1

ψ(Xj, fn) ≥ ϕ(f) a.s.
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Also, there exists fn ∈ F → f such that

limsupϕn(fn) ≤ limsup
1

n

n
∑

j=1

ψ(Xj, fn) + limsup πn(fn) ≤ ϕ(f) a.s.

We have established that ϕn epi-converges to ϕ a.s. If ϕ is improper, which in this case means

that ϕ(f) = ∞ for all f ∈ F , then item (i) holds trivially because the right-hand side of the
inclusion is the whole of F . If ϕ is proper, then ϕn is also proper and [30, Prop. 2.1] applies,

which establishes (i).
The additional assumptions in item (ii) imply that both ϕ and ϕn are proper, and also that

ϕn epi-converges tightly ϕ because then F is compact. Thus, [36, Thm. 3.8] applies and item

(ii) is established.

Proof of Corollary 3.11. We deduce from the proof of Corollary 3.6 that F is compact and

equi-usc at all x ∈ IRd. This implies that for all (x, y) ∈ IRd × {−1, 1}, f 7→ max{0, 1− yf(x)}
is continuous on F . Suppose that fn → f and xn → x. By (3), limsup fn(xn) ≤ f(x). Thus,

(x, f) 7→ f(x) is usc on IRd × F . From this we conclude that ((x, y), f) 7→ max{0, 1 − yf(x)}
is measurable and a random lsc function. It is trivally locally inf-integrable by virtue of being

nonnegative. Theorem 3.10(i) therefore applies and a cluster point f ⋆ of {f̂n, n ∈ IN}, of which
one exits due to compactness of F , must satisfy the first conclusion a.s. The second conclusion

follows by an application of [29, Prop. 7.7].

Proof of Corollary 3.12. Since F consists of nonnegative functions, it is bounded and in
fact compact since closed. Thus, {f̂n, n ∈ IN} must have at least one cluster point. Next, we

show that ψ : S × F → IR given by ψ(x, f) = − log f(x) is a random lsc function. Suppose
that fn ∈ F → f and xn ∈ S → x, then limsup fn(xn) ≤ f(x) and also liminf − log fn(xn) ≥
− log f(x), which implies that ψ is lsc. Measurability then follows directly from the fact that
lower level-sets of lsc functions are closed. Theorem 3.10(i) therefore applies and a cluster point

f ⋆ of {f̂n, n ∈ IN} must satisfy a.s.

f ⋆ ∈ argminf∈F IE[− log f(X1)] ⊂ argminf∈F IE[log f
0(X1)]− IE[log f(X1)].

The inclusion holds even if IE[log f 0(X1)] equals −∞ or ∞. The last conclusion of the theorem

follows directly from the properties of the Kullback-Leibler divergence.

Proof of Corollary 3.13. From the proof of Corollary 3.9, we deduce that f 7→ (y − f(x))2

is continuous for any (x, y) ∈ S × IR. Moreover, if fn ∈ F → f and xn ∈ S → x, then
limsup fn(xn) ≤ f(x) by (3). Thus, the mapping (x, f) 7→ f(x) on S × F is usc and thus

measurable. We therefore have that ((x, y), f) 7→ (y− f(x))2 is measurable too as a function on
S×IR×F and also a random lsc function. It is trivially locally inf-integrable by its nonnegativity.

Theorem 3.10(i) therefore applies and a cluster point f ⋆ of {f̂n, n ∈ IN} must satisfy a.s.

f ⋆ ∈ argminf∈F IE
[

(Y 1 − f(X1)2
]

= argminf∈F L
2
P (f

0, f)
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because IE[Z1] = 0 and X1 and Z1 are independent; the finite variance of Z1 prevents IE
[

(Y 1 −
f(X1)2

]

from being ∞ when L2
P (f

0, f) is finite. The existence of a cluster point is realized as

follows. Let ϕ(f) = IE[(Y 1 − f(X1)2], f ∈ F . If {fn ∈ F, n ∈ IN} satisfies dl(fn, g) → ∞
for some g ∈ F , then hypo fn set-converges to ∅ and fn(x) → −∞ for all x ∈ S. Thus,

ϕ(fn) = IE[(f 0(X1) − fn(X1)2] + IE[(Z1)2] → ∞ since f 0 is real-valued. This implies that

{f ∈ F | ϕ(f) ≤ α} is bounded for all α ∈ IR and contains OutLim{f ∈ F | ϕn(f) ≤ α} for
any sequence of functions {ϕn : F → IR, n ∈ IN} epi-converging to ϕ [2, Thm. 3.1] and also

limsup(inff∈F ϕ
n(f)) ≤ inff∈F ϕ(f) [36, Thm. 3.8]. Under the assumption that inff∈F ϕ(f) <

∞, we therefore have that for some n̄, {εn- argminf∈F ϕ
n(f), n ≥ n̄} is bounded. Applying these

facts to the (random) function defined by ϕn(f) = n−1
∑n

j=1(Y
j − f(Xj))2, which epi-converges

to ϕ almost surely (cf. Theorem 3.10), establishes that {f̂n, n ∈ IN} is bounded almost surely

and therefore must have a cluster point. The final conclusion follows directly from the properties
of the L2

P distance.

Proof of Theorem 3.14. Following the arguments in the proof of Theorem 3.10, we established
that f 7→ ϕn(f) = n−1

∑n
j=1 ψ(X

j , ·) + πn epi-converges to f 7→ ϕ(f) = IE[ψ(X1, ·)] a.s. as

functions on (F, dl). Next, suppose that

f ⋆ ∈ OutLim
(

εn- argminf∈Fn
δ
ϕn(f)

)

.

Then there exist a subsequence {nk, k ∈ IN} and

fk ∈ εnk- argminf∈F
nk
δ
ϕnk(f) → f ⋆.

The continuity of the point-to-set distance and the fact that dist(fk, F nk) ≤ δ for all k im-
plies that dist(f ⋆,LimF n) ≤ δ, i.e., f ⋆ ∈ F∞

δ . Thus, it only remains to show that ϕ(f ⋆) ≤
inff∈LimFn ϕ(f). Let g⋆ ∈ argminf∈LimFn ϕ(f). Then, because ϕn epi-converges to ϕ, there
exists gn ∈ F → g⋆ such that

limsupϕn(gn) ≤ ϕ(g⋆).

Since g⋆ ∈ LimF n, there is n̄ ∈ IN such that dist(gn, F n) ≤ δ for all n ≥ n̄. Consequently,

leveraging the epi-convergence property and the above facts,

ϕ(f ⋆) ≤ liminf ϕnk(fk) ≤ liminf
(

inff∈Fnk
δ
ϕnk(f) + εnk

)

≤ limsupϕnk(gnk) ≤ ϕ(g⋆) = inff∈LimFn ϕ(f).

The first conclusion is established. The second conclusion is immediate after realizing that

F∞
δ = F when LimF n = F .

Proof of Corollary 3.15. The arguments of Corollary 3.12 in conjunction with Theorem 3.14

yield f ⋆ ∈ F∞
δ and K(f 0; f ⋆) ≤ infg∈LimFn K(f 0; g). Since LimF n ⊂ F consists only of densities

and f 0 ∈ LimF n, the right-hand side in this inequality is zero and the conclusion follows.
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Proof of Theorem 3.16. The assertions about m̂n and ĥn are essentially in [30, Prop. 2.1],
with an extension to improper functions following straightforwardly. The conclusion about l̂n

holds by [29, Prop. 7.7].

7.2 Lemma (hypo-convergence under composition). For a continuous nondecreasing function

h0 : IR → IR, let h : IR → IR have h(y) = h0(y) if y ∈ IR, h(−∞) = inf ȳ∈IR h0(ȳ), and
h(∞) = supȳ∈IR h0(ȳ). If gn : S → IR hypo-converges to g : S → IR, then h ◦ gn hypo-converges

to h ◦ g.

Proof. Suppose that xn ∈ S → x, which implies that limsup gn(xn) ≤ g(x). Fix n and let

ε > 0. Suppose that ξn = supm≥n h(g
m(xm)) ∈ IR. Then, there exists m̄ ≥ n such that

ξn ≤ h(gm̄(xm̄))+ε ≤ h(supm≥n g
m(xm))+ε, the last inequality holds because h is nondecreasing.

Since ε is arbitrary, ξn ≤ h(supm≥n g
m(xm)). A similar argument leads to the same inequality if

ξn = ∞ and, trivially, also when ξn = −∞. Since the inequality holds for all n, it follows by the

continuity of h that

limsup h(gn(xn)) = lim
n→∞

(

supm≥n h(g
m(xm))

)

≤ lim
n→∞

h
(

supm≥n g
m(xm)

)

= h
(

lim
n→∞

(supm≥n g
m(xm))

)

= h(limsup gn(xn)) ≤ h(g(x)).

For any x ∈ S, there exists xn ∈ S → x with gn(xn) → g(x). Since h is continuous, this implies
h(gn(xn)) → h(g(x)) and the conclusion follows.

Proof of Proposition 4.1. The first claim follows by [29, Prop. 4.15]. Since −fn,−f are

proper, lsc, and convex, it follows by [29, Thm. 12.35] that the graphs of the subdifferentials

∂fn set-converge to the graph of ∂f . Thus, for every (x, v) in the graph of ∂f , there exists
xn → x and vn → v, with vn ∈ ∂fn(xn). Since ‖vn‖2 ≤ κ for all n, we also have that ‖v‖2 ≤ κ.

For part (ii), Lemma 7.2, with h defined by h(y) = log y if y ∈ (0,∞), h(y) = −∞ if
y = [−∞, 0], and h(y) = ∞ if y = ∞, yields that h ◦ fn hypo-converges to h ◦ f . Since h ◦ fn is

concave, it follows by [29, Prop. 4.15] that h ◦ f is concave too.
For part (iii), let λ ∈ (0, 1) and x, y ∈ intS. Set z = λx + (1 − λ)y. Hypo-convergence

implies that there exists zn ∈ intS → z such that fn(zn) → f(z). Construct xn = x + zn − z
and yn = y + zn − z. Clearly, xn → x and yn → y. Then, λxn + (1− λ)yn = zn. Let ε > 0 and

suppose that f(z) < ∞, f(x) > −∞, and f(y) > −∞. There exists n̄ such that for all n ≥ n̄,
xn, yn ∈ S and

f(z) ≤ fn(zn) +
ε

3
, fn(xn) ≤ f(x) +

ε

3λ
, fn(yn) ≤ f(y) +

ε

3(1− λ)
.

Collecting these results and use the convexity of fn, we obtain that for n ≥ n̄

f(z) ≤ fn(zn) +
ε

3
≤ λfn(xn) + (1− λ)fn(yn) +

ε

3
≤ λf(x) + (1− λ)f(y) + ε.
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Since ε > 0 is arbitrary, f(z) ≤ λf(x) + (1 − λ)f(y). A similar argument leads to the same
conclusion when f(z) = ∞, f(x) = −∞, and/or f(y) = −∞.

It only remains to examine the case when x and/or y are at the boundary of S. Suppose that
λ ∈ (0, 1), x ∈ intS, and y ∈ S\intS. Then, there exists yn ∈ intS → y with f(λx+(1−λ)yn) ≤
λf(x)+ (1−λ)f(yn) because S must be convex. Since λx+(1−λ)yn, λx+(1−λ)y ∈ intS and

f is continuous on intS, the left-hand side tends to f(λx + (1 − λ)y). The upper limit of the
right-hand side is λf(x) + (1 − λ)f(y) by the usc of f . A similar argument holds in the other

cases. Thus, f is convex.

Proof of Proposition 4.2. By [29, Thm. 7.6], either hypo gn set-converges to ∅ or there exist
g ∈ usc-fcns(S) and a subsequence {nk, k ∈ IN} such that gnk → g. In the second case, h ◦ gnk

hypo-converges to h ◦ g by Lemma 7.2. Since a hypo-limit is unique, f = h ◦ g. In the first case,
for all x ∈ S, gn(x) → −∞ so that h ◦ gn(x) → f(x) = h(−∞) = h ◦ g(x), when g(x) = −∞ for

all x ∈ S. The conclusions then follow by Proposition 4.1.

Proof of Proposition 4.3. For part (i), let x ≤ y, with y ∈ intS, and ε > 0. The usc property

implies that there exists δ > 0 such that f(y) ≥ f(z)− ε for all z ∈ S with ‖z − y‖ ≤ δ. Since
y ∈ intS, z can be takes such that zi > yi for i = 1, . . . , d and z ∈ intS. By hypo-convergence,

there exists xn ∈ S → x such that f(x) ≤ liminf fn(xn) and also limsup fn(z) ≤ f(z). Thus,
xn ≤ z for sufficiently large n. By the nondecreasing property,

f(x) ≤ liminf fn(xn) ≤ liminf fn(z) ≤ limsup fn(z) ≤ f(z) ≤ f(y) + ε.

Since ε > 0 is arbitrary the first conclusion follows.
Under the additional structure of S, the argument can be modified as follows. Now with

y ∈ S, let δ > 0 and xn be as earlier. Construct z ∈ IRd by setting zi = min{βi, yi + δ}. Let n̄
be such that xni ≤ xi + δ for all i = 1, . . . , d and n ≥ n̄. Then, for n ≥ n̄, xni ≤ min{βi, xi + δ} ≤
min{βi, yi + δ} = zi. Thus, again we have that xn ≤ z for sufficiently large n and the preceding

arguments lead to the conclusion.
For (ii) let x ≤ y, with x ∈ intS, and ε > 0. The usc property implies that there exists

δ > 0 such that f(x) ≥ f(z)− ε for all z ∈ S with ‖z − x‖ ≤ δ. Since x ∈ intS, z can be takes
such that zi < xi for i = 1, . . . , d and z ∈ intS. In view of the hypo-convergence, there exists

yn ∈ S → y such that f(y) ≤ liminf fn(yn) and also limsup fn(z) ≤ f(z). Thus, z ≤ yn for
sufficiently large n. Using the nonincreasing property, we then obtain that

f(y) ≤ liminf fn(yn) ≤ liminf fn(z) ≤ limsup fn(z) ≤ f(z) ≤ f(x) + ε.

Since ε > 0 is arbitrary the first conclusion follows.
Under the additional structure of S, the argument can be modified as follows. Now with

x ∈ S, let δ > 0 and yn be as earlier. Construct z ∈ IRd be setting zi = max{αi, xi − δ}. Let n̄
be such that yni ≥ yi− δ for all i = 1, . . . , d and n ≥ n̄. Then, for n ≥ n̄, yni ≥ max{αi, yi− δ} ≥
max{αi, xi − δ} = zi. Again we have z ≤ yn for sufficiently large n and the preceding arguments

lead to the conclusion.
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Proof of Proposition 4.4. If κ = 0, then fn are constant functions on S and f also, and
the conclusion holds. Suppose that κ > 0. Let x, y ∈ S, with f(x) and f(y) finite, and

ε > 0. Hypo-convergence implies that there exists xn ∈ S → x such that fn(xn) → f(x)
and limsup fn(y) ≤ f(y). Hence, there exists n̄ such that for all n ≥ n̄, ‖xn − x‖ ≤ ε/(3κ),

|fn(xn)− f(x)| ≤ ε/3, fn(y) ≤ f(y) + ε/3. For such n, f(x)− f(y)

= f(x)− fn(xn) + fn(xn)− fn(x) + fn(x)− fn(y) + fn(y)− f(y)

≤
ε

3
+ κ‖xn − x‖+ κ‖x− y‖+ f(y) +

ε

3
− f(y) ≤ κ‖x− y‖+ ε.

Repeating this argument with the roles of x and y interchanged, we obtain that |f(x)− f(y)| ≤
κ‖x− y‖+ ε. Since ε > 0 is arbitrary, f is Lipschitz continuous with modulus κ when finite. If

f is not finite on S, then it cannot be Lipschitz continuous.

Proof of Proposition 4.5. Let x ∈ S and observe that g(x) ≤ limsup fn(x) ≤ f(x) by (3),
which established the lower bound. Since h is usc, we also have that for some xn ∈ S → x,

h(x) ≥ limsup h(xn) ≥ liminf fn(xn) ≥ f(x), which confirms the upper bound.

Proof of Proposition 4.6. Since the collection of functions is equi-usc, hypo-convergence

implies pointwise convergence (Proposition 3.1) and the conclusion follows immediately.

Proof of Proposition 4.7. Let ε > 0 and fn ∈ F → f . First, suppose that supx∈S g(f(x)) ∈
IR. Then, there exists x̄ ∈ S such that g(f(x̄)) ≥ supx∈S g(f(x))−ε. By (3), there is xn ∈ S → x̄
such that fn(xn) → f(x̄). Since g is lsc,

liminf
(

supx∈S g(f
n(x))

)

≥ liminf g(fn(xn)) ≥ g(f(x̄)) ≥ supx∈S g(f(x))− ε.

Second, suppose that supx∈S g(f(x)) = ∞. Then, there exists x̄ ∈ S such that g(f(x̄)) ≥ 1/ε.

Again, there is xn ∈ S → x̄ such that fn(xn) → f(x̄) and

liminf
(

supx∈S g(f
n(x))

)

≥ liminf g(fn(xn)) ≥ g(f(x̄)) ≥ 1/ε.

Since ε > 0 is arbitrary, we have established that liminf
(

supx∈S g(f
n(x))

)

≥ supx∈S g(f(x)); it
trivially holds when supx∈S g(f(x)) = −∞.

Proof of Proposition 4.8. Since the collection of functions is equi-usc at Lebesgue-a.e. x ∈ S,
hypo-convergence implies pointwise convergence at Lebesgue-a.e. x ∈ S by Proposition 3.1. The

conclusions follow directly from an application of the Dominated Convergence Theorem.

Proof of Proposition 4.9. Since C ⊂ Cn, F ⊂ F n and it suffices to confirm that OutLimF n ⊂
F . Take f ∈ OutLimF n. There exists fk ∈ F nk → f . Since

∫

xfk(x)dx ∈ Cnk , that integral
converges to

∫

xf(x)dx by Proposition 4.8, and the set-convergence Cn to C allow us to conclude

that
∫

xf(x)dx ∈ C.

Proof of Theorem 5.1. Let ϕ, ϕν : F 0 → (−∞,∞] be given by ϕ(f) = n−1
∑n

j=1 ψ(x
j , f) +

π(f) if f ∈ F and ϕ(f) = ∞ otherwise; and ϕν(f) = n−1
∑n

j=1 ψ(x
j , f) + πν(f) if f ∈ F ν and
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ϕν(f) = ∞ otherwise. We start by showing that ϕν epi-converges to ϕ. Let f ν ∈ F 0 → f . If
f ∈ F , then

liminf ϕν(f ν) ≥
1

n

n
∑

j=1

ψ(xj , f) + π(f) = ϕ(f).

If f 6∈ F , then because F is closed we must have that f ν 6∈ F ν for sufficiently large ν. Thus,
liminf ϕν(f ν) = ϕ(f) = ∞. Next, let f ∈ F . There exists f ν ∈ F ν → f because F ν set-converges

to F . Then,

limsupϕν(f ν) = limsup
(1

n

n
∑

j=1

ψ(xj , f ν) + πν(f ν)
)

= ϕ(f).

This is sufficient for ϕν epi-converging to ϕ. Reasoning along the lines of those in the proof of

Theorem 3.10 yields (i).
For (ii), we recognize that the additional condition on F 0 ensures that it is compact. Thus,

{f ν, ν ∈ IN} in the statement of the theorem must have a cluster point. Every such cluster
point must be in ε∞- argminf∈F ϕ(f). Let δ = ε − ε∞, which is positive. Since F 0 is compact,

πν converges uniformly to π. Hence, there exists ν̄ ∈ IN such that π(f ν) ≤ πν(f ν) + δ/3,
εν ≤ ε∞ + δ/3, and, in view of epi-convergence, inff∈F ν ϕν(f) ≤ inff∈F ϕ(f) + δ/3 for all ν ≥ ν̄.

Since F ν ⊂ F , we then have

ϕ(f ν̄) =
1

n

n
∑

j=1

ψ(xj , f ν̄) + π(f ν̄) ≤
1

n

n
∑

j=1

ψ(xj , f ν̄) + πν̄(f ν̄) + δ/3

≤ inff∈F ν̄ ϕν̄(f) + εν̄ + δ/3 ≤ inff∈F ϕ(f) + ε∞ + δ = inff∈F ϕ(f) + ε,

which establishes the claim.
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