971 research outputs found

    Spectra and leading directions for differential-algebraic equations

    Get PDF
    The state of the art in the spectral theory of linear time-varying differential-algebraic equations (DAEs) is surveyed. To characterize the asymptotic behavior and the growth rate of solutions, basic spectral notions such as Lyapunov- and Bohl exponents, and Sacker-Sell spectra are discussed. For DAEs in strangeness-free form, the results extend those for ordinary differential equations, but only under additional conditions. This has consequences concerning the boundedness of solutions of inhomogeneous equations. Also, linear subspaces of leading directions are characterized, which are associated with spectral intervals and which generalize eigenvectors and invariant subspaces as they are used in the linear time-invariant setting

    Singular perturbation of polynomial potentials in the complex domain with applications to PT-symmetric families

    Full text link
    In the first part of the paper, we discuss eigenvalue problems of the form -w"+Pw=Ew with complex potential P and zero boundary conditions at infinity on two rays in the complex plane. We give sufficient conditions for continuity of the spectrum when the leading coefficient of P tends to 0. In the second part, we apply these results to the study of topology and geometry of the real spectral loci of PT-symmetric families with P of degree 3 and 4, and prove several related results on the location of zeros of their eigenfunctions.Comment: The main result on singular perturbation is substantially improved, generalized, and the proof is simplified. 37 pages, 16 figure

    Geometric methods on low-rank matrix and tensor manifolds

    Get PDF
    In this chapter we present numerical methods for low-rank matrix and tensor problems that explicitly make use of the geometry of rank constrained matrix and tensor spaces. We focus on two types of problems: The first are optimization problems, like matrix and tensor completion, solving linear systems and eigenvalue problems. Such problems can be solved by numerical optimization for manifolds, called Riemannian optimization methods. We will explain the basic elements of differential geometry in order to apply such methods efficiently to rank constrained matrix and tensor spaces. The second type of problem is ordinary differential equations, defined on matrix and tensor spaces. We show how their solution can be approximated by the dynamical low-rank principle, and discuss several numerical integrators that rely in an essential way on geometric properties that are characteristic to sets of low rank matrices and tensors

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched

    Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto-Sivashinsky equation

    Full text link
    In this paper we consider the spectral and nonlinear stability of periodic traveling wave solutions of a generalized Kuramoto-Sivashinsky equation. In particular, we resolve the long-standing question of nonlinear modulational stability by demonstrating that spectrally stable waves are nonlinearly stable when subject to small localized (integrable) perturbations. Our analysis is based upon detailed estimates of the linearized solution operator, which are complicated by the fact that the (necessarily essential) spectrum of the associated linearization intersects the imaginary axis at the origin. We carry out a numerical Evans function study of the spectral problem and find bands of spectrally stable periodic traveling waves, in close agreement with previous numerical studies of Frisch-She-Thual, Bar-Nepomnyashchy, Chang-Demekhin-Kopelevich, and others carried out by other techniques. We also compare predictions of the associated Whitham modulation equations, which formally describe the dynamics of weak large scale perturbations of a periodic wave train, with numerical time evolution studies, demonstrating their effectiveness at a practical level. For the reader's convenience, we include in an appendix the corresponding treatment of the Swift-Hohenberg equation, a nonconservative counterpart of the generalized Kuramoto-Sivashinsky equation for which the nonlinear stability analysis is considerably simpler, together with numerical Evans function analyses extending spectral stability analyses of Mielke and Schneider.Comment: 78 pages, 11 figure

    Tensor Analysis and Fusion of Multimodal Brain Images

    Get PDF
    Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the multimodal, multi-scale nature of neuroimaging data is well reflected by a multi-way (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms". We introduce Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via Multiway Partial Least Squares and Coupled Matrix-Tensor Factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.Comment: 23 pages, 15 figures, submitted to Proceedings of the IEE

    Derivation of the Zakharov equations

    Get PDF
    This paper continues the study of the validity of the Zakharov model describing Langmuir turbulence. We give an existence theorem for a class of singular quasilinear equations. This theorem is valid for well-prepared initial data. We apply this result to the Euler-Maxwell equations describing laser-plasma interactions, to obtain, in a high-frequency limit, an asymptotic estimate that describes solutions of the Euler-Maxwell equations in terms of WKB approximate solutions which leading terms are solutions of the Zakharov equations. Because of transparency properties of the Euler-Maxwell equations, this study is led in a supercritical (highly nonlinear) regime. In such a regime, resonances between plasma waves, electromagnetric waves and acoustic waves could create instabilities in small time. The key of this work is the control of these resonances. The proof involves the techniques of geometric optics of Joly, M\'etivier and Rauch, recent results of Lannes on norms of pseudodifferential operators, and a semiclassical, paradifferential calculus

    Robust stability of differential-algebraic equations

    Get PDF
    This paper presents a survey of recent results on the robust stability analysis and the distance to instability for linear time-invariant and time-varying differential-algebraic equations (DAEs). Different stability concepts such as exponential and asymptotic stability are studied and their robustness is analyzed under general as well as restricted sets of real or complex perturbations. Formulas for the distances are presented whenever these are available and the continuity of the distances in terms of the data is discussed. Some open problems and challenges are indicated
    • …
    corecore