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Spectra and leading directions for differential-algebraic equations

Vu Hoang Linh Volker Mehrmann

Preprint 2011/14

Preprint-Reihe des Instituts für Mathematik

Technische Universität Berlin

http://www.math.tu-berlin.de/preprints

Preprint 2011/14 August 2011



Spectra and leading directions for

differential-algebraic equations

Vu Hoang Linh ∗ Volker Mehrmann †

August 29, 2011

Abstract

The state of the art in the spectral theory of linear time-varying
differential-algebraic equations (DAEs) is surveyed. To characterize
the asymptotic behavior and the growth rate of solutions, basic spec-
tral notions such as Lyapunov- and Bohl exponents, and Sacker-Sell
spectra are discussed. For DAEs in strangeness-free form, the results
extend those for ordinary differential equations, but only under addi-
tional conditions. This has consequences concerning the boundedness
of solutions of inhomogeneous equations. Also, linear subspaces of
leading directions are characterized, which are associated with spectral
intervals and which generalize eigenvectors and invariant subspaces as
they are used in the linear time-invariant setting.
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1 Introduction

Differential-algebraic equations (DAEs) are a very convenient modeling con-
cept in many different application areas see [5, 25, 28, 30, 43, 44] and the

∗Faculty of Mathematics, Mechanics and Informatics, Vietnam National University,
334, Nguyen Trai Str., Thanh Xuan, Hanoi, Vietnam. This work was supported by
Alexander von Humboldt Foundation and partially by VNU’s Project QG 10-01.
†Institut für Mathematik, MA 4-5, Technische Universität Berlin, D-10623 Berlin, Fed.

Rep. Germany. Supported by the European Research Council through ERC Advanced
grant MODSIMCOMP.

1



references therein. But many numerical difficulties arise due to the fact that
the solution depends on derivatives of the data and that the dynamics is
constrained to a manifold, which often is only given implicitly.

In this chapter we survey the spectral theory for linear DAEs with vari-
able coefficients of the form

E(t)ẋ = A(t)x+ f(t), (1)

on the half-line I = [0,∞), together with an initial condition

x(0) = x0. (2)

We assume that E,A ∈ C(I,Rn×n), and f ∈ C(I,Rn) are sufficiently
smooth, using the notation C(I,Rn×n) to denote the space of continuous
functions from I to Rn×n. In the following we leave off the explicit depen-
dence of the coefficients on the time t.

Linear systems of the form (1) arise directly in many applications and,
via linearization [8], they describe the local behavior in the neighborhood of
a solution for general implicit nonlinear system of DAEs

F (t, x, ẋ) = 0, t ∈ I. (3)

For linear systems with constant coefficients, the asymptotic behavior
and the directions of growth or decay as well as oscillatory behavior can
be characterized via the eigenvalues and eigenvectors of the matrix pen-
cil λE − A and many good numerical methods are available, see [26, 46].
For systems with variable coefficients, however, different concepts are neces-
sary such as the Lyapunov [41], Bohl [1, 4, 13] and Sacker-Sell spectra [45],
which were designed for ordinary differential equations (ODEs) to analyze
the qualitative behavior of solutions of differential equations as time tends
to infinity. For a long time the numerical computation of these spectra in
the variable coefficient ODE case was considered unfeasible, but recently
large progress has been made, see [15, 19, 21] and the references therein.

The spectral theory and numerical methods for the computation of spec-
tra in the case of DAEs, however, is still in its infancy. In [11, 12] results on
Lyapunov exponents and Lyapunov regularity was studied, in [35] the con-
cept of exponential dichotomy was used in the numerical solution of DAE
boundary value problems, and in [24, 23] robustness results in the context
of exponential stability and Bohl exponents were studied. All these papers
use the tractability index approach of [27, 42] and consider linear systems of
DAEs of tractability index at most one, only. Recently, in [31, 36, 37, 39, 40],
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the classical spectral theory and the numerical methods (such as QR and
SV D methods) for the computation of Lyapunov, Bohl and Sacker-Sell spec-
tra were developed for general DAEs in so-called strangeness-free formula-
tion. We systematically survey these results and emphasize the difficulties
that arise for DAEs with some simple illustrative examples.

After a brief review of the DAE theory based on the strangeness index
approach [30], we present the basic properties of Lyapunov characteristic
exponents in Section 3. Then, in Section 4, we introduce the notions for
characterizing the uniform growth rate: Bohl exponents, exponential di-
chotomy, and Sacker-Sell spectrum. The connection between the spectra
and the existence of bounded solutions for both homogeneous and inhomo-
geneous equations is also described. The analysis of leading directions and
leading subspaces is given in Section 5.

2 A review of DAE theory

In this section we briefly recall some concepts from the theory of differential-
algebraic equations, see e.g. [5, 30, 43]. We follow [30] in notation and style.

A function x : I → Rn is called a solution of (1) if x ∈ C1(I,Rn) and
x satisfies (1) pointwise. It is called a solution of the initial value problem
(1)–(2) if x is a solution of (1) and satisfies (2). An initial condition (2) is
called consistent if the corresponding initial value problem has at least one
solution.

In this paper, we restrict ourselves to regular DAEs, i. e., we require that
(1) (or (3) locally) has a unique solution for sufficiently smooth E,A, f (F )
and appropriately chosen (consistent) initial conditions.

2.1 Reduction to strangeness-free DAEs

The concept of strangeness-index is based on derivative arrays associated
with (1) as first introduced in [7]. Consider the inflated system

M`ż` = N`z` + g`, (4)

where
(M`)i,j =

(
i
j

)
E(i−j) −

(
i

j+1

)
A(i−j−1), i, j = 0, . . . , `,

(N`)i,j =

{
A(i) for i = 0, . . . , `, j = 0,
0 otherwise,

(z`)j = x(j), j = 0, . . . , `,

(g`)i = f (i), i = 0, . . . , `,
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using the convention that
(
i
j

)
= 0 for i < 0, j < 0 or j > i. To guarantee

existence and uniqueness of solutions, the following hypothesis is used, see
[29, 30].

Hypothesis 1 There exist integers µ, a, and d such that the inflated pair
(Mµ, Nµ) in (4) associated with the given pair of matrix functions (E,A)
has the following properties:

1. For all t ∈ I we have rankMµ(t) = (µ+1)n−a such that there exists a
smooth matrix function Z2 of size (µ+ 1)n×a and pointwise maximal
rank satisfying ZT2 Mµ = 0.

2. For all t ∈ I we have rank Â2(t) = a, where Â2 = ZT2 Nµ[In 0 · · · 0]T

such that there exists a smooth matrix function T2 of size n×d, d−a,
and pointwise maximal rank satisfying Â2T2 = 0.

3. For all t ∈ I we have rankE(t)T2(t) = d such that there exists a smooth
matrix function Z1 of size n×d and pointwise maximal rank satisfying
rank Ê1T2 = d with Ê1 = ZT1 E.

The smallest possible µ for which Hypothesis 1 holds is called the
strangeness index of (1). Systems with vanishing strangeness index are
called strangeness-free. It has been shown in [29, 30], that the strangeness
index is closely related to the differentiation index, see [5], but allowing
over- and underdetermined systems, and that under some constant rank
conditions, every uniquely solvable (regular) linear DAE of the form (1)
with sufficiently smooth E,A satisfies Hypothesis 1 and that there exists a
(pointwise) numerically computable reduced system

(a) E1ẋ = A1x+ f1,
(b) 0 = A2x+ f2,

(5)

with E1 = ZT1 E, A1 = ZT1 A ∈ C(I,Rd×n), A2 = ZT2 Nµ[ In 0 · · · 0 ]T ∈
C(I,Ra×n), f1 = ZT1 f ∈ C(I,Rd), and f2 = ZT2 gµ ∈ C(I,Ra). This implies
that the matrix function

Ē :=

[
E1

A2

]
(6)

is invertible for all t ∈ I and therefore also that E1 and A2 are of full row-
rank.

System (5) is a reformulation of system (1) (of differentiation index less
than or equal to one) that displays all the algebraic constraints explicitly in
(5 (b)). It follows that an initial vector x0 ∈ Rn is consistent if and only if
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A2(0)x0 + f2(0) = 0. It has also been shown in [29, 30], that for this system
implicit Runge-Kutta and BDF methods behave as for ODEs and that this
approach can also be extended to over- and underdetermined systems as
well as locally to general nonlinear systems.

2.2 Essentially underlying implicit ODEs

In the following, we assume that the homogeneous linear DAE in consider-
ation

Eẋ = Ax, t ∈ I, (7)

is already strangeness-free and the coefficients are as in (5). But it is often
convenient to transform (7) into another form which is easier to handle but
its solutions have the same asymptotic behavior as those (7). Suppose that
P ∈ C(I,Rn×n) and Q ∈ C1(I,Rn×n) are nonsingular matrix functions such
that Q and Q−1 are bounded. Then the transformed DAE system

Ẽ(t) ˙̃x = Ã(t)x̃, (8)

with Ẽ = PEQ, Ã = PAQ − PEQ̇ and x = Qx̃ is called globally kinemat-
ically equivalent to (7) and the transformation is called a global kinematic
equivalence transformation. If P ∈ C1(I,Rn×n) and, furthermore, also P
and P−1 are bounded then we call this a strong global kinematic equivalence
transformation.

The following key lemma is a modification of [36, Lemma 7].

Lemma 2 Consider a strangeness-free DAE system of the form (7) with
continuous coefficients E,A. Let U ∈ C1(I,Rn×d) be an arbitrary orthonor-
mal basis of the solution space of (7). Then there exists a matrix function
V ∈ C(I,Rn×d) with pointwise orthonormal columns such that by the change
of variables x = Uz and multiplication of both sides of (7) from the left by
V T , one obtains the system

E ż = Az, (9)

where E := V TEU , A := V TAU − V TEU̇ and E is upper triangular.

Proof. The proof is given in [37] and [39] and is similar to that of [40].

System (9) is called essentially underlying implicit ODE system (EU-
ODE) of (7). It can be made explicit by multiplying with E−1 from the left,
see also [2] for constructing EUODEs of so-called properly-stated DAEs.

Note that for a fixed U , the matrix function V that leads to the EUODE
is not unique. In fact, any V for which V TEU is invertible yields an implicit

5



EUODE. However, obviously E−1A is unique, i. e., with a given basis, the
explicit EUODE provided by Lemma 2 is unique.

We also often use the special case of of semi-implicit strangeness-free
DAEs with coefficients of the form

E :=

[
E11 0
0 0

]
, A :=

[
A11 A12

A21 A22

]
, (10)

with E11 pointwise nonsingular. This DAE is strangeness-free if and only if
A22 is pointwise invertible and by inserting x2 = −A−122 A21x1 into the first
equation, we obtain an implicit ODE

E11ẋ1 = Ã11x1, (11)

where Ã11 = A11−A12A
−1
22 A21. It is easy to show that if A−122 A21 is bounded,

then (11) and (9) are globally kinematically equivalent. Furthermore, if E1

is sufficiently smooth, then (7) can always be transformed into the form (10)
by an appropriate kinematical equivalence transformation [36].

3 Lyapunov spectral theory for DAEs

In this section we review results on the qualitative behavior of solutions of
DAEs from [36, 37, 40]. For a non-vanishing function f : [0,∞) −→ Rn, the
quantities χu(f) = lim supt→∞

1
t ln ‖f(t)‖, χ`(f) = lim inft→∞

1
t ln ‖f(t)‖,

are called upper and lower Lyapunov exponents of f , respectively. It is well-
known, see e.g. [1] how the Lyapunov exponents characterize the growth
of a function. Let f : [0,∞) −→ R be a non-vanishing function. Then
χu(f) = α 6= ±∞ if and only if for any ε > 0 the following two conditions
hold simultaneously:

lim
t→∞

|f(t)|
exp(α+ ε)t

= 0, lim sup
t→∞

|f(t)|
exp(α− ε)t

=∞.

Analogously, χ`(f) = β 6= ±∞ if and only if for any ε > 0 the following two
conditions hold simultaneously:

lim inf
t→∞

|f(t)|
exp(β + ε)t

= 0, lim
t→∞

|f(t)|
exp(β − ε)t

=∞.

For a constant c 6= 0 and non-vanishing functions f, f1, . . . , fn, the Lyapunov
exponents satisfy

χu(cf) = χu(f), χ`(cf) = χ`(f),
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and if f1, . . . fn are non-vanishing scalar functions, then

χu

(
n∑
i=1

fi

)
≤ max

i=1,...n
χu(fi), χ`

(
n∑
i=1

fi

)
≤ max

i=1,...n
χ`(fi),

where equality holds if the maximal upper/lower Lyapunov exponent is at-
tained by only one function.

3.1 Lyapunov exponents and spectral intervals

To study the qualitative behavior of DAE solutions we determine the Lya-
punov exponents of the columns of fundamental solution matrices.

A matrix function X ∈ C1(I,Rn×k), with d ≤ k ≤ n, is called fundamen-
tal solution matrix of the strangeness-free DAE (7) if each of its columns
is a solution to (7) and rankX(t) = d, for all t ≥ 0. A fundamental solution
matrix is said to be minimal if k = d.

One may construct a minimal fundamental matrix solution by solving
initial value problems for (7) with d linearly independent, consistent initial
vectors. Given an EUODE (9), any minimal fundamental solution matrix
X of (7) has the form X = UZ, where Z is the corresponding fundamental
solution matrix of (9).

Definition 3 ([36]) For a given minimal fundamental solution matrix X
of a strangeness-free DAE system of the form (7), and for 1 ≤ i ≤ d, we
introduce

λui = lim sup
t→∞

1

t
ln ||X(t)ei|| , λ`i = lim inf

t→∞

1

t
ln ||X(t)ei|| ,

where ei denotes the i-th unit vector and ||·|| denotes the Euclidean norm.
The columns of a minimal fundamental solution matrix form a normal basis
if Σd

i=1λ
u
i is minimal. The λui , i = 1, 2, ..., d belonging to a normal basis are

called (upper) Lyapunov exponents. If Σd
i=1λ

`
i is minimal, too, then the

intervals [λ`i , λ
u
i ], i = 1, 2, ..., d, are called Lyapunov spectral intervals. The

union of the Lyapunov spectral intervals is called the Lyapunov spectrum of
(7) and denoted by ΣL.

Example 4 If (7) is time-invariant, i. e., E,A are constant matrices, then
the Lyapunov spectrum of (7) is the set of the real parts of generalized
eigenvalues, i. e., ΣL = {Reλ,det(λE −A) = 0} .

From the properties of the Lyapunov exponents, it is easy to establish
the following observations.
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• If the largest upper Lyapunov exponent is negative, then (7) is asymp-
totically stable.

• If the largest upper Lyapunov exponent is positive, then (7) is unstable.

• If at least one upper Lyapunov exponent is negative, then there exist
a bounded solution of (7), which tends to 0 exponentially.

• If the smallest lower Lyapunov exponent is positive, then all solutions
of (7) are unbounded and exponentially increasing.

• If the largest upper Lyapunov exponent is zero, then nothing can
be concluded about the stability, since the system (7) may have un-
bounded solutions.

Similar as in the case of ODEs, a normal basis for (7) exists and it can be
constructed from any (minimal) fundamental matrix solution.

Proposition 5 [37, 39] For any given minimal fundamental matrix X of
(7), for which the Lyapunov exponents of the columns are ordered decreas-
ingly, there exists a constant, nonsingular, and upper triangular matrix
C ∈ Rd×d such that the columns of XC form a normal basis for (7).

Example 6 For the DAE

ẋ1 = x1,
ẋ2 = −x2,
0 = x1 + x2 − x3,

.

we have fundamental solution matrices

X1(t) =

 et 0
0 e−t

et e−t

 , X2(t) =

 et et

0 e−t

et e−t + et

 .
Here X1 is normal and has ΣL = {±1} and X2 is not normal, but X1 = X2C

with C =

[
1 −1
0 1

]
.

Global kinematic equivalence transformations preserve the Lyapunov ex-
ponents as well as the normality of a basis formed by the columns of a
fundamental solution matrix.
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Theorem 7 [37, 40] Let X be a normal basis for (7). Then the Lyapunov
spectrum of the DAE (7) and that of the ODE (9) are the same. If E ,A are
as in (9) and if E−1A is bounded, then all the Lyapunov exponents of (7)
are finite. Furthermore, the spectrum of (9) does not depend on the choice
of the basis U and the matrix function V .

As a consequence of this theorem and the Lyapunov inequality [41, The-
orem 2.5.1], we have the following corollary.

Corollary 8 Let {λui }di=1 be the upper Lyapunov exponents of (7). Then

d∑
i=1

λui ≥ lim sup
t→∞

1

t

∫ t

0
tr E−1A(s)ds. (12)

Here tr E−1A(s) denotes the trace of the matrix function.

As in [12], we say that the DAE system (7) is Lyapunov-regular if its EUODE
(9) is Lyapunov-regular, i. e., if

d∑
i

λui = lim inf
t→∞

1

t

∫ t

0
tr E−1A(s)ds.

Remark 9 The Lyapunov-regularity of a strangeness-free DAE system
(7) is well-defined, since it does not depend on the construction of (9).
If (7) is Lyapunov-regular, then for any nontrivial solution x, the limit
limt→∞

1
t ln ||x(t)|| exists. Hence, we have λli = λui , i. e., the Lyapunov spec-

trum of (7) is a point spectrum. Note that unlike in [12], where certain
inherent ODEs of the same size as the original DAE are used, here the
spectral analysis is based on the essentially underlying ODEs, which have
reduced size and can be constructed numerically.

In the following we consider the adjoint equation of (7), given by

−ET ẏ = (A+ Ė)T y, (13)

see e.g., [9, 32, 33], and also a slightly different formulation in [2].
The following result gives the relation between the EUODEs of (7) and

(13).

Proposition 10 Let the orthonormal columns of the matrix U form a basis
of the solution subspace of (7). Then there exists V ∈ C1(I,Rn×d) such that
the columns of V form an orthonormal basis for the solution subspace of
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(13). Furthermore, via the change of variables y = V w and multiplication
of both sides of (13) by UT , the EUODE for the adjoint system (13) is given
by

−ET ẇ = (A+ Ė)Tw, (14)

which is exactly the adjoint of (9). If U is such that the matrix E is up-
per triangular with positive diagonal elements, then the corresponding V is
unique.

Proof. To prove uniqueness, suppose that there exist matrix functions V and
V̂ with orthonormal columns, such that E ż = Az and Ê ż = Âz, respectively,
where both E and Ê are upper triangular with positive diagonal elements.
Since the columns of V and V̂ are bases of the same subspace, there exists
S ∈ C(I,Rn×d), such that V = V̂ S. We have STS = V T (V̂ V̂ TV ) = V TV =
Id and thus S is orthogonal. On the other hand, by the construction of the
EUODE, we have ST Ê = E and Ê is invertible, which implies that ST is
upper triangular. Hence, S is a diagonal matrix with diagonal elements +1
or −1. But since E and Ê have positive diagonals, then S = I.

For the existence we give a constructive proof. From the proof of Lemma
2, V is determined via EU = V E . Due to the special form of E, we can first

determine an auxiliary pair Ṽ , Ẽ such that EU =

[
E1U

0

]
= Ṽ Ẽ , which

implies that Ṽ =

[
Ṽ1
0

]
. Here Ṽ1 and Ẽ are determined by, e.g., a smooth

QR decomposition of E1U . Unfortunately, in general such a Ṽ is not a basis
of the solution subspace of (13) yet. But we observe that we can replace
the zero block by any Ṽ2 and the relation Ṽ TEU = E still holds. Hence, we

look for an appropriate Ṽ2 block so that Ṽ =

[
Ṽ1
Ṽ2

]
satisfies the algebraic

constraint of (13). It remains to orthonormalize the columns of Ṽ . The
adjoint DAE (13) has the form[

ET11 0
ET12 0

] [
ẏ1
ẏ2

]
=

[
−(A11 + Ė11)

T −AT21
−(A12 + Ė12)

T −AT22

] [
y1
y2

]
,

and, since the adjoint of (7) is again strangeness-free, see [9, 32, 33], we can
reorder the equations so that the left upper d × d-block of the coefficient
matrix on the left-hand side is nonsingular and then eliminate the left lower
block giving [

ẼT11 0
0 0

] [
ẏ1
ẏ2

]
=

[
−ÃT11 −ÃT21
−ÃT12 −ÃT22

] [
y1
y2

]
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In this system, the algebraic constraint is given explicitly by 0 = ÃT12y1 +
ÃT22y2, where ÃT22 is nonsingular. Hence, let Ṽ2 = −Ã−T22 Ã

T
12Ṽ1. Finally,

applying a Gram-Schmidt orthogonalization to Ṽ , we obtain a basis of (13),
denoted by V , which also fulfils V TEU = E , where E is upper triangular.
One easily verifies that the so obtained EUODE of the adjoint equation (13)
is exactly the adjoint of EUODE (9) of the original DAE (7).

With these preparations we obtain a generalization of [36, Theorem 19].

Theorem 11 Suppose that the matrix function E = V TEU and its inverse
are bounded on I, where the columns of U, V form bases of the solution
spaces in Proposition 10. System (7) is Lyapunov regular if and only if (13)
is Lyapunov regular, and in this case we have the Perron identity

λi + µi = 0, i = 1, 2, ..., d,

where λi are the Lyapunov exponents of (7) in decreasing order and µi are
the Lyapunov exponents of the adjoint system (13) in increasing order.

Proof. Due to Proposition 10, it suffices to consider two implicit EUODEs
which are adjoint of each other. The assertion then follows from the Lagrange
identity W T (t)E(t)Z(t) = W T (0)E(0)Z(0), where Z and W are fundamental
solutions of EUODE (9) and its adjoint (14), respectively.

Note that if either E or its inverse is not bounded, then the Perron
identity may not hold.

Example 12 Consider the ODE

ẋ1 = x1
ẋ2 = (sin(ln t) + cos(ln t))x2

together with its adjoint system and the fundamental solution matrices

X1 =

[
et 0
0 et sin ln t

]
, X2 =

[
et et

0 et sin ln t

]
then X1 is normal and ΣL = {1, [−1, 1]}. X−T1 is a normal basis of the
adjoint system whose Lyapunov spectrum is {−1, [−1, 1]}. The columns of
X2 form a normal basis as well, but the columns of

X−T2 =

[
e−t 0

e−t sin ln t e−t sin ln t

]
do not form a normal basis of the adjoint system.
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3.2 Stability of Lyapunov exponents

It is, in general, very difficult to compute Lyapunov exponents via numer-
ical methods, since they may be very sensitive under small changes in the
coefficient matrices. In order to study this sensitivity for DAEs, we consider
a DAE in the form (7) and the specially perturbed system

[E +G]ẋ = [A+H]x, t ∈ I, (15)

where

G =

[
G1

0

]
, H(t) =

[
H1(t)
H2(t)

]
,

and where G1 and H1, H2 are assumed to have the same order of smoothness
as E1 and A1, A2, respectively.

Perturbations of this special structure are called admissible perturba-
tions, generalizing the concept for constant coefficient DAEs studied in [6].
The DAE (7) is said to be robustly strangeness-free if it stays strangeness-free
under all sufficiently small admissible perturbations. It is easy to see that
the DAE (7) is robustly strangeness-free under admissible perturbations if
and only if the matrix function Ē in (6) is boundedly invertible.

The upper Lyapunov exponents λu1 ≥ ... ≥ λud of (7) are said to be stable
if for any ε > 0, there exists δ > 0 such that the conditions supt ||F (t)|| <
δ, supt ||H(t)|| < δ, and supt

∣∣∣∣∣∣Ḣ2(t)
∣∣∣∣∣∣ < δ on the perturbations imply that

the perturbed DAE system (15) is strangeness-free and

|λui − γui | < ε, for all i = 1, 2, ..., d,

where the γui are the ordered upper Lyapunov exponents of an admissibly
perturbed system (15).

It is clear that the stability of upper Lyapunov exponents is invariant
under strong global kinematic equivalence transformations. Compared with
the ODE case, however, the boundedness of Ḣ2 is needed.

Example 13 [37, 39] Consider the system ẋ1 = x1, 0 = x2, which is easily
seen to be robustly strangeness-free and Lyapunov regular with Lyapunov
exponent λ = 1. For the perturbed DAE

(1 + ε2 sin (2nt)) ẋ1 − ε cos (nt) ẋ2 = x1, 0 = −2ε sin (nt)x1 + x2, (16)

where ε is a small parameter and n is a given integer, from the second
equation of (16), we obtain x2 = 2ε sinnt x1. Differentiating this expression
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for x2 and inserting the result into the first equation, after some elementary
calculations, we obtain ẋ1 = (1+nε2+nε2 cos (2nt))x1. Explicit integration
yields x1 = e(1+nε

2)t+ε2 sin (2nt)/2, from which the only Lyapunov exponent
λ̂ = 1+nε2 is calculated. Clearly, though ε is small (hence the perturbations
in the coefficient matrices are small), the difference between two Lyapunov
exponents may be made arbitrarily large by choosing large n.

A minimal fundamental solution matrix X for (7) is called integrally
separated if for i = 1, 2, ..., d−1 there exist constants c1 > 0 and c2 > 0 such
that

||X(t)ei||
||X(s)ei||

· ||X(s)ei+1||
||X(t)ei+1||

≥ c2ec1(t−s),

for all t, s with t ≥ s ≥ 0.
The integral separation property is invariant under strong global kine-

matic equivalence transformations. Furthermore, if a fundamental solution
X of (7) is integrally separated, then so is the corresponding fundamental
solution Z of (9) and vice versa.

By using a global kinematic equivalence transformation, (7) can be trans-
formed to a special structured form, where the block A21 becomes zero, see
[36, Remark 13]. The advantage of this form is that the associated EUODE
then reads E11ẋ1 = A11x1. Therefore, for the perturbation analysis, we may
assume that (7) is already given with A21 = 0.

Theorem 14 [36] Consider (7) with A21 = 0. Suppose that the matrix Ē
in (6) is boundedly invertible and that E−111 A11, A12A

−1
22 and the derivative

of A22 are bounded on [0,∞). Then, the upper Lyapunov exponents of (7)
are distinct and stable if and only if the system has the integral separation
property.

Remark 15 Example 13 and Theorem 14 demonstrate that, unlike in the
perturbation analysis of time-invariant DAEs [6], that of time-varying DAEs
requires more restrictive conditions. However, for some classes of structured
problems, see [10] and [36, Section 3.2], part of these conditions can be
relaxed.

4 Bohl exponents and Sacker-Sell spectrum

Since in general Lyapunov spectra are unstable, other spectral concepts such
as Bohl exponents [4, 13] and Sacker-Sell spectra [45] were introduced. The
extension of these concepts to DAEs has been first presented in [36].
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Definition 16 Let x be a nontrivial solution of (7). The (upper) Bohl
exponent κuB(x) of this solution is the greatest lower bound of all those values
ρ for which there exist constants Nρ > 0 such that

||x(t)|| ≤ Nρe
ρ(t−s) ||x(s)||

for any t ≥ s ≥ 0. If such numbers ρ do not exist, then one sets κuB(x) =
+∞. Similarly, the lower Bohl exponent κ`B(x) is the least upper bound of
all those values ρ′ for which there exist constants N ′ρ > 0 such that

||x(t)|| ≥ N ′ρeρ
′(t−s) ||x(s)|| , 0 ≤ s ≤ t.

Lyapunov exponents and Bohl exponents are related via

κ`B(x) ≤ λ`(x) ≤ λu(x) ≤ κuB(x),

i. e., the Bohl spectral intervals include the Lyapunov intervals. If the largest
upper Bohl exponent of all the solutions of (7) is negative, then the system
is (uniformly) exponentially stable. Formulas characterizing Bohl exponents
for ODEs, see e.g. [13], immediately extend to DAEs, i. e.

κuB(x) = lim sup
s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t− s

, κ`B(x) = lim inf
s,t−s→∞

ln ||x(t)|| − ln ||x(s)||
t− s

.

Moreover, unlike the Lyapunov exponents, the Bohl exponents are stable
for admissible perturbations without the integral separation assumption,
see [10, 36]. The third spectral concept of Sacker-Sell spectra is defined via
exponential dichotomy.

Definition 17 The DAE (7) is said to have exponential dichotomy if for
any minimal fundamental solution X there exist a projection Π ∈ Rd×d and
positive constants K and α such that

||X(t)ΠX+(s)|| ≤ Ke−α(t−s), t ≥ s,
||X(t)(Id −Π)X+(s)|| ≤ Keα(t−s), s > t,

(17)

where X+ denotes the generalized Moore-Penrose inverse of X.

Since we have that for a fundamental solution matrix X of 7) and an or-
thonormal basis of the solution subspace represented by a matrix U thatX =
UZ, where Z is the fundamental solution matrix of (9) and hence invertible,
it follows that X+ = Z−1UT , and hence ||X(t)ΠX+(s)|| =

∣∣∣∣Z(t)ΠZ−1(s)
∣∣∣∣,

||X(t)(Id −Π)X+(s)|| =
∣∣∣∣Z(t)(Id −Π)Z−1(s)

∣∣∣∣. From this it follows that the
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DAE (7) has exponential dichotomy if and only if its corresponding EUODE
(9) has exponential dichotomy.

The projector Π can be chosen to be orthogonal [15, 19]. It projects
to a subspace of the complete solution subspace in which all the solutions
are uniformly exponentially decreasing, while the solutions belonging to the
complementary subspace are uniformly exponentially increasing.

In order to extend the concept of exponential dichotomy spectrum to
DAEs, we need shifted DAE systems

E(t)ẋ = [A(t)− λE(t)]x, t ∈ I, (18)

where λ ∈ R, which immediately leads to a shifted EUODE E ż = (A−λE)z.

Definition 18 The Sacker-Sell (or exponential dichotomy) spectrum of the
DAE system (7) is defined by

ΣS := {λ ∈ R, the shifted DAE (18) does not have an exponential dichotomy} .

The complement of ΣS is called the resolvent set for the DAE system (7),
denoted by ρ(E,A).

Theorem 19 [36] The Sacker-Sell spectrum of (7) is exactly the Sacker-
Sell spectrum of its EUODE (9). Furthermore, the Sacker-Sell spectrum of
(7) consists of at most d closed intervals.

Note that the most right endpoint of the Sacker-Sell spectral interval is the
largest Bohl exponent of the system.

Example 20 Consider the following DAE

ẋ1 = λx1,
ẋ2 = (sin(ln t) + cos(ln t))x2,
0 = x1 + x2 − x3,

λ ∈ R, t ≥ t0 > 0.

A simple computation gives ΣL = {λ} ∪ [−1, 1], and ΣS = {λ} ∪ [−
√

2,
√

2],
i. e., ΣL ⊂ ΣS . If λ ∈ [−

√
2,
√

2], then the Sacker-Sell spectrum reduces to
one single interval. For λ >

√
2 or λ < −

√
2, the endpoints of the Sacker-Sell

spectral intervals are the lower/upper Bohl exponents of the columns of the
fundamental solution matrix

X(t) =

 eλt 0
0 et sin ln t

eλt et sin ln t

 .
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It is shown in [36, Section 3.4], that under some boundedness conditions,
the Sacker-Sell spectrum of the DAE (7) is stable with respect to admissible
perturbations. Theorem 50 in [36] also states that if X is an integrally
separated fundamental matrix of (7), then the Sacker-Sell spectrum of the
system is exactly given by the d (not necessarily disjoint) Bohl intervals
associated with the columns of X.

In the remainder of the paper, we assume that ΣS consists of p ≤ d
pairwise disjoint spectral intervals, i. e., ΣS = ∪pi=1[ai, bi], and bi < ai+1 for
all 1 ≤ i ≤ p.

4.1 Boundedness of solutions of inhomogeneous equations

The Sacker-Sell spectrum can be used to study the boundedness of solutions
of the inhomogeneous equation (1). For simplicity of presentation, we as-
sume that the coefficient matrices E and A are given in the semi-implicit
form (10). Decomposing f into two parts f1 and f2, solving for x2, and
inserting gives the underlying inhomogeneous ODE

E11ẋ1 = Ã11x1 + f1 −A12A
−1
22 f2, (19)

where Ã11 is defined as in (11).

Theorem 21 Suppose that E11 and A22 are boundedly invertible, and that
A11, A12, A21 are bounded. Then, for all continuous bounded functions f ,
the following statements hold:

i) If ΣS ∩ [0,∞) = ∅, i. e., the largest Bohl exponent is negative, then all
the solutions of (1) are bounded.

ii) If 0 /∈ ΣS, i. e., the system (7) has an exponential dichotomy, then
there exists at least one bounded solution for (1). If in addition
ΣS ∩ (−∞, 0) 6= ∅, i. e. the projection Π in (17) is not trivially zero,
then there exist infinitely many bounded solutions of (1) by adding an
arbitrary bounded nontrivial solution of the corresponding homogenous
equation.

Proof. Since A−122 A21 is bounded, the Sacker-Sell spectrum of (10) and that
of (11) are the same. Furthermore, the boundedness of x1 implies that of
x2. Thus, it suffices to consider the underlying inhomogeneous ODE (19).
Under the given assumptions, (19) reduces to

ẋ1 = E−111 Ã11x1 + E−111

(
f1 −A12A

−1
22 f2

)
,
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where E−111 Ã11 and E−111

(
f1 −A12A

−1
22 f2

)
are bounded. By invoking [13,

Theorem 5.2, p. 129], it follows that all the solutions x1 of (19) are bounded
if the largest Bohl exponent is negative. Since the algebraic component x2
is bounded as well, this implies the boundedness of all the solutions of (1).

Similarly, if (11) has an exponential dichotomy, then due to [13, Theorem
3.2, p. 168], (19) has at least a bounded solution, which can be explicitly
defined by the Green function of (11). As before, the boundedness of x1
implies that of x2 and the whole solution x.

If ΣS ∩ (−∞, 0) 6= ∅, then there exists at least one negative upper Lya-
punov exponent, which implies the existence of bounded nontrivial solutions
of the corresponding homogenous equation. Furthermore, these bounded
solutions create a linear subspace [15]. Finally, due to the solution theory
of linear ODEs, adding an arbitrary (bounded) nontrivial solution of the
corresponding homogenous equation to a (bounded) solution of the inhomo-
geneous equation gives another (bounded) solution.

5 Leading directions associated with spectral in-
tervals

As we have noted before, initial vectors of (7) must be chosen in a consistent
way and they form a d-dimensional subspace in Rn. Furthermore, the so-
lutions of (7) also form a d-dimensional subspace of functions in C1(I,Rn).
We denote these spaces by S0 and S(t), respectively, and for x0 ∈ S0 we
denote by x(t;x0) the (unique) solution of (7) that satisfies x(0;x0) = x0.

Assume that the upper Lyapunov exponents {λui })di=1 are given in de-
creasing order. For j = 1, . . . d, define the set Wj of all consistent initial
conditions w such that the upper Lyapunov exponent of the solution x(t;w)
of (7) satisfies χu(x(·;w)) ≤ λuj , i. e.,

Wj =
{
w ∈ S0 : χu (x(·;w)) ≤ λuj

}
, j = 1, . . . , d.

Let the columns of U(·) form a smoothly varying basis of the solution sub-
space S(·) of (7) and consider an associated EUODE (9). Then instead of
Wj , the corresponding set of all initial conditions for (9) that lead to Lya-
punov exponents not greater than λuj can be considered. In this way it is
obvious that all results for ODEs in [15] apply to EUODEs of the form (9)
and, as a consequence of Theorem 7, we obtain analogous statements for
(7).
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Proposition 22 Let dj be the largest number of linearly independent so-
lutions x of (7) such that lim supt→∞

1
t ln ||x(t)|| = λuj . Then Wj is a dj-

dimensional linear subspace of S0. Furthermore, the spaces Wj, j = 1, 2, . . .,
form a filtration of S0, i. e., if p is the number of distinct upper Lyapunov
exponents of the system, then we have

S0 = W1 ⊃W2 ⊃ . . . ⊃Wp ⊃Wp+1 = {0} .

It follows that lim supt→∞
1
t ln ||x(t;w)|| = λuj if and only if w ∈ Wj\Wj+1.

Moreover, if we have d distinct upper Lyapunov exponents, then the dimen-
sion of Wj is d− j + 1.

If Yj is defined as the orthogonal complement of Wj+1 in Wj , i. e.,

Wj = Wj+1 ⊕ Yj , Yj ⊥Wj+1,

then S0 = Y1 ⊕ Y2 ⊕ . . .⊕ Yp, and

lim sup
t→∞

1

t
ln ||x(t;w)|| = λuj if and only if w ∈ Yj .

Thus, if we have p = d distinct Lyapunov exponents, then dim(Yj) = 1
for all j = 1, . . . , d. Generalizing results of [15, 16] to DAEs, in [37] a
numerical method for computing the spaces Yj via smooth singular value
decompositions of fundamental solutions was suggested.

Considering the resolvent set ρ(E,A), for µ ∈ ρ(E,A), we can define the
stable set associated with (7) as

Sµ =
{
w ∈ S0 : lim

t→∞
e−µt ||x(t;w)|| = 0

}
.

Then, for µ1, µ2 ∈ ρ(E,A), µ1 < µ2, we have Sµ1 ⊆ Sµ2 .
In the following we study the EUODE (9) associated with (7), and for

simplicity, we assume that Z is the principal matrix solution, i. e., Z(0) = Id.
This can always achieved by an appropriate kinematic equivalence transfor-
mation.

Following the construction for ODEs in [15, 45], we can characterize the
stable and unstable subspaces

Sdµ =
{
v ∈ Rd : lim

t→∞
e−µt ||Z(t)v|| = 0

}
, Udµ =

{
v ∈ Rd : lim

t→∞
eµt
∣∣∣∣Z(t)−T v

∣∣∣∣ = 0
}

associated with (9).
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Recalling that p is the number of disjoint spectral intervals, we choose
a set of values µ0 < µ1 < . . . < µp, such that µj ∈ ρ(E,A) and ΣS ∩
(µj−1, µj) = [aj , bj ] for j = 1, . . . , p, i. e.,

µ0 < a1 ≤ b1 < µ1 < · · · < µj−1 < aj ≤ bj < µj < · · · < µp−1 < ap ≤ bp < µp.

Let U be an orthonormal basis of the solution subspace for (7) and introduce
the sets

Nj = U(0)N d
j =

{
w ∈ S0 : w = U(0)v, v ∈ N d

j

}
, j = 1, . . . , p. (20)

Proposition 23 ([37]) Consider the EUODE (9) associated with (7), and
the sets Nj defined in (20), j = 1, . . . , p. If w ∈ Nj\ {0} and

lim sup
t→∞

1

t
ln ||x(t;w)|| = χu, lim inf

t→∞

1

t
ln ||x(t;w)|| = χ`,

then χ`, χu ∈ [aj , bj ].

This result means that Nj is the subspace of initial conditions associated
with solutions of (7) whose upper and lower Lyapunov exponents are inside
[aj , bj ].

Theorem 24 Consider the EUODE (9) associated with (7), and the sets
Nj defined in (20). Then w ∈ Nj\ {0} if and only if

1

Kj−1
eaj(t−s) ≤ ||x(t;w)||

||x(s;w)||
≤ Kje

bj(t−s), for all t ≥ s ≥ 0, (21)

and some positive constants Kj−1,Kj.

Proof. Due to the construction of the EUODE (9), see Lemma 2, we have
x(t;w) = U(t)Z(t)v, where v = U(0)Tw, and thus ||x(t;w)|| = ||Z(t)v||.
Theorem 3.9 and Remark 3.10 of [15] state that v ∈ N d

j if and only if

1

Kj−1
eaj(t−s) ≤ ||Z(t)v||

||Z(s)v||
≤ Kje

bj(t−s), for all t ≥ s ≥ 0,

and some positive constants Kj−1,Kj . Hence, (21) follows immediately. For
more details see [37].

The sets Nj and the Bohl exponents are closely related.
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Corollary 25 Consider the EUODE (9) associated with (7) and the sets Nj
defined in (20). Then for all j = 1, . . . , p, one has w ∈ Nj\ {0} if and only
if aj ≤ κ`(x(·;w)) ≤ κu(x(·;w)) ≤ bj, where κ`, κu are the Bohl exponents.

Proof. The proof follows from Theorem 24 and Definition 16.

The stable and unstable sets are then characterized as follows.

Proposition 26 Consider the EUODE (9) associated with (7). For all j =
1, . . . , p, we have

(i) Sµj = U(0)Sdµj .

(ii) Let the unstable sets for (7) be defined by Uµj = U(0)Udµj . Then Sµj ⊕
Uµj = S0 and Nj = Sµj ∩ Uµj−1.

(iii) S0 = N1 ⊕N2 ⊕ · · · ⊕ Np.

Proof. (i) First we prove
U(0)Sdµj ⊆ Sµj .

To this end, take an arbitrary w ∈ U(0)Sdµj . Then the corresponding initial

value for (9) defined by v = U(0)Tw clearly belongs to Sdµj and w = U(0)v
holds. By considering the one-to-one relation between the solutions of (7)
and those of its associated EUODE (9) and invoking the equality ||x(t;w)|| =
||Z(t)v||, v ∈ Sdµj implies w ∈ Sµj . Conversely, take an arbitrary w ∈ Sµj .
Then there exists a unique v ∈ Rd which satisfies w = U(0)v. Using again
that ||x(t;w)|| = ||Z(t)v||, from the definition of Sµj and that of Sdµj , the

claim v ∈ Sdµj follows.

(ii) As a consequence of Theorem 3.4 in [15], we have Sdµj ⊕ U
d
µj = Rd.

Since U(0) consists of orthonormal columns, we have

U(0)Sdµj ⊕ U(0)Udµj = rangeU(0) = S0,

from which the first equality immediately follows. The second equality is
obvious from (i) and the definition of Nj .

(iii) The equality follows from the relation between Nj and N d
j and the

result for ODEs [15, 37].

Example 27 Consider the DAE in Example 20 with λ < 1. The distinct
upper Lyapunov exponents are λ and 1 and d = p = 2. The subspaces
of consistent initial vectors associated with the upper Lyapunov exponents
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are S0 = W1 = {[a, b, a + b]T , a, b ∈ R}, W2 = {[a, 0, a]T , a ∈ R}, and
Y1 = {[0, b, b]T , b ∈ R}, Y2 = W2. The case λ > 1 is similar by exchanging
the roles of Y1 and Y2. For λ = 1, we have p = 1, S0 = W1 as above and
W2 = {[0, 0, 0]T }.

Now taking the concrete value λ = −3, then the endpoints of the spectral
intervals are a1 = b1 = −3, a2 = −

√
2, b2 =

√
2. Choosing any triplet

µ0 < −3, µ1 ∈ (−3,−
√

2) and µ2 >
√

2, then Sµ0 = {[0, 0, 0]T }, Sµ1 =
{[a, 0, a]T , a ∈ R}, Sµ2 = {[a, b, a+ b]T , a, b ∈ R}, N1 = {[a, 0, a]T , a ∈ R},
and N2 = {[0, b, b]T , b ∈ R}.

6 Discussion

We have summarized the spectral theory for linear time-varying DAEs which
was recently given in [36, 37, 39, 40]. It is shown that most spectral notions
and results can be extended from ODEs to strangeness-free reformulations
of general regular DAEs, but with some extra conditions posed on the co-
efficients. Based on suitable construction of EUODEs and the presented
analysis, numerical methods for computing spectral intervals can be con-
structed as in [37, 40]. As future work, an analysis for quasi-linear and/or
nonlinear DAEs, together with efficient methods for approximating spectral
intervals of linearized DAEs, is of interest. Another challenging problem
is an extension of the spectral theory from finite dimensional systems to
infinite dimensional ones, i. e., for partial differential-algebraic equations
(PDAEs).

References

[1] L. Ya. Adrianova. Introduction to linear systems of differential equa-
tions. Trans. Math. Monographs, Vol. 146, AMS, Providence, RI, 1995.

[2] K. Balla and V. H. Linh. Adjoint pairs of differential-algebraic equations
and Hamiltonian systems. Appl. Numer. Math., 53:131–148, 2005.

[3] P. Benner and R. Byers. An arithmetic for matrix pencils: theory and
new algorithms. Numer. Math., 103:539–573, 2006.
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