9 research outputs found

    The Classification, Detection and Handling of Imperfect Theory Problems

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryOffice of Naval Research / N00014-86-K-030

    Model simplification by asymptotic order of magnitude reasoning

    Get PDF
    AbstractOne of the hardest problems in reasoning about a physical system is finding an approximate model that is mathematically tractable and yet captures the essence of the problem. This paper describes an implemented program AOM which automates a powerful simplification method. AOM is based on two domain-independent ideas: self-consistent approximations and asymptotic order of magnitude reasoning. The basic operation of AOM consists of five steps: (1) assign order of magnitude estimates to terms in the equations, (2) find maximal terms of each equation, i.e., terms that are not dominated by any other terms in the same equation, (3) consider all possible n-term dominant balance assumptions, (4) propagate the effects of the balance assumptions, and (5) remove partial models based on inconsistent balance assumptions. AOM also exploits constraints among equations and submodels. We demonstrate its power by showing how the program simplifies difficult fluid models described by coupled nonlinear partial differential equations with several parameters. We believe the derivation given by AOM is more systematic and easily understandable than those given in published papers

    Predicting the approximate functional behaviour of physical systems

    Get PDF
    This dissertation addresses the problem of the computer prediction of the approximate behaviour of physical systems describable by ordinary differential equations.Previous approaches to behavioural prediction have either focused on an exact mathematical description or on a qualitative account. We advocate a middle ground: a representation more coarse than an exact mathematical solution yet more specific than a qualitative one. What is required is a mathematical expression, simpler than the exact solution, whose qualitative features mirror those of the actual solution and whose functional form captures the principal parameter relationships underlying the behaviour of the real system. We term such a representation an approximate functional solution.Approximate functional solutions are superior to qualitative descriptions because they reveal specific functional relationships, restore a quantitative time scale to a process and support more sophisticated comparative analysis queries. Moreover, they can be superior to exact mathematical solutions by emphasizing comprehensibility, adequacy and practical utility over precision.Two strategies for constructing approximate functional solutions are proposed. The first abstracts the original equation, predicts behaviour in the abstraction space and maps this back to the approximate functional level. Specifically, analytic abduction exploits qualitative simulation to predict the qualitative properties of the solution and uses this knowledge to guide the selection of a parameterized trial function which is then tuned with respect to the differential equation. In order to limit the complexity of a proposed approximate functional solution, and hence maintain its comprehensibility, back-of-the-envelope reasoning is used to simplify overly complex expressions in a magnitude extreme. If no function is recognised which matches the predicted behaviour, segment calculus is called upon to find a composite function built from known primitives and a set of operators. At the very least, segment calculus identifies a plausible structure for the form of the solution (e.g. that it is a composition of two unknown functions). Equation parsing capitalizes on this partial information to look for a set of termwise interactions which, when interpreted, expose a particular solution of the equation.The second, and more direct, strategy for constructing an approximate functional solution is embodied in the closed form approximation technique. This extends approximation methods to equations which lack a closed form solution. This involves solving the differential equation exactly, as an infinite series, and obtaining an approximate functional solution by constructing a closed form function whose Taylor series is close to that of the exact solutionThe above techniques dovetail together to achieve a style of reasoning closer to that of an engineer or physicist rather than a mathematician. The key difference being to sacrifice the goal of finding the correct solution of the differential equation in favour of finding an approximation which is adequate for the purpose to which the knowledge will be put. Applications to Intelligent Tutoring and Design Support Systems are suggested

    Approximation in Mathematical Domains

    No full text
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Science Foundation / NSF IST 83-17889Ope

    Approximation in Mathematical Domains

    No full text
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Science Foundation / NSF IST 83-17889Ope
    corecore