
Mechanical Generation of Heuristics

for Intractable Theories

Thomas Ellman
Department of Computer Science

Columbia University
New York, New York 10027

ellman@cs.columbia.edu

December 1988
CUCS-400-88

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161439415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mechanical Generation of Heuristics

for Intractable Theories

Thomas Ellman
Departtnent of Computer Science

Columbia University
New York. New York 10027

ellman@cs.columbia.edu

10 December 1988

Abstract

A domain independent mechanism for generating heuristics for intractable
theories has been implemented in the POLLYANNA program. Heuristics
are generated by a process of systematically applying generic simplifying
assumptions to an initial intractable theory. Such assumptions sacrifice the
accuracy of an intractable theory to gain efficiency in return. Truth
preserving reformulations are also used to enhance the power of generic
simplifying assumptions. This paper describes a framework. for generating
heuristics using these basic types of knowledge. Examples and
representations of each are presented along with an architecture within
whkh they interact to generate heuristic theories. Results from testing this
technique in the hearts card game domain are presented as well This worK
is pan of a system combining analytic and empirical methods for learning
heuristics. In the analytic phase. a set of candidate heuristics is generated
from an intractable theory. In the empirical phase. heuristic theories are
evaluated against teacher-provided training examples. TIlis paper
concentrates on the analytic process of generating heuristics.

Table of Contents
1 Introduction
2 Representation of an Intractable Theory
3 An Architecture for Generation of Heuristics
4 Generic Simplifying Assumptions
5 Reformulation Knowledge
6 Results
7 Conclusion
8 Acknowledgments

1
2
3
4
5
6

10
10

ii

List of Figures
Figure 1: POLLYANNA Architecture 1
Figure 2: Definitions of Some Hearts Functions 3
Figure 3: Heuristic Generation Problem State 3
Figure 4: Generic Simplifying Assumptions 4
Figure 5: Reformulation Knowledge 5
Figure 6: Probabilities and Expectations of Composite Functions 6
Figure 7: Folding and Unfolding Function Definitions 6
Figure 8: Example Final State of Heuristic Generator 7
Figure 9: Random Variable Tree 8
Figure 10: Summary of Heuristics Generated by POLLYANNA 9

1 Introduction
Problems o~ intractability are pervasive in anificial intelligence. Although complete

and correct theones can be formulated for many domains. such theories can be useless in
practice if they require excessive computational resources. This difficulty arises in planning.
design and. game playing domains. among many others. Current machine learning
technology IS not able to remedy the problem of intractability. Analytic learning methods
such as explanation-based learning [Mitchell et al. 86]. worle only with computationally
tractable domain theories. Existing empirical methods are not able to exploit intractable
theories as a source of background knowledge. This research uses a combined
analytic/empirical approach to the problem of intractability. It employs a strategy of
sacrificing the accuracy of an intractable theory. to obtain an efficient, heuristic theory in
return. Analytic methods are used to generate candidate heuristics by applying generic
simplifying assumptions to an initial intractable theory. Empirical methods are used to
evaluate candidate heuristics by testing them against teacher-provided training examples.

A program called POLLYANNA has been developed to experiment with this strategy
for learning heuristics. The architecture of POLLY ANNA is described in Figure 1. In the
heuristic generation (HG) component. three types of knowledge are combined to generate
heuristics. These include an intractable theory. generic simplifying assumptions (GSAs) and
truth-preserving reformulation knowledge. Each GSA is described by a schema that can be
instantiated in the context of a domain theory to form many different specific simplifying
assumptions. By systematically instantiating the GSAs. this module produces a collection of
heuristics. each representing a partially complete theory. In the theory space generation
(TSG) component. individual heuristics are combined into complete heuristic theories. The
TSG process also draws upon knowledge of the performance impact of GSAs to build a
search space of theories partially ordered according to efficiency. In the theory space search
(TSS) component. training examples are used to guide a search for heuristic theories meeting
specified efficiency and accuracy goals. The HG and TSG modules are considered to be
analytic, since they operate without training examples. The TSS module is the empirical
component of POLLYANNA.

INTRAcrABLE TIiEORY

HEURlS11C
GENERATION

GENERIC

SIMPLIFYlNG

ASSUMPTIONS

REfORMULATION

KNOWLEDGE

1liEORY SPACE

GENERATION

ASSUMPTION

IMPAcr

KNOWUDGE

Figure 1 : POLLY ANNA Architecture

EXAMPLES

1HEQRY SPACE

SEARCH

HEURISTIC
rnEORIES

2

. This paper ~o~centrates on the heuristic generation component of POLLYANNA.
PartIcular emphasIS IS placed on demonstrating that a large set of heuristic theories can be
~reated . through syst~matic application of a few generic Simplifying assumptions. The
mt~~cuon of assumptions and. re.formulation knowledge is also emphasized. Techniques for
bUlldmg and searchmg a heunstlc theory space were discussed in [Ellman 88]. The results
presented there were based on complete implementations of the TSG and TSS modules only.
Hand coded "outputs" of the heuristic generation process were used to demonstrate the other
modules. This paper reports on a complete implementation of the heuristic generator.

. ~s resean:h is similar in spirit to other efforts at mechanical generation of heuristics
mcludmg [Gashmg 79; Lenat 83; Pearl 84; Kibler 85] and [Unruh et al. 87]. The work
reported here is distinguished by using rather different operations to simplify intractable
theories. It also applies to domain theories expressed in a different algebraic form. In
addition. it differs from the research cited above in the fact of combining both empirical and
analytic learning methods. Approximations similar to the simplifying assumptions used in
POLL Y ANNA are discussed in [Keller 87: MOSlOW and Fawcett 87; Bennen 87]. Another
system using both analytic and empirical methods to learn heuristics is reported in [Keller
87].

2 Representation of an Intractable Theory
POLL Y ANNA has been developed using the card game hearts 1 as a testbed domain.

A portion of an intractable hearts theory is shown in Figure 2. The theory describes a
function Choice(p.t,hand.state) that a tells a player p what card he should play in trick t.
given his hand and a description of the current game state. This function operates by
minimizing the evaluation function ExpGameScore over all the LegalChoices. The
evaluation function ExpGameScore computes the conditional expectation value of the
random variable GameScore. assuming that a given card c is chosen for play.2

The random variable GameScore is expressed as a function of the random variables
TrickScore, Win and TrickValue. These in tum are wrinen as functions of other random
variables. The structure of relationships among random variables is summarized in Figure 9.
Each random variable is ultimately a function of the initial game deal d, which represents the
underlying probabilistic event space. Given a description of the deal d. the theory is capable
in principle of computing the values of all random variables. and predicting the course of the
game. In practice. the theory is intractable for several reasons. To evaluate a card choice
using ExpGameScore. one must must average GameScore(p.r.d) over a large set of deals. In
addition. for each deal d. even the task of computing the function GameScore(p.t,d) is
hopelessly intractable.

1 Hearts is nonnally played with four players. Each player is dealt thirteen cards. At the start of the game, one
player is designated to be the "leader". The game is divided into thirteen successive tricks. At the start of each
trick, the leader plays a card. Then the other players play cards in order going clockwise around the circle. Each
player must playa card marching the suit of the card played by the leader, if he has such a card in his hand.
Otherwise, he may play any card. The player who plays the highest card in the same suit as the leader's card will
take the trick and become the leader for the next Lrick. In the simplest version of the game, each player receives
one point for every heart card and thirteen points for the queen of spades, if that card is played in a trick that he
takes. The game objective is to minimize the number of points in one's score. Complete rules are found in
[Andrews 83].

CJne notation Expf"Ne)N(e)) signifies the expectation value of some numeric function N(e), viewed as a
function of an event space. Likewise Prob(A.(e)B(e)] is the probability that a boolean function 8(e) is true.
Notice that random variables are represented as A-Expressions. Both Prob and Exp can take a boolean function as
l second argument indicating the "givens" of a conditional expectation or probability.

3

Choice (p,t,hand,state) =
= Minimize(~(c) ExpGameScore(p,t,hand,state,c),

LegalChoices(p,t,hand,state))

ExpGameScore(p,t,hand,state,c) =
= Exp[~(d) GameScore(p,d) I NextState(p,t,hand,state,c)]

Game Score (p,d) = L (t in TRICKS) TrickScore(p,t,d)

TrickScore(p,t,d) = If Win(p,t,d) Then TrickValue(t,d) Else °
TrickValue(t,d) = L (p in PLAYERS) PointVa1ue(Card(p,t,d»

Win(p,t,d) =
= Defeats(Card(p,t,d),Card(Left(p),t,d),LeadSuit(t,d»

A Defeats(Card(p,t,d),Card(Right(p),t,d),LeadSuit(t,d»
A Defeats (Card(p,t, d) ,Card(Across(p),t,d) ,LeadSuit(t,d»

Card(p,t,d) = Choice(p,t,8and(p,t,d),GameState(p,t,d»

Figure 2: Definitions of Some Hearts Functions

3 An Architecture for Generation of Heuristics
As shown in Figure I, three types of knowledge are used to generate heuristics in

POLL YANNA. The generic simplifying assumptions and reformulation knowledge are
intended to be domain independent The intractable theory will naturally vary depending on
the domain under study. The internal architecture of POLLY ANNA's heuristic generator can
be understood in terms of a problem space model. The domain theory corresponds to a
problem state. Both generic simplifying assumptions and reformulation knowledge are
implemented as operators that modify problem states. As illustrated in Figure 3. each state is
described by a table, Versions. that associates one or more lambda expressions with each
function name. In the initial state, each name is associated with only one definition, i.e. the
true definition of the function. In subsequent states, each function name may be associated
with several versions. Each operator has the effect of creating a new version of one or more
functions. Most of the operators are represented as simple declarative rules for replacing one
algebraic expression by another.

Versions: Functions ~ {Set of ~-Expressions}

Functions:
f
q
h

Versions:
fO, f1, f2
gO, gl
hO, h1, h2, h3

Initial State: One ~-Expression for each function.
Later State: Many ~-Expressions for each function.

Figure 3: Heuristic Generation Problem State

In the current implementation. a human user is required to make search control
decisions. The user chooses both an operator and an expression to which the operator should
be applied. In some cases, the user also supplies a parameter for the operator. The system
actually carries out each operator application. For this reason, the heuristic generator is

4

"mechanical" but not "automatic". Complete automatization appears possible and work. on an
automatic control strategy is currently in progress.

4 Generic Simplifying Assumptions
Descriptions of some generic simplifying assumptions are shown in Figure 4. These

are all considered to be assumptions because they are not true in general. Although they
introduce errors into a theory. one hopes that the errors will be small. infrequent or at least
worth the resulting gain in efficiency. Each GSA is considered generic for two reasons. In a
given domain. each GSA can be instantiated in more than one way. Furthennore. each GSA
is fonnulated in a manner that purports to apply to a large class of domain theories. The
GSAs in Figure 4 are associated with rules describing their impact on the efficiency of
domain theories. The assumption impact rules are used by the theory space generator to
panially order theories according to efficiency. as indicated in Figure l. Example
applications of these GSAs in the hearts domain will be described in a later section on
results.

Argument Abstraction (M):

(For All x) F(x) = F(Abstract(x»

(For All x) F(x) = F(Project(x»

(For All x) F(x) = F(Constant)

Equiprobable Random Variables (EP):

Prob[A(e) v=£(e)] = 1 / I Ranqe (f) I

Exp[A(e) fee)] = Averaqe(Ranqe(f»

Probabilistic Independence (rN):

Prob[A(e) p(e)Aq(e)] = PrOb[A(e)p(e)] * PrOb[A(e)q(e)]

Exp [A (e) £ (e) *q (e)] = Exp [A (e) f (e)] * Exp [A. (e) q (e)]

Figure 4: Generic Simplifying Assumptions

One type of GSA is called Argument Abstraction (AA). In its most general fonn.
argument abstraction uses a many to one function Abstract to replace the argument of a
function to be evaluated. One special case occurs when Abstract simply returns a constant.
Another occurs when Abstract perfonns projection. i.e .. it sets one component of an n-tuple
to a constant All of the AA GSAs improve efficiency by avoiding some repeated
evaluations of functions. If one has already evaluated F(x) and wants to evaluate F(y) such
that Abstract(x) = Abstract(x). then F(y) need not be evaluated if F(x) was remembered. In
POLL Y ANNA this efficiency is achieved by using memo functions to store prior
evaluations in hash tables. AA applies in principle to any theory expressed in tenns of
functions.

Two other GSAs are used to simplify expressions involving probabilities and
expectation values. Equiprobable Random Variables (EP) assumes that a random variable is
equally likely to manifest any value in its range. This GSA is useful when the distribution of
a variable is known but is difficult to compute. Probabilistic Independence (IN) is useful for

5

two re~ons. To begin with, this GSA !mproves efficiency by removing a conjunctive
probabIlIty that leads to a double summation. The conjunctive probability is replaced by a
product of individual probabilities, each requiring a single summation. Probabilistic
independence is useful also for enabling EP to be subsequently applied to individual random
variables. Both EP and IN apply in principle to any theory formulated in terms of
probabilities and expectation values. EP also requires that random variables have fmite
ranges.

The generic simplifying assumptions in Figure 4 were developed through a process
that began by investigating heuristics for the hearts game. Sample heuristics were obtained
by analyzing protocols of hearts games played by humans. Some additional heuristics were
obtained from a book on hearts [Andrews 83]. After collecting sample heuristics. efforts
were made to "derive" the heuristics from the rules of the game. For each heuristic H. an
attempt was made to formally prove H using facts from the initial theory, specific
simplifying assumptions and reformulations. For example, one naive heuristic ignores all
future tricks and chooses cards to optimize the current trick only. This heuristic can be
derived from the initial theory by inserting constants to replace evaluation fimction sub
expressions that correspond to future tricks of the game. The AA GSA was formulated as a
general version of this specific assumption. Likewise. the EP GSA was developed by
noticing that some heuristics could be derived under the assumption that one's opponents are
equally likely to play any card in the deck. Thus the GSAs in Figure 4 were formulated as
domain independent versions of specific assumptions found to be useful in hearts.

5 Reformulation Knowledge
A summary of the reformulation knowledge used in POLLYANNA is found in Figure

5. Unlike the generic simplifying assumptions described above. the reformulation operators
all preselVe the truth of the expressions they modify. These operations are useful for two
reasons. Some reformulations can directly improve the efficiency of a domain theory. For
example. memo functions can lead directly to efficiency gains. especially when they follow
applications of argument abstraction, as described above. Compile time evaluation of
constant expressions can also improve efficiency.

• Identities of Set Theory, Algebra and Probability Theory.

• Fold and Unfold Function Definitions.

• Insertion of Memo Functions.

• Evaluation of Constant Expressions.

Figure 5: Reformulation Knowledge

Some reformulations are useful for creating new opportunities to apply generic
simplifying assumptions. Two reformulations of this type are shown in Figure 6. These
equations respectively describe how to compute probabilities or expectation values of
composite functions. They have the effect of replacing a probability or expectation value of
one random variable. f, with an expression involving a probability or expectation of some
other random variable. g. By generating an expression involving a probability or expectation
of g. these reformulations enable a subsequent application of an EP GSA operator to assume
all values of the variable g are equally likely. Similar reformulations create new
opportunities to apply an IN GSA operator, to assume probabilistic independence.

Interesting interactions also occur between GSAs and the operations of folding and

6

Probability of Composite Function:

Prob(A(e) v=f(g(e»] = I (x in Range(g»
If v=f(x) Then Prob[A(e) x--g(e)]

Else 0

Expectation of Composite Function:

Exp(A(e) f(g(e»] = I (x in Range(g» f(x) * Prob[A(e) x=g(e)]

Figure 6: Probabilities and Expectations of Composite Functions

unfolding function definitions, described in Figure 7.3 For example, suppose one unfolds a
definition of I(x) in an expression E containing a call to f(x). Subsequent GSA operations
applied to versions of I will have no effect on the expression E. Thus by unfolding a
function definition, one can limit the scope of subsequent GSA applications. The opposite
effect occurs using the fold operation. Suppose one uses the fold operator to replace an
expression E1 with f(E2), where E1 is an expression matching the body of f Subsequent
GSA operations applied to versions oflwill impact the expressionf(E2). Thus by folding a
function definition, one can broaden the scope of subsequent GSA applications. By
selectively applying the fold and unfold operators. one can arrange to use a "quick and dirty"
version of I(x) at points in the theory where an exact value is not important. A more
sophisticated version off(x) can be used at points where exact values are critical.

Unfolding a Function Definition:

If function F = A (xl ... xN) Hac(x1, ... ,xN] then replace
F(e1, ... ,eN) with the result of expanding Hac[e1, ... ,eN].

Folding a Function Definition:

If expression E contains sub-expressions e1, ... ,eN and has
the form: Hac[e1, ... ,eN], then replace E with Feel, ... ,eN)
and define F = A (xl, ... ,xN) Hac [xl, ... ,xN].

Figure 7: Folding and Unfolding Function Definitions

6 Results
A ponion of the final state obtained from one heuristic generation run is shown in

Figure 8. This state results from using the heuristic generator to process the heans theory
described in Figure 2. The final state lists multiple versions for some functions. All these
defmitiOn! are equivalent to the actual lambda expressions generated in LISP notation by
POLLY ANNA. For clarity and compacmess, they have been translated by the author into
ordinary function notation. Not all the functions appearing the final state are shown in
Figure 8. For those functions shown, only some of their versions are described. The others
were omitted for the purpose of brevity. The fmal state defines some functions that do not
actually appear in the initial theory, e.g .. ExpTrickScore, PTrickValue and PWin. These
names were chosen by the human user upon applying the fold operation to create new
function definitions. Typical final states have included about 20-30 function names with
about 3-5 versions each. The results depend on search control decisions made by the human
user.

Yrhe notation Mac/xl is used 10 designate the result of a macro expansion taking;c as an argument

7

ExpGameScore (p,t,hand, state, c) :

Version 1: = Average(Ranqe(GameScore»

Version 2: = L (t' in TRICKS)
ExpTrickScore(p,t,hand,state,c , t')

ExpTrickScore(p,t,hand,atate,c , t ') :

Version 1: = Average(Range{TrickScore»

Version 2: = L (vl in Range(Win»
r (v2 in Range(TrickValue})

(If vl Then v2 Elae 0) *
* PWin(p,t,hand,state,c,t' ,vl) *
* PTrickValue(p , t , hand,state,c,t' ,v2)

PWin(p,t,hand,state,c,t' ,vl) :

Version 1: = 1 / I Range (Win) I

Version 2: = . .. Average over Range (Defeats) .. .

PTrickValue(p,t,hand,state,c,t' ,v2) :

Version 1: = 1 I I Range (TrickValue) I

Version 2: = ... Average over Range (PointValue) ...

Figure 8: Example Final State of Heuristic Generator

In orde r to understand the process used to generate this final state. it helps to consider
the diagram in Figure 9. This tree indicates the functional relationships among some random
variables in the hearts theory. The exact functional relationships are given in Figure 2. In the
initial theory. the evaluation function ExpGameScore is written as as an expectation of the
lOp level variable GameScore. Truth preserving reformulations allow onc to cxpress
ExpGameScore in terms of probabilities and exp!ctations of variables at lower points in the
tree. This process generates various expressions of the form Prob(/..,(d)v=/(d)J or
£xp(/..,(d)/fd)j, wheref(d) is some random variable in the tree. Each such expression can be
processed in one of three ways. In some cases, it can be directly evaluated since the value of
f(d) is already lmown in the current game state. For example , the value of Card(p,t.d) might
be lcnown for the players who already played cards in the current trick. If the value is nOt
known, one may apply a GSA to convert the expression into a simpler form. As a third
al ternative. one can unfold the definition off(d) and then use !.he reformulations in Figure 6
to write the expression using variables at lower points in the random variable tree.

Depending on where and when GSA operations arc applied , theories with varying costs
and error rates can be generated. When a GSA is used to avoid unfolding me definition of
some ra.ndom vari3blc, the subll"CC under mat variable is effectively "pruned". Any Imo~
values of variables in the subtree are ignored. If the tree is pruned near the root, ~e resul~g
theory is very efficient. It is also not very accurate because it ignores most of the mformatlon
in the current game stale. If GSAs are appl ied at deeper levels, the theory becomes more

. \~ e~\IIua\e . In rerum [or this computational expense, the theory IS able to explon

\;~'\IIl \'" ~."'" ... ,,~

8

•••

WIN llUCK· VALUE

Figure 9: Random Variable Tree

Heuristic theories can be compared in tenns of which sub-trees of Figure 9 they do and
do not expand. For example, suppose theory tl uses Version ~1 of PWin and Version #2 of
PTrickValue. Suppose funher that theory t2 uses Version *2 of PWin and Version #1 of
PTrickValue. Theory t2 thus puts more effort into detennining who wins a trick and less
effort into detennining the trick value. Theory tl does the opposite. Each theory thus
implicitly takes a position regarding which random variables are most important.

A verbal summary of some heuristics generated by POLLY ANNA is shown in Figure
10. A total of 6 different heuristic theories are described by this figure: (l a, 1 b, 2aa, 2ab,
2ba,2bb). The first two heuristics (la and Ib) were obtained by using AA to igoore tenns in
the evaluation function that correspond to future tricks. These heuristics optimize the
current trick score. Heuristic (1a) results from using EP to ignore the variable TrickValue
and thus chooses cards of lowest rank to minimize the odds of winning the current trick.
Heuristic (lb) results from using EP to ignore the variable Win and thus chooses cards of
lowest point value to minimize the expected trick value. All the other heuristics (2aa. 2ab,
2ba and 2bb) involve limited consideration of future tricks. These result from combining
either (la) or (1.b) with one of two different. ways of analyzing the future: (2c and 2d). Both
(2c) and (2d) analyze the future using EP to assume that opponents are equally likely to play
any card in the deck in future tricks. Heuristic (2c) results from focusing on the variable Win
in future tricks. while ignoring the variable TrickValue. It suggests getting rid of high rank
cards to minimize the odds of winning future tricks. Heuristic (2d) takes the opposite

9

approach of considering TrickValue while ignoring the variable Win in future tricks. It
suggests getting rid of high point value cards to minimize the expected trick score in furure
tricks. or course these heuristics are not represented as verbal rules in POLLYANNA. The
rules were written by the author to characterize the behavior of function definitions
appearing in the final state of the heuristic generator. The functions implementing these
heuristics are similar to those shown in Figure 8, although they are somewhat more
complicated.

The results described in Figure 10 indicate that POLLY ANNA is capable of generating
heuristics that perform on the level of a human novice. Some strategies more complex than
these have been generated as well; however. efficient heuristics perfonning on the level of
human cxpens have not been generated. Difficulties arise because the cost of evaluation
blows up when the tree of Figure 9 is c)tpanded beyond a cenain point. Efficient theories
describing advanced heuristics appear to require more powerful reformulations and/o r
generic simplifying assumptions.

l. If some l egal. card choices risk winning the current
trick then:

a. Play a card of minimal rank .
h. Play a card of mi.nimal point-value.

otherwise play any legal card.

2. If some legal card choices risk winning the current
trick then:

a. Play a card of mi.nimal rank .
b . Play a card of mi.nimal point-value.

otherwise,
c. Play • card of maximal rank .
d. Play a card of maximal point-va.l.ue.

Figure 10: Summary of Heuristics Generated by POLLY ANNA

Even the novice level results are significant considering the manner in which they were
generated. For a machine that cannot use the initiaJ heans theory for anything othcr than
direct evaluation, the heuristics in Figure 10 are not obv ious. Given the availability of
generic simplifying assumptions and refo rm ulation knowledge, these heuristics can be
e)tlracted from the intractable theory, The results are significant also because the operations
used arc potentially domain independent. Work in progress is attempting to apply the GSAs
of Figure 4 to a stochastic scheduling domain, among others. This work is intended to
demonstrate that me generic simplifying assumptions apply to many domains.

After generating the function versions described in Figure 8, POU Y ANNA passes
these definitions along to the theory space generation module. Various complete theories are
then fo rmed by taking one version of each function. The theory space is acrually a su~t of
me canesian product of the version sets. Many equivalent theories are contained m ~e
complete cartesian product The theory space generator attempts. t~ remove most of UlIS

redundancy. The empirical theory space search module then u~ tralnmg enmples [0 ~a:ch
fo r theories meeting specified cost and accuracy goals., A. prevIous paper repon.ed empmcal
resuilS based on hand coded output from the heunsUc generator (E~an 881, ~o~
measurements indicated wide variation in levels of accu~c~ and effiCiency ?f heunsuc
\he\lnes Empirical \esl.S using mechanically generated heunsUcs are currently In progn:ss .

'. " ith various subsets of GSAs and reformulation
These tests m\'olve ~xpe~m~n~n~~ning the contribution of each toward improving
operators. They .ar,e alme a e
efficiency with m\mmalloss of accuracy.

10

7 Conclusion
The power of generic simplifying assumptions has been demonstrated by results from

the hearts domain. These results show that each GSA can be instantiated in many different
ways, each of which has a different impact on the domain theory. A small set of GSAs can
lead to a large class of heuristics when they arc systematically applied to different parts of
the theory. Both good and bad heuristics are generated by this process. For this reason,
generic simplifying assumptions should be considered a weak. theory of heuristics.
Empirical learning is needed to separate the useful heuristics from the useless ones. The
integrated analytic/empirical architecture of POLLYANNA is thus a natural consequence of
generating heuristics from generic simplifying assumptions.

8 Acknowledgments
Thanks to Michael Lebowitz and Jack Mostow for many useful discussions about the

work reponed in this paper. This research was supported in part by the Defense Advanced
Research Projects Agency under contract NOOO39-84-C-016S.

References

[Andrews 83] Andrews, J., D. Win at Hearts. Dover Publications, New York, NY, 1983.

[Bennett 87] Bennetl, S. W. Approximation in Mathematical Domains. Proceedings of the Tenth
International Joint Conference on Artificial Intelligence. 1987.

[Ellman 88] Ellman, T. Approximate Theory Formation: An Explanation-Based Approach.
Proceedings of the Seventh National Conference on Artificial Intelligence, 1988.

[Gashnig 79] Gashnig. J. A Problem Similarity Approach to Devising Heuristics: First Results.
Proceedings of the Sixth International Joint Conference on Artificial Intelligence, 1979.

[Keller 87] Keller. R. M. The Role of Explicit Contextual Knowledge in Learning Concepts to
Improve Performance. Technical Report ML-TR-7. Department of Computer Science, Rutgers
University. New Brunswick, NJ, 1987. PhD Thesis.

[Kibler 85] Kibler. D. Generation of Heuristics by Transforming the Problem Representation.
Technical Report ICS TR-85-20, Department of Computer Science, University of California, Irvine,
CA. 1985.

[Lenat 83] Lenat, D. B. "EURISKO: A program that learns new heuristics and domain concepts."
Artificial Intelligence 21, 1,2. 1983, pp. 61 - 98.

[Mitchell et al. 86] Mitchell. T. M., Keller, R. M. and Kedar-Cabelli, S. T. "Explanation-Based
Learning: A Unifying View." Machine Learning 1,1, 1986, pp. 47 - 80.

[Mostowand Fawcett 87] Mostow. J. and Fawcett. T. Approximating Intractable Theories: A
Problem Space Model. Technical Report ML-TR-16, Rutgers University, Department of Computer
Science, New Brunswick. NJ, 1987.

[Pearl 84] Pearl. J. Heuristics: Intelligent Search Strategies/or Computer Problem Solving.
Addison-Wesley, Reading, MA, 1984.

[Unruh et aI. 87] Unruh. A .• Rosenbloom, P. and Laird, J. E. Dynamic Abstraction Problem Solving
in Soar. Proceedings of the AOG/AAAlC Joint Conference, 1987.

