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Abstract 

One of the hardest problems in reasoning about a physical system is finding an approximate 
model that is mathematically tractable and yet captures the essence of the problem. This paper 
describes an implemented program AOM which automates a powerful simplification method. AOM 
is based on two domain-independent ideas: self-consistent approximations and asymptotic order 
of magnitude reasoning. The basic operation of AOM consists of five steps: (1) assign order of 
magnitude estimates to terms in the equations, (2) find maximal terms of each equation, i.e., terms 
that are not dominated by any other terms in the same equation, (3) consider all possible n-term 
dominant balance assumptions, (4) propagate the effects of the balance assumptions, and (5) 
remove part al models based on inconsistent balance assumptions. AOM also exploits constraints 
among equal:ions and submodels. We demonstrate its power by showing how the program simplifies 
difficult flui’d models described by coupled nonlinear partial differential equations with several 
parameters. We believe the derivation given by AOM is more systematic and easily understandable 
than those given in published papers. 

1. Introduction 

Model simplification-the derivation of simpler equations from more genera1 ones-is 

a recurrent problem in many areas of science and engineering. Few physical theories 
can be matched directly with experiments. To an experimenter wondering why a certain 
value is got for a measurement, say, why water boils at about 1OOT under ordinary 
conditions, a complicated system of equations describing 1O23 molecules, interacting 
with one another with a complicated force law, governed by the fundamental laws of 
quantum statistical mechanics would not be exactly helpful. The real problem is to 
reduce these equations, so complex and general, with so many variables linked together 
to a form responsive to analysis and interpretation. Approximate models are not just 
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useful; they are essential. Without it, we cannot make predictions. With it, we can guide 
experiments and assess numerical results. 

Professional scientists simplify problems by all sorts of methods. Among them are 

dimensional and order of magnitude estimates, exploitation of small parameters, and 
symmetry considerations. These methods and others besides, which belong to the “bag 
of tricks” of a skilled practitioner, are seldom articulated in a systematic, constructive 
manner that beginners can apply directly in scientific works. To simplify a model the 
scientist must exercise judgement in choices of what idealizations or approximations to 
make. Making such judgement often requires an understanding of the gross features of 

the solution, knowledge of the relative importance of terms in the model, and consid- 
eration of limiting cases. The purpose of this paper is to demonstrate how this kind of 
knowledge can be embodied in a computer program to tackle the difficult problem of 
model approximation in fluid dynamics. 

The implemented program, called AOM, is based on two domain-independent ideas: 
self-consistent approximations, and asymptotic order of magnitude reasoning. Given 
a system of fluid equations, such as the Navier-Stokes equations, and a few order 

of magnitude estimates for the variables in the equations, AOM finds all the simplified 
equations consistent with the problem specification. The spirit of the analysis is heuristic 
and exploratory. We will not be able to prove that the simplified equations have strict 
validity. Rather these equations are the only ones which could possibly be valid. 

Fluid dynamics is a good domain for testing simplification ideas for three reasons. 
First, the domain is extremely important. Knowledge of fluid dynamics is critical for the 
solutions of many scientific and technological problems-from life in moving fluids, to 
drag on ship hulls, to heat transfer in reentering spacecrafts, to motion of air masses, 
and to evolution of galaxies. Second, the fluid equations are in general systems of 
coupled nonlinear partial differential equations, which present enormous analytical and 
numerical difficulties. So methods of simplification are likely to have large payoff. Third, 
the domain is appropriate because a list of identifiable, significant approximations- 
important for the development of that subject-has accumulated over the years. 

Despite the appearance of the program as an application of AI techniques to a spe- 
cialized domain, we want to stress our more general concerns for this line of research: 

l To study the nature of scientific reasoning as practiced in normal science. We would 
like to codify some of the skills that professionals have in formulating problems, 
making approximations, explaining data, and testing theories. 

l To solve real problems in an area of significance to modern science. 
l To provide scientists with an intelligent workbench consisting of a library of pow- 

erful heuristic and qualitative methods. 
Our work is thus rooted in the tradition of focusing on the problem solving behavior 

of articulate professionals in well-structured domains and formalizing their methods so 
that a computer can exhibit similar behavior on similar problems. Works with a similar 
intent range from the early expert systems (such as Slagle’s SAINT, Moses’ SIN, and 
Dendral), to the engineering problem solving project and dynamicist workbench in MIT 
[ 1,5,33], and to the recent researches in qualitative reasoning [ 91. 

This work is closely related to the researches concerning automatic model generation 
and order of magnitude reasoning. Raiman introduces order of magnitude scales to ex- 
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tend the power of qualitative algebra [20]. Weld explores related ideas in a technique 
called exaggeration in the context of comparative analysis [ 271. Mavrovouniotis and 
Stephanopo’ulos combine numerical and symbolic order of magnitude relations in ana- 
lyzing chemical processes [ 141. Raiman and Williams explore the use of simplifying 
assumptions in finding dominant equilibrium behaviors of an acid-base system [ 281. 

Our project differs from these works in two major aspects. First, whereas all the 
previous works deal with either qualitative models or models specified by algebraic or 

ordinary differential equations (ODES), we believe AOM is one of the first programs 
to handle systems of nonlinear partial differential equations (PDEs) . Second, we base 
our programs on a theory of asymptotic order of magnitude of functions, which, be- 
sides being closer to what applied mathematicians or fluid dynamicists use, ’ applies to 

algebraic equations and ODES as well as to PDEs. 
The use Iof asymptotic order of magnitude in qualitative reasoning originally appeared 

in [32]. The program has since been extended to deal with more substantial, non- 
textbook, examples; in particular it can reproduce a well-known approximate model 
for laminar flow, the triple-deck model, a composite model having interacting subparts. 
This paper demonstrates the additional capability of AOM, and greatly expands the 
explanation of new examples and the underlying algorithm. 

The paper is organized as follows. We first introduce some terminology necessary 
to understand the fluid domain. We then explain in Section 3 the model simplification 
task in the context of a fluid problem. Despite the relatively complicated equations in 
the paper, the essential ideas can be understood by a careful reading of the motivating 
examples in Sections 4 and 5 where we describe asymptotic order of magnitude, and the 
method of dominant balance to find self-consistent approximations. The simplification 
algorithm is described in Section 6. We show the program’s performance in Sections 7 
and 8. In Section 9, we present a detailed evaluation of the strengths and weaknesses 
of the program. Section 10 puts AOM in the context of previous works on order of 
magnitude reasoning. We finally conclude with a summary of the technical advances 
this paper presents. 

2. Characteristics of the problem domain 

2.1. Some terminology 

Fluids obey Newton’s laws of motion. The basic equations are expressions for con- 
servation of momentum and conservation of mass. The three momentum equations in 
Fig. 1 are -just examples of Newton’s Second Law (F = mu), In fluid mechanics, it is 
customary to have the acceleration or the inertia terms written on the left-hand side of 
the equation, and the remaining force terms on the right. 

Since the motion of a fluid particle can change with both time and space, the inertia 
consists of two parts: the local acceleration (i.e., rate of change of velocity with respect 

’ The asymptotic theory is also commonly used in the analysis of algorithms. 
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Conservation of momentum: 

inertia forces applied forces 

/ . ’ . 

lOCEll convective pWSS”E viscous 

. 

!?+uF?+v~+ aw @ 1 2 2 

waz = -az + G ( 
aw+!?+$ 
ax2 ay2 > 

Conservation of mass: 

s+g+g=o 

Fig. I. Meaning of terms in the 3D incompressible Navier-Stokes equations. When the velocity is indepen- 

dent of time, and the w-component of the velocity is zero, the general equations reduce to the 2D steady 

incompressible flow. 

to time), and the convective acceleration (i.e., product of velocity and the velocity 
gradient). 

A steadyjow is one in which the local acceleration is zero. The applied forces on the 
fluid can be divided into two types: (1) su@zceforces, caused by molecular attractions, 
include pressure and friction forces due to viscosity, and (2) body forces resulting from 
external force fields like gravity or magnetic field. It is often convenient to define the 
pressure term to include gravity (i.e., p +pgy, where p is density of fluid, g gravitational 

constant, and y is the vertical coordinate). 
The mass conservation law is expressed in a differential form: the divergence of the 

fluid velocity is zero. This equation just means that in each region, no matter how small, 
the net flow-in must be equal to the net flow-out. In other words, whatever is flowing is 
not permitted to accumulate. Such a flow is called incompressible. Incompressibility is an 
idealization, but it is a good approximation for most flows under ordinary temperature. 

The momentum equations express a balance of opposing forces on the fluid: the 
inertia forces keep the fluid moving steadily against the effects of pressure gradient and 
viscous forces. The ratio, called the Reynolds number: 

Rez44fr. 
V 

where u is a characteristic velocity, L a length scale, and v the kinematic viscosity, can 
be thought of as a comparative measure of the inertia and the viscous forces; it is an 
indication of the relative importance of viscosity-actually the unimportance since high 
Reynolds numbers are associated with slightly viscous flow. If we gradually increase 
the Reynolds number, e.g., by increasing the flow speed, then at some critical value 
Re*, the viscosity will no longer dissipate energy quick enough to stabilize the flow. A 
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transition from laminar flow to turbulence occurs. It is remarkable that the whole world 
of laminar and turbulent flow is described by four lines of mathematical symbols-well, 
not exactly the whole world because there are flows that are compressible. 

2.2. Ontology 

Description of fluid motion involves a variety of quantities: (1) the fundamental 
quantities: time, space, and mass, (2) the usual dynamical quantities from particle 
mechanics such as velocity, acceleration, force, pressure, and momentum, (3) quantities 
that are less familiar but can be easily derived from the more basic ones: velocity 
gradient and1 pressure gradient, convective acceleration, viscous shearing forces, and 
turbulent stress, (4) dimensionless parameters such as the Reynolds number, and (5) 
scale parameters, such as 6, which determine the length, time, or velocity scale of 

interest. 

3. The task 

We are interested in the task of model simplification. It occurs in the early heuristic 
phase in the mathematical modeling of a scientific problem. Model simplification takes 
three inputs: ( 1) a detailed model, (2) a description of the parameters, dependent 
variables, and independent variables of the model, and (3) essential physical effects. 
Its output is one or more simplified models with constraints on the parameters. These 
constraints might delimit the region of validity of the approximation. They might also 
contain important information about the character of the solution. 

Detailed Fluid models are usually available from standard textbooks and so are the 
physical me,anings of parameters and variables. If the detailed model is composite, the 
input description specifies detailed equations for each of its component models. The 
description of variables is problem-dependent; it often includes their boundary values 
and estimated maximum order of magnitude. The order of magnitude estimates can be 
obtained from experimental observations concerning the phenomenon or from solutions 
of simple flows. Knowledge of essential physical effects can also be obtained from 
experiments. For instance, neglecting all the viscous terms in the equation will predict 
non-physical results, the so-called d’Alembert paradox to be discussed shortly. 

In general,, a simplified model is valid only under a range of parameter values-within 
a certain range of Reynolds numbers, inside a narrow region around a body, for example. 

As our first motivating example, we will derive Prandtl’s boundary layer approxi- 
mation for high Reynolds number flows (but not too high so that the flow remains 
laminar), which is probably the single most important approximation made in the his- 
tory of fluid mechanics. For ease of exposition, we consider the case of two-dimensional, 
steady, incompressible flow over a flat plate (Fig. 2). The same technique will work for 
three-dimensional, unsteady flow over arbitrary bodies. 

The detailed model is the 2D steady incompressible Navier-Stokes equations (Fig. 3). 
Eqs. ( 1) and (2) are the momentum equations, while (3) is the equation of continuity 
(or conservation of mass). The model is a system of three coupled PDEs containing 
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Fig. 2. Boundary layer over a semi-infinite flat plate. The velocity gradient near the surface is large because of 

the no-slip condition. As one moves away from the surface, along the y-direction, the local velocity increases 

steadily as it approaches the free stream velocity. The width of the boundary layer is denoted by 6, it grows 

downstream. 

three unknowns U, o, and p. The objective is to simplify the model in the limit of large 
Reynolds numbers. 

It might be thought that since Re is Iarge (> l), the coefficient multiplying the 
viscous terms in the momentum equations is small and therefore we can neglect these 
terms in first approximation. However, a model that neglects viscosity will predict 
zero drag on a solid body in steady flow- theoretical predictions diverge from reality. 
The observation that viscosity-no matter how small it is-can’t be neglected in drag 
cal~uiation is known as the d’Alembert paradox. The resolution of this paradox depends 
on Prandtl’s idea of boundary layer, an idea that brought much credibility to the whole 
theoretical fluid dynamics. 

Prandtl’s idea is that at high Reynolds numbers viscosity remains important near the 
body surface even if it could be disregarded everywhere else. As long as the “no-slip” 
condition holds, i.e., that fluids do not slip with respect to solids, there will be a thin 
layer around the body where rapid changes of velocity produce notable effects, despite 
the small coefficient Re-‘. The layer in question is called boundary layer. Although 
boundary layers are typically thin compared to the body dimension, their effects on drag 
and transport properties can be eno~ous. 

To get a feel of the type of reasoning involved in the derivation of the boundary layer 
approximation, we will quote a passage, slightly edited for our purpose, from a standard 
Ruid dynamics textbook [30]: 

To start with we assume that S*, the width of the boundary layer, is small compared 
with L., the length of the flat plate if Re is large. That means 6 = 6*/L < 1, and the 
range of the boundary layer y is 6. Since u and x are all of order of unity, Eq. (3) 
states that o is of order 6. Now the convective terms in Eq. ( 1) are all of O( 1). 
A glance at the viscous terms in Eq. (I > reveals that 8*u/8x2 << 2*u/8y2 so that 
the first can be neglected and the viscous terms can be replaced by Re-‘d2uf8y2. 
Since in the boundary layer the viscous terms are of the same order of magnitude 
as the inertial terms, Re-‘>*u/~Yy* = O(1); this shows that: 
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Model name: prandtl-boundary-layer 
Independent variables: 

X lower-bound = 0 upper-bound = 1 
physical features = space, streamwise 

y . . . 
Dependent ,variables: 

u depends-on = x, y 
lower-bound = 0 upper-bound = 1 
physical features = velocity, streamwise 

0 . . . 
Parameters: 

Re type = large-parameter 
physical features = dimensionless-number 

6 type = small-parameter 
physical features = dimensionless-number, length, transverse 

Essential terms: viscous, inertia 
Equations: 

Streamwise-momentum: 

z+“$-$++.(S+$) 

Transverse-.momentum: 

Continuity: 

$+$=o 

Order of Magnitude estimates: 

(1) 

(2) 

(3) 

14=0(l) 

x=0( 1) 

Fig. 3. Problem specification for flow over semi-infinite plate. It consists of three parts: (1) declarations 

of variables and parameters, (2) detailed equations of motion (2D steady, incompressible Navier-Stokes 

Equations: a and L’ are the horizontal and normal components of the velocity, p is the pressure, and Re is 

the Reynolds number), and (3) a few order of magnitude estimates. A parameter is large if its magnitude is 

>> I, and small if << 1. The essential terms specification rules out simplified models that do not contain any 
viscous or inertia terms. 
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Re=O f . ( > 
To see how p varies, we turn to Eq. (2). Again the term c’~*u/~x* can be neglected 
since it is added to a much larger term d*o/Jy*. Then all the terms involving 
u are of O(6). Hence the pressure variation with respect to y in the boundary 
layer is of 0( S*>, and can be neglected. Thus we take the pressure outside the 
boundary layer to be the pressure inside. But outside the boundary layer, the 
pressure distribution p(x) is a function of x only. So we can replace the partial 
derivative of the pressure term by the total derivative. Thus the flow in the boundary 
layer is governed by: 

au c3.t dp 1 d% 
U~+u-=dx+-2’ 

JY Re dy (5) 

to which must be added the equation of continuity (3). 

Much can be learned from this explanation. First, we notice that the simplified model 
consists of only two equations (5) and (3), and two unknowns u and U; the momen- 
tum equation (2) is discarded. The pressure p becomes a known boundary term to 
be given by the solution to the outer flow, the far field approximation, where viscos- 
ity can be totally ignored. Second, the explanation refers to physical meanings of the 

terms in the equations; we have inertia terms, convective terms, viscous terms, and 
pressure terms. Third, the reasoning makes heavy use of order of magnitude estimates 
to justify the elimination of small terms. Fourth, given a few basic order of magnitude 
estimates (such as those of 6, u, and x), estimates for more complicated quantities 

involving partial derivatives are automatically inferred. In particular, it derives the im- 
portant conclusion that the dependency of the pressure on y, i.e., the variation across 
the thin boundary layer, can be neglected at this level of approximation. Finally, by 
balancing the inertia terms and the viscous terms, it obtains a semi-quantitative rela- 
tionship, Eq. (4), between the boundary layer thickness 8 and the Reynolds number 
Re. Since Re is proportional to X, the distance downstream from the leading edge, and 
the dimensional thickness 8’ is defined to be 6* = 6 x x, we can predict that the 
boundary layer will increase parabolically downstream-first rapidly and then gradu- 
ally. * 

4. Asymptotic order of magnitude of functions 

Exploiting the smallness of parameters or variables in a mathematical formulation 
to construct approximate models is a powerful idea that finds applications in almost 
every branch of physics. In projectiles, we ignore air resistance. In planetary motion, 
we ignore all but the forces exerted by the sun. In water waves, we ignore viscosity 
and compressibility. There is not always a guarantee that approximations like these will 
give accurate predictions. But the simplicity of the models allows us to make qualitative 

2 The details: Re = 0( l/6*) implies S 0: l/a IX l/d. But S* = 8 x x 0: x/d = 6. 
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Fig. 4. The simplified equation Lou(n) = 0 is obtained by letting the parameter E + 0 in the full equation 

L,u(x) = 0. The solutions to the full and simplified equations are denoted by u,(x) and un(x) respectively. 

The validity of the approximation depends on whether u,(x) -+ Q(X) as E + 0. 

or semi-quantitative predictions that can be checked with measurements. If the match 
is not satisfactory, we probably throw away too much in the original formulation, and 
should reexamine some of the neglected terms. 

Let’s be more explicit about the approximation problem. Consider an equation L,u(x) 
= 0, where L, is an operator (could be algebraic, differential, or integral) depending 

on a small parameter E and acting on the function u(x) (see Fig. 4). An approximate 
equation ,~ou(x) = 0 is obtained by taking the limit E --+ 0. Suppose u,(x) is the 

solution to the complete equation, and UO(X) the solution to the approximate equation. 
Do the solutions exist? Are they unique? If so, how do they compare? 

Except for the happy rare cases, existence and uniqueness theorems for PDEs are 

almost non-existent. So the discussion of error estimates is largely academic. Rather 
we would like to introduce a language to describe the sense in which an approximate 
solution is “close” to the true one, if they both exist. One obvious candidate for closeness 
measure is the approximate equality, namely, 

U,(X) :Z us(x) u lu,(x> - ua(x)l < 1 as E + 0. 

In other words, the absolute difference between the approximate solution and the true 
one is close to zero. While sometimes useful, approximate equality is less informative 
than it might seem. Suppose we want to approximate the function sinx near x = 0. 
Since sinx :Y 0 for small x, the constant function 0 might be a good approximation. 
But so are the functions fi M x x x2 M 0. The “shape” of sin x, however, looks more 

like that of x than like those of fi or x *. Specifically the function sinx approaches 0 

at the same rate as the function x. 
Approximate equality is also not a good measure when we approximate a function 

near its singular points, namely, the places at which the function blows up. For an 
example, consider the two functions eX + x and ex as x + 00. Although the difference 
between thelm is infinite, they look remarkly the same for large x. 
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For these two reasons, the notion of “asymptotic equality”, denoted by the symbol N, 
which measures the relative difference between an approximation and the true solution, 
is widely used in approximation theory. We will consider the asymptotic behavior of a 
function f(e) as E approaches some critical value au. Without loss of generality, we 
can assume EO = 0, since translation (E - ~0) and inversion ( 1 /e) can be used to handle 
any nonzero finite and infinite limiting values. 

There are several ways to describe the asymptotic behavior of a function with varying 
degrees of precision. For instance, we could describe the limiting value f(a) as E -+ 0 
qualitatively, i.e., whether it is bounded, vanishing, or infinite. Or, we could describe 
the limiting value quantitatively by giving a numerical value for the bound. But we 
find it most useful to describe the shape of the function qualitatively as a limit is 

approached. The description uses the order symbols 0 (“big oh”), o (“little oh”), and 
N (“asymptotically equal”) to express the relative magnitudes of two functions. 

Definition 1. f(c) = O(g(.s)), E -+ 0 if lim,,o If(e) /g(e) 1 = K where K is a finite 
number. 

Definition 2. f(g) = o(g(c)), E --+ 0 if lim,,cf(e)/g(e) = 0. 

Definition 3. f(s) - g(c), E -+ 0 if lim,__,c ]f(e)/g(a)j = I. 

The notation f << g, which reads “f is negligible compared to g”, is synonymous 
with f = o(g). The notation f = O(g) implies the ratio of f/g is bounded, whereas 
f N g means the relative error between f and g goes to 0. 

Typically, we will use a convenient set of simple functions inside an order symbol; 
they are called the gauge functions because they are used to describe the shape of an 
arbitrary function in the neighborhood of a critical point. Common gauge functions 
include the powers and inverse powers of E. For example, sin(a) = O(E) as E -+ 0. 
For more complicated problems, logarithms and exponentials of powers of E may also 
be used. But we shall not consider this larger class of gauge functions in this paper. 

Throughout the paper, we will assume the unknown gauges all have the form F” where 
II is any rational number and its value will be determined as part of the simplification 
analysis. 

The asymptotic order of magnitude must be distinguished from the numerical order 
of magnitude. If f = 106g, then f and g differ by 6 numerical orders of magnitude, but 
they are still of the same asymptotic order. 

Below we list some useful rules of operation on order symbols [lo]: 

(1) O(.fs> = O(fvxg). 
(2) O(f+g) =max(Wf>,W)). 
(3) O(f) + o(f) = O(f). 
(4) o(fg) = O(f)o(g) = o(f)o(g). 
(5) If f=O(g), then ~,“f(t)dt=O(~~[g(t)ldt) as~-+O. 
Order relations cannot in genera1 be differentiated. That is, if f = O(g), then it is not 

generally true that f’ = O(g’). However, using the definition of the total differential of 
a differentiable function f(x, y), 
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df = gdx+$dy, 

‘W * 
df-x df-> 

where df-x and df-y are the partial differentials, we can derive some useful rules 
involving partial derivatives: 

(I) O(l?f/ax)O(dx) = O(df-x). 

(2) O(Jf/Jy)O(dy) = O(df-y). 
(3) 0(1jf) = max(O(df-x),O(df-y)). 

These rules are used to approximate the amount the function f changes, df (which is 
not infinitesimal in general), when the independent variables x and y change. 

One final remark about the formal properties of the gauge functions. This property will 
be important to those who want to formalize asymptotic order of magnitude reasoning. 
Let’s consider the powers of E, and compare their orderings with those of real numbers 
in the interval (0,~). Evidently we have: 

1 
- < ;t iff I? << .$. 
n 

However, the reals have ordering properties that are not shared by the powers of E. Two 
notable ones are the least upper bound, and the greatest lower bound properties. For 
instance, the decreasing sequence of reals { 1 /n}, where n = 1,2,3,. . . , converges to 0, 
whereas th’e decreasing sequence {E”} does not converge to the zero function. Between 

any E” and the zero function, there are infinitely many transcendentally small functions. 
One example would be 0 << e-‘jE < E” for all n (as E + 0). 3 

5. Theory of simplification 

5.1. Simphfication by balancing terms 

A powerful idea to simplify an equation is to identify the small terms in the equation, 
drop these terms, solve the simplified equation, and check for consistency [ 2,131. But 

this does n’ot always work. Consider the following simple polynomial: 

3E2X3 +X2 - EX - 4 = 0 

in the limit E -+ 0. We might naively drop the cubic and the linear terms because their 
coefficients are small. But if we do that, we only get two roots x = 4~2, losing the third 
root. Thus, the process of simplification can lead to a loss of important information. We 
have a singular perturbation problem when the reduced equation changes order. Many 
interesting problems in fluid mechanics have this singular character (see [ 261) . 

What went wrong? The problem is that terms that appear small are not really small. 
The missing root depends inversely on E in such a way that the cubic term is not 

3 Note that this is an asymptotic relation, namely, it holds as E - 0. For anypnite E, we can indeed find a 

value of II for which the statement is false. But the statement is valid in the limit of small E. 
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negligible even its coefficient becomes small. To fix this problem, we introduce three 
concepts: an undetermined gauge, a signiJicant gauge, and a maximal set. To begin, we 
will assume x = O(e”) where n is still undetermined-hence the name undetermined 
gauge. The order of each term is then: 

*+a- 
& 

-&=O. 

o(&%,?) O( &I”) O(E”“) o(t) 

Since n is still unknown, we could not determine which terms are large and which 
are small. To proceed, we could assume the equation is dominated by two terms, the 
remaining being negligible. We balance the two dominant terms, i.e., assert that their 
magnitudes are asymptotically equal, thereby obtaining an equation for the unknown n. 

With n determined, we could check whether the neglected terms are in fact negligible. 
If they are, we have a self-consistent approximation. 

A little technicality before we state the general method of dominant balance. Since we 
must allow the situation where two or more terms may have the same asymptotic order, 
we group terms into equivalence classes by the relation N. A maximal set is any such 
class that is not smaller than any other classes. As an example, the cubic polynomial 
above has four maximal sets each containing one term. The heuristic can then be stated 

as follows: 

Method of Dominant Balance. If the equation has n maximal sets, balance m (6 n) of 
them; these m maximal sets are called dominant. Assume the remaining (n - m) sets are 
negligible. Self-consistent choices of dominant maximal sets correspond to significant 
simplified equations. 

Our heuristic is a straightforward generalization of the more common 2-term dom- 
inant balance procedure [2]. The m-term balance is needed to handle equations for 
which balancing two maximal sets does not give any self-consistent approximations. For 

instance, the ODE 

dy y cosx ---=_ 
dx x x2 

requires a 3-term balance because all the pairwise balances are inconsistent. In this 
simple case, the 3-term balance does not produce any simplification. However, in more 
complicated equations, like the fluid models to be discussed later, the 3-term balance 
can produce significant simplifications. Values of m larger than 3 have not found to 
be that useful because first the resulting simplification will not be much different from 
the equation we start with, and second it rapidly increases the number of possible 
approximate models to be tested. 

To understand how the heuristic works, let’s consider the cubic equation. Here the 
number of maximal sets n is 4. All l-set balances are inconsistent because they are 
singleton sets. Six possibilities are given by 2-set balances. For instance, one possibility 
is that the first two terms are dominant, i.e., e2x3 N x2 > &x,4. Equating the two 
undetermined gauges, we get 3n + 2 = 2n and this implies n = -2. The remaining 
terms are 0( e-t) and 0( 1) , which is consistent with the assumption that the first two 
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0.2 

0 0.2 0.4 0.6 0.0 1 

Fig. 5. The solution of the differential equation e(d2y/dx2) + 2(dy/dx) + y = 0 for E = 0.1 The “inner 

solution” is a rapidly increasing function inside a region of O(E) around the origin. The “outer solution”, 

indicated by the dotted line, is a slowly decaying function. (Adapted from [ 13, Fig. 9.1, p, 1871.) 

terms are dominant. So this possibility is included. On the other hand, if we assume 
.s2x3 N EX >> x2, 4, we get n = - l/2. But then x2 = 0( a-‘) >> 0( e’/*), violating the 
assumption that it should be much smaller than the first term. This possibility must be 

excluded. A similar analysis shows that only one more possibility, when the second and 
fourth terms are dominant, i.e., n = 0, is self-consistent. So the heuristic concludes that 

we should consider twu simplified polynomials: 

3e*x~+x*=OJxN~ 
3&2 

and x2 - 4 = 0 + x N f2. 

The values of E” for which we get self-consistent dominant maximal sets are called 

signi&ant gauges. Notice that each significant gauge generates an equation that captures 
a qualitatively significant asymptotic behavior. 

The balancing procedure can also be used to simplify differential equations. Consider 

the equation: 

d*y dy 
e-d7+2;i;+y=o, O<x<l, O<E<l, 

with boundary conditions y(0) = 0 and y( 1) = 1. The equation can be solved exactly 
(see Fig. 5) [ 131. We see that the solution curve is composed of two parts: a slowly 
varying part in the region away from x = 1 and a rapidly changing part in the region 
near x = 0. Pretending we don’t know the exact solution, we will see how the balancing 
procedure: recovers the two significant approximations. 

As in the cubic equation, just dropping the apparently small term e(d*y/dx*) does 
not quite work because the resulting first-order equation cannot possibly satisfy the two 
boundary conditions. The problem here is the derivative term (d*y/dx*) is not 0( 1) 
when x approaches 0. So we rescale x by an undetermined gauge 8(e): 
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The exact form of the unknown gauge C?(E) will come out of the balancing procedure. 4 
Substitution of this change of variable into the original equation yields: 

The orders of magnitude of the three terms are c/6*, l/S, and 1. Of the three possible 
2-term balances, two are self-consistent, namely, l/S N 1 and l/6 N a/6*. The first 
consistent balance implies S N 1, giving 

2g+y=o, 

while the second implies 6 N E, giving 

2 

$$+2$0. (8) 

Since the approximation is derived under the assumption that x = 0( 1 ), Eq. (7) should 

satisfy the boundary condition on the right y( 1) = 1. In the applied mathematics 
literature, this equation is called the outer approximation. Eq. (8) is presumed to be 
valid when x = O(E) and so it satisfies the left boundary condition y(0) = 0; this is 
the so-called inner approximation. Ascribing the second boundary condition for Eq. (8) 
needs more work; we will return to this problem in a later section. 

To illustrate the use of maximal sets, we consider the boundary layer equations. 
Scaling the independent variable y by an unknown gauge S < 1 and applying the order 
of magnitude rules, we get the following estimates for the terms in the streamwise 
equation (see Section 6) : 

ug =0(l); U; =0(l); g =?; 

-!-!-CO $ ; 
( > 

J-$=0 A$ ; 
( > 

where the symbol “?,’ indicates that the estimate for a quantity is unknown. Since 6 < 1, 
we have Re-’ < Re-‘6-*. So the term Re-’ (d2u/dx2) is not maximal. The remaining 

four terms are maximal and grouped into three sets: 

A={+&}, El={%}, c={+-$}. 
Similarly, the estimates for the transverse equation are: 

4 It should be noted that 8 is pstulared to be the unknown gauge that makes the derivatives 0( 1). The 

balancing procedure then reveals that for that to happen, 6 = O(E), i.e., n = I (see text). The substitution 

step for this class of gauge functions does not require any user input. 
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and the maximal sets are: 

5.2. Constraints from multiple equations 

For a model containing multiple equations, one can often exploit constraints among 
terms in different equations to reduce the number of possible dominant balances. For 
instance, a direct application of m-set balance (for m < 3) to the streamwise equation 
generates five possible balances: 

(1) A> 
(2) A,B, 
(3) A,(~, 
(4) B,C, 
(5) A,B,C. 

Similarly, live balances are possible for the transverse equation. The total number of 
balances is 5 x 5 = 25 for the momentum equations. But many of these balances are 
inconsistent. For instance, if we assume the set A is the dominant set in the streamwise 
equation, then the set F can’t be dominant in the transverse equation because A > C 
implies D >> F. Or, if the sets A and C balance, then it would imply both D and F 
have the same order of magnitude and hence they belong to the same maximal set. 

Since this self-consistency checks are the most expensive part of the procedure, it 
is useful to rule out certain balancing possibilities quickly. A useful criterion uses the 
concept of significant set. Of the three maximal sets in the streamwise equation, two of 
them-A and C-have additional properties: (1) they contain terms that are essential 

(Fig. 3), (2) no other maximal sets in the equation contain the same type of essential 
terms, and (3) they dominate the same type of essential terms in all other equations, 
namely, A >> D and C >> F. Maximal sets satisfying these three properties are called 
significant sets. The terms in A and C are called significant terms. None of the maximal 

sets in the transverse equation are significant. 

Significant Set Filter. Of the possible consistent m-set balances, remove those that do 
not contain the significant sets. 

Applying the filter to the streamwise equation, we remove three out of the five 
balances, leaving only two balances {A, C} and {A, B, C} to consider. Either of the 
balances would imply that the maximal sets D and F have the same order of magnitude. 
Thus, only two of the five possible balances in the transverse equation--(t), F} and 
{D, E, F}--are consistent. 
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The rationale for the significant set filter comes from the observation that a simplified 
model not containing a significant set cannot contain all essential terms. Consider the 
significant set A. It contains the only inertia terms in the streamwise momentum equation. 
If A is neglected, then by order of magnitude argument the set D, which contains the 
only inertia terms in the transverse equation, should also be neglected. Thus, no inertia 
terms will be kept in the simplification, violating the input requirement that some inertia 
terms must be present. The significant set filter is quite useful in constraining the 
generation of candidate dominant balances. The filter is applicable whenever we have an 
a priori knowledge that certain types of terms must be present in the simplified model. 

5.3. Constraints from matching submodels 

The approximation for the ODE (Eq. (6)) is an example of a composite model 
with two nearly independent subparts: the inner and the outer approximation. In Section 
5. I, we are able to determine the inner and outer equations, and all but one boundary 
conditions by the balancing procedure. The missing boundary condition for the inner 
approximation can only be found by matching the detailed solutions of the two approx- 
imations. The conclusion that the interaction between the submodels supplies additional 
constraints to complete the specification of the submodels is general. We will first show 
how this is done in the ODE by explicitly solving the individual approximations. Then, 
we will illustrate how additional constraints can be generated even when we cannot 

explicitly solve the submodels. 
The idea behind solution matching is the hope that the regions of validity of the inner 

and outer approximations overlap [ 131. In this intermediate region, both solutions to 
the approximate equations should give reasonable approximations to the true solution. 
Solving the outer approximation gives: 

hut = e (l-x)/2 

and the inner approximation gives: 

yin = K( 1 - e-2X), 

where K is the coefficient to be determined. Denote the intermediate region by the 
variable s = O(X/E”), where 0 < it < 1. Rewriting the solutions yout and yin in terms 
of the intermediate variable s and taking the limit E --t 0 yields: 

Y”ut = e( l-47)/2 3 e1/2 

=f? K. 

By assumption, the two solutions agree in the intermediate region, which implies K = 
e'12 5 

SThis matching procedure will not always work, but because it works for a sufficiently large class of 

problems, it is among the most popular methods in the singular perturbation literature. Rigorous justification 

of the matching procedure is still a subject of research. For a useful review, consult [ 12 I. 
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Fig. 6. Schematic picture of the triple deck structure around the trailing edge of a finite plate. The three decks 

are marked by dotted lines. The horizontal dimension of the decks is O(Repa). The vertical dimensions of 
the decks are as follows: O(Re-0) for the lower deck, 0(Re-1/2 for the main deck, and O(Rema) for the 

upper deck. The qualitative three deck structure is given to the program. The task of the program is to ( I ) 
deduce the values for unknown parameters such as (Y and p, and (2) simplify the flow equations in each 

deck. 

Prandtl’:s approximation is another example of a composite mode1 with nearly inde- 
pendent subparts, i.e., the role of the free stream non-viscous flow is limited to setting 
the external pressure for the boundary layer, and to a first approximation the free stream 
flow is not affected by what happens inside the thin boundary layer. In more complicated 
fluid problems, we find that the submodels often interact non-weakly. To determine the 
structure of each submodel and its region of validity, we have to consider not only the 

balancing Iof effects in the region, but also the matching conditions at the boundaries of 
adjacent regions. 

A good example of a composite mode1 with non-weakly interacting subparts is Stew- 
artson and Messiter’s triple deck model which successfully models flows near the trailing 
edge of a flat plate [ 241. The model is considered a major landmark in theory of laminar 
flow because the same technique can be applied immediately to many other problems, 
including ilow near a corner, a hump, a tilted trailing edge, and even supersonic flow. 

Roughly, the triple deck mode1 has three subparts (Fig. 6): a “lower deck” reacts to 
the solid boundary just like Prandtl’s thin boundary layer, an “upper deck” is controlled 
by the free stream condition, and a “main deck” transmits the displacement effect of the 
lower deck to the upper deck. 

The problem specification (Fig. 7) describes the qualitative triple deck structure. 
Let us go over the encoding and explain the new features. This problem has eight 

parameters. Re is the usual Reynolds number. To make the expressions easier to read, 
we use the convention that hat * denotes the upper deck quantities, tilde” the main deck 
quantities, and bar - the lower deck quantities. For example, ii, ?r, and ii represent 
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Model name: flat-plate-with-trailing-edge 
Dependent variables: 

PO depends-on: x 
lower-bound = 0 upper-bound = 1 

physical features = pressure, external 
UB . . . 

Parameters: 
Re type = large-parameter 

physical features = dimensionless-number 
ii type = small-parameter 

physical features = dimensionless-number, pressure 
ii type = small-parameter 

physical features = dimensionless-number, pressure 

?r type = small-parameter 
physical features = dimensionless-number, pressure 

& type = small-parameter 
physical features = dimensionless-number, velocity 

* type = small-parameter 

physical features = dimensionless-number, velocity 
type = scalar 

; type = scalar 
Relations: 

CY<+,p>; 
Regions: 

layout: :vertical (lower-deck, main-deck, upper-deck) 
lower-deck 

inherit: prandtl-boundary-layer 
dependent variables: UI , . . . 

expansion: u = Re”*-%I 

estimates: x = 0( Reea), y = O(ReeP) 

. . . 
main-deck 

inherit: 2d-incompressible-steady-flow 
dependent variables: ~1,. . . 
expansion: u = UB + UI 

estimates: x = O(Re-“), y = 0( Rem’/*) 

. . . 
upper-deck 

inherit: 2d-incompressible-steady-flow 
dependent variables: ut , . . . 
expansion: u = U, + ur 
estimates: x = O(Re-“), y = O(Re-a) 
. . . 

Fig. 7. The problem specification for flow over a finite plate. It is a composite model consisting of three 

subregions. Subregions can be specified by the type of flow they inherit. Local declarations of parameters 

and variables are permitted. Some variable declarations and all boundary conditions are omitted. The r’s are 

orders of magnitude of the pressures; the C’S are the velocities. 
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the symbolic orders of magnitude for the pressure in the upper, main, and lower deck 
respectively. The two parameters, c-and 6, are the unknown magnitudes of the streamwise 
velocity in the main and upper decks. Finally, a and /3 are unknowns characterizing 
the dimensionless size of the upper and lower decks respectively. AOM’s task is two- 
fold: ( I ) find constraints governing these parameters, and (2) solve the constraints to 
determine the dependency of the seven unknowns on Re. 

Two new features appear in the encoding. First, the Regions slot allows the flow 
model to be made up of several submodels. In this case, the three submodels are named 
lower-deck, main-deck, and upper-deck. Declaration conventions within a submodel are 
the same as in the parent model. Variables declared inside a submodel are considered 
local to that model. The layout descriptor specifies that the subregions are stacked 
vertically. Currently only two types of layout-vertical and horizontal-are supported. 
Second, the inherit slot allows the momentum and continuity equations to be inherited 
from a previously defined flow model. For instance, the lower deck submodel inherits 
the Prandtl boundary layer equations (model-4 in Fig. 10). We could have started 
with more genera1 equations in which case AOM would repeat the analysis for a non- 
composite model to rederive the boundary layer equations. The main and upper decks 
inherit the steady 2D incompressible Navier-Stokes equations. 

Two types of hints are given in the encoding to AOM to solve this problem. First, the 

constraints on (Y and p encode the qualitative information that the lower deck is inside 
the Prandtl boundary layer (which is O(Re-‘I* )), while the upper deck is outside. 

Second, the relations defining ut in the lower and main deck encode the assumption that 
the flows inside the decks are small perturbations from the Blasius profile, UB( y) . (The 
profile is shown in Fig. 2.) The size of the perturbations will come out of the analysis. 

The triple deck model is fairly complicated: its specification requires the values of 
seven unknown parameters (a, j3, ii, +, ii, %,5> in terms of the Reynolds number Re. 

Seven equations relating these parameters are therefore needed for a well-posed problem. 
We will explain how four of these seven equations come from interactions among the 

submodels. 
Applying the balancing procedure to the main deck yields four possible approximate 

models, none of which can be solved explicitly (see Section 7). However, one of the 
models, MD-l, is simple enough so that two important constraints can be deduced from 

the form of the equations. 

MD-l: 
JUB 

lJB+- 
8Y 

= 0, 

First, @/Jy = 0 implies that the main deck transmits the pressure from the upper to 

lower deck without modifying it, which generates two constraints relating the pressures 
in the three decks: 

ii = ii. + = n-. 
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In other words, the pressures in all three decks have the same magnitude. Note that this 
important piece of information is not deducible from dominant term balancing alone: a 

simplified equation, the second equation of MD-l, has to be solved. 
Second, the streamwise momentum equation and the continuity equation can be com- 

bined to give: 

d u 

ayiz ( > = 0. 

where the quantity o/lJB, the ratio of the vertical velocity to the horizontal velocity, is 
called the streamline slope. So we conclude that the main deck also transmits without 
modification the streamline slope, which gives rise to two additional constraints relating 

the streamline slopes in the three decks: 

5Re”- I /2 _ ~~2n--4P+3 /2 eRea-1/2 = 8. 

The remaining three constraints are consequences of balancing assumptions in the lower 
and the upper deck; they will be explained in Section 7. 

5.4. Domain-specific knowledge in simpli$cation 

Two types of domain-specific knowledge play an important role in the simplification 
process. The first type, given as part of the input specification, concerns order of mag- 
nitude and bound estimates on quantities. For instance, in the specification for the triple 
deck problem, the horizontal extent of the lower deck is given by x = O(Re-“) where 
(Y < l/2. This order of magnitude estimate follows from a general requirement of the 
boundary layer that the horizontal extent must be much greater than the boundary layer 
thickness, which scales like O(Re -1/2). We will derive the latter scaling relationship 
in Section 6. Another example is the expansion of the velocity u in the lower deck 

specification. The leading order of magnitude estimate, Re’/2-B, is based on the Blasius 
profile solution to the Prandtl boundary layer problem [ 301. 

The second type of domain-specific knowledge consists of formulas relating velocities 
and pressure in simple flows. For instance, the program knows that in a potential flow 
the pressure is proportional to the streamline slope [ 161. Declarative knowledge like 
this can be used to generate additional constraints when the program already establishes 
the character of a flow. 

6. Simplification algorithm 

Given a detailed model, the simplification algorithm finds all self-consistent simplified 
models by the maximal set balancing procedure. A simplified model is self-consistent 
if ( 1) the terms neglected are consistent with the dominant balance assumptions, and 
(2) it contains essential terms specified in the input. The algorithm terminates when 
every equation has only one maximal set, and all the constraints among unknown 
parameters have been computed and resolved. The algorithm consists of two procedures: 
simplify-composite-modeland simplify-atomic-model. 
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The principal steps of the procedure simplify-composite-model are: 
( 1) Preprocess the detailed model specification. 
(2) Call simplify-atomic-model for each submodel. 

(3) Generate all possible composite models from the simplified submodels. 
(4) Compute consequences of each composite model. 
(5) Propagate all the transmission constraints among submodels. 
(6) Collect and solve the constraint set for all unknown parameters. 
The procedure simplify-atomic-model operates on an atomic model, i.e. one that 

has no submodels. Its purpose is to simplify all the equations in the model. It has six 

steps: 
( I ) Assign order of magnitude estimates to all the terms of the equations. 
(2) Find the maximal sets. 
(3) If every equation has one maximal set, then return the model and stop. 
(4) Otherwise, pick one unsimplified equation and consider all m-set balances. 
(5) Propagate the effects of the balance assumptions to eliminate inconsistent bal- 

ances. Each consistent balance generates a new partially simplified model. 
(6) Call simplify-atomic-atom recursively on all the partially simplified models. 
The sirnplif y-atomic-model algorithm will terminate because during each call of 

simplification, the number of maximal sets is reduced by at least one. So each recursive 
call will return either a simplified model or nil if the partially simplified model is not 

self-consistent. 
We will first use the Prandtl problem as a running example to explain the steps of 

the simplify-atomic-model procedure. In the next section, we use the triple deck 
problem to explain the simplify-composite-model procedure. 

6. I. Preprocessing the input speci$cation 

Given the input specification of a detailed model, the preprocessor creates (1) internal 
representations for quantities and equations, and (2) a constraint network connecting the 
quantities. The model specification consists of a name, a list of quantity descriptions, the 

momentum and continuity equations in infix form, relations defining external pressure 
and free stream velocities, and a list of estimated orders of magnitude. 

Quantities 
Quantities are represented by CLOS objects. They are divided into three types: (1) 

independent variables (X and y for space), (2) dependent variables (e.g., P and PO for 

pressure, and u and u for velocity), and (3) parameters (e.g., Re for Reynolds number, 
6 for length scale). Each quantity has slots for its upper bound, lower bound, boundary 
values, physical features, and relations which other quantities. A dependent variable 
contains additional information about its dependency on the independent variables. For 

example, the dependent variable u depends on both x and y. 
The input for Prandtl’s problem specifies nine quantities-x, y, u, u, Um, PO, P, Re, 

and 8. The preprocessor generates a total of 60 quantities. The reason is that for each 
dependent variable, quantities corresponding to its total differential, partial differentials, 
and derivatives are also automatically generated. For instance, the dependent variable u 
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generates five additional quantities: du, du-x, du-y, &/ax, and du/Jy. Quantities are 
also generated for each term in the equations and relations. An example would be the 
dependent variable d2Udx2/RE corresponding to the viscous term Re-’ (#u/iLx*) in the 

streamwise equation. 
Input quantities have associated physical features such as space, velocity, and pressure. 

These features are used to determine the physical meaning of derived quantities by simple 
rewrite rules. For instance, a velocity quantity differentiated by a space quantity gives a 
velocity-gradient quantity. The physical meaning of a term in the equation is determined 
in a similar fashion. For example, a term that is the product of a velocity quantity and 

a velocity gradient represents the convective inertia term. 

A constraint language 

Equations are represented as constraints on quantities so that unknown quantities can 
be deduced locally from the known ones. Our constraint language has seven primitives: 

( I ) The constant constraint, (constant q v>, asserts that O(q) = o. 
(2) The maximum constraint, (maximum ql q2 q3), asserts that 

O(q3) =max(O(ql),O(@)). 

Example: (maximum du-x du-y du). 

(3) The multiplier constraint, (multiplier ql q2 q3), asserts that 

Wql) x O(@) = we). 

Example: (multiplier u dudx ududx). 
(4) The exponential constraint, (exponential ql q2 q3), asserts that 

O(ql@) = O(q3). 

Example: (exponential x 2 x2). 

(5) The equality constraint, (== ql q2), asserts that 

O(ql) = O(q2). 

Example: the continuity equation (3) is represented by (== dudx dvdy). 

(6) The variation constraint, (variation f x df -x>, captures the inference that 
when the partial differential of a function f(x, y) with respect to x is much less 
than the value of f at its outer boundary, then f is asymptotically equal to its 
boundary value. Symbolically, df-x = o(fo) + O(f) = O(fo), where fo is the 
value of f at its outer boundary in the x-direction. 

(7) The total-variation constraint, (total-variation f df >, asserts that 

0( df) = 0( upperbound( f) - lowerbound( f) ) 

Most of these constraints are self-explanatory. In the variation constraint, it should be 
noted that the differentials df or df-x do not have to be infinitesimals. They represent 
the amount the function f changes when the independent variables change. For instance, 
let 

f(x,y) =x2+y3. 
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Fig. 8. Equations are represented as a network of constraints for forward inferences. 

The change of f at a point (x, y) = ( 1,2) can be approximated by: 

df = 2dx + 12dy. 

331 

If LX = 0.1 and ay = 0.2, Af = 2.6 > 1. Here we use the notation LJ to differentiate 
A f, the result of the action of the mapping df (see below) from the mapping df itself. 

The same approximation relation holds for order of magnitude estimates. Mathe- 
maticians prefer to think of df as a (constant) differential l-form, which exists to be 
integrated. Formally, it is a mapping from the set of finite intervals to the set of real 
numbers. The definition turns the usual way of looking at integrals upside down. Instead 
of viewing integration as something we do to a function, we regard it as the action of 
the differential on a finite interval. This blends well with order of magnitude operations 
because they are well-behaved under integration. 

Even when df happens to be an infinitesimal, in AOM it is not true that it is less than 
any nonzero quantity-unlike most other order of magnitude systems. The reason is that 

asymptotic order of magnitude provides an ordering of infinitesimals (e.g., E, e2, . . .) . 
So if fo = O(.s2> and df-x = O(e), then df-x # o( fo). 

6.2. Assignment of order of magnitude 

The constraint language allows simple inferences about quantities to be made. Con- 
sider the network generated by the continuity equation (Fig. 8). 

Given that u = O(l), x = 0( l), y = O(S), the value u = O(S) is automatically 

deduced. 6 
The estimates for quantities that result from forward inferences are given in Table 1. 

hThededuc:tionstepsare as follows: (I) u=O(l) andlowerbound(u) =O+ du=O(l), (2) du=O(l) 

and O(du-x) = O(du-y) =$ du-x = O(I) and du-jj = O(I), (3) x = O(1) and lowerbound = 0 =S 

dx = O(l), (4) y = O(S) and lowerbound = 0 =+ dy = O(6), (5) du-x = O(I) and dx = O(I) =S 

du/dx = O( I8 ), (6) du/dx = O( 1) and O(du/dx) = O(dv/dy) + du/dy = 0( I ), (7) dv/dy = O(I) and 

dy = O(6) =+ dv-y = O(6), (8) dv-y = O(6) and O(dv-x) = O(dv-y) =S dv-x = O(S), (9) dv-x = O(S) 

and dv-?j = O(6) + dv = O(6), (10) du = O(6) and lowerbound = 0 =+ u = O(6). 
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Estimates for quantities 

Streamwise equation Transverse equation Continuity equation 

uau/a..r = O( I ) uav/ax = O( 6) 

r~arf/a,v = O( I ) lYk/A,Y = O( 6) 

ap/ax =? apjlplay =? 

Rr-‘d’rr/d.r2 =O(Re-‘) Re-‘d2r/dx2 = O(Re-‘6) 

Rr-‘d%/ayz = 0( Re-’ I/#) Re-ld2~l$v2 = O(Re-‘l/6) 

au/ax = O( I ) 

aL’/ay = O( I ) 

6.3. Finding the maximal sets 

Finding the maximal sets in an equation depends on resolving inequalities between 
order of magnitude expressions. Three mechanisms are used to infer inequalities: (1) 

algebraic rewrite rules, (2) bounding algorithms, and (3) graph search. 

Algebraic rewrite rules 

Many simple inequalities can be determined by rewrite rules. A predicate lessp 
provides the interface between the rules and expressions. The predicate, which is im- 
plemented on top of an algebraic simplifier (see Section 7), handles inequality between 
extended real numbers, infinitesimals and hyperreals (such as 0+, 1 -), 7 and algebraic 
expressions involving quantities. Some examples of rules are: 

x < ux, if x > 0 and u > I, 

xw < xv, if x > 0 and u < U, 

Xl’ < XI’ , if x > 1 and u < u, 

X” < xl’, if 0 < x < 1 and u > u. 

As an illustration, let’s see how the inequality (+Rea--]/2 < aRe2a-‘J2, where Re >> I, 
0 < (Y < i and 0 < c < 1, is decided: 

gRe”-‘/2 < aRe2a-1/2 5 Rea-1/2 < Re2a-112 

_!z+,-;<24 

5a<2a 

where the third step, indicated by an asterisk, is the action of an ordinary simplification 

rule. 

Bounding algorithms 
Computing the upper and lower bound of an expression allows a wider class of 

inequalities to be decided. We implement part of the inequality bounder described in 

7 See the description of hyperreal numbers in [ 27 I. In particular 0+ corresponds to (HALO 0 I ) 
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[ 2 I ] : the ub-lb and the sup-inf algorithm. The basic idea of the algorithms has been 
explored by many researchers [ 4,6,22]. 

The ub-1.b algorithm computes numeric bounds for an expression. The bound of an 
expression is computed recursively from the bounds of its parts. For example, the upper 

bound of an expression x + y is given by: ub(x + y) = ub( x) + ub(y). The only 
nontrivial part of the algorithm is to handle an exponential expression xp. We add two 
special cases which frequently arise in comparing order of magnitude expressions. 

Case 1. When x is a large parameter (such as Re >> 1 ), 

L&(x?‘) = 

1 

[ ub( x) yhCy) 

[Ib(x>]“h”’ ’ 

if ub(y) > 0, 

otherwise. 

Case 2. When x is a small parameter (such as 0 < S << 1). 

L&(x?‘) = 
[ub(x>lf’(“) if /b(y) > 0, 

[ Ib( x) ] WY) otherwise. 

As an illustration, consider the inequality Rt~*~‘-l < 1, where 0 < (Y < $. The 
algorithm computes: 

ub( ReZa-’ ) 

Ib(Re) = 1+ 

ub(2cr - 1) 

&(a) = I- 2 

=o- 

= ( Is)a- 

= l- 

< I. 

The hyperreals are manipulated by rules like: 

(I) p X l+=p+, 
(2) n x 1+ = n--, 

(3) p X o+ =o+, 
(4) n x o+ = o-, 

(5) p+ x 9+ =p9+, 
where p and 9 are finite positive real numbers, and n is a finite negative real number. 

Graph search 
Algebraic techniques to resolve inequalities become increasingly complicated when 

the quantities are related by symbolic constraints. We initially employed the sup-inf 
algorithm, but its exponential time complexity quickly made it a bottleneck. Although 

inferentially weaker than the sup-inf method, Simmons’ idea of searching a quantity 
lattice works much faster [23]. 

The basic idea is to represent explicitly the order relationships between quantities in 
a directed graph whose nodes are quantities and edges are labeled order relations, and 
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A *B 

<<6 <t6 

t 

C 
? *I 

D 

(a) 

<<6 >> 
E-F- 

96 
G-H 

(b) 

Fig. 9. Graph search to determine order relations. 

to use a breadth-first search to find paths between quantities. We generalize Simmons’ 
representation to include symbolic factors in the order relations. Let’s look at an example 
(Fig. 9(a)). We have four quantities: A, B, C, and D. Assume 6 is a small parameter. 
The following relations are also known: (1) O(A) = O(B), (2) O(B) = 60(D), and 

(3) O(A) = SO(C). To show that O(C) = O(D), we find the shortest path between 
them, collecting the symbolic factor of each edge of the path. The symbolic factors are 
divided into two groups: the <-factors, and the >-factors depending on whether the 
edge is labeled < or >>. In the example, the <-factors consists of one factor S, while 
the B-factors consists of one factor l/S. 

The inference procedure can also handle partial information. For instance, in the graph 
shown in Fig. 9(b), it will correctly conclude that E > H even if it is not told what 

the symbolic factor of edge F > G is. 
The time complexity of the graph search is O(E), where E is the number of edges 

in the graph [ 81. To avoid a dense graph, the initial lattice only includes order relations 

that can be easily computed by the algebraic rewrite rules. For instance, terms having 
the same physical features (e.g. the inertia terms in the momentum equations) usually 
have similar order of magnitude estimates; they can be easily compared. New order 
relations are introduced as maximal sets are balanced. 

6.4. Balancing maximal sets 

The maximal sets for the boundary layer problem with their order of magnitude 
estimates, first described in Section 5.1, are repeated here: 

A={+$}, B={g}, C={+-$}v 

1, 7 ., 
1 1 -- 

ReS2’ 
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The sets A and C are significant in the streamwise equation because A > D and 
C > F. 1Jse of the significant set filter gives two dominant balances: {A, C} and 
{A, B, C}. Balancing A and C yields the constraint 1 N Re-‘a-*, which says that the 
boundary layer thickness 6 = 0( I /a). Note that this important qualitative relationship 
is derived without solving any PDEs. 

Constraints derived from balancing assumptions are propagated through the quantity 
lattice. With the new constraint on S, the graph searcher is able to infer that the maximal 
sets D and F must have the same order of magnitude. The maximal set E is a singleton 
set and so O(E) is at most 8. Therefore, at 0( I ) approximation, none of the terms in 
the transverse equation contribute. In particular, we have aplay = 0. Details of the two 
possible simplified models are shown in Fig. 10. 

7. An example of composite model: the triple deck 

In this section we will explain the steps of the procedure simplif y-composite-mo- 

del. The triple deck problem will be used as the running example. In particular we 
show how the values of the seven parameters in the problem--a, p, ii, ii, 7j, &, e-are 
determined. The first two steps of the procedure, preprocessing input and simplifying 

the submodels, have already been described. We will start at step (3). 

7.1. Generating composite models 

The results of calling simplify-atomic-model on each of the submodels of the 
triple deck are displayed in Fig. 11. The upper deck equations are reduced to the potential 

flow equations (UD-1). The lower deck is the usual Prandtl boundary layer equations 

(LD-1 and LD-2). Balancing the inertia terms, pressure term, and the viscous term of 
the streamwise boundary layer equation in LD-2 produces two parameter constraints: 

~=ReP-‘/*-a 

cu=3,6- ;. 

The main deck has four possible simplifications: MD-l, MD-2, MD-3, and MD-4, 
and the lower deck has two. Therefore eight composite models are possible. 

7.2. Computing consequences 

The purpose of this step is to extract further consequences from the simplified equa- 
tions of each submodel. Two kinds of deductions are made. First, domain-specific rules 
are run on the submodels. For instance, a rule relating pressure and streamline slope 

asserts tha.t +? = 0(0/u) = B, after the program determines that the upper deck is a 

potential flow. Second, simplified equations are checked to see if they can be further 
resolved to a simpler form. For example, the equations for MD-l can be resolved to 
give: 
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> (simplify-atomic-model *model*) 

Making (MODEL-2: PRANDTL-BOUNDARY-LAYER-l) from 

(MODEL- I : PRANDTL-BOUNDARY-LAYER) . . . 
Assigning the leading order terms of TRANSVERSE-MOMENTUM-EQUATION to be: DPDY 

Significant terms in STREAMWISE-MOMENTUM-EQUATION are: 

UDUDX VDUDY D2UDY2/RE 

STREAMWISE-MOMENTUM-EQUATION: 2 candidate dominant sets: 

(D2UDY2/RE VDUDY UDUDX) 

(D2UDY2/RE DPDX VDUDY UDUDX) 

Making (MODEL-3: PRANDTL-BOUNDARY-LAYER-l) from 

(MODEL-2: PRANDTL-BOUNDARY-LAYER-l) . . . 
Balancing 2 terms: 

DZUDY2/RE (VISCOUS STRESS TRANSVERSE) and 

VDUDY (CONVECTIVE-ACCELERATION INERTIA TRANSVERSE) 

in STREAMWISE-MOMENTUM-EQUATION with 1 parameter assumption: Re = I /8* 

Assigning the leading order terms of STREAMWISE-MOMENTUM-EQUATION to be: 

D2UDY2/RE and VDUDY and UDUDX 

(MODEL-3: PRANDTL-BOUNDARY-LAYER-I) is self-consistent. 

Making (MODEL-4: PRANDTL-BOUNDARY-LAYER-2) from 

(MODEL-2: PRANDTL-BOUNDARY-LAYER-I) . . 
Balancing 3 terms: 

D2UDYZ/RE (VISCOUS STRESS TRANSVERSE) and 

DPDX (PRESSURE-GRADIENT) and 

VDUDY (CONVECTIVE-ACCELERATION INERTIA TRANSVERSE) 

in STREAMWISE-MOMENTUM-EQUATION with I parameter assumption: Re = I /S2 

Assigning the leading order terms of STREAMWISE-MOMENTUM-EQUATION to be: 

DZUDY2/RE and DPDX and VDUDY and UDUDX 

(MODEL-4: PRANDTL-BOUNDARY-LAYER-2) is self-consistent. 

Two simplified models are found. 

Model-3: 

au au I i9u 
uz +“x = -2 

(II, .’ 
Re @ 

- =o 
;; 
z+;=o 

_’ 

The drag coefficient is O( I/&). 

Model-4: 

au au i?p 1 d2U 
urlx+L+=---g+-~ 

?V Re d,v 
@J -_=O 

Fig. IO. The program finds two self-consistent simplified models. It deduces that Re = l/s2 in both of these 

models. It also computes the drag coefficient based on the magnitude of the velocity gradient &/a~). 

Equations of the form: 

;Q=O 



KM.-K. fip/Art#cial Intelligence 80 (1996) 309-348 331 

Upper deck 

UD-I: 

au1 JP -=:-a 
ax ax 

do ap 

ax=-ay 

au, dv 

x%=O 

Main deck 

MD-I: 

UB$,f + v- auB =O 

2 aY 

ap -0 ay- 
!%+.~=0 

ay 
MD-2: 

am ap 
UBZ; + v- 

ay =-Xii 
ap 
ay= 0 

allI au 

=%=O 
Lower declk 

LD-1: 

au au i a2t4 
[I- $-v- = -- 
ax ay Re ay2 

ap I() -_= 

ay 
au au z+-=o 

ay 

MD-3: 

auB 1 a2uB 
UB%+u-_=-_ 

ay Re dy2 

ap -0 ay- 
$+$o 

MD-4: 

1 d2UB ,~+v~=_~+__ 
Re dy2 

LD-2: 

ati au ap I a2u 
u-++-=_dx+-~ 
ax ay Re ay 

ap -0 ay- 

Fig. I I. Results after calling simplify-atomic-model on each of the submodels of the triple deck problem. 
The simplified model for the upper deck is a potential flow. The main deck has four consistent models. The 

lower deck reduces to the Prandtl boundary layer equations. Eight composite models are possible. Only the 
combination {IUD- 1, MD- 1, LD-2 } produces enough matching constraints for solving the seven unknowns. 
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are called transmission constraints, and Q is a transmission quantity. Physically, a 
transmission constraint asserts that the quantity Q does not vary in the y-direction 
across two regions. It implies a matching constraint on the quantity Q between two 

adjacent regions. 

7.3. Propagation of transmission constraints 

For each transmission constraint, the program asserts that the quantities corresponding 
to Q in two adjacent regions have the same order of magnitude. For example, the 
transmission constraint dp/ay in MD-l leads to two assertions: 

Similarly, the transmission constraint (d/r?y) (o/U@ = 0 leads to two assertions: 

7.4. Solving the constraint set 

The final step is to solve all the parameter constraints that have been asserted. Seven 
such constraints are asserted for the triple deck problem. They are collected here for 
convenience: 

*Re”- I /2 _ ~~2”-4P+3/2 , 5_Re”-1i2 = 6, 

ii = ii, ii = ii, 6- = 6, ,jj- = ReP-1/2-a , 

iY=3p-5 

This set of nonlinear equations is easily solvable by hand. But like many other 
simple-looking equations, they are beyond the capability of a commercial computer 
algebra system like Mathematics. For example, the Mathematics 2.2 Solve procedure 
will not be able to solve for x in terms of a in a simple equation (see Fig. 12): 

log(x+ 1) +log(x- 1) =a. 

Our solution is to build an algebraic simplifier on top of Mathematics to complement 
its equation solving capability. Our algebraic simplifier borrows an important idea from 
previous AI works: Bundy and Wellham’s meta-rules for equation solving [7]. The 
meta-rule approach organizes algebraic rewrite rules into packets. Each packet performs a 
particular function on an expression. For instance, one has an isolate packet whose job 
is to isolate an unknown from an equation containing a single occurrence of the unknown. 
A collect and an attract packet reduce the number of occurrences of unknowns to 
one so that the isolate packet can apply. Our simplifier has three rule sets: (1) 
meta-rules for equation and inequality solving, (2) algebraic rewrite rules for standard 
simplification, and (3) rules for implementing the ub-lb and sup-inf algorithms. A 
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To solve: log( x + 1) + log( x - 1) = a 

Apply attract rule: {log?x + log?y -+ log(?x*?y)} 

to get: log( x + 1) * (x - 1) = a 

Apply collect rule: { (?x+?y) (?x-?y) -+?x*-?y*} 

to get: log(x* - 1) = a 

339 

Apply isolate rule: {log?x =?y -+?x = e?!} 

to get: x2 - 1 = e” 

Apply isolate rule: {?x-?y =?w -+?x =?y+?w} 

to get: x2 = 1 + e” 

Apply isolate rule: {?x?” =?y +?x =?y’/?“} 

to get: x = (1 + ea)‘/*. 

Fig. 12. Repeatedly apply meta-rules to the equation to solve for n. 

Fig. 13. Complete solution for the seven parameters in the triple deck problem. 

significant portion of the rules handle exponentiation, maximum/minimum, derivatives, 
and inequalities. 

The solutions for the parameters are given in Fig. 13. 
Important physical information can be deduced from these parameters. The cx and p 

values esta.blish the extent of the lower deck: the horizontal extent is 0(Re-“/8) and 
vertical O(Re-“18). The horizontal velocity u in the lower deck is 0(Re(‘/2-p)) = 

0(Re-‘/8) from which we calculate the velocity gradient au/G’y = O(Re”*). Using the 

velocity gradient and the definition of drag coefficient CD [30], and integrating over 
the horizontal extent of the lower deck, we arrive at the following correction to the drag 
due to the finite edge effect: 

CD = 0(Re-7’8). 

The conclusion that the finite edge effect contributes O(Rem7/*) is highly nontrivial. 

Researchers had for years assumed that the next order correction to the drag on the 
flat plate is O(Re-‘) [26]. Notice that we arrive at the conclusion without solving the 
triple deck equations! 
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flow direction 
irrotational 

turbulent wake 

1 

Fig. 14. Free turbulent flow over solid body. The width of the wake grows as the square root of the distance 

downstream. The velocity profile for the mean flow shows a deficit near the centerline. The velocity defect w 

is defined as the difference between the free stream velocity and the mean flow velocity. The velocity profile 

recovers the free stream velocity uo3 in a distance of O(6). 

8. A third example: turbulent wake 

Turbulent flows occur frequently in nature and engineering. However our understand- 
ing of turbulence is rather primitive. Few analytical results are available. In this section, 
we will illustrate the generality of our model simplification algorithm with a problem in 
free turbulent flow, a flow that is free of wall boundaries. 

The problem concerns the shape of the wake and the behavior of the velocity profile 
in the downstream of a plane flow over a solid body (Fig. 14). The flow is studied at a 
place far away from the body so that ( 1) the details of the body won’t matter, and (2) 
the averaged velocity profile reaches a steady state. 

Turbulent flows are chaotic and unpredictable. Almost all theoretical studies use some 
type of statistical averaging. The hope is that averaged properties are easier to calculate 
and would represent the macroscopic properties important for engineering purposes. A 

particular type of averaging-the ensemble averaging-is commonly used. The idea is 
to average the results obtained from a series of identical experiments. For instance, 
in each experiment one measures the velocity and pressure at specific locations. Then 
the experiment is repeated many times with identical initial and boundary conditions. 
An average of these experiments is the ensemble average. The difference between the 
ensemble average and an individual experiment value is the fluctuating part. So we can 
write the velocity and pressure variables as follows: 

ll=lJ+d, 

p=P +p’, 

where U and P are the mean velocity and pressure, and the prime quantities are 
the fluctuating parts. Substituting the mean and fluctuating variables into the Navier- 
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Model name: turbulent-free-wake 
Independent variables: 

x lower-bound = 0 upper-bound = 1 
physical features = space, streamwise 

y *.* 
Dependent variables: 

U depends-on = x,y 
lower-bound = 0 upper-bound = 1 

physical features = velocity, streamwise, mean-flow 
11’ . . . 

Parameters: 
Re type = large-parameter 

physical features = dimensionless-number 
6 type = small-parameter 

physical features = dimensionless-number, length, transverse 

140 type = small-parameter 
physical features = dimensionless-number, velocity, turbulent 

~0 type = small-parameter 
physical features = dimensionless-number, velocity, streamwise 

Essential terms: turbulent, inertia 
Equations: 
Streamwise-momentum: 

au au ,+“-__~+I 
JY 

Re(g+~)+-$(-;ii)+-$m) 
Transverse-momentum: 

Continuity: 

au av 
z+F=O 

Relations: U = U, - w 
Order of Magnitude estimates: 

u, =:0(l), U=O(l), x=0(1). y =0(S), 

u’ =0(&-J), u’ = O( ua) ) w = O( wg) 

(9) 

(10) 

(11) 

Fig. IS. Problem specification for flow in the asymptotic downstream of a turbulent wake. The detailed model 

gives the 2D Reynolds averaged equations for the mean flow U and V. The equations are similar to the 2D 

Navier-Stokes equations except for the extra terms (like (fi/@) ( -u’o’)) involving the fluctuating quantities 

u’ and 1.‘. the Reynolds stress terms. These are called stress terms-even though they have nothing to do 

with molecul,ar stresses-because mathematically they behave as if the total stress on the flow were composed 

of the viscous stress plus an additional component due to the mean product of the fluctuating velocities. 

The Reynolds stress terms are never negligible in a turbulent flow, but their analytical forms are in general 

unknown. The overbar stands for ensemble averaging. The problem has four dimensionless parameters: Re, 
6, u,~, and wu. Important analytical relationships can be deduced by order of magnitude reasoning without 
explicitly modeling the details of the Reynolds stress. 
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Two simplified models are found. 

Model- I : Model-2: 

a - !E + - “‘2 =o 
aP 

a~ ay ( ) 
-+q-q=() 

ay ay 

Parameter constraints: Parameter constraints: 

wa >> $ and Re= & 

Fig. 16. The program finds two self-consistent simplified models for the turbulent free wake problem. Notice it 

also deduces constraints among the dimensionless parameters. With an additional hypothesis of self-preserving 

Row, i.e., the various turbulent quantities are self-similar at various downstream locations, Model-l can be 

solved analytically to produce formula relating the velocity defect and the width of the wake as functions of 

the downstream distance. 

Stokes equations and performing the averaging, we will arrive at the Reynolds averaged 
equations for the mean flow (Fig. 15). 

Using 2-set balance, the program finds two simplified models (Fig. 16). If the program 
uses a 3-set balance, it will find five simplified models. 

The turbulent wake problem is interesting for two reasons. First, a host of other free 
turbulence problems-jet and shear flow for example-can be simplified in an identical 
way [25]. Second, the simplified models are simple enough to be solved explicitly 
if the flow is assumed to be self-similar. The solution gives an explicit dependence 
of the velocity defect and the width of the wake on the downstream distance. Such 

analytical results are extremely rare in turbulence. One also expects the results to be 
reliable because the simplification does not depend on the details of the Reynolds stress 
terms. 

9. Evaluation 

In conjunction with a program that automates formal perturbation expansion (an early 
version is described in [ 3 I ] ), AOM is used by the author to simplify many fluid models, 
including flows in turbulent wake, turbulent jet, chaotic wave motion in a tank, shallow 
water waves, and deep water waves. We plan to extend the program to handle flows over 
non-simple boundaries, such as shallow water waves with a sloping bottom or a slowly 
varying channel width. Modeling such flows is known to involve soliton equations with 
time-varying coefficients [ 151. Many aspects of these flows are still subject of current 
research in the fluid dynamics literature. 



K.M.-K. Yip/Artificial Intelligence 80 (1996) 309-348 343 

What has been automated? 

The method of dominant balance is one of the most general and powerful simplifica- 
tion methods. However, the technique has never been automated. Its application to partial 
differential equations with several parameters is not entirely straightforward because of 
the multitude of possible simplifications, parameter assumptions, and consistency checks. 
The explanations of choice of scalings found in typical published papers are usually am- 
biguous and not well-motivated. We do not usually understand them on first reading. 

The original papers on the triple decks are good examples of this problem.8 By explic- 
itly enumerating the balancing possibilities with the associated boundary matching and 
parameter ;assumptions, we obtain an explanation of the triple deck scalings which we 
believe is much clearer than the published accounts. 

In general, simplification of a flow model by the dominant balance method involves 
seven steps: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

(7) 

Break up the region of interest into qualitatively distinct subregions. 
Estimate the orders of magnitude for a subset of quantities. 
Det’ermine the form of gauge functions. 
Enumerate balancing possibilities. 

Deduce consequences of balancing assumptions on parameters. 
Malch boundaries and solve simplified equations to get additional constraints on 

parameters. 
Solve the resulting set of constraints. 

AOM automates the last five steps. It depends on hints about the qualitative structure 
of the simplified models. For instance, AOM is told that there should be three decks 
in modeling the trailing edge of a flat plate. AOM would be much more useful if it 
can nondeterministically try out some simple models, compare their predictions with 
experimental data, and use the discrepancy between prediction and data to guide the 
construction of more elaborate models. For instance, in calculating the viscous drag 
on the flat plate, it might first propose the simple potential flow model. Noticing the 
potential flow model gives zero drag, it conjectures the importance of viscosity and 
looks for regions where a viscous term becomes important. Near the trailing edge of the 
plate, it finds the horizontal length scale is no longer large compared to the O(Re-I/*) 

boundary layer, and therefore a new inner viscous layer may come into existence. 
Step 3, the substitution of powers of E, is automatic as explained in the paper. Several 

classical fluid problems require a more general class of gauge functions (such as E log E) ; 
they frequently arise when a perturbation expansion is carried to higher-order. Not much 
systematic theory about these gauge function is known. 

x The origin11 author, K. Stewartson, came up with the triple deck in 1968 and published a paper in which 

the scalings of the regions are wrong. It took another year before the correct scalings as given in this paper 

were derived. Although the balancing idea is straightforward, applying the problem to coupled equations with 

several paramleters and boundary conditions can be quite hairy even for experts. Scaling choices-no matter 

how non-obvious-are typically not explained in published papers. Disagreements among experts over the 

choice of scaling are quite common. The present author had personal experiences with this type of discussions 

when I was a coauthor of a fluid mechanics paper. 
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When does the simplijkation heuristic fail? 

The simplification algorithm described in this paper has two major limitations. The 

first one can be handled by appropriate extensions to the current program. The second 
one requires a completely new method of attack. 

The first limitation has to do with the class of gauge functions. The program currently 
recognizes only powers and negative powers of E. It is well known that more general 
gauge functions, such as logarithms and exponentials of E,~ are required for many 
problems: the slender body approximation, and higher order matching in Stokes flow, 
just to name a few. Including more general gauges would complicate the solution 
matching procedure [26], a topic we plan to pursue. 

The second limitation is more serious. The simplification algorithm assumes that a 
few significant length scales characterizes the physics of a problem. Consider a glass of 
water at room temperature. There are only a few length scales: the random motion of 

water molecules, the surface waves, and perhaps viscous effects in the thin boundary 
layer. But as the temperature and pressure of the water are raised to critical values 
(647 K and 217 atm), the density of the water and steam is equal. Density fluctuations 
that used to dominate at the molecular scale become increasingly macroscopic. Therefore 
at the critical region, effects of many wavelength scales have to be incorporated into a 
mathematical model [ 291. A similar phenomenon occurs during the energy cascade via 
eddies of many length scales in a turbulent flow. Problems like these fall outside the 
framework of model simplification described in this paper. 

How good are the approximate models? 

There is no simple answer to this question. First, like many simplification methods, 
the accuracy of the dominant balance depends on a continuity property between the 
equation and the solution space, namely, small changes in the equation correspond to 

small changes in its solution. So one can expect a poor approximation when equations 
do not have this property. For instance, in finding the intersection of two nearly parallel 
lines, small changes in the coefficients of the linear equations can lead to a large change 
in the solution. In numerical analysis, such set of equations is called ill-conditioned. 

Second, existence and uniqueness theorems for PDEs are rare. One often does not 
know whether the approximate model has a solution at all or whether the solution if 
exists will be unique. The strongest claim one can make seems to be this: An approximate 
model that is not self-consistent is certainly a poor approximation. This claim is easy 
to justify. lo Let x and x’ be the true and approximate solutions to an equation, and let 
T(x) be a term of the equation to be neglected. Assuming T varies continuously with 
X, we can state the continuity property as follows: 

T(x) small =+ x x X’ + T(x’) small. 

Hence, if T(x) is large, then T(x’) is large and therefore x $ x. 

L, These are the so-called Hardy’s L-functions [ II]. 
I” A similar argument is made in [ 131. 
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Fig. 17. Raiman’s colliding ball examples. Two balls with masses Q, and ins are approaching each other with 

an equal and ‘opposite velocity V. Assume that the collision is elastic and that ?nh >> Ins. What is the velocity 

of the small tlall after impact? 

before impact 

In practice, an approximate model is validated by subjecting its predictions to ex- 
perimental and numerical checks. In fact, there still exists no theorem which speaks to 

the validity and accuracy of Prandtl’s boundary layer approximation, but ninety years of 
experimental results leave little doubt of its validity and its value. 

10. Related work 

Previous work in equation simplification involves the various styles of order of mag- 

nitude reasoning. 
Raiman’s Estimates [20] is based on the notion of order of magnitude scales, The 

intuition is that an order of magnitude description is a coarse description of a quantity. 

The coarse value V(q) of a quantity q is defined as a set of values which contains the 
value of q. Two quantities p and q are said to be equal in order of magnitude if the sets 
V(p) and V(q) overlap. Two primitive scales, small and rough, are provided; they can 

be used to build up finer order of magnitude scales. 
Order of magnitude equality, under Raiman’s definition, is ltof transitive. As a con- 

sequence, one cannot substitute equals for equals, which complicates the inference 
machinery. Part of the justification for the intransitivity comes from considering the 
colliding ball example (Fig. 17). We will show that the problem can be easily solved 
by the use of gauge function without sacrificing the substitution of equals for equals. 

Let mb and m, be the masses of the big and small ball respectively. Let u and u 
with the corresponding subscripts to denote their velocities before and after impact. The 
initial conditions are mb > m,, ub = V, and us = -V. The question is: What are Ub 
and u,? Rewriting Raiman’s equations (30) and (3 1) in terms of a small parameter 

& = !?&/1?‘rb < 1 yields: 

r/b--\I=&(--V-US), &,+v=&--t! 
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The maximal terms in the first equation are ub and V on the left-hand side. Balancing 
them gives Ub = V. Substituting Ub = V into the second equation immediately gives the 
desired answer: us = 3V. 

Mavrovouniotis and Stephanopoulos’ 0[ M] program [ 141 improved on Raiman’s 

earlier FOG formalism [ 191. 0[ M] provides seven primitive relations, such as much 
smaller than and moderately smaller than. These relations are based on an in- 
terpretation of the positive real line as an ordered set of disjoint intervals delimited by 
five distinguished points, E, l/( 1 + E), I, 1 + E, and E- ’ . This interpretation is reminis- 
cent of the ordering of gauge functions in the asymptotic theory of AOM. But there are 
three major differences between the two schemes. First, AOM uses a much richer set of 
gauge functions, namely, all powers of E, which are necessary for handling complicated 
singular equations. Second, AOM’s order of magnitude scales are hierarchical. Terms of 
0( 1) are first compared, then those of O(E”), followed by those of O(E*‘~), and so on. 

Third, AOM’s gauges are functions whereas 0[ Ml’s E is a problem-dependent scalar. 
Thus, 0[ M] formalizes the concept of numerical order of magnitude rather than that of 
asymptotic order of magnitude. 

Murthy [ 171 introduces a four-level quantity space, incorporating some of Raiman’s 
infinitesimal relations, and logarithms. The use of logarithmic scales in approximation is 
explored by Bennett [ 31 and, more extensively, in Nayak’s Napier [ 181. These authors 
define the order of magnitude of a quantity 0( 9) to be log, 141. The choice of the base b 

is problem-dependent. Although the logarithmic scales are more refined than the scales 
in 0[ M], they are designed with a similar purpose, namely, to handle numerical order 
of magnitude. 

In summary, most of the previous works explored order of magnitude reasoning based 
on either numerical order or some form of infinitesimal. These programs handle algebraic 
equations and qualitative differential equations. AOM complements them by a theory 
of asymptotic order of functions, which provides a uniform foundation for simplifying 

algebraic equations, ODES, and PDEs. 

11. Conclusion 

Building approximate models is not just useful: they are essential for a clear un- 
derstanding of the relevant physics in a difficult problem. This paper describes a sim- 

plification method based on three ideas: asymptotic order of functions, the dominant 
balance procedure, and constraint formulation due to parameter assumptions and bound- 
ary matching. The paper introduces a number of technical advances: 

( 1) It introduces asymptotic order of magnitude reasoning to extend the range of 
problems solvable by qualitative reasoning techniques. 

(2) It articulates and explains the dominant balance method so that even a beginning 
graduate student can use the technique to simplify partial differential equations 
with several parameters. 

(3) It produces more systematic explanations of the scalings used in classical fluid 
models like the triple deck. 
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(4) It provides the scalings necessary for the automatic application of formal pertur- 
bation expansion procedures. 

Professional scientists have the ability to simplify problems. They routinely use many 
powerful heuristic and qualitative methods to simplify a problem and get at its essence 
before any lengthy calculation is attempted. Dimensional and order of magnitude es- 
timates, exploitation of small parameters, consideration of limiting cases, perturbation 
expansions, use of analytical properties of physical quantities, consequences of symme- 

try, diagrammatic representations, and renormalizability of theory-these methods are 
not mere tricks to solve specific problems; rather they embody general ideas for strategic 
reformulation of problems and intelligent guess of the form of the solutions. Isolating 
these ideas and articulating them explicitly would go a long way towards understanding 
some of the core skills that make up a theoretical scientist. 
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