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ABSTRACT

This paper also appears in the Proceedings of the Tenth International Conference on Artificial 
Intelligence, Milan, Italy, August 1987.

In recent years knowledge-based techniques like explanation-based learning, qualitative 
reasoning and case-based reasoning have been gaining considerable popularity in AI. Such 
knowledge-based methods face two difficult problems: (1) the performance of the system is 
fundamentally limited by the knowledge initially encoded into its domain theory and (2) the 
encoding of just the right knowledge to enable the system to function properly over a wide range 
of tasks and situations is virtually impossible for a complex domain. This paper describes research 
directed toward the construction of a system that will detect and correct problems with domain 
theories. This will enable knowledge-based systems to operate with imperfect domain theories and 
automatically correct the imperfections whenever they pose problems. This paper discusses the 
classification of imperfect theory problems, strategies for their detection and an approach based on 
experiment design to handle different types of imperfect theory problems.
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The Classification, Detection and Handling of

Imperfect Theory Problems

I INTRODUCTION

This paper addresses the problem of imperfect theories in AI systems. It is increasingly 

apparent that knowledge is essential for intelligent behavior. This has led to a new trend in AI 

towards knowledge-intensive methods like explanation-based learning [DeJong86, Mitchell86], 

qualitative reasoning [Forbus84]. and case-based reasoning [Schank82. Stanfill86].

The primary shortcoming of these approaches is not in the representation of the knowledge - a 

task that is relatively well understood - but in the subtleties of selecting the appropriate 

knowledge. The expert who is handcoding the knowledge has to anticipate the rich variety of tasks 

and the wide range of situations for which the knowledge may be used in order to insure that the 

system will function properly. Also, all AI systems that rely on a programmer-specified domain 

theory are fundamentally limited by their initial knowledge. For example, [UtgofF86] shows how 

the knowledge built into a learning system drastically influences its learning capability.

What is needed is a system that will automatically detect and correct problems with its 

domain theory. This will free the expert from the tedious and often impossible task of handcoding 

all the relevant knowledge. It will enable the use of "quick and dirty" methods to facilitate the 

construction of operational but imperfect domain theories. These domain theories can then be 

automatically debugged and corrected by the system.

Mitchell et al. [Mitchell86] have briefly classified problems with imperfect domain theories 

into three categories:

(1) the incomplete theory problem: the deductions required cannot be computed because relevant

information is missing.
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(2) the inconsistent theory problem: the system can derive inconsistent statements from its 

theory.

(3) the intractable theory problem: the deductions are computationally prohibitive and hence 

cannot be completed.

However, the underlying issues are too murky and subtle for the above categories to be 

cleanly separable. For example, inconsistencies and incompleteness in domain theories may be due 

to abstractions and approximations which make the theory tractable [Doyle86]. Inconsistent 

theory problems can be due to an incomplete theory if information necessary to nullify one of the 

inconsistent statements is missing. Inconsistent statements can also result from the incomplete 

theory problem if the system is operating under the closed world assumption and does not consider 

the possibility of new information influencing its computations [Rajamoney86]. Apart from the 

above problems of interacting categories, the classification of Mitchell et al. also ignores certain 

kinds of incompleteness and inconsistencies.

A complete taxonomy of imperfect theory problems includes two types of incompleteness and 

inconsistencies. The first type of incompleteness is the one discussed above in which a deduction 

cannot be completed because some relevant knowledge is missing. The second type of 

incompleteness is due to the lack of sufficient detail in the relevant knowledge. Unlike the first 

case, deductions can be constructed leading to a conclusion. However, the lack of detail results in 

the system having to make assumptions and leads to the problem of multiple mutually inconsistent 

proofs for a conclusion. This type of incompleteness also results in large search spaces because the 

system does not have the required control knowledge to select the correct path at each choice point. 

The first type of inconsistency involves wrong knowledge that has to be identified and retracted. 

The second type of inconsistency involves missing knowledge that would have defeated the 

deduction leading to one of the inconsistent statements.

There are two aspects to the imperfect theory problems - detection of the imperfections and 

the revision of the domain theory - and both of these present difficulties. This paper describes
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various strategies for detecting problems with the domain theory and a uniform approach based on 

experiment design to handle each type of problem. The system is assumed to start with an initially 

imperfect but operational theory. This is a psychologically motivated assumption since people also 

use simplified domain theories to make conclusions computationally tractable and they are still 

able to operate satisfactorily. During the course of the system’s operation, problems with its 

domain theory are identified and corrected. No changes are made until a problem is detected.

II DETECTION OF THE IMPERFECT THEORY PROBLEMS

This section describes four strategies for detecting problems with domain theories. Though 

the detection strategies are discussed in the context of explanation construction for explanation- 

based learning [DeJong86, Mitchell86] they are also applicable for other problem solving tasks like 

qualitative reasoning and planning. Explanation construction involves using facts and rules from 

the domain theory to show why a training instance is an example of the goal concept (Figure la). 

The problems due to imperfect domain theories that are encountered during explanation 

construction are:

[1] Broken Explanation

There are gaps in the explanation leading to a broken explanation (Figure lb). The rules or 

facts that are required to complete the explanation are missing from the domain theory 

(incompleteness - type I).

[2] Contradiction

The system constructs explanations for conclusions which are contradictory (Figure lc). This 

problem may be due to wrong rules or facts in the domain theory (inconsistency - type I) or 

due to missing rules or facts (inconsistency - type II) that would resolve the contradiction by 

defeating one of the explanations (el or e2) thereby leading to the withdrawal of the 

corresponding previously justified conclusion (P or (not P)).

[3] Multiple Explanations

The system constructs multiple explanations for a conclusion when only one explanation is
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domain facts 
training example

Figure 1: (a) a typical explanation (b) a broken explanation (c) a contradiction (d) multiple expla­
nations (e) large search space problem (f) small links problem.

expected to be true in the real world (Figure Id). This problem is due to lack of knowledge

which would help distinguish between the alternate explanations (incompleteness - type II).

This problem is especially important for explanation-based learning as it has implications for

the new concept definition.

[4] Resources Exceeded

The system exceeds the resources (time, memory, etc.) allotted to it while constructing an 

explanation. This type of problem can be further classified as:
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[4a] Large Search Space Problem

The system has to search a large space during the construction of an explanation (Figure le). 

Though the explanation may exist and its size may be comparable to previous successful 

explanations the system cannot construct it since there are too many paths to explore. The 

system does not have the knowledge to decide between the alternate paths (incompleteness - 

type II) and is forced to search all paths.

[4b] Small Links Problem

The links connecting the explanation are too small and too many for the system to construct 

the complete explanation within the allotted resources (Figure If) (intractable theory 

problem). This problem is independent of the large search space problem and may occur even 

when no search is involved.

Ill DEALING WITH THE IMPERFECT THEORY PROBLEMS

Dealing with the above problems requires the acquisition of new knowledge. This section 

describes ongoing research on an extension to an approach discussed in [Rajamoney85, 

Rajamoney86] that can be used to deal with the above problems.

A. A Brief Review of the Experiment Design Approach

An approach that deals with the contradiction problem due to an inconsistent domain theory 

(type II) is described in [Rajamoney85. Rajamoney86]. The approach involves:

(1) Monitoring the execution of the system’s plans.

(2) Detection of contradictions if the system’s predictions are not compatible with the 

observations.

(3) Hypothesizing reasons which could resolve the contradiction.

(4) Designing experiments to test each hypothesis.
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(5) Incorporating the information obtained by the experiments into the domain theory.

Five classes of experiments are described in [Rajamoney86]. These experiments are used to 

discriminate among hypotheses, perform measurements, find dependencies among parameters, 

classify objects based on their behavior with respect to a property and define new properties of 

objects based on their behavior in a situation. These experiments are used to obtain new knowledge 

that is relevant to the determination of the correct hypothesis.

B. Extending the Experiment Design Approach

The experiment design approach can be applied to each of the problems described in section 2:

[1] Broken Explanation

The system must be able to hypothesize different ways of filling the gaps in the explanations. 

In [Rajamoney85, Rajamoney86] the hypotheses were suggested by the system after an 

analysis of the situation that led to the failure. Alternatively such hypotheses may be 

formed by analogy to previous experiences [Falkenhainer87]. Once alternate hypotheses that 

can complete the explanation have been formulated experiments are designed to determine the 

best hypothesis.

[2] Contradiction:

Experiments are designed to test each link in each explanation to isolate the faulty rule or fact 

that leads to the contradiction. Once the fault has been isolated then hypotheses are 

formulated to correct the fault. If the contradiction is due to wrong rules or facts 

(inconsistent - type I) then the hypotheses can involve retraction of rules. If the contradiction 

is due to missing knowledge (inconsistent - type II) then the hypotheses can involve positing 

rules that defeat the explanation. Experiments are designed to identify the best hypothesis.

[3] Multiple Explanations

Multiple explanations arise due to the lack of knowledge required to distinguish between the 

alternative explanations (incompleteness - type II). Experiments are designed to gather the
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information that the system needs to decide which explanations cannot hold for the given 

situation. This will enable it to determine the correct explanation.

[4] Resources Exceeded

The large search space problem can be handled by designing experiments to gather the 

information needed to make the right choice whenever alternatives develop. A number of 

approaches have been suggested for the small links problem [Bennett87. Chien87, Doyle86. 

Tadepalli86]. [Bennett87] shows how approximations can be used to make explanations 

tractable. [Chien87] describes an incremental failure-driven technique to refine abstract 

theories when the current theory fails to provide a satisfactory explanation. The approach 

suggested by [Doyle86, Tadepalli86] involves describing the domain theory at different levels 

of abstraction. This allows the explanation to be constructed using fewer higher-level links. 

However, due to the abstractions and approximations a number of alternate low-level 

explanations may be possible for one higher-level explanation and this failure cannot be 

handled by examining the more detailed levels. This is the "hierarchical" multiple explanation 

problem and the experiment design approach can be applied to find the correct explanation.

C. An Example

The system is given the distillation scenario shown in Figure 2. A mixture of alcohol and 

water is heated and it is observed that an unknown liquid is formed in the second container and 

that its amount is increasing. The domain theory does not have rules or facts that allow the system 

to determine which liquid will boil first (incomplete - type II) and therefore it has to take into 

account all possibilities. The system constructs three different explanations for the increase in the 

amount of the liquid in the second container (the multiple explanation problem). For example, if 

the boiling point of alcohol is less than that of water then when the temperature of the mixture 

reaches the boiling point of alcohol the heat flow to the mixture will cause alcohol to boil. Boiling 

will produce alcohol vapor which will cause the pressure in the container to increase. The pressure 

will become greater than the pressure in the second container and there will be a flow of alcohol
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vapor to the second container. This vapor will cool and condense since the second container is at a 

very low temperature. The condensing alcohol forms the explanation for the observed formation 

and increase in the amount of the unknown liquid. Similarly, if the boiling point of alcohol is less 

than or equal to that of water then water or a mixture of alcohol and water will condense in the 

second container. It is important to determine which explanation is correct since the explanation is 

worth generalizing and learning only if a useful goal is being achieved - for example, if alcohol is 

condensing then we have separated alcohol from water or obtained a purer version of alcohol 

(distillation). The system identifies the correct explanation by designing experiments to determine 

whether the liquid formed in the second container is water, alcohol or a mixture of both. This 

example also illustrates the large search space problem if the above task is part of a much larger 

task - like understanding a distillation factory - that builds in separate directions on each 

explanation. Then the above experiments help in pruning the search space by immediately 

eliminating two of the three choices for the unknown liquid. The system can also design 

experiments to select the correct path during explanation construction by determining 

independently whether the boiling point of water is greater than, equal to or less than that of 

alcohol and applying that information to the given situation.

unknow n
liquid

(a)

4 am t ̂ lcohol

condensation
♦

cooling  

vajxjr-flow  

4 pressure^containerl 

vapor produced 

alcohol boiling

4 am t unknown liq .

4 am rw ater  

condensation
4

cooling  

vapor-flow  

4 pressure conta inerl
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coaling  
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4 pressure conta inerl

vapor produced
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Figure 2: An example illustrating the multiple explanations problem due to incomplete knowledge.



Page 9

IV CONCLUSION

In this paper we have discussed problems with and extensions of Mitchell et al.’s classification 

of imperfect theory problems. Four strategies for detecting imperfections in domain theories were 

described. A uniform approach for handling these problems based on experiment design was also 

described and illustrated by an example. These methods were discussed in the context of 

explanation construction for explanation-based learning. However the detection strategies and the 

experiment design approach are general and can be applied to other knowledge-intensive AI areas 

like case-based reasoning, expert systems and qualitative reasoning.
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