7 research outputs found

    Near-optimal small-depth lower bounds for small distance connectivity

    Get PDF
    We show that any depth-dd circuit for determining whether an nn-node graph has an ss-to-tt path of length at most kk must have size nΩ(k1/d/d)n^{\Omega(k^{1/d}/d)}. The previous best circuit size lower bounds for this problem were nkexp⁥(−O(d))n^{k^{\exp(-O(d))}} (due to Beame, Impagliazzo, and Pitassi [BIP98]) and nΩ((log⁥k)/d)n^{\Omega((\log k)/d)} (following from a recent formula size lower bound of Rossman [Ros14]). Our lower bound is quite close to optimal, since a simple construction gives depth-dd circuits of size nO(k2/d)n^{O(k^{2/d})} for this problem (and strengthening our bound even to nkΩ(1/d)n^{k^{\Omega(1/d)}} would require proving that undirected connectivity is not in NC1.\mathsf{NC^1}.) Our proof is by reduction to a new lower bound on the size of small-depth circuits computing a skewed variant of the "Sipser functions" that have played an important role in classical circuit lower bounds [Sip83, Yao85, H{\aa}s86]. A key ingredient in our proof of the required lower bound for these Sipser-like functions is the use of \emph{random projections}, an extension of random restrictions which were recently employed in [RST15]. Random projections allow us to obtain sharper quantitative bounds while employing simpler arguments, both conceptually and technically, than in the previous works [Ajt89, BPU92, BIP98, Ros14]

    On the proof complexity of Paris-harrington and off-diagonal ramsey tautologies

    Get PDF
    We study the proof complexity of Paris-Harrington’s Large Ramsey Theorem for bi-colorings of graphs and of off-diagonal Ramsey’s Theorem. For Paris-Harrington, we prove a non-trivial conditional lower bound in Resolution and a non-trivial upper bound in bounded-depth Frege. The lower bound is conditional on a (very reasonable) hardness assumption for a weak (quasi-polynomial) Pigeonhole principle in RES(2). We show that under such an assumption, there is no refutation of the Paris-Harrington formulas of size quasipolynomial in the number of propositional variables. The proof technique for the lower bound extends the idea of using a combinatorial principle to blow up a counterexample for another combinatorial principle beyond the threshold of inconsistency. A strong link with the proof complexity of an unbalanced off-diagonal Ramsey principle is established. This is obtained by adapting some constructions due to Erdos and Mills. ˝ We prove a non-trivial Resolution lower bound for a family of such off-diagonal Ramsey principles

    An Improved Homomorphism Preservation Theorem From Lower Bounds in Circuit Complexity

    Get PDF
    Previous work of the author [Rossmann\u2708] showed that the Homomorphism Preservation Theorem of classical model theory remains valid when its statement is restricted to finite structures. In this paper, we give a new proof of this result via a reduction to lower bounds in circuit complexity, specifically on the AC0 formula size of the colored subgraph isomorphism problem. Formally, we show the following: if a first-order sentence of quantifier-rank k is preserved under homomorphisms on finite structures, then it is equivalent on finite structures to an existential-positive sentence of quantifier-rank poly(k). Quantitatively, this improves the result of [Rossmann\u2708], where the upper bound on quantifier-rank is a non-elementary function of k

    Formulas vs. Circuits for Small Distance Connectivity

    Full text link
    We give the first super-polynomial separation in the power of bounded-depth boolean formulas vs. circuits. Specifically, we consider the problem Distance k(n)k(n) Connectivity, which asks whether two specified nodes in a graph of size nn are connected by a path of length at most k(n)k(n). This problem is solvable (by the recursive doubling technique) on {\bf circuits} of depth O(log⁥k)O(\log k) and size O(kn3)O(kn^3). In contrast, we show that solving this problem on {\bf formulas} of depth log⁥n/(log⁥log⁥n)O(1)\log n/(\log\log n)^{O(1)} requires size nΩ(log⁥k)n^{\Omega(\log k)} for all k(n)≀log⁥log⁥nk(n) \leq \log\log n. As corollaries: (i) It follows that polynomial-size circuits for Distance k(n)k(n) Connectivity require depth Ω(log⁥k)\Omega(\log k) for all k(n)≀log⁥log⁥nk(n) \leq \log\log n. This matches the upper bound from recursive doubling and improves a previous Ω(log⁥log⁥k)\Omega(\log\log k) lower bound of Beame, Pitassi and Impagliazzo [BIP98]. (ii) We get a tight lower bound of sΩ(d)s^{\Omega(d)} on the size required to simulate size-ss depth-dd circuits by depth-dd formulas for all s(n)=nO(1)s(n) = n^{O(1)} and d(n)≀log⁥log⁥log⁥nd(n) \leq \log\log\log n. No lower bound better than sΩ(1)s^{\Omega(1)} was previously known for any d(n)≰O(1)d(n) \nleq O(1). Our proof technique is centered on a new notion of pathset complexity, which roughly speaking measures the minimum cost of constructing a set of (partial) paths in a universe of size nn via the operations of union and relational join, subject to certain density constraints. Half of our proof shows that bounded-depth formulas solving Distance k(n)k(n) Connectivity imply upper bounds on pathset complexity. The other half is a combinatorial lower bound on pathset complexity

    Bounded-depth Frege complexity of Tseitin formulas for all graphs

    Get PDF
    We prove that there is a constant K such that Tseitin formulas for a connected graph G requires proofs of size 2tw(G)javax.xml.bind.JAXBElement@531a834b in depth-d Frege systems for [Formula presented], where tw(G) is the treewidth of G. This extends HĂ„stad's recent lower bound from grid graphs to any graph. Furthermore, we prove tightness of our bound up to a multiplicative constant in the top exponent. Namely, we show that if a Tseitin formula for a graph G has size s, then for all large enough d, it has a depth-d Frege proof of size 2tw(G)javax.xml.bind.JAXBElement@25a4b51fpoly(s). Through this result we settle the question posed by M. Alekhnovich and A. Razborov of showing that the class of Tseitin formulas is quasi-automatizable for resolution

    Propositional logic, complexity theory and a nontrivial hierarchy of theories of weak fragments of peano arithmetic

    Get PDF
    In dieser Arbeit betrachte ich einige Arbeiten von Paris, Wilky [key-1] und Ajati [key-3, key-4] welche einen Zusammenhang zwischen KomplexitĂ€ts- und Beweistheorie herstellen. J. Paris und A. Wilkie [key-1] betrachteten die Fragen ob jede \Delta_{0}- Teilmenge A von \mathbb{N} auch eine \Delta_{0} definierbare ZĂ€hlfunktion \{|m=|A\cap n|\} besitzt. Eine damit eng verwanndte Fragestellung ist, ob das Schubfachprinzip PHP in einer schwachen Teiltheorie I\Delta_{0} der Peano Arithmetik bewiesen werden kann. I\Delta_{0} umfasst die selben Axiome wie die Peano Arithmetik. Das Axiomenschema der Induktion ist jedoch nur fĂŒr beschrĂ€nkte Formeln gegeben. Paris und Wilky konnten mithilfe der Forcing-Technik die Konsistenz von I\exists_{1}(F)+\exists xF:x\mapsto x-1 zeigen. Weiters konnten sie unter Verwendung der Cook-Reckhov Vermutung, die Konsistenz von I\Delta_{0}(F)+\exists xF:x\mapsto x-1 zeigen. Die Cook-Reckhov Vermutung besagt, dass ein Beweis der aussagenlogischen Form PHP_{n} von PHP ”schwer” ist. Dieser zweite Beweis benutzt einen Zusammenhang zwischen I\Delta_{0} und Frege Systemen. Ajtai [key-3] verband die Verwendung der Forcing-Technik und dieses Zusammenhangs um die Konsistenz von I\Delta_{0}(F)+\exists xF:x\mapsto x-1 , ohne der Verwendung der Cook-Reckhov Vermutung, zu zeigen. Dazu nahm er an, dass in einem nicht-standard Modell \mathcal{M} von I\Delta_{0} ein ”einfacher” Beweis von PHP_{n} fĂŒr ein n existiert. Dieses \mathcal{M} beschrĂ€nkte er auf die Substruktur M_{n}=\mathcal{M}\upharpoonright n , welche er dann durch Forcing zu einem M[G] erweiterte in welchem PHP auf natĂŒrliche Weise nicht wahr sein kann. Eine kombinatorische Überlegung zeigt, dass in M[G] aber das Axiomenschema der vollstĂ€ndigen Induktion bis n wahr ist. Damit kann man nun den ”einfachen” Beweis von PHP_{n} Schritt fĂŒr Schritt prĂŒfen, was zu einem Widerspruch fĂŒhrt. SpĂ€ter [key-4] verallgemeinerte Ajtai diese Art der BeweisfĂŒhrung, um zu zeigen, dass PHP\Delta_{0}\not\vdash PAR , wobei PHP\Delta_{0}=I\Delta_{0}\cup PHP und PAR folgende Aussage ist: Keine Menge mit einer ungeraden Anzahl von Elementen kann in Teilmengen mit genau zwei Elementen partitioniert werden. PAR kann weiter zum ”module p Counting Principle” CP_{p} verallgemeinert werden [key-4]. Schlussendlich zeigte Ajtai fĂŒr alle Primzahlen p\neq q , dass die CP_{p} paarweise unabhĂ€ngig sind. Als Konsequenz dieser Erkenntnisse bekommen wir eine Hierarchie von schwachen Theorien der Peano Arithmetik: I\exists_{1}\subset I\Delta_{0}\subset PHP\Delta_{0}\subset CP_{p}\Delta_{0}\mbox{ fĂŒr alle Primzahlen }
    corecore