985 research outputs found

    On the proof complexity of Paris-harrington and off-diagonal ramsey tautologies

    Get PDF
    We study the proof complexity of Paris-Harrington’s Large Ramsey Theorem for bi-colorings of graphs and of off-diagonal Ramsey’s Theorem. For Paris-Harrington, we prove a non-trivial conditional lower bound in Resolution and a non-trivial upper bound in bounded-depth Frege. The lower bound is conditional on a (very reasonable) hardness assumption for a weak (quasi-polynomial) Pigeonhole principle in RES(2). We show that under such an assumption, there is no refutation of the Paris-Harrington formulas of size quasipolynomial in the number of propositional variables. The proof technique for the lower bound extends the idea of using a combinatorial principle to blow up a counterexample for another combinatorial principle beyond the threshold of inconsistency. A strong link with the proof complexity of an unbalanced off-diagonal Ramsey principle is established. This is obtained by adapting some constructions due to Erdos and Mills. ˝ We prove a non-trivial Resolution lower bound for a family of such off-diagonal Ramsey principles

    Proof Complexity Meets Algebra

    Get PDF
    We analyse how the standard reductions between constraint satisfaction problems affect their proof complexity. We show that, for the most studied propositional and semi-algebraic proof systems, the classical constructions of pp-interpretability, homomorphic equivalence and addition of constants to a core preserve the proof complexity of the CSP. As a result, for those proof systems, the classes of constraint languages for which small unsatisfiability certificates exist can be characterised algebraically. We illustrate our results by a gap theorem saying that a constraint language either has resolution refutations of bounded width, or does not have bounded-depth Frege refutations of subexponential size. The former holds exactly for the widely studied class of constraint languages of bounded width. This class is also known to coincide with the class of languages with Sums-of-Squares refutations of sublinear degree, a fact for which we provide an alternative proof. We hence ask for the existence of a natural proof system with good behaviour with respect to reductions and simultaneously small size refutations beyond bounded width. We give an example of such a proof system by showing that bounded-degree Lovasz-Schrijver satisfies both requirements

    Automating Resolution is NP-Hard

    Get PDF
    We show that the problem of finding a Resolution refutation that is at most polynomially longer than a shortest one is NP-hard. In the parlance of proof complexity, Resolution is not automatizable unless P = NP. Indeed, we show it is NP-hard to distinguish between formulas that have Resolution refutations of polynomial length and those that do not have subexponential length refutations. This also implies that Resolution is not automatizable in subexponential time or quasi-polynomial time unless NP is included in SUBEXP or QP, respectively

    Short Propositional Refutations for Dense Random 3CNF Formulas

    Full text link
    Random 3CNF formulas constitute an important distribution for measuring the average-case behavior of propositional proof systems. Lower bounds for random 3CNF refutations in many propositional proof systems are known. Most notably are the exponential-size resolution refutation lower bounds for random 3CNF formulas with Ω(n1.5ϵ)\Omega(n^{1.5-\epsilon}) clauses [Chvatal and Szemeredi (1988), Ben-Sasson and Wigderson (2001)]. On the other hand, the only known non-trivial upper bound on the size of random 3CNF refutations in a non-abstract propositional proof system is for resolution with Ω(n2/logn)\Omega(n^{2}/\log n) clauses, shown by Beame et al. (2002). In this paper we show that already standard propositional proof systems, within the hierarchy of Frege proofs, admit short refutations for random 3CNF formulas, for sufficiently large clause-to-variable ratio. Specifically, we demonstrate polynomial-size propositional refutations whose lines are TC0TC^0 formulas (i.e., TC0TC^0-Frege proofs) for random 3CNF formulas with n n variables and Ω(n1.4) \Omega(n^{1.4}) clauses. The idea is based on demonstrating efficient propositional correctness proofs of the random 3CNF unsatisfiability witnesses given by Feige, Kim and Ofek (2006). Since the soundness of these witnesses is verified using spectral techniques, we develop an appropriate way to reason about eigenvectors in propositional systems. To carry out the full argument we work inside weak formal systems of arithmetic and use a general translation scheme to propositional proofs.Comment: 62 pages; improved introduction and abstract, and a changed title. Fixed some typo

    Sparser Random 3SAT Refutation Algorithms and the Interpolation Problem:Extended Abstract

    Get PDF
    We formalize a combinatorial principle, called the 3XOR principle, due to Feige, Kim and Ofek [12], as a family of unsatisfiable propositional formulas for which refutations of small size in any propo-sitional proof system that possesses the feasible interpolation property imply an efficient deterministic refutation algorithm for random 3SAT with n variables and Ω(n1.4) clauses. Such small size refutations would improve the state of the art (with respect to the clause density) efficient refutation algorithm, which works only for Ω(n1.5) many clauses [13]. We demonstrate polynomial-size refutations of the 3XOR principle in resolution operating with disjunctions of quadratic equations with small integer coefficients, denoted R(quad); this is a weak extension of cutting planes with small coefficients. We show that R(quad) is weakly autom-atizable iff R(lin) is weakly automatizable, where R(lin) is similar to R(quad) but with linear instead of quadratic equations (introduced in [25]). This reduces the problem of refuting random 3CNF with n vari-ables and Ω(n1.4) clauses to the interpolation problem of R(quad) and to the weak automatizability of R(lin)

    Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs

    Get PDF
    We prove that there is a constant K such that Tseitin formulas for an undirected graph G requires proofs of size 2tw(G)Ω(1/d) in depth-d Frege systems for d < (Formula presented.) where tw(G) is the treewidth of G. This extends Håstad recent lower bound for the grid graph to any graph. Furthermore, we prove tightness of our bound up to a multiplicative constant in the top exponent. Namely, we show that if a Tseitin formula for a graph G has size s, then for all large enough d, it has a depth-d Frege proof of size 2tw(G)O(1/d)poly(s). Through this result we settle the question posed by M. Alekhnovich and A. Razborov of showing that the class of Tseitin formulas is quasi-automatizable for resolution

    Monotone Proofs of the Pigeon Hole Principle

    Get PDF
    Lecture Notes in Computer Science. Geneva, Switzerland, July 9-15

    Short Proofs for the Determinant Identities

    Get PDF
    corecore