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We prove that there is a constant K such that Tseitin formulas for a connected 
graph G requires proofs of size 2tw(G)Ω(1/d) in depth-d Frege systems for d < K logn

log logn
, 

where tw(G) is the treewidth of G. This extends Håstad’s recent lower bound from 
grid graphs to any graph. Furthermore, we prove tightness of our bound up to 
a multiplicative constant in the top exponent. Namely, we show that if a Tseitin 
formula for a graph G has size s, then for all large enough d, it has a depth-d Frege 
proof of size 2tw(G)O(1/d)poly(s). Through this result we settle the question posed 
by M. Alekhnovich and A. Razborov of showing that the class of Tseitin formulas 
is quasi-automatizable for resolution.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Propositional proof complexity is motivated by the result of Cook and Reckhow [15] saying that if there 
is a propositional proof system in which any unsatisfiable formula F has a short proof of unsatisfiability 
(of size polynomial in the size of F ), then NP = coNP. In the last 30 years the complexity of proofs was 
investigated for several proof systems with the aim of finding concrete evidence, and eventually a proof, that 
for all proof systems there is a propositional formula which is not efficiently provable, i.e. requires super-
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polynomial proof size. The approach followed to prove such lower bounds was essentially borrowed from 
circuit complexity. Lines in a proof are Boolean formulas and we can define different proof system according 
to the circuit complexity of such formulas. For example resolution, a well-known refutational system for 
CNFs, corresponds to a system where formulas are of depth 1. In circuit complexity we keep on trying to 
strengthen lower bounds to computationally more powerful class of circuits. In proof complexity we follow 
the analogous approach: to strengthen lower bounds to systems working on formulas computationally more 
powerful. The hope is that techniques used to prove lower bounds for classes of Boolean circuits could be 
lifted to work with proof systems operating with formulas in the same circuit class. At present however we 
are far from such ideal situation and in fact, in terms of circuit classes, lower bounds for proof systems are 
well below those for Boolean circuits.

The complexity of proofs in resolution is largely studied. The first lower bound for (a restriction of) 
resolution was given by Tseitin in [43]. To obtain his result Tseitin introduced a class of formulas (nowadays 
known as Tseitin formulas) encoding a generalisation of the principle that the sum of the degrees of all 
vertices in a graph is an even number. A Tseitin formula T(G, f) is defined for every undirected graph 
G(V, E) and a charging function f : V → {0, 1}. We introduce a propositional variable for every edge 
of G so that T(G, f) is a CNF representation of a linear system over the field GF(2) such that each 
equation corresponds to a vertex v ∈ V ans states that the sum of all edges incident to v equals f(v). 
Together with the unsatisfiable formulas PHPn encoding the Pigeonhole principle, Tseitin formulas are 
among the most commonly used examples to prove hardness results for proof systems. Haken [25], Beame 
and Pitassi [6] and Ben-Sasson Wigderson [10] proved exponential resolution lower bounds for the CNF 
formula encoding the negation of PHPn, results which were later generalized and improved in several other 
works [11,16,30,37,39,40]. For unrestricted resolution it was Urquhart in [44] and later Ben-Sasson and 
Wigderson [10] who proved exponential lower bounds for Tseitin formulas defined over constant-degree 
expander graphs.

Bounded-depth Frege extends resolution since the formulas in the proof-lines are computable by AC0-
circuits, i.e. constant-depth circuits with unbounded fan-in gates. The importance of understanding the 
complexity of proofs in bounded-depth-Frege systems was due at least to two reasons: (1) for general 
Frege systems, where formulas have no restrictions, i.e. are of depth O(log n), Buss in [12] proved that 
the Pigeonhole principle can be proved in polynomial size, hence obtaining an exponential separation with 
resolution. (2) Lower bounds for AC0-circuits were known [20,27] and hence we could hope for applying lower 
bound techniques for AC0 to lower bounds to bounded-depth Frege. Studying the complexity of proofs in 
bounded-depth Frege is of the utmost importance since it is a frontier proof system, i.e. is one of the strongest 
propositional proof systems with known significant lower bounds at the moment. Any advance is then a step 
towards proving lower bounds for AC0[2]-Frege, i.e. a bounded-depth Frege admitting also formulas with 
parity gates, which are unknown at the moment, though we know since a long time exponential lower bounds 
for AC0[2] circuits [32,38,42]. In this work we contribute to the complexity of proofs in bounded-depth Frege 
proving new lower bounds for Tseitin formulas.

Ajtai in [1] was the first to prove a lower bound in bounded-depth Frege. He showed that a refutation 
of PHPn must have a super-polynomial size. His result was later followed by several results simplifying his 
technique [7] and improving the lower bound [33,34] showing that any polynomial-size Frege refutation of 
PHPn must have depth Ω(log logn). The proof complexity of Tseitin formulas in bounded-depth Frege was 
first considered by Urquhart and Fu in [45], a work where they simplified and adapted the lower bound 
for the PHPn to the case of Tseitin formulas over a complete graph. Ben-Sasson in [9], proved exponential 
lower bounds for the Tseitin formulas over constant-degree expander graphs using a new reduction from the 
pigeonhole principle [45]. All these lower bounds are adaptation of the technique of [33,34], hence vanish 
when the depth of formulas in the proof is more than log logn. In a very recent major breakthrough [35]
showed that Tseitin formulas over a 3-expander graph on n nodes requires super-polynomial bounded-depth 
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Frege refutations at depth O(
√

log n). This result was later improved to depth up to C logn
log logn by Håstad in 

[28] but for Tseitin formulas defined only on the 2-dimensional grid, where C is a positive constant.
Proofs of T(G, f) were studied in terms of the treewidth of G, tw(G), for resolution [3,22] and for OBDD 

proof systems [23]. We use Håstad result to prove tight bounds on the size of refutations in bounded-depth 
Frege of T(G, f) over any graph G in terms of the treewidth of G. Our main result is the following theorem:

Theorem 1. There is a constant K such that for any connected graph G over n nodes and for all d �
K logn

log logn , every depth-d Frege proof of ¬T(G, f) has size at least 2tw(G)Ω(1/d) . Furthermore, for all large 

enough d there exist depth-d Frege proofs of ¬T(G, f) of size 2tw(G)O(1/d)poly(|T(G, f)|).

1.1. Overview of the proof technique

In Theorem 18 we prove the lower bound from Theorem 1. The proof is based on the improvement of the 
Excluded Grid Theorem by Robertson and Seymour recently obtained by Chuzhoy [13]: an arbitrary graph 
G contains as a minor a r× r grid, where r = Ω 

(
tw(G)λ

)
and λ is a constant; the latest improvement [14]

establishes the theorem for λ < 1/10, however, it is known that λ can not be greater than 1/2. For several 
classes of graphs it is possible to improve the value of λ, for example, for planar graphs λ = 1 [24], [41]. More 
precisely we use the corollary of this result (see Corollary 9) stating that any graph G has a wall of size r
as a topological minor (i.e. can be obtained from G by several removing of vertices, edges and suppressions, 
see Fig. 1 and Fig. 3). Our proof consists of two parts: at first, we show that if H is a topological minor 
of G, then any bounded-depth Frege proof of ¬T(G, f) can be transformed to a proof of ¬T(H, f ′), with 
constant increase in depth and polynomial increase in size. And then we prove a lower bound on the size 
of depth-d Frege proof of ¬T(H, f ′) based on walls. In this proof we use the lower bound for grid graphs 
proved by Håstad [28].

In Theorem 19 we prove the upper bound from Theorem 1. We consider the compact representation
of linear functions Fn

2 → F2 on variables x1, x2, . . . , xn by propositional formulas of depth d and of size 
2nO(1/d) . We show that for linear functions f and g if the equations f(x) = a and g(x) = b are given in our 
representation, then there is a derivation of (f + g)(x) = a + b of depth d and of size 2nO(1/d) . We also show 
that if a linear equation is represented in CNF, then it is possible to infer its compact representation with 
depth d and size 2nO(1/d) . Since a Tseitin formula is an unsatisfiable system of linear equations written in 
CNF, hence it is possible to refute a Tseitin formula in size 2mO(1/d) and depth d, where m is the number 
of edges in G. However we wish to have the treewidth of G instead of m. We consider a tree-partition of a 
graph G, the vertices of G are split into bags and there exists a tree such that bags are nodes of this tree 
and if two vertices of G are connected, then they are either in one bag or in adjacent bags. It is known 
that there is a tree partition where the size of bags are at most O(tw(G)Δ(G)) [46]. Since the number of 
edges touching a given bag is O(tw(G)Δ(G)2) we can use the compact representation to take care of the 
equations involving the parity of sum of adjacent bags with proofs growing in terms of the treewidth of G.

1.2. The complexity of Tseitin formulas in resolution

A recent line of research [3,22,31] investigates the exact relation between the treewidth of G and the proof 
complexity of T(G, f) in resolution and its refinements. Since resolution is a special case of bounded-depth 
Frege, Theorem 1 is directly applicable to resolution. In Section 5 we contribute this line of research partially 
answering to some questions left open before. First we improve Theorem 1 for resolution. In Theorem 34 we 
show 2Ω(twλ(G)) lower bounds for resolution refutations of T(G, f), where λ is the constant from the grid-
minor theorem in [13]. A stronger lower bound 2Ω(tw(G)/ logn) was recently proved for regular resolution in 
[31] and it is open whether this holds for unrestricted resolution as well.
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A conjecture of Urquhart asserts that the shortest resolution refutations of T(G, f) are in fact regular. 
A consequence of our results, stated in Corollary 40, shows that the size of refutations of T(G, f) in proof 
systems between tree-like resolution and bounded-depth Frege are quasi-polynomially correlated, i.e. if 
T(G, f) has a refutation of size S in bounded-depth Frege, then it has a refutation of size at most 2poly(logS)

in treelike resolution and vice versa. Since regular resolution is in between treelike resolution and bounded-
depth Frege, this provides evidence (showing it for a quasi-polynomial size) to the conjecture of Urquhart.

Finally we consider the question posed in [3] of (quasi)-automatization of T(G, f) formulas in resolution, 
i.e. whether there exists a deterministic algorithm that returns a resolution refutation of T(G, f) in time 
which is (quasi-)polynomial in |T(G, f)| + |τT(G,f)|, where |τT(G,f)| is the size of the shortest refutation of 
T(G, f) in resolution. From [3] it is known that T(G, f) are (quasi)-automatizable in resolution only when G
has a specific covering property known as bounded cyclicity. In Corollary 39 we extend their result proving 
the quasi-automatization of T(G, f) for any graph G.

Organization. The paper is divided into four sections. After the Preliminary section, we have Section 3 for 
the lower bound (Theorem 18), and Section 4 for the upper bound (Theorem 19). Section 5 is devoted to 
the results on the proof complexity of T(G, f) in resolution.

2. Preliminaries

Formulas and restrictions. We consider propositional formulas over binary ∨ and ∧, unary ¬ and Boolean 
constants 0, 1. We represent formulas as rooted trees such that internal vertices are labelled with connectives 
and leaves are labelled with propositional variables or Boolean constants. The depth of a formula is the 
maximal number of alternations of types of connectives over all the paths from the root to a leaf plus one.

We assume that disjunctions with unbounded fanin are represented via binary disjunctions. By default, 
we mean that 

∨n
i=1 xi is right-associative; i.e. it denotes (. . . (x1 ∨ x2) ∨ . . . ) ∨ xn−1) ∨ xn; we also assume 

the same for 
∧

.
We denote by vars(F ) the set of variables of a formula F . A partial assignment α for a formula F is 

mapping from vars(F ) → {0, 1, ∗}, where α(x) = ∗ if x is unassigned. We denote by dom(α) = α−1({0, 1})
the set of variables in F which α assigns a Boolean value.

Pudlák-Buss games. We use the game interpretation of Frege proofs introduced by Pudlák and Buss [36]. 
Let us define a game with two players Pavel and Sam. The game starts with initial conditions of the form 
ϕ1 = a1, . . . , ϕk = ak, where ϕ1, ϕ2, . . . , ϕk are propositional formulas and a1, a2, . . . , ak ∈ {0, 1} such 
that 

∧k
i=1(ϕi = ai) is identically false. Sam claims that he knows an assignment of variables that satisfies ∧k

i=1(ϕi = ai), the goal of Pavel is to convict Sam. On each Pavel’s turn he asks Sam the value of a 
propositional formula and Sam gives an answer. The game stops when Pavel convicts Sam, namely Pavel 
finds an immediate contradiction among initial conditions and Sam’s answers. An immediate contradiction 
with a Boolean connective ◦ of arity t is a set of (t + 1) formulas α1, . . . , αt and ◦(α1, . . . , αt) with claimed 
values a1, . . . , at and b such that ◦(a1, . . . , ak) 	= b. In particular, 0 with claimed value 1 is an immediate 
contradiction.

A strategy of Pavel is a function that maps initial conditions and the history of a game to a propositional 
formula (request). A winning strategy is a strategy that allows Pavel to convict Sam for any behaviour 
of Sam. A winning strategy of Pavel can be represented as a binary tree whose nodes are labelled with 
Pavel’s requests and edges correspond to Sam’s answers. A leaf of the tree corresponds to an immediate 
contradiction among initial conditions and the equalities corresponding to the path from the root to this 
leaf.

A Pudlák-Buss game derivation of a formula ψ from formulas ϕ1, ϕ2, . . . , ϕs is a tree of a Pavel’s winning 
strategy in a game with initial conditions ϕ1 = 1, ϕ2 = 1, . . . , ϕs = 1, ψ = 0. In that follows by derivations 
we always mean Pudlák-Buss game derivations. We are interested in the two complexity parameters of 
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derivations: 1) the size of a derivation S that equals the total size of formula ψ and all formulas that are 
used as labels of nodes; 2) the depth of a derivation d is the maximum depth of ψ and formulas that are 
used as labels of nodes. We use the notation ϕ1, . . . , ϕs 
d ψ for a derivation of ψ from ϕ1, ϕ2, . . . , ϕs of 
depth at most d. A derivation of ϕ is a derivation of ϕ from the empty set of formulas.

Lemma 2. Assume that there is a derivation ϕ1, . . . , ϕk 
d1 ψ1 of size S1 and also there is a derivation 
ϕ1, . . . , ϕk, ψ1 
d2 ψ2 of size S2, then there is a derivation ϕ1, . . . , ϕk 
max{d1,d2} ψ2 of size S1 + S2.

Proof. Let us create the new tree with the root labelled with ψ1 such that edge form the root labelled with 0
goes to the root of the first derivation and edge labelled with 1 goes to the root of the second derivation. �
Lemma 3. 1. If a formula ϕ has a Frege derivation of size S and depth d, then ϕ has a Pudlák-Buss game 
derivation of size O(S2) and depth d. 2. If ϕ has a Pudlák-Buss game derivation of size S and depth d, 
then ϕ has a Frege derivation of size O(S3) and depth d + O(1).

Proof. For proof see Appendix A. �
Lemma 4. Let ψ1 and ψ2 be two formulas of depth at most d such that |vars(ψ1) ∪ vars(ψ2)| = k and ψ1
semantically implies ψ2. Then there exists a derivation ψ1 
d ψ2 of size at most 2k

(
|ψ1|2 + |ψ2|2

)
.

Proof. Consider a game with initial conditions ψ1 = 1, ψ2 = 0.
Let |vars(ψ1) ∪vars(ψ2)| = {x1, . . . , xk}. In the first k rounds of the game Pavel asks Sam x1, . . . , xk. There 

are 2k possible combinations of Sam’s answers. For each combination Pavel asks Sam all subformulas of ψ1
(the value of ψ1 is 1 from initial conditions) starting with the deeper ones and then asks all subformulas 
of ψ2 starting with the deeper ones (the value of ψ2 is 0 from initial conditions). Since all variables are 
known, one of possible answers to each of these questions yields an immediate contradiction. The total size 
of all subformulas of ψ1 and ψ2 is at most |ψ1|2 + |ψ2|2. Consider the branch of the game tree, where we 
still no get an immediate contradiction. In that case Sam ψ1 = 1 and ψ2 = 0 are consistent with the values 
of x1, . . . , xk, but it is impossible since ψ1 semantically implies ψ2. Hence, there should be an immediate 
contradiction. �
Corollary 5. let ψ1 and ψ2 be two formulas of depth d1 such that vars(ψ1) ∪ vars(ψ2) = {x1, x2, . . . , xk} and 
ψ2 is semantically implied by ψ1. Let ϕ1, . . . , ϕk be formulas of depth d2. Let ψi[x1 ← ϕ1, . . . , xk ← ϕk] for 
i ∈ {1, 2} be the formula obtained by substitution ϕ1, . . . , ϕk instead of the variables of x1, x2, . . . , xk. Then 
there exists a derivation

ψ1[x1 ← ϕ1, . . . , xk ← ϕk] 
d1+d2 ψ2[x1 ← ϕ1, . . . , xk ← ϕk]

of size at most 2k(|ψ1|2 + |ψ2|2) 
(∑k

i=1 |ϕi|
)

Proof. Use Lemma 4 for ψ1 and ψ2 and then substitute ϕ1, . . . , ϕk instead of the variables x1, . . . , xk. �
A shortcut contradiction for the disjunction is a situation where Pavel asks Sam formulas 

∨k
i=1 αi and αj

for j ∈ [k] and gets the answers 0 and 1 respectively. Similarly a shortcut contradiction for the conjunction 
is a situation where Pavel asks Sam formulas 

∧k
i=1 αi and αj for j ∈ [k] and gets the answers 1 and 

0. We may consider shortcut games (and shortcut derivations) that has one difference from the already 
defined games: Pavel can convict Sam using shortcut contradictions instead of immediate contradictions. 
An ordinary derivation is a derivation which does not use shortcut contradictions.
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Fig. 1. Suppression of v from G.

Lemma 6. Consider a shortcut derivation of size S and of depth d. Then there is an ordinary derivation of 
size at most S3 and of depth d.

Proof. We transform a tree with shortcut contradictions to a tree without them. Let us consider a leaf with 
a shortcut contradiction for the disjunction (case of conjunction is similar), which means that on the path 
from root to that leaf Pavel has asked Sam formulas 

∨k
i=1 αi and αj for j ∈ [k] and got the answers 0 and 1

respectively. 
∨k

i=1 αi is represented as 
∨q

i=1 αi ∨
∨k

i=q+1 αi for some index q, where ∨ is binary disjunction. 
Pavel asks Sam formulas 

∨q
i=1 αi and 

∨k
i=q+1 αi.

1. If one of Sam’s answers is 1, we get an immediate contradiction.
2. If both Sam’s answers are 0, then if j � q, we continue this process with formula 

∨q
i=1 αi otherwise with 

formula 
∨k

i=q+1 αi.

In the end of that process we get an immediate contradiction. We repeat this for all leaves with shortcut 
contradictions, the size of the resulting tree is at most S3 since there are at most S leaves and the size of 
added formulas is at most S2 for each leaf. �
Tseitin Formulas. Let G(V, E) be an undirected graph and v ∈ V . We denote by E(v) the set of edges in E
incident with v and by N(v) the set of neighbours u ∈ V of v, i.e. the u such that (u, v) ∈ E(v).

A vertex-charging for G(V, E) is a mapping f : V −→ {0, 1}. We say that f is an odd-charging of G
if 
∑

v∈V f(v) ≡ 1 mod 2. The Tseitin formulas defined on G using variables xe, e ∈ E are the formulas: 
T(G, f) :=

∧
v∈V Par(v), where Par(v) is the canonical CNF representation of 

⊕
e∈E(v) xe = f(v).

Lemma 7 ([44]). T(G, f) is unsatisfiable if and only if there is a connected component U of G such that the 
restriction of f on U is an odd-charging.

In this work we will work with the tautological form of Tseitin formulas in the form of ¬T(G, f).

Grids, Walls, Minors, Topological Minors and Treewidth. We consider 4 structural operations on undirected 
graphs G = (V, E) possibly with parallel edges, but without loops. We follow [8,19].
• edge removal of e ∈ E. It produces the graph [G \ e] = (V, E \ {e}).
• vertex removal of v ∈ V . It produces the graph [G \ v] = (V \ {v}, E \ E(v)), where E(v) is the set of 

edges in E incident with v ∈ V .
• edge contraction of e = (u, v) ∈ E. Is the replacement of u and v with a single vertex such that edges 

incident to the new vertex are the edges other than e that were incident with u or v. The resulting graph 
G � e has one edge less than G.

• vertex suppression of a vertex v in G of degree 2. Let u and w be v’s neighbours in G. The suppression of 
v is obtained by deleting v along with two edges (u, v) and (w, v) and adding a new edge (w, u) (possibly 
parallel to an existing one). The resulting graph [G \s v] has one vertex less than G. See Fig. 1.
A graph H is a minor of G if H can be obtained from G by a sequences of edge and vertex removals 

and edge contractions. A graph H is a topological minor of G if H can be obtained from G by a sequence 
of edge removals, vertex removals and by vertex suppressions [8,19].
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Fig. 2. The grid H5,5.

Fig. 3. The wall W5.

The grid Hm,n is the graph of the cellular rectangle m ×n; it has (m +1)(n +1) vertices and n(m +1) +
m(n + 1) edges, among them n(m + 1) horizontal and m(n + 1) vertical edges. See Fig. 2.

The wall Wn is a subgraph of Hn,n that is obtained by the removing of several vertical edges. Vertical 
edges of Hn,n are in n rows and we enumerate them in every row from the left to the right. In the odd rows 
we remove all vertical edges with even numbers and in even rows we remove all vertical edges with odd 
numbers. See Fig. 3.

A tree decomposition of an undirected graph G(V, E) is a tree T = (VT , ET ) such that every vertex 
u ∈ VT corresponds to a set Xu ⊆ V and it satisfies the following properties: 1. The union of Xu for u ∈ VT

equals V . 2. For every edge (a, b) ∈ E there exists u ∈ VT such that a, b ∈ Xu. 3. If a vertex a ∈ V is in the 
sets Xu and Xv for some u, v ∈ VT , then it is also in Xw for all w on the path between u and v in T .

The width of a tree decomposition is the maximum |Xu| for u ∈ VT minus one. A treewidth of a graph G
is the minimal value of the width among all tree decompositions of the graph G.

Recall the following Theorem proved in [13].

Theorem 8 ([14]). If G has a treewidth t, then it has the grid Hr,r as a minor, where r = Ω(tλ) and λ � 1
10

is a constant.

The following Corollary was mentioned in [8].

Corollary 9. If G has a treewidth t, then it has the wall Wr as a topological minor, where r = Ω(tλ) and λ
is the constant from Theorem 8.

Proof. Since Wr is a minor of Hr, Wr is a minor of G. Consider a transformation T from G to Wr made 
by (1) edge removals, (2) vertex removals and (3) edge contractions that has the minimal number of edge 
contractions. Since operations (1), (2) and (3) commute, we may assume that in T no removal follows an 
edge contraction (i.e. we remove everything at first, and then contract edges). Now it is easy to understand 
that all edge contractions should be actually suppressions. Indeed, assume that we contract (u, v) and both u
and v has degrees at least 3, then we will get a vertex {u, v} with degree at least 4 and this is a contradiction 
since Wr does have degrees at most 3 and edge contractions can decrease degree only in one case when we 
contract (u, v) and v has degree 1, but in this case we may just remove v and it decreases the number of 
edge contractions. �
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3. The lower bound

3.1. Topological minors and Tseitin formulas

Le ϕ be a formula and let α be a partial assignment to variables of ϕ. Define ϕ[α] to be the formula 
obtained from ϕ substituting each variable x in the domain of α, with the constant assigned to x by α. 
Notice that ϕ and ϕ[α] have the same size and depth.

Lemma 10. Let Φa and Φ′
a for a ∈ A be propositional formulas of depth at most d such that |vars(Φa) ∪

vars(Φ′
a)| � k. Assume that for all a ∈ A, Φa is semantically equivalent to Φ′

a. Then ¬ 
∧

a∈A Φ′
a 
d+O(1)

¬ 
∧

a∈A′ Φa of size at most 2kpoly
(∑

a∈A (|Φa| + |Φ′
a|)

)
, where A′ = {a ∈ A | Φa is not identically true}.

Proof. At first Pavel asks 
∧

a∈A Φ′
a. The answer 1 leads to an immediate contradiction. Then Pavel proceeds 

to ask Φ′
a for each a ∈ A. If all the answers are 1, Pavel asks all subformulas of the big conjunction 

∧
a∈A Φ′

a

starting with the deeper ones and at each step one of Sam’s answers leads to an immediate contradiction.
If Sam claim that Φ′

a0
= 0 for some a0 ∈ A, we use Lemma 4 to construct a derivation ¬Φ′

a0

d ¬Φa0

of size at most 2k
(
|Φ′

a0
|2 + |Φa0 |2

)
. If a0 /∈ A′, then Φa0 is identically true, thus, by Lemma 4, there is a 

derivation 1 
d Φa0 of size at most 2k(|Φa0 |2 + 1), using it we get an immediate contradiction.
If a0 ∈ A′, then Pavel asks 

∧
a∈A′ Φa. If Sam’s answer is 0, we get a shortcut contradiction with Φa0 and 

proceed with Lemma 6, otherwise we get an immediate contradiction with the initial condition ¬ 
∧

a∈A′ Φa =
0. �
Lemma 11 ([23]). Let G(V, E) be a connected graph and H(V ′, E′) be a connected subgraph of G with E′ 	= ∅
that is obtained from G by the deletion of some vertices and edges. For every unsatisfiable Tseitin formula 
T(G, f) there exists a partial assignment α to variables xe for e ∈ E \ E′ such that α does not falsify any 
clause of T(G, f).

Lemma 12. Let G(V, E) be a connected graph and H(V ′, E′) be a connected subgraph of G. Assume that 
there is a derivation 
d ¬T(G, f) of size S. Then for some f ′ there is a derivation 
d+O(1) ¬T(H, f ′) of 
size S + poly(|T(G, f)|).

Proof. Let T be the game tree of 
d ¬T(G, f). Let α be given by Lemma 11 that is defined on all variables 
xe for e ∈ E \E′ and does not falsify any clause of T(G, f). T [α] be the tree obtained form T applying the 
substitution α to all the queried formulas. Size and depth do not change, hence T [α] defines a derivation 

d ¬T(G, f)[α] of size S. ¬T(G, f) has the form ¬ 

∧
v∈V Par(v), where Par(v) is a parity condition of the 

vertex v. Hence, ¬T(G, f)[α] is of the form ¬ 
∧

i Par(v)[α]. If v /∈ V ′, then α assigns values to all variables 
from Par(v), since α does not falsify Par(v), α satisfies Par(v), hence Par(v)[α] is identically true. If v ∈ V ′, 
then Par(v)[α] is a parity statement depending on variables xe, where e ∈ E′ is incident to v. Hence, for 
v ∈ V ′, Par(v)[α] is semantically equivalent to a parity condition of a Tseitin formula T(H, ϕ′) for some 
charging ϕ′. Let Δ be the maximal degree of G. Then every parity condition of T(H, ϕ′) or T(G, ϕ) depends 
on at most Δ variables. Notice that since we represent parities in CNF, |T(G, f)| � 2Δ. By Lemma 10, 
there is a derivation ¬T(G, f)[α] 
O(1) ¬T(H, f ′) of size poly(|T(G, f)|). The claim follows using the size 
S, depth d derivation of ¬T(G, f)[α] together with Lemma 2. �

A 1-substitution for a formula ϕ is a partial function mapping variables of ϕ into literals of ϕ. After 
applying a 1-substitution σ to ϕ, the depth of the new formula ϕ[σ] can increase by one. However 1-
substitutions are closed under composition: if σ1 maps [y �→ ¬z] and σ2 maps [x �→ ¬y], then σ = σ1 ◦ σ2
is the 1-substitution [x �→ z, y �→ ¬z]. We use 1-substitutions to handle in T(G, f) the operation of vertex 
suppression on the graph G. Let G = (V, E) be a graph and v ∈ V be a node and let T(G, f) be a 
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Tseitin formula on G. Let v be a degree-2 vertex v in G with neighbours u and w. Consider the following 
1-substitution σv and the charge function fv for [G \s v]:

σv =
{ [

x(v,w) �→ x(w,u), x(v,u) �→ x(w,u)
]

if f(v) = 0[
x(v,w) �→ x(w,u), x(v,u) �→ ¬x(w,u)

]
if f(v) = 1

fv(z) =
{

f(z) if z ∈ V \ {u, v}
f(u) + f(v) if z = u

Let G(V, E) be a graph and f : V → {0, 1} be a charging. Let A be a finite set. We say that a formula 
Ψ is a pseudo Tseitin formula based on G and f with fake vertices in A, and we write Ψ is T∗

A(G, f), if Ψ
has the form 

∧
v∈V ∪A ψv, where

1. for all v ∈ V , ψv is a propositional formula depending on variables xe for all edges e incident to v. And 
ψv is semantically equivalent to the parity condition Par(v) of T(G, f).

2. for all v ∈ A, ψv is a tautology.

Lemma 13. Let G(V, E) be a connected constant-degree graph over n vertices. Let [G \sv] be the graph obtained 
after the suppression of a degree-2 vertex v in G. If Ψ is T∗

A(G, f), then Ψ[σv] is T∗
A∪{v}([G \s v], fv).

Proof. Assume that v is linked to two vertices w and u in G. Let A be the set of fake vertices of Ψ so Ψ has 
the form 

∧
x∈V ∪A ψx, hence Ψ[σv] is 

∧
x∈V ∪A ψx[σv]. For x ∈ A, ψ(x) is a tautology, hence ψx[σv] is also a 

tautology. By the definition of σv, ψv[σv] is a tautology. It is not hard to verify that for x ∈ V \ {v}, ψx[σv]
is equivalent to parity condition of T([G \s v], fv). Hence, Ψ[σv] is T∗

A∪{v}([G \s v], fv) �
Lemma 14. Let G(V, E) be a graph and f : V → {0, 1} and W = {v1, . . . , vk} be degree 2 nodes in V sup-
pressed in that order from G and [G \sW ] be the resulting graph. Let σi be the corresponding 1-substitutions 
and let σ = σk ◦ . . . ◦ σ1. Then there is a charging fk of G such that if Ψ is T∗

A(G, f), then Ψ[σ] is 
T∗
A∪W ([G \s W ], fk).

Proof. By induction on k � 0 and using Lemma 13 we prove that Ψ[σ1] . . . [σk] is T∗
A∪W ([G \s W ], fk), for 

fk given by repeated applications of Lemma 13.
Since the composition of 1-substitutions removes double negations, then the only difference between 

Ψ[σ1] . . . [σk] and Ψ[σ] can be only in the number of negations in front of the same occurrence of a variable, 
though the parity of the number of negations is preserved. Hence for all v ∈ V the semantical equivalence 
of the ψv’s in Ψ[σ1] . . . [σk] and Ψ[σ] is preserved. Then Ψ[σ] too is T∗

A∪W ([G \s W ], fk). �
Lemma 15. Let G be a connected graph on n vertices and with the maximal degree at most 3. Let H be 
obtained from G by several suppressions. Assume that there is a derivation of ¬T(G, f) of size S and depth 
d. Then for some charging fk there is a derivation of ¬T(H, fk) of size O(S) +poly(n) and depth d +O(1).

Proof. Assume that, in order, to get H from G we have to apply suppressions for vertices W = {v1, . . . , vk}. 
Let σi be the 1-substitutions corresponding to the suppression of vi, and let σ = σk ◦ · · · ◦ σ1. T(G, f) is 
T∗
∅(G, f). Let fk be the charging given by Lemma 14 applied to T(G, f) and [G \sW ] = H. Then T(G, f)[σ]

is T∗
W (H, fk). We apply the 1-substitution σ to the given derivation of ¬T(G, f) and we get a derivation of 

¬T(G, f)[σ] of size O(S) and depth at most d +1. By Lemma 10, applied on T(G, f)[σ] and T(H, fk), there 
is a derivation ¬T(G, f)[σ] 
d+O(1) ¬T(H, fk) of size poly(n). Combining the two derivations together by 
Lemma 2 we obtain a derivation 
d+O(1) T(H, fk) of size O(s) + poly(n). �
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Fig. 4. W6 is contracted to M6.

3.2. From walls to grids

Lemma 16. If there exists a derivation 
d ¬T(Wn, f) of size S, then there exists a derivation 
d+O(1)
¬T(Mn, f ′) of size O(S) + poly(n), where Mn is a connected constant-degree graph that contains Hn,�n−1

2 �
as a subgraph.

Proof. Consider a set I of all the horizontal edges of Wn that belong to odd columns (on Fig. 4 and 5 edges 
from I are wavy). I is a matching, i.e. no two edges from I are incident to the same vertex. If we contract 
all edges from I, we get the graph Mn that for odd n coincides with Hn,n−1

2
and for even n coincides with a 

graph that is obtained from Hn,�n
2 � by the removal of several edges from the last vertical (see Fig. 4 and 5). 

For every e ∈ I we denote its left vertex by ue and the right vertex by ve. Let Eue
be the set of edges of 

Wn incident to ue except e. Let τe denote a CNF formula encoding 
⊕

f∈Eue
xf = f(ue).

Consider a game tree T for the derivation of the Tseitin tautology ¬T(Wn, f) of size S and depth d. To 
every formula used in this tree we apply the substitution that replaces every occurrence of xe with τe. We 
denote the resulting tree by T ′.

Notice that T ′ is a correct game tree of a derivation 
d+O(1) ¬F , where F is obtained from T(Wn, f)
by the same substitution. The depth of this derivation is increased by at most a constant since in several 
leaves we hang a formula of constant depth; here we also use that I is a matching and thus we do not add 
new occurrences of variables corresponding edges from I. The size of τe is O(1), hence any formula from 
the derivation is increased in at most a constant factor, thus the size of the derivation defined by the tree 
T ′ is O(S).

We define a function f ′ on vertices of Mn as follows. If a vertex w of the graph Mn is obtained by merging 
the vertices w′, w′′ of the graph Wn, then f ′(w) = (f(w′) + f(w′′)) mod 2. If the vertex w of Hn,�n/2� is 
obtained from the vertex w of Wn, then f ′(w) = f(w).

Now we show how to derive ¬T(Mn, f ′) from ¬F . T(Wn, f) is a Tseitin formula and it has the following 
structure: 

∧
v∈V ψv, where V is the set of vertices of Wn and ψv is a CNF formula encoding a parity 

condition for the vertex v. F differs from T(Wn, f) only in conditions corresponding to vertices that are 
incident to an edge from I (if n is even, then there are vertices in Wn that are not incident to any edge 
from I). Notice that F has the form 

∧
v∈V ψ′

v where ψ′
v is obtained by substitution from ψv. Let w = ue

for some e ∈ I, then the formula ψ′
w is identically true. If w = ve, then the condition ψ′

w is equivalent to 
the parity condition of the merged vertex {ue, ve} in the Tseitin formula T(Mn, f ′), but ψ′

w is not written 
in canonical form.

Since all degrees in Mn are at most 4, then by Lemma 10 there exists a derivation ¬F 
d+O(1) ¬T(Mn, f ′)
of size poly(n). The claim follows by Lemma 2. �

3.3. Putting it all together

We use Håstad’s Theorem from [28].
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Fig. 5. W5 is contracted to M5.

Theorem 17 ([28]). There is a constant K > 0 such that for d � K logn
log logn any depth d derivation of 

¬T(Hn,n, f)) has size at least 2nΩ(1/d) .

Theorem 18. There exist constants K > 0 and C > 0 such that for every connected graph G of treewidth t
and every d � K logn

log logn − C, any depth d derivation of ¬T(G, f)) has size at least 2tΩ(1/d) .

Proof. Suppose that ¬T(G, f) have a derivation of size S and depth d. By Corollary 9 we know that G
contains the wall Wr as a topological minor, where r = Ω(tλ). Consider a sequence of operations (edge/vertex 
removals and suppressions) that transform G to Wr. Assume that removals do not follow suppressions. And 
let G′ be a subgraph of G that is obtained from G by application of all removals (hence, Wr can be obtained 
from G′ by application of several suppressions).

By Lemma 12, for some f ′ there is a derivation of ¬T(G′, f ′) of size poly(|T(G, f)|) +S and depth d +O(1). 
Since Wr can be obtained from G′ by application of several suppressions, G′ is connected. Suppressions 
can not increase the degrees, hence all degrees in G′ are at most 3. By Lemma 15, for some f ′′ there is a 
derivation of ¬T(Wr, f ′′) of size poly(|T(G, f)|) + S and depth d +O(1). By Lemma 16, for some f ′′′ there 
is a derivation of ¬T(Mr, f ′′′) of size poly(|T(G, f)|) + O(S) and depth d + O(1), where Mr is connected 
constant-degree graph containing H�(r−1)/2� as a subgraph. And finally by Lemma 12, for some f ′′′′ there 
is a Frege derivation of T(H�(r−1)/2�, f ′′′′) of size poly(|T(G, f)|) + O(S) and depth d + O(1). Notice that 
S is the size of a derivation of ¬T(G, f), hence S � |T(G, f)|. Thus, for some constants C and c there is a 
derivation of ¬T(H�(r−1)/2�, f ′′′′) of size Sc and depth d + C.

By Theorem 17, there is a constant K such that if d +C � K logn
log logn , then Sc � 2�(r−1)/2�Ω(1/(d+C)) . Hence 

S � 2rΩ(1/d) and, thus, S � 2tΩ(1/d) . �
4. The upper bound

In this section we prove the following Theorem:

Theorem 19. Let G(V, E) be a connected undirected graph and T(G, f) be an unsatisfiable Tseitin 
formula. Then for all large enough d the formula ¬T(G, f) has a derivation of depth d and size 
2tw(G)O(1/d)poly(|T(G, f)|).

Let us give the outline of the proof:

1. First, we define the compact representation of Parity. The main idea behind this is using associativity 
of the operation: we split the input on chunks of suitable size and construct the formula recursively. The 
first part of the section describes the technical lemmas concerning the compact representation.

2. The next part of the section describes how to emulate summation of linear equations modulo 2 using the 
compact representation of Parity.

3. In the last part of the section, we use the notion of tree-partition width of the graph. Using the small cuts 
of tree-partition, we construct a proof which tries to detect local contradictions of a number of variables, 
proportional to tree-partition width.
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4.1. A compact representation of parity

Let t1, t2, . . . , td be natural numbers, where d is a non-negative integer. Let U0, U1, . . . , Ud be partitions 
of a finite set F ; it is possible that some elements of Ui for i ∈ {0, 1, . . . , d} are empty. We say that a list of 
partitions U = (U0, U1, . . . , Ud) is a (t1, . . . , td)-refinement of F if the following conditions hold:
1. U0 consists of the only element U0,1 = F .
2. For every i, Ui+1 is a subpartition of Ui such that every element of Ui is split into ti+1 parts. Hence, Ui

split F into mi parts: Ui,1, Ui,2, . . . , Ui,mi
, where mi =

∏i
j=1 tj .

3. All elements of Ud have cardinality at most 1.
We refer to elements of Ui for i ∈ {0, 1, . . . , d} as blocks of the refinement.

Let U be a (t1, . . . , td)-refinement of a set F and let Ui,j be one of the blocks of this refinement. Then U
induces on each of the blocks Uij a (ti+1, . . . , td)-refinement U ′ which is obtained by restricting Ui, . . . , Ud

to the set Uij . U ′ is called a sub-refinement of Uij in U .

Lemma 20. Let F be a set of size n and d � 0 be an integer. Let t1, . . . , td be integers such that t1·t2·. . .·td � n. 
Then there exists a (t1, . . . , td)-refinement U of F .

Proof. We define Ud as n singletons each containing one element of F and t1 · . . . · td − n empty sets. For 
each i < d we construct Ui from Ui+1 as follows. We split the ti+1 · . . . · td blocks of the partition Ui+1 into 
groups of size ti+1 and define Ui,1 as the union of the elements of the first group, Ui,2 as the union of the 
elements of the second group and etc. �

For a ∈ {0, 1} and natural number n we define a Boolean function PARITYa
n : {0, 1}n → {0, 1}n such 

that PARITYa
n(x1, . . . , xn) = 1 iff 

⊕n
i=1 xi = a for all x1, . . . , xn ∈ {0, 1}.

Lemma 21. Let n and d be positive integers and U be a (t1, t2, . . . , td)-refinement of [n]. Then there exists a 
formula representing PARITYb

n of depth at most 3d + 1 and of size 
∏d

i=1 2ti+1ti.

Proof. Let us construct a formula of the needed size and depth for each of the chunks in the refinement, 
starting from the smallest ones. More formally, we do that by backward induction on i from d to 0. We 
prove that for every j ∈ [

∏i
k=1 tk], there is a formula representing 

⊕
k∈Ui,j

xk of depth 3(d − i) and of size ∏d
q=i+1 2tq+1tq.
If i = d, then |Ud,j | � 1, hence 

⊕
k∈Ui,j

xk is either 0 or a variable xk and thus has size 1 and depth 0.
Assume that i < d. Let 	1, 	2, . . . , 	ti+1 be such that Ui,j = Ui+1,�1 ∪ Ui+1,�2 ∪ · · · ∪ Ui+1,�ti+1

. Let 
for r ∈ [ti+1], βr be a representation of 

⊕
k∈Ui+1,�r

xk of size 
∏d

q=i+2 2tq+1tq and depth 3(d − i − 1)
that exists by the induction hypothesis. Consider a CNF-representation of β1 ⊕ . . . ⊕ βti+1 : 

⊕
k∈Ui,j

xk =∧
S⊆{1,...,ti+1}
|S| mod 2=0

(∨
s∈S ¬βs ∨

∨
s/∈S βs

)
. After the substitution of the representations of β1, . . . , βti+1 we ob-

tain a formula of size at most 2ti+1ti+1 ·
∏d

q=i+2 2tq+1tq + 2ti+1ti+1 �
∏q

q=i+1 2tq+1tq and of depth 
3(d − i − 1) + 3 = 3(d − i).

Therefore we have constructed a representation of PARITY1
n of the needed size and depth. The represen-

tation of PARITY0
n could be constructed as ¬ϕ where ϕ is the obtained representation of PARITY1

n. �
We call the representation of PARITYa

n obtained by Lemma 21 the compact representation of PARITYa
n

with respect to a (t1, . . . , td)-refinement U .
Let us define for S ⊆ [n] and for a ∈ {0, 1}, PARITYa

n,S(x1, . . . , xn) = (¬a) ⊕
⊕

i∈S xi. We define a com-
pact representation of PARITYa

n,S with respect to a (t1, . . . , td)-refinement U as the result of substitutions 
xj := 0 for all j /∈ S to the compact representation of PARITYa

n with respect to U . We denote the compact 
representation of PARITYa

n,S(x1, x2, . . . , xn) w.r.t. U by Φa(S, U).
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Lemma 22. Let U be a (t1, . . . , td)-refinement of [n] and U ′ be a sub-refinement of Uij in U . Then for every 
S ⊆ Uij there exists a derivation Φa(S, U ′) 
3d+O(1) Φa(S, U) of size at most 4|Φa(S, U)|3.

Proof. Let ψ1 := x and ψ2 be the formula obtained from Φa(S, U) by replacement of all subformulas Φa(U ′)
with x. Clearly ψ1 and ψ2 are semantically equivalent. Then let us apply Corollary 5 to ψ1, ψ2, k = 1 and 
ϕ1 = Φa(S, U ′). Then there exists a derivation of ψ1[x ← Φa(S, U ′)] 
3d+O(1) ψ2[x ← Φa(S, U ′)] of size 
21(|ψ1|2 + |ψ2|2)|ϕ1| = 2(1 + |Φa(S, U)|2)|Φa(S, U ′)| � 4|Φa(S, U)|3. �
4.2. Summation of linear equations

Let S�T be the symmetric difference of sets S and T i.e. S�T = (S ∪ T ) \ (S ∩ T ).

Proposition 23. Let U be a (t1, . . . , td)-refinement of [n]. For any S ⊆ [n] there exists a derivation 
¬Φa(S, U) 
3d+O(1) Φ1⊕a(S, U) of size at most 2(|Φ1(S, U)| + |Φ0(S, U)|).

Proof. If a = 1 then the premise equals the conclusion, so an empty derivation is sufficient. If a = 0 we need 
to remove double negation so Pavel asks Φ0(S, U). If the answer is 1 then it is an immediate contradiction 
with the premise and if the answer is 0 it is an immediate contradiction with the conclusion. �
Lemma 24. Let U be a (t1, . . . , td)-refinement of [n]. Then there exist a constant c and a derivation

Φa(S,U),Φb(T,U) 
3d+O(1) Φa⊕b(S�T,U)

of size at most c · |Φ1(∅, U)|6. We write ∅ here to stress that the size of Φa(S, U) does not depend on S.

Proof. Let us prove this Lemma by induction on d. The base case: d = 0. Since U0 is the last layer of 
refinement, it contains only singletons. On the other hand by the definition U0 = {[n]}, thus, n = 1 and 
Φa(S, U), Φb(T, U) and Φa⊕b(S�T, U) all depend on one variable x1. Thus by Lemma 4, there exists a 
derivation Φa(S, U) ∧ Φb(T, U) 
2 Φa⊕b(S�T, U) of constant size. Clearly Φa(S, U) ∧ Φb(T, U) is derivable 
from Φa(S, U) Φb(T, U) by a derivation of constant depth and size.

If d > 0, let V 1, . . . , V t1 be the sub-refinements of U1,1, . . . , U1,t1 in U respectively where [n] = U1,1 ∪
. . . ∪ U1,t1 . Recall that by definition

Φ1(X,U) =
∧

R⊆[t1]
|R| mod 2=0

(∨
i∈R

¬Φ1(X ∩ U1,i, V
i) ∨

∨
i/∈R

Φ1(X ∩ U1,i, V
i)
)
.

We view this representation as CNF in variables Φ1(X ∩ U1,i, V i) for i ∈ [t1]. Recall that by definition 
Φ0(X, U) = ¬Φ1(S, U).

Let us describe a strategy of Pavel in the game with initial conditions Φa(S, U) = 1, Φb(T, U) = 1 and 
Φa⊕b(S�T, U) = 0.

Pavel asks Sam the values of the following 3t1 formulas: Φ1(S ∩ U1,i, V i), Φ1(T ∩ U1,i, V i), Φ1((S�T ) ∩
U1,i, V i) for i ∈ [t1]. There are 23t1 possible combinations of Sam’s answers. The total size of the formulas 
is at most 2 · 23t1 · |Φ1(∅, V 1)|. Let us show how Pavel wins in each of them. Let αi, βi, γi denote Sam’s 
answers to Φ1(S ∩ U1,i, V i), Φ1(T ∩ U1,i, V i), Φ1((S�T ) ∩ U1,i, V i) respectively for i ∈ [t1].

If 
⊕

i∈[t1] αi 	= a, then we can get a contradiction with Φa(S, U). Indeed consider a formula ψ :=∧t1
i=1 Φαi(S ∩ U1,i, V i) ∧ Φa(S, U) and let L be the size of ψ if we consider it as a formula in variables 

Φ1(S ∩ U1,i, V i). Clearly L � 2t1+1 · t1. By Corollary 5, there is a derivation of 0 from ψ of size at most 
2t1L2

(∑t1 |Φ1(∅, V i)|
)
� 23t1+4t31|Φ1(∅, V 1)|. Pavel asks Sam the value of ψ and in both cases gets a 
i=1
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contradiction. If the answer is 0 then it is a contradiction with the conjuncts so Pavel proceeds to ask all 
subformulas of ψ starting with the deeper ones until he gets an immediate contradiction. If the answer is 1
we get a contradiction by Corollary 5. The total size of all such derivation for all possible combinations of 
Sam’s answers is at most 23t1 ·max

{
|ψ|2, 23t1+4t31|Φ1(∅, V 1)|

}
� 26t1+4t31|Φ1(∅, V 1)|. Adding the size of the 

3t1 preliminary questions we get 26t1+4t31|Φ1(∅, V 1)| + 2 · 23t1 · |Φ1(∅, V 1)| < 20 · 26(t1+1)t61|Φ1(∅, V 1)|6 �
20|Φ1(∅, U)|6. The cases when 

⊕
i∈[t1] βi 	= b or 

⊕
i∈[t1] γi 	= a ⊕ b are similar.

Let us consider the case where 
⊕

i∈[t1] αi = a, 
⊕

i∈[t1] βi = b and 
⊕

i∈[t1] γi = 1 ⊕a ⊕ b. In this case there 
exists i0 ∈ [t1] such that αi0 +βi0 	= γi0 . We derive a contradiction using Sam’s answers Φ1(S∩U1,i0 , V

i0) =
αi, Φ1(T ∩U1,i0 , V

i0) = βi and Φ1((S�T ) ∩U1,i0 , V
i0) = γi. By Proposition 23 we may assume that Sam’s 

answers are Φαi0 (S ∩ U1,i0 , V
i0) = 1, Φβi0 (T ∩ U1,i0 , V

i0) = 1 and Φγi0 ((S�T ) ∩ U1,i0 , V
i0) = 1. By the 

induction hypothesis there exists a derivation

Φαi0 (S ∩ U1,i0 , V
i0),Φβi0 (T ∩ U1,i0 , V

i0) 
3d+O(1) Φ1⊕γi0 ((S�T ) ∩ U1,i0 , V
i0)

of size at most c|Φ1(∅, V 1)| so we get an immediate contradiction with Φγi0 ((S�T ) ∩U1,i0 , V
i0). The total 

size of the derivation is at most

23t1

number of possible values of α,β,γ

· c|Φ1(∅, V 1)|6
induction hypothesis

+ 20|Φ1(∅, U)|6
local contradictions

.

Since |Φ1(∅, U)| = 2t1+1t1 · |Φ1(∅, V 1)|, for a large enough c the size of derivation does not exceed 
c|Φ1(∅, U)|6. �
Lemma 25. Let U be a (t1, . . . , td)-refinement of [n]. Let S1, S2, . . . , Sk ⊆ [n] and a1, . . . , ak ∈ {0, 1}. Then 
there exists a constant c such that:

1. There exists a derivation Φa1(S1, U), Φa2(S2, U), . . . , Φak(Sk, U) 
3d+O(1) Φa1⊕...⊕ak(S1� . . .�Sk, U) of 
size at most c · k · |Φ1(∅, U)|6.

2. If 
∧

i∈[k]

(⊕
j∈Si

xj = ai

)
is unsatisfiable then there exists a derivation

Φa1(S1, U), Φa2(S2, U), . . . , Φak(Sk, U) 
3d+O(1) 0 of size at most c · k · |Φ1(∅, U)|6.

Proof. The proof of (1) is simply (k−1) consecutive applications of Lemma 24 using Lemma 2. The proof of 
(2) is based on a well-known fact: a system of linear equations is unsatisfiable if and only if the contradiction 
0 = 1 can be obtained as a linear combination of the equations. In our case it means that there is a set 
R := {r1, . . . , rm} ⊆ [k] such that Sr1�Sr2� . . .�Srm = ∅ and 

⊕
i∈R ai = 1.

Φar1⊕...arm (Sr1� . . .�Srm) = Φ1(∅, U). Φ1(∅, U) is identically false, hence by Lemma 4 there is a 
derivation Φ1(∅, U) 
3d+1 0 of size at most 4|Φ1(∅, U)|2.

Let us construct Pavel’s strategy in the game with initial conditions Φar1 (Sr1 , U) = 1, . . . , Φarm (Srm , U) =
1 and Φ1(∅, U) = 0. Pavel asks Sam the value of Φ1(∅). If Sam answers 0 Pavel uses the strategy corre-
sponding to Φar1 (Sr1), Φar2 (Sr2), . . . , Φark (Srk) 
3d+O(1) Φar1⊕ar2⊕...⊕ark (Sr1�Sr2� . . .�Srk) from (1). If 
Sam answers 1 Pavel uses the strategy corresponding to the derivation Φ1(∅, U) 
3d+1 0. �
4.3. Tree-partition-width

Let G(V, E) be an undirected graph and S1, . . . , Sm be a partition of V . S1, . . . , Sm is a tree-partition of 
G if there exists a tree T ([m], ET ) such that every edge e of G connects either two vertices from the same 
part Si or connects a vertex from Si and a vertex from Sj , where i and j are adjacent in T , i.e. (i, j) ∈ ET . 
A width of a tree-partition S1, S2, . . . , Sm is the size of the largest set Si for i ∈ [m]. A tree-partition width
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of a graph G is the smallest width among all tree-partitions of G. We denote the tree-partition width of G
by tpw(G).

If we add a new vertex in the middle of every edge (i, j) of the tree T and put the set Si ∪ Sj on it, we 
will get a tree decomposition of G, hence tw(G) � 2tpw(G) − 1.

The following theorem shows an inequality in the other direction.

Theorem 26 ([46]). If tw(G) � 1, then tpw(G) � 10Δ(G)tw(G), where Δ(G) is the maximum degree of G.

So, tw(G) and tpw(G) coincide up to a multiplicative constants for constant degree graphs.

Theorem 27. Let G(V, E) be a connected graph and let a Tseitin formula T(G, f) be unsatisfiable. Then 
there exists a derivation 
3d+O(1) T(G, f) of size at most poly(|T(G, f)|) · 2(tpw(G)Δ(G))O(1/d) , where Δ(G)
is the maximum degree of G.

Proof. Let S1, . . . , Sm be a tree-partition of G with width tpw(G) and let T ([m], ET ) be the corresponding 
tree. Without loss of generality we assume that T is a rooted tree with the root m; for all i ∈ [m − 1], p(i)
denotes its parent and for all i ∈ [m], s(i) denotes the set of direct successors of i. Without loss of generality 
we assume that p(i) > i for all i ∈ [m − 1].

Since T(G, f) is unsatisfiable and G is connected, 
⊕

v∈V f(v) =
⊕

i∈[m]
⊕

v∈Si
f(v) = 1. We consider 

the sum 
⊕

i∈[m]
⊕

e∈E(Si,V \Si) xe. Since each xe occurs in the sum exactly twice, the sum (modulo 2) 
is 0 for all values of xe. Then for each assignment to {xe}e∈E there exists i0 such that 

⊕
v∈Si0

f(v) 	=⊕
e∈E(Si0 ,V \Si0 ) xe. The first part of Pavel’s strategy is to find such i0.
Pavel will request parity of the sum of all edges between Si and Sj for all (i, j) ∈ ET . In order to represent 

these formulas in a compact way we now define m different (t1, . . . , td)-refinements W 1, . . . , Wm; for every 

i, W i is a refinement of the set E
(
Si,

⋃
j∈s(i) Sj

)
of all edges connecting a vertex from Si with a vertex 

from 
⋃

j∈s(i) Sj . We construct appropriate refinements W i later.
Pavel asks Sam the values of 

⊕
e∈E(Si,Sp(i)) xe represented as Φ1 (E (

Si, Sp(i)
)
,W p(i)) for i ∈ [m − 1] in 

the increasing order until he finds i0 such that 
⊕

e∈E(Si0 ,V \Si0 ) xe 	=
⊕

v∈Si0
f(v).

At the moment when Sam has answered the value of Φ1 (E (
Si, Sp(i)

)
,W p(i)) the values of 

⊕
e∈E(Si,Sj) xe

for each j such that (i, j) ∈ ET are all determined, thus, the value of 
⊕

e∈E(Si,V \Si) xe is determined. If ⊕
e∈E(Si,V \Si) xe 	=

⊕
v∈Si

f(v) Pavel proceeds to the next part of his strategy. Otherwise he continues to 
ask Sam similar questions corresponding to the vertices with larger indices.

Now we describe the strategy of Pavel in case if he finds i0. We are going to describe this case in 
terms of derivation using Lemma 2 multiple times. Consider a linear system that consists of the equation ⊕

e∈E(Si0 ,V \Si0 ) xe = 1 ⊕
⊕

v∈Si0
f(v) and all parity conditions of T(G, f) of the vertices from Si0 . This 

linear system is unsatisfiable. We are going to use Lemma 25. In order to do it we need to derive the 
representations of these linear equations w.r.t. some refinement Q of a superset of E(Si0 , V ).

Let for i ∈ [m], U i be a (t1, t2, . . . , td)-refinement of the set E(Si) of all edges connecting two vertices 
from Si (we construct these refinements in the end of the proof together with the refinements W i). Let 
us define a (3, t1, . . . , td)-refinement Q as a union of (t1, . . . , td)-refinements W i0 , W p(i0) and U i0 such that 
Q1 = {E(Si0 , 

⋃
j∈s(i0) Sj), E(Sp(i0), 

⋃
j∈s(p(i0)) Sj), E(Si0)} and for every j ∈ {2, 3, . . . , d + 1}, Qj is the 

union of W i0
j−1, W

p(i0)
j−1 and U i0

j−1.
Let aj be Sam’s answer to the question 

⊕
e∈E(Si0 ,Sj) xe for each j that is a neighbour of i0 in T , 

hence we may assume that Φaj (E(Si0 , Sj), W i0) for j ∈ s(i0) and Φap(i0)(E(Si0 , Ep(i0)), W p(i0)) are al-
ready derived. By Lemma 22, we derive Φaj (E(Si0 , Sj), Q) from Φaj (E(Si0 , Sj), W i0) for j ∈ s(i0) and 
Φap(i0)(E(Si0 , Sp(i0)), Q) from Φap(i0)(E(Si0 , Sp(i0)), W p(i0)), where aj are Sam’s answers to the correspond-
ing questions.
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By the first part of Lemma 25 we derive Φ
1⊕

(⊕
v∈Si0

f(v)
)
(E(Si0 , V \ Si0), Q) from the set of formulas 

{Φaj (E(Si0 , Sj), Q) | (i0, j) ∈ ET }. We assume that the parity conditions of the vertices of G in T(G, f)
represented as CNF are asked at the beginning of the game i.e. for each v ∈ V we know that the CNF 
representation of 

⊕
u:(u,v)∈E xe is true (if any clause of T(G, f) is false Pavel queries all subformulas of 

T(G, f) except subformulas of the clauses and gets an immediate contradiction, if any of the parity conditions 
is false it yields an immediate contradiction with the corresponding subset of clauses). Thus, by Lemma 4
we derive the representations of parity conditions of the vertices from Si0 w.r.t. Q. Since the corresponding 
linear system is unsatisfiable, using the second part of Lemma 25 we get a contradiction.

Claim 28. The size of the described game tree is at most m · 23Δ(G)Δ2(G)tpw(G)2O
(∑d

i=1 ti

)
.

Proof. The game tree consists of m subtrees corresponding to each possible value of i0, m − 1 nodes 
corresponding to the questions Φ1 (E (

Si, Sp(i)
)
,W p(i)) for i ∈ [m −1] and O(|V |) nodes corresponding to the 

initial questions about parity conditions of the vertices of G in CNF. The total size of formulas in these O(|V |)
nodes is poly(|T(G, f)|). Each of the m −1 formulas corresponding to the questions Φ1 (E (

Si, Sp(i)
)
,W p(i))

has size 
∏d

i=1 2ti+1ti. Let us estimate the size of each of the m subtrees. It is the sum of the following values:
• The derivation of the formulas Φ1 (E(Si0 , Sj), Q) for j ∈ {p(i0)} ∪ s(i0). By Lemma 22 the size of each 

of these derivations is O
(∏d

i=1 23tit3i

)
.

• The derivation of the representations of parity conditions with respect to Q. By Lemma 4 the size of 
each of these derivations is O

(
2Δ(G)(2Δ(G)Δ(G) +

∏d
i=1 2titi)2

)
• The derivation of Φ

1⊕
(⊕

v∈Si0
f(v)

)
(E(Si0 , V \ Si0), Q). By the first part of Lemma 25 the size of this 

derivation is Δ(G)tpw(G)2O
(∑d

i=1 ti

)
.

• The derivation of contradiction by the second part of Lemma 25 has size (Δ(G) + 1)tpw(G)2O
(∑d

i=1 ti

)
.

Each of these four summands is 23Δ(G)Δ2(G)tpw(G)2O
(∑d

i=1 ti

)
. �

Let us choose ti = (Δ(G)tpw(G))2/d for all i ∈ [d]. Since |Si| � tpw(G), |E(Si)| +
∣∣∣E (

Si,
⋃

j∈s(i) Sj

)∣∣∣ �
Δ(G)tpw(G). Hence, the condition 

∏d
i=1 ti � Δ(G)tpw(G) � |E(Si)| +

∣∣∣E (
Si,

⋃
j∈s(i) Sj

)∣∣∣ holds and, thus, 
for all i ∈ [m] the refinements U i, W i exist by Lemma 20. If we substitute choosen values in the bound from 

Clam 28, we get the upper bound m · 2O
(
3Δ(G)+d(Δ(G)tpw(G))2/d

)
= poly(|T(G, f)|) · 2(Δ(G)tpw(G))O(1/d) . �

Now we are ready to prove Theorem 19.

Proof of Theorem 19. Theorem 27 and Theorem 26 imply that there exists a constant c and a derivation 

3d+O(1) ¬T(G, f) of size at most poly(|T(G, f)|)2(10Δ2(G)tw(G))c/d . If tw(G) > Δ(G) then we can rewrite our 
upper bound on the size as poly(|T(G, f)|)2(10tw(G))3c/d . If tw(G) > 1 then it is poly(|T(G, f)|)2(tw(G))O(1/d) . 
If tw(G) = 1 then it is simply poly(|T(G, f)|). Otherwise if tw(G) � Δ(G) we can rewrite the upper 
bound as poly(|T(G, f)|)· 2(10Δ(G))3c/d = poly(|T(G, f)|) if 3c/d � 1. Thus, for d � 3c the upper bound is 
poly(|T(G, f)|)· 2tw(G)3c/d . Therefore, for the both cases we have the needed upper bound. �
5. The complexity of Tseitin formulas in resolution

Resolution is a sound and complete propositional proof system suited for refuting unsatisfiable formulas 
in conjunctive normal form [17,18]. A resolution refutation of a unsatisfiable CNF F = C1 ∧ . . . ∧ Cm is a 
sequence of clauses D1, . . . , Dt such that Dt is the empty clause � and each clause Di in the sequence is 
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either a clause Cj of F or is obtained by the resolution rule applied to clauses Dj and Dk preceding Di in 
the sequence. The resolution rule is the following rule, where x is the resolved variable.

A ∨ x B ∨ ¬x
A ∨B

Resolution rule

The size of a resolution refutation is the number of clauses in the sequence. With S(F 
) we denote the 
minimal size to refute F in resolution. The width of a clause is the number of literals in it; the width of a 
resolution refutation is the maximal width of a clause appearing in it. With w(F 
) we denote the minimal 
width to refute F in resolution.

Resolution refutations can be arranged as directed acyclic graphs with leaves corresponding to clauses of 
F and a root corresponding to the empty clause. An important refinement of resolution is the system known 
as regular (or read-once) resolution. In this system refutations are constrained in such a way that in the 
refutation-graph in each path from the empty clause to a leaf the sequence of resolved variables is read-once, 
i.e. each variable appears at most once. Tree-like resolution is the restriction obtained by imposing that the 
refutation-graph must be a tree.

Since their introduction [43] Tseitin formulas play an important role in understanding the complexity 
of refutations in resolution and its restrictions [10,44]. Since resolution is a special case of bounded-depth 
Frege, Theorem 18 is applicable to it as well. The lower bound that can be obtained from this theorem is 
2Ω(tw(G)γ) with γ < 1

58λ, where λ is the constant from the grid minor theorem, and 1
58 comes from Håstad’s 

lower bound (Theorem 17).
Recently in [31] Itsykson et al. proved that regular resolution refutation of T(G, f) has size at least 

2Ω
(

tw(G)
log n

)
for every connected graph G and left open whether a similar result can be proved for unrestricted 

resolution. Theorem 34 improves the lower bound for general resolution comparing to the direct corollary 
from Theorem 18. In particular, Theorem 34 implies a lower bound 2Ω(tw(G)) for planar graphs.

5.1. Resolution lower bounds for T(G, f) in terms of treewidth

Lemma 29. [31] Let T(G, f) and T(G, f ′) be two unsatisfiable Tseitin formulas based on a connected graph 
G. Then the sizes of the shortest resolution refutations of this formulas coincide.

Let ϕ be a CNF and α be a partial assignment to the variables of ϕ. Let ϕ|α be a CNF which is obtained 
from ϕ[α] by removing all satisfied clauses and removing the satisfied literals from the rest of the clauses.

Lemma 30. Let G(V, E) and G′(V ′, E′) be connected graphs, and let G′ is a topological minor of G, then for 
two unsatisfiable formulas T(G, f) and T(G′, f ′), S(T(G, f) 
) � S(T(G′, f ′) 
).

Proof. G′ can be obtained from G by a sequence of vertex and edge deletions and edge suppressions. It 
is easy to see that these operations commute, so we may assume that we first delete edges and vertices 
and then suppress edges. Let G′′(V ′′, E′′) be the graph that is obtained from G by all edge and vertex 
deletions. Observe that G′′ is connected since G′ is obtained from it by vertex suppressions which do not 
affect connectivity. By Lemma 11 there is a partial assignment α with support {xe | e ∈ E \E′′} that does 
not falsify any clause of T(G, f).

Let us show that T(G, f)|α = T(G′′, f ′′) where f ′′(v) =
(
f(v) +

∑
e∈E′′;e is incident to v α(e)

)
mod 2. 

Indeed, T(G, f)|α =
∧

v∈V Par(v)|α where Par(v) is the parity condition of the vertex v encoded in CNF. 
Observe that for v /∈ V ′′ Par(v)|α is identically true and for v ∈ V ′′ it encodes in CNF the parity condition 
of v in T(G′′, f ′′).
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Consider a resolution refutation C1, . . . , Ck of T(G, f). Observe that since α does not falsify axioms of 
T(G, f), C1|α, . . . Ck|α can be transformed into a resolution refutation of T(G, f)|α of size at most k. Thus 
S(T(G′′, f ′′) 
) � S(T(G, f) 
).

Now we need to show that for a graph G′(V ′, E′) and for some f ′ that is obtained from G′′ by a sequence 
of vertex suppressions, S(T(G′, f ′) 
) � S(T(G′′, f ′′) 
). By induction it is sufficient to show this for just 
one suppression.

Assume that G′ is the result of suppression of a vertex v neighbouring the vertices u and w, i.e. G′ =
G′′ \s v. Consider a vertex-charging of the set of vertices of G′,

f̄(	) =
{
f ′′(	) if 	 	= w

f ′′(w) + f ′′(v) if 	 = w
.

f̄ is an odd-charging since it has the same parity as f ′′, which is an odd-charging since T(G′′, f ′′) is 
unsatisfiable and G′′ is connected.

Consider the following procedure of obtaining T(G′, f̄) from T(G′′, f ′′). First substitute xuv :=
xuw; xvw := xuw if f ′′(v) = 0 and xuv := ¬xuw; xvw := xuw if f ′′(v) = 1. Such substitution satisfies 
the clauses of Par(v) in T(G′′, f ′′). Observe that application of the same substitution to each clause of the 
resolution refutation of T(G′′, f ′′) results in a resolution refutation of T(G′, f̄) of the same or smaller length. 
By Lemma 29 there exists a refutation of T(G′, f ′) of the same size, which completes the proof. �

The cyclicity of a graph G is the minimal 	 for which the set of edges of G can be covered by cycles of 
length at most 	 such that every edge is covered at most 	 times.

Lemma 31. Let W̄n be the result of removal all degree-1 vertices from Wn. Then W̄n has cyclicity at most 6.

Proof. We can cover all the edges by cycles corresponding to “bricks” of the wall (i.e. two cells of the grid 
with the edge between them removed). The length of each such cycle is 6 and since the graph Wn is planar, 
each edge is covered by at most two cycles. �
Theorem 32. [3] S(T(G, f) 
) = 2Ω(w(T(G,f)�))/�(G)O(1) where 	(G) is the cyclicity of G.

Theorem 33. [22] For a constant-degree graph T(G, f), w(T(G, f) 
) = Ω(tw(G)).

Theorem 34. S(T(G, f) 
) = 2Ω(twλ(G)) where λ is a constant from the grid-minor theorem.

Proof. Since n
2 × n grid is a minor of W̄n, tw(W̄n) = Ω(n). Then by Lemma 31 and Theorem 32, 

S(T(W̄n, f) 
) = 2Ω(n). By Corollary 9 W̄k is a topological minor of G where k = Ω(twλ(G)). By Lemma 30
S(T(G, f) 
) � S(T(W̄k, f ′) 
) which yields the desired result. �
5.2. Searching for resolution refutations of T(G, f)

A key concept in the field of automatic generation of proofs is that of automatizability of a proof system. 
Resolution is automatizable if there is an algorithm that, given a unsatisfiable CNF formula F of size n as 
input, it outputs a resolution refutation of F in time polynomial in n + S(n), where S(n) is the length of a 
shortest refutation of F in resolution.

Given the importance of resolution in applied fields, investigation on automatizability of resolution re-
ceived particular attention. Improving a result of Alekhnovich and Razborov in [2], automatizating resolution 
was recently found to be NP -hard [4]. These hardness results motivate the search of algorithms to generate 
resolution refutations for specific family of formulas like T(G, f).
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Consider the next definitions from [3].

Definition 35. A class of unsatisfiable CNF formulas F is (quasi-)automatizable with respect to a proof 
system Π if there exists a deterministic automatizing algorithm that, given an unsatisfiable formula F ∈ F , 
returns its refutation in the proof system S in time which is (quasi-)polynomial in |F | + SΠ(F 
), where 
SΠ(F 
) denotes the size of the shortest Π-refutation of F .

Definition 36. A class of unsatisfiable CNF formulas F is smooth (respectively quasi-smoooth) if for all 
F ∈ F , w(F 
) � logS(F 
) (resp. there is a constant C such that w(F 
) � logC S(F 
)).

Definition 37. A class F of unsatisfiable CNFs is width-automatizable if there exists a deterministic algorithm 
that, given F ∈ F , returns its resolution refutation of width O(w(F 
)) in time which is polynomial in 
|F | + 2w(F�)

Smoothness and quasi-smoothness are important properties for a class of formulas since, together with 
width-automatizability imply automatizability (quasi-automatizabilty) in resolution of that class of formu-
las.

Theorem 38. (Fact 2.7 [3]) If a class of unsatisfiable CNFs is both width-automatizable and (quasi-)smooth, 
then it is (quasi-)automatizable with respect to resolution.

The question whether Tseitin formulas T(G, f) are (quasi-)automatizable with respect to resolution 
using previous theorem was investigated in [3]. There they proved that T(G, f) are width-automatizable 
but obtained quasi-smoothess of T(G, f) only for a restricted class of graphs G, namely those with constant 
cyclicity.

As a consequence of Theorem 1, we show that for all graphs the class of Tseitin formulas T(G, f) is 
quasi-smooth, hence quasi-automatizable with respect to resolution answering to a question left in [3].

Corollary 39. For any graph G, T(G, f) are quasi-smoooth, i.e. there is a constant C such that 
w(T(G, f) 
) � logC S(T(G, f) 
). Hence the class of Tseitin formulas is quasi-automatizable.

Proof. In [3,22] it was established that w(G) = max{Δ(G), tw(L(G))} − 1, where L(G) is the line graph 
(graph on edges) of G. It is known that max{Δ(G), 12 (tw(G) + 1)} − 1 � tw(L(G)) � (tw(G) + 1)Δ(G) −
1, (see, for example, [26]). By Theorem 1 and the fact that T(G, f) is a CNF, we have that S(G) �
max{2Δ(G), 2tw(G)ε}, for some 0 < ε < 1 given by Theorem 1. Then S(TG, f 
) � 2(tw(G)ε+Δ(G))/2 �
2(tw(G)Δ(G))ε/2 � 2w(G)ε/4 . �

A conjecture of A. Urquhart asserts that the shortest resolution refutations of T(G, f) are in fact regular. 
If one believes the conjecture, then devising algorithms for automatically searching for regular resolution 
refutations of T(G, f) is important since produces the shortest resolution refutations. Alekhnovich and 
Razborov in [3] devised an algorithm called BWBATP which on input T(G, f), when G is of bounded 
cyclicity, produces a regular refutation of T(G, f) in time 2poly(logSreg(G)), that is polylogarithmic in the 
length of the shortest regular refutation of T(G, f).

Using Theorem 1 and other known results we can generalize Alekhnovich and Razborov result to any 
graph and we can provide positive evidence (i.e. showing it for quasi-polynomial size) to the Urquhart’s 
conjecture. We prove the more general statement that the size of refutations of T(G, f) in all the proof 
systems between tree-like resolution and constant-depth Frege (hence in particular regular resolution) are 
quasi-polynomially correlated. i.e. if T(G, f) has a derivation of size S in one of them of size S then it has 
a refutation of size at most 2poly(logS) in the other.
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Corollary 40. Let P and Q be two proof systems such that both polynomially simulate tree-like resolution 
and both are polynomially simulated by constant-depth Frege. If there are derivations of size S in P, then 
there are derivations of size at most 2poly(logS) in Q.

Proof. Constant-depth Frege polynomially simulates treelike resolution hence it is sufficient to show the 
corollary taking P as constant-depth Frege and Q as treelike resolution. Assume that ¬T(G, f) have proofs 
of size S in constant-depth Frege, we have to prove that there are derivations of size at most 2poly(logS)

in tree-like Resolution. By Theorem 1 S � max{2Δ(G), 2tw(G)ε}. Hence tw(G) � (logS) 1
ε . By a result in 

[5,29] there are tree-like resolution refutations of T(G, f) of size nO(w(G)) = 2O(tw(G)Δ(G) logn), where n is 
the number of edges in G. Substituting the expression for the treewidth we obtain the claim. �
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that 
could have appeared to influence the work reported in this paper.

Acknowledgements

The authors thank Navid Talebanfard for discussions on the lower bound. Nicola also thanks Paul Wollan 
for introducing him to the tree-cutwidth. Dmitry is a Young Russian Mathematics award winner and would 
like to thank sponsors and jury of the contest.

The research was supported by Russian Science Foundation (project 16-11-10123).

Appendix A. Frege vs Pudlák-Buss games

A set of formulas Γ semantically implies a formula ψ if every assignment that satisfies all formulas from 
Γ also satisfies ψ.

Every particular Frege system is defined by a finite set of derivation rules. A derivation rule has form 
ϕ1,...,ϕk

ϕ , where k � 0, ϕ1, . . . , ϕk and ϕ are propositional formulas. It is required that every rule is sound, 
i.e. {ϕ1, . . . , ϕk} semantically implies ϕ.

Let Γ be a list of propositional formulas. We say that ϕ can be derived from Γ if there exists a sequence 
of formulas ψ1, ψ2, . . . , ψs such that ψs = ϕ and each ψi is either an element of Γ or can be derived from 
the formulas with smaller numbers by a derivation rule. It is allowed to substitute propositional formulas 
instead of variables into a derivation rule. A formula τ is derivable if it can be derived from an empty list 
of formulas.

A system of derivation rules is a Frege system if it is implicationally complete: if some set of formulas Γ
semantically implies a formula ϕ, then ϕ must be derivable from Γ.

A depth of a derivation is the maximum depth of a formula that occurs in the derivation. A size of a 
derivation is the sum of sizes of all formulas from the derivation.

Lemma 3. 1. If a formula ϕ has a Frege derivation of size S and depth d, then ϕ has a Pudlák-Buss game 
derivation of size O(S2) and depth d. 2. If ϕ has a Pudlák-Buss game derivation of size S and depth d, 
then ϕ has a Frege derivation of size O(S3) and depth d + O(1).

Proof. 1. Let ϕ1, ϕ2, . . . , ϕs be a Frege derivation of ϕ of size S. We construct a strategy for Pavel. Pavel 
asks Sam values of the formulas ϕ1, ϕ2, . . . until he gets the answer 0. ϕs = ϕ, so at least for ϕs the 
answer is 0. Assume that Sam has answered 1 for the formulas ϕ1, ϕ2, . . . , ϕk and 0 for ϕk+1 where 
0 � k � s − 1. ϕk+1 is derived from ϕ1, ϕ2, . . . , ϕk using one of the rules in Frege system. Let us consider 
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all subformulas of this rule (there is a constant number of such subformulas). Pavel asks Sam values of 
the formulas corresponding to such subformulas in the application of the rule where ϕk+1 is derived. Due 
to correctness of the rules, we get an immediate contradiction. Number of vertices for constructed tree 
is O(S). In every vertex Pavel has asked only subformulas of formulas in the Frege derivation, so size of 
every asked formula does not exceed S and depth does not exceed d. The total size of the game is O(S2)

2. Let T be a tree for Pudlák-Buss game with the initial condition ϕ = 0. Every vertex in the tree corresponds 
to a sequence of questions and answers on the path from the root to this vertex. For the sequence 
ϕ1 = a1, ϕ2 = a2, . . . , ϕj = aj we write a formula ¬(¬ϕ ∧ ϕa1

1 ∧ . . . ϕ
aj

j ), where ψ0 denotes ¬ψ, and ψ1

denotes ψ.
We assume that Frege system includes the rule ¬(x∧y),¬(x∧¬y)

¬x (it can be simulated with derivation 
of constant size and depth due to implicationally completeness of the system). With that rule, formulas 
corresponding to the inner vertices of the tree can be derived from the formulas corresponding to their 
descendants.

We also need to derive formulas in the leaves. Let h be the depth of T . We construct the derivation 
for a leaf using O(h) formulas, because in every leaf we have an immediate contradiction. There exist 
only a constant number of ways to get an immediate contradiction, so we assume that all these axioms 
are present in our Frege system. In order to use these axioms we need to rearrange the formulas in the 
big conjunction and place the formulas needed for immediate contradiction first.

For example, if the immediate contradiction is A = 0, B = 1, A ∧ B = 1, we need to add an axiom 

¬(¬A∧B∧(A∧B)∧X) .
If the tree T has N vertices then the constructed derivation has O(Nh) formulas, and every formula 

has size O(S + h). Given that N � S and h � S, we get a derivation with total size O(S3) �
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