5,684 research outputs found

    Approximating Smallest Containers for Packing Three-dimensional Convex Objects

    Get PDF
    We investigate the problem of computing a minimal-volume container for the non-overlapping packing of a given set of three-dimensional convex objects. Already the simplest versions of the problem are NP-hard so that we cannot expect to find exact polynomial time algorithms. We give constant ratio approximation algorithms for packing axis-parallel (rectangular) cuboids under translation into an axis-parallel (rectangular) cuboid as container, for cuboids under rigid motions into an axis-parallel cuboid or into an arbitrary convex container, and for packing convex polyhedra under rigid motions into an axis-parallel cuboid or arbitrary convex container. This work gives the first approximability results for the computation of minimal volume containers for the objects described

    Complexity and Inapproximability Results for Parallel Task Scheduling and Strip Packing

    Full text link
    We study the Parallel Task Scheduling problem PmsizejCmaxPm|size_j|C_{\max} with a constant number of machines. This problem is known to be strongly NP-complete for each m5m \geq 5, while it is solvable in pseudo-polynomial time for each m3m \leq 3. We give a positive answer to the long-standing open question whether this problem is strongly NPNP-complete for m=4m=4. As a second result, we improve the lower bound of 1211\frac{12}{11} for approximating pseudo-polynomial Strip Packing to 54\frac{5}{4}. Since the best known approximation algorithm for this problem has a ratio of 43+ε\frac{4}{3} + \varepsilon, this result narrows the gap between approximation ratio and inapproximability result by a significant step. Both results are proven by a reduction from the strongly NPNP-complete problem 3-Partition

    TS2PACK: A Two-Level Tabu Search for the Three-dimensional Bin Packing Problem

    Get PDF
    Three-dimensional orthogonal bin packing is a problem NP-hard in the strong sense where a set of boxes must be orthogonally packed into the minimum number of three-dimensional bins. We present a two-level tabu search for this problem. The first-level aims to reduce the number of bins. The second optimizes the packing of the bins. This latter procedure is based on the Interval Graph representation of the packing, proposed by Fekete and Schepers, which reduces the size of the search space. We also introduce a general method to increase the size of the associated neighborhoods, and thus the quality of the search, without increasing the overall complexity of the algorithm. Extensive computational results on benchmark problem instances show the effectiveness of the proposed approach, obtaining better results compared to the existing one

    On the Complexity of Anchored Rectangle Packing

    Get PDF

    Extreme-Point-based Heuristics for the Three-Dimensional Bin Packing problem

    Get PDF
    One of the main issues in addressing three-dimensional packing problems is finding an efficient and accurate definition of the points at which to place the items inside the bins, because the performance of exact and heuristic solution methods is actually strongly influenced by the choice of a placement rule. We introduce the extreme point concept and present a new extreme point-based rule for packing items inside a three-dimensional container. The extreme point rule is independent from the particular packing problem addressed and can handle additional constraints, such as fixing the position of the items. The new extreme point rule is also used to derive new constructive heuristics for the three-dimensional bin-packing problem. Extensive computational results show the effectiveness of the new heuristics compared to state-of-the-art results. Moreover, the same heuristics, when applied to the two-dimensional bin-packing problem, outperform those specifically designed for the proble

    Modeling tensorial conductivity of particle suspension networks

    Full text link
    Significant microstructural anisotropy is known to develop during shearing flow of attractive particle suspensions. These suspensions, and their capacity to form conductive networks, play a key role in flow-battery technology, among other applications. Herein, we present and test an analytical model for the tensorial conductivity of attractive particle suspensions. The model utilizes the mean fabric of the network to characterize the structure, and the relationship to the conductivity is inspired by a lattice argument. We test the accuracy of our model against a large number of computer-generated suspension networks, based on multiple in-house generation protocols, giving rise to particle networks that emulate the physical system. The model is shown to adequately capture the tensorial conductivity, both in terms of its invariants and its mean directionality
    corecore