2,426 research outputs found

    Minimum Convex Partitions and Maximum Empty Polytopes

    Full text link
    Let SS be a set of nn points in Rd\mathbb{R}^d. A Steiner convex partition is a tiling of conv(S){\rm conv}(S) with empty convex bodies. For every integer dd, we show that SS admits a Steiner convex partition with at most ⌈(n−1)/d⌉\lceil (n-1)/d\rceil tiles. This bound is the best possible for points in general position in the plane, and it is best possible apart from constant factors in every fixed dimension d≥3d\geq 3. We also give the first constant-factor approximation algorithm for computing a minimum Steiner convex partition of a planar point set in general position. Establishing a tight lower bound for the maximum volume of a tile in a Steiner convex partition of any nn points in the unit cube is equivalent to a famous problem of Danzer and Rogers. It is conjectured that the volume of the largest tile is ω(1/n)\omega(1/n). Here we give a (1−ε)(1-\varepsilon)-approximation algorithm for computing the maximum volume of an empty convex body amidst nn given points in the dd-dimensional unit box [0,1]d[0,1]^d.Comment: 16 pages, 4 figures; revised write-up with some running times improve

    Approximating the Maximum Overlap of Polygons under Translation

    Full text link
    Let PP and QQ be two simple polygons in the plane of total complexity nn, each of which can be decomposed into at most kk convex parts. We present an (1−ε)(1-\varepsilon)-approximation algorithm, for finding the translation of QQ, which maximizes its area of overlap with PP. Our algorithm runs in O(cn)O(c n) time, where cc is a constant that depends only on kk and ε\varepsilon. This suggest that for polygons that are "close" to being convex, the problem can be solved (approximately), in near linear time

    Convexity preserving interpolatory subdivision with conic precision

    Full text link
    The paper is concerned with the problem of shape preserving interpolatory subdivision. For arbitrarily spaced, planar input data an efficient non-linear subdivision algorithm is presented that results in G1G^1 limit curves, reproduces conic sections and respects the convexity properties of the initial data. Significant numerical examples illustrate the effectiveness of the proposed method

    Inner and Outer Rounding of Boolean Operations on Lattice Polygonal Regions

    Get PDF
    Robustness problems due to the substitution of the exact computation on real numbers by the rounded floating point arithmetic are often an obstacle to obtain practical implementation of geometric algorithms. If the adoption of the --exact computation paradigm--[Yap et Dube] gives a satisfactory solution to this kind of problems for purely combinatorial algorithms, this solution does not allow to solve in practice the case of algorithms that cascade the construction of new geometric objects. In this report, we consider the problem of rounding the intersection of two polygonal regions onto the integer lattice with inclusion properties. Namely, given two polygonal regions A and B having their vertices on the integer lattice, the inner and outer rounding modes construct two polygonal regions with integer vertices which respectively is included and contains the true intersection. We also prove interesting results on the Hausdorff distance, the size and the convexity of these polygonal regions

    Discrete spherical means of directional derivatives and Veronese maps

    Get PDF
    We describe and study geometric properties of discrete circular and spherical means of directional derivatives of functions, as well as discrete approximations of higher order differential operators. For an arbitrary dimension we present a general construction for obtaining discrete spherical means of directional derivatives. The construction is based on using the Minkowski's existence theorem and Veronese maps. Approximating the directional derivatives by appropriate finite differences allows one to obtain finite difference operators with good rotation invariance properties. In particular, we use discrete circular and spherical means to derive discrete approximations of various linear and nonlinear first- and second-order differential operators, including discrete Laplacians. A practical potential of our approach is demonstrated by considering applications to nonlinear filtering of digital images and surface curvature estimation

    Broadcasting Automata and Patterns on Z^2

    Get PDF
    The Broadcasting Automata model draws inspiration from a variety of sources such as Ad-Hoc radio networks, cellular automata, neighbourhood se- quences and nature, employing many of the same pattern forming methods that can be seen in the superposition of waves and resonance. Algorithms for broad- casting automata model are in the same vain as those encountered in distributed algorithms using a simple notion of waves, messages passed from automata to au- tomata throughout the topology, to construct computations. The waves generated by activating processes in a digital environment can be used for designing a vari- ety of wave algorithms. In this chapter we aim to study the geometrical shapes of informational waves on integer grid generated in broadcasting automata model as well as their potential use for metric approximation in a discrete space. An explo- ration of the ability to vary the broadcasting radius of each node leads to results of categorisations of digital discs, their form, composition, encodings and gener- ation. Results pertaining to the nodal patterns generated by arbitrary transmission radii on the plane are explored with a connection to broadcasting sequences and ap- proximation of discrete metrics of which results are given for the approximation of astroids, a previously unachievable concave metric, through a novel application of the aggregation of waves via a number of explored functions
    • …
    corecore