1,922 research outputs found

    Clips: a capacity and lead time integrated procedure for scheduling.

    Get PDF
    We propose a general procedure to address real life job shop scheduling problems. The shop typically produces a variety of products, each with its own arrival stream, its own route through the shop and a given customer due date. The procedure first determines the manufacturing lot sizes for each product. The objective is to minimize the expected lead time and therefore we model the production environment as a queueing network. Given these lead times, release dates are set dynamically. This in turn creates a time window for every manufacturing order in which the various operations have to be sequenced. The sequencing logic is based on a Extended Shifting Bottleneck Procedure. These three major decisions are next incorporated into a four phase hierarchical operational implementation scheme. A small numerical example is used to illustrate the methodology. The final objective however is to develop a procedure that is useful for large, real life shops. We therefore report on a real life application.Model; Models; Applications; Product; Scheduling;

    Effective process times for aggregate modeling of manufacturing systems

    Get PDF

    Existence Theorems for Scheduling to Meet Two Objectives

    Get PDF
    We will look at the existence of schedules which are simultaneously near-optimal for two criteria. First,we will present some techniques for proving existence theorems,in a very general setting,for bicriterion scheduling problems. We will then use these techniques to prove existence theorems for a large class of problems. We will consider the relationship between objective functions based on completion time,flow time,lateness and the number of on-time jobs. We will also present negative results first for the problem of simultaneously minimizing the maximum flow time and average weighted flow time and second for minimizing the maximum flow time and simultaneously maximizing the number of on-time jobs. In some cases we will also present lower bounds and algorithms that approach our bicriterion existence theorems. Finally we will improve upon our general existence results in one more specific environment

    Data-Aware Scheduling in Datacenters

    Get PDF
    Datacenters have emerged as the dominant form of computing infrastructure over the last two decades. The tremendous increase in the requirements of data analysis has led to a proportional increase in power consumption and datacenters are now one of the fastest growing electricity consumers in the United States. Another rising concern is the loss of throughput due to network congestion. Scheduling models that do not explicitly account for data placement may lead to a transfer of large amounts of data over the network causing unacceptable delays. In this dissertation, we study different scheduling models that are inspired by the dual objectives of minimizing energy costs and network congestion in a datacenter. As datacenters are equipped to handle peak workloads, the average server utilization in most datacenters is very low. As a result, one can achieve huge energy savings by selectively shutting down machines when demand is low. In this dissertation, we introduce the network-aware machine activation problem to find a schedule that simultaneously minimizes the number of machines necessary and the congestion incurred in the network. Our model significantly generalizes well-studied combinatorial optimization problems such as hard-capacitated hypergraph covering and is thus strongly NP-hard. As a result, we focus on finding good approximation algorithms. Data-parallel computation frameworks such as MapReduce have popularized the design of applications that require a large amount of communication between different machines. Efficient scheduling of these communication demands is essential to guarantee efficient execution of the different applications. In the second part of the thesis, we study the approximability of the co-flow scheduling problem that has been recently introduced to capture these application-level demands. Finally, we also study the question, "In what order should one process jobs?'' Often, precedence constraints specify a partial order over the set of jobs and the objective is to find suitable schedules that satisfy the partial order. However, in the presence of hard deadline constraints, it may be impossible to find a schedule that satisfies all precedence constraints. In this thesis we formalize different variants of job scheduling with soft precedence constraints and conduct the first systematic study of these problems

    Open queueing networks : optimization and performance evaluation models for discrete manufacturing systems

    Get PDF
    Includes bibliographical references (p. 41-45).Research supported by Fundac̦ão de Amparo a Pesquisa do Estado de São Paulo, Brazil.by Gabriel R. Bitran, Reinaldo Morabito

    Algorithms and complexity analyses for some combinational optimization problems

    Get PDF
    The main focus of this dissertation is on classical combinatorial optimization problems in two important areas: scheduling and network design. In the area of scheduling, the main interest is in problems in the master-slave model. In this model, each machine is either a master machine or a slave machine. Each job is associated with a preprocessing task, a slave task and a postprocessing task that must be executed in this order. Each slave task has a dedicated slave machine. All the preprocessing and postprocessing tasks share a single master machine or the same set of master machines. A job may also have an arbitrary release time before which the preprocessing task is not available to be processed. The main objective in this dissertation is to minimize the total completion time or the makespan. Both the complexity and algorithmic issues of these problems are considered. It is shown that the problem of minimizing the total completion time is strongly NP-hard even under severe constraints. Various efficient algorithms are designed to minimize the total completion time under various scenarios. In the area of network design, the survivable network design problems are studied first. The input for this problem is an undirected graph G = (V, E), a non-negative cost for each edge, and a nonnegative connectivity requirement ruv for every (unordered) pair of vertices &ruv. The goal is to find a minimum-cost subgraph in which each pair of vertices u,v is joined by at least ruv edge (vertex)-disjoint paths. A Polynomial Time Approximation Scheme (PTAS) is designed for the problem when the graph is Euclidean and the connectivity requirement of any point is at most 2. PTASs or Quasi-PTASs are also designed for 2-edge-connectivity problem and biconnectivity problem and their variations in unweighted or weighted planar graphs. Next, the problem of constructing geometric fault-tolerant spanners with low cost and bounded maximum degree is considered. The first result shows that there is a greedy algorithm which constructs fault-tolerant spanners having asymptotically optimal bounds for both the maximum degree and the total cost at the same time. Then an efficient algorithm is developed which finds fault-tolerant spanners with asymptotically optimal bound for the maximum degree and almost optimal bound for the total cost

    Otimização do teor de corte e do sequenciamento de minas subterrâneas

    Get PDF
    Orientador: Priscila Cristina Berbert RampazzoDissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação CientíficaResumo: Métodos de lavra subterrânea são aplicados na extração de vários metais e minerais. O planejamento de métodos subterrâneos difere do planejamento de métodos de superfície pelo fato de que não é necessário extrair todas as áreas de produção dentro dos limites econômicos finais para se ter uma sequência factível, ou seja, nos métodos subterrâneos é fisicamente possível que algumas áreas permaneçam não lavradas mesmo estando dentro do limites econômicos finais. O planejamento estratégico é a área central do planejamento de longo prazo de uma mina e visa definir estratégias de escala de produção, métodos de lavra e de beneficiamento mineral, selecionar as áreas que serão lavradas e otimizar a sequência de lavra destas áreas de produção. Para garantir a viabilidade econômica do empreendimento, o planejamento estratégico deve considerar as características-chave dos empreendimentos de mineração, que são: a necessidade de capital intensivo, o longo período de retorno do investimento e o ativo (reserva) limitado. Essas características devem ser consideradas durante o processo de valoração de um empreendimento mineiro, que normalmente é feito através do cálculo do VPL, valor presente líquido. Dentre as principais alavancas do planejamento estratégico, o teor de corte utilizado na seleção dos blocos que serão lavrados e o sequenciamento de mina são os que geram maior número de opções, fazendo com que avaliações de cenários demandem muito tempo e se tornem inviáveis na prática dada a necessidade de respostas rápidas para tomadas de decisão. Neste trabalho, três diferentes modelos matemáticos são propostos para abordar, de forma conjunta, o problema da seleção dos blocos de lavra de uma mina subterrânea e a otimização do sequenciamento destes blocos. Tais modelos consideram o VPL como principal objetivo a ser maximizado e resultam no uso do teor de corte como fator que equilibra as capacidades de produção dos diferentes estágios de um sistema de mineração. A abordagem matemática adapta a modelagem clássica de problemas de sequenciamento considerando os blocos de lavra como tarefas e as atividades de escavação de galerias (desenvolvimento de acessos) e de produção de minério (lavra) como máquinas. Os modelos propostos são testados com base em casos reais, utilizando-se métodos de solução exata e um algoritmo genético. Os resultados computacionais mostram que o algoritmo genético é mais eficiente do que os métodos exatos, sobretudo para instâncias maiores, mais próximas da realidadeAbstract: Underground mining methods are used at the extraction of many metals and minerals. Underground mining planning differs from surface mining planning mainly because, in the first case, it is not necessary to extract all mining blocks within the ultimate economic limits to have a feasible sequence, i.e., it is physically possible to an underground mine to have some areas left \textit{in situ} even if they are inside the ultimate economic limits. Strategic planning is the core area of long-term mining planning and aims to define the scale of production, mining and processing methods, to select areas that will be mined, and to optimize the mining sequence. To guarantee the economic feasibility of a mining asset, strategic planners must also consider the key aspects of mining businesses, which are: capital-intensive requirements, long-term payback, and limited asset (reserves) life. These characteristics must be considered during the valuation process of a mining asset, which is normally conducted through NPV, net present value, calculations. Among the main strategic planning levers, cut-off grades (used at the selection of blocks that will be mined) and the mine sequencing are the ones that generate the greatest number of options. As scheduling multiple scenarios requires a great deal of time, this is infeasible in real situations given the need for quick responses. In this dissertation, three mathematical models are proposed to tackle, at the same time, two problems: the selection of the mining blocks in an underground mine, and the optimization of their sequence. These models consider NPV as the main objective to be maximized and result in using cut-off grades as a factor that balances the main capabilities of a mining system. The mathematical approach adapts classical scheduling models considering mining blocks as jobs; and tunnels excavation (access development) and ore production (mining) activities as machines. The proposed models are tested, with real cases, using exact-solution methods and a genetic algorithm. Results show that the genetic algorithm is more efficient than the exact methods, especially for greater instances that are similar to real problemsMestradoMatematica Aplicada e ComputacionalMestre em Matemática Aplicada e Computaciona

    Autonomous Finite Capacity Scheduling using Biological Control Principles

    Get PDF
    The vast majority of the research efforts in finite capacity scheduling over the past several years has focused on the generation of precise and almost exact measures for the working schedule presupposing complete information and a deterministic environment. During execution, however, production may be the subject of considerable variability, which may lead to frequent schedule interruptions. Production scheduling mechanisms are developed based on centralised control architecture in which all of the knowledge base and databases are modelled at the same location. This control architecture has difficulty in handling complex manufacturing systems that require knowledge and data at different locations. Adopting biological control principles refers to the process where a schedule is developed prior to the start of the processing after considering all the parameters involved at a resource involved and updated accordingly as the process executes. This research reviews the best practices in gene transcription and translation control methods and adopts these principles in the development of an autonomous finite capacity scheduling control logic aimed at reducing excessive use of manual input in planning tasks. With autonomous decision-making functionality, finite capacity scheduling will as much as practicably possible be able to respond autonomously to schedule disruptions by deployment of proactive scheduling procedures that may be used to revise or re-optimize the schedule when unexpected events occur. The novelty of this work is the ability of production resources to autonomously take decisions and the same way decisions are taken by autonomous entities in the process of gene transcription and translation. The idea has been implemented by the integration of simulation and modelling techniques with Taguchi analysis to investigate the contributions of finite capacity scheduling factors, and determination of the ‘what if’ scenarios encountered due to the existence of variability in production processes. The control logic adopts the induction rules as used in gene expression control mechanisms, studied in biological systems. Scheduling factors are identified to that effect and are investigated to find their effects on selected performance measurements for each resource in used. How they are used to deal with variability in the process is one major objective for this research as it is because of the variability that autonomous decision making becomes of interest. Although different scheduling techniques have been applied and are successful in production planning and control, the results obtained from the inclusion of the autonomous finite capacity scheduling control logic has proved that significant improvement can still be achieved
    • …
    corecore