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Summary

Effective Process Times for Aggregate Modeling of Manufacturing Systems

Modern manufacturing systems are becoming more complex. Analyzing the
flow time and throughput performance may be quite involved. Often it is hard to
predict the impact certain changes may have on the system behavior. Queueing
models are helpful here.

Two classes of queueing models can be distinguished: analytical models and
simulation models. Analytical models are fast to evaluate and need little input,
yet they are not straightforward to develop and adhere to strict assumptions.
Simulation models are more flexible and can be used to model any detail. How-
ever they are computationally expensive, and require a large amount of input
data regarding the shop floor details.

This thesis proposes a method for model aggregation to reduce the number of
details that has to be covered by either the analytical model or the simulation
model. Through aggregation, a workstation is represented by a single effective
process time distribution, which includes all the losses due to the outages such
as setup, machine downs, or operator availability. Key to the methods presented
in the thesis is that the aggregate process time distribution is measurable directly
from shop floor data such as lot arrivals and lot departures at the workstation,
without quantifying the contributing factors. This arrival and departure data
may be obtained from the programmable logic controllers (PLCs) used in the
control system of many manufacturing systems.

For the aggregation, we start from the concept of Effective Process Times (EPT).
The EPT was introduced by Hopp and Spearman (1996, 2001) as the process
time seen by a lot at a workstation from a logistical point of view. Jacobs,
Etman, Van Campen, and Rooda (2001, 2003) showed that effective process times
can be measured without quantifying the individual time losses. In this way,
they were able to measure the process time coefficient of variation at several
single-lot machine workstations in a semiconductor fab. This second moment
of the process time distribution is needed in (analytical) queueing models of

vii



viii summary

manufacturing systems. Van Vuuren (2007) presents analytical queuing models
that use the first two moments of the EPT workstation distributions as input for
finitely buffered workstations (single- or multi-server) and assembly stations.

This thesis further develops the ‘Effective Process Time’ modeling framework for
the performance analysis of manufacturing systems. It presents methods to mea-
sure EPT-realizations for finitely buffered workstations and assembly-stations.
Sample path equations are used to compute the EPT-realizations from three
events: lot arrival times, lot departure times, and process end times. The EPT-
realizations are combined to form EPT-distributions from the mean, variance and
possibly higher moments. Alternatively, distribution functions may be fitted to
the measured EPT. The proposed EPT-method is tested in two industrial cases,
one from the automotive industry and one from light bulb production. The EPT
models provide accurate throughput and flow time approximations.

The thesis shows that the EPT concept may also be used to aggregate only part
of the workstation. A model of a lithography track-scanner combination is pre-
sented in which the litho-cell itself is modeled in detail, but the influence of
the environment is aggregated into a single delay distribution. Typically, for the
inside of the litho cell, a lot of process data is available, whereas of the environ-
ment (the loading) less data is available. The developed models were applied
on a simulation example, and an industrial case, using data obtained from the
Crolles-2 wafer fab. The simulation test case showed that the model is accurate,
and may be used to predict the effect of changes in the machine configuration.
The industry case showed that an accurate flow time approximation could be ob-
tained (with an error of 8% in the flow time approximation). The case revealed
that a significant part of the flow time is due to the environment. Furthermore,
the model was used to calculate a flow time-throughput curve.

Finally, the thesis presents an aggregation model for workstations with integrated
processing machines. Equipment with integrated processing is commonly en-
countered in semiconductor manufacturing. They simultaneously process a flow
of wafers of multiple lots. The proposed aggregate model is a simple G/G/m
queueing system but with the process times depending on the momentary num-
ber of customers in the system. Simulation experiments were conducted on four
test cases (a sequential single server flow line, a short flow line with parallel
servers, a case with four parallel single-server lines and a workstation with par-
allel servers). The third scenario (with four parallel lines) strongly resembles
a workstation of litho cells. The results show that the proposed model gives
accurate flow time approximations. The proposed model is far more accurate
than the standard G/G/m approximation that is typically used.

The research described in this thesis was carried out as part of the STW project
EPT. The project is a collaboration of the Systems Engineering Group at the
department of Mechanical Engineering and the Stochastic Operations Research
Group at the department of Mathematics and Computer Science, both of the
Eindhoven University of Technology.
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Chapter 1

Introduction

Performance analysis of manufacturing systems is becoming increasingly impor-
tant. The last decades, globalization has increased competition on the world wide
market in nearly all industries. Customers demand better products, lower prices
and shorter delivery times. Furthermore, the costs of materials and machines
are increasing. For the production of goods at competitive prices, continuous
improvement of the performance of manufacturing systems is required.

A manufacturing system can be defined as a collection of resources that converts
raw material into a product. Well-known examples are car manufacturing and
semiconductor wafer fabrication, which are among the largest and most cost-
intensive manufacturing systems around the globe. The analysis and control of
such large manufacturing systems is not straightforward. Therefore, from a lo-
gistical and managerial point of view, manufacturing systems are often analyzed
at different levels. Rooda and Vervoort (2007) distinguish four levels, see Figure
1.1:

• At the network level, the manufacturing system is the factory (also referred
to as plant, fabricator, or shortly fab). The elements of the system are areas
and (groups of) machines. This level is also known as the factory level.

• At the sub-network level, the manufacturing system is an area of the factory
with several machines or groups of machines (workstations). The elements
of the system are individual machines. The sub-network level is also known
as the area level.

• At the workstation level, the manufacturing system is a group of machines,

1
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Figure 1.1: Abstraction levels in manufacturing systems (Rooda and Vervoort 2007)

that are typically scheduled as one entity.

• At the machine level, the manufacturing system is the individual machine
(also referred to as equipment or tool). The elements of the system are
components in the machine.

1.1 Performance analysis

Several tools and performance indicators are in use for the performance analysis
of manufacturing systems. Two parameters that are often used are throughput δ

(the number of lots processed per time unit) and mean flow time ϕ (the average
time a lot spends in the system). Throughput δ as well as mean flow time ϕ are
descriptive performance indicators, that is they quantify the performance of the
system. They do not explain why the performance is the way it is, nor do they
assist in finding solutions to improve the performance. For that purpose, other
indicators are used.

A well-known indicator aiding performance improvement is the overall equip-
ment effectiveness (OEE) (Nakajima 1988). The SEMI-E10 and SEMI-E79 norms
(SEMI 2000, 2001) commonly used in the semiconductor industry are for instance
based on the OEE. Recently a revision of the OEE, E, has been proposed by De
Ron and Rooda (2005). The OEE quantifies mean time losses during processing.
Losses are divided into availability losses, performance losses and quality losses.
The OEE readily gives insight in the cause of undesired behavior at workstations.
The OEE quantifies the production capacity losses, which relates to the utilization
of the installed capacity. Note that the OEE does not quantify the variability in
processing which also affects the manufacturing performance.

Workstation utilization and variability are the two basic parameters explaining
the performance of a manufacturing system regarding throughput δ and mean
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flow time ϕ . For a manufacturing system consisting of infinitely buffered work-
stations Equation (1.1), an approximate expression due to Sakasegawa (1977) and
Whitt (1993), is insightful to explain the contribution of utilization and variability
to the flow time performance (Hopp and Spearman 2001):

ϕ =
c2
a + c2

e
2
· u
√

2(m+1)−1

m(1−u)
· te + te. (1.1)

Herein, ca is the coefficient of variation in the inter-arrival times, ce the coefficient
of variation in the process time, m the number of parallel machines, or servers†,
in the workstation and u the utilization, i.e. the ratio between the mean process
time te and the mean inter-arrival time ta multiplied by m:

u =
te

m · ta
. (1.2)

Note that te is the mean effective process time which includes all capacity losses
due to the various outages such as machine breakdowns and setup time. Sim-
ilarly, ce is the coefficient of variation that results from the combination of the
processing and the various outages. The te relates to the OEE (more specifically
the E); for ce no equivalent indicator is in use.

Once the performance of a system is analyzed, one may want to improve that
performance. The performance metrics described above do not provide the pos-
sibility to predict the impact of changes in the system on system performance.
Predicting the changes in system performance may be difficult due to the large
number of processes and the interaction between processes in the manufactur-
ing network. To understand the impact of changes in the system configuration,
queueing models are used.

1.2 Models

For the performance prediction of manufacturing systems, typically discrete
event simulation models (e.g. Kleijnen and Van Groenendaal (1992), Banks
(1999), Law and Kelton (2000), Baines, Mason, and Siebers (2003), Fowler and
Rose (2004)) or analytical queueing models (e.g. Dallery and Gershwin (1992),
Buzacott and Shanthikumar (1993), Gershwin (1994), MacGregor Smith (2005),
Shanthikumar, Ding, and Zhang (2007), Van Vuuren (2007)) are used.

In a simulation model, the relevant shop-floor realities may be included sep-
arately. As a result, the model does not necessarily need to conform to pre-
specified assumptions. However, since a distribution is typically required for
each phenomenon that is modeled, large quantities of data are required to gather

†In this thesis, the words ‘machine’ and ‘server’ are used interchangeably.
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Table 1.1: Properties of model-types (A: Analytical, S: Simulation)
Property A S
Assumptions - +
Amount of input data + -
Computational cost + -
Flexibility in application - +

the input for the simulation model. To an existing simulation model, new details
can be added, thus simulation models are highly flexible. On the other hand,
since each individual lot is tracked through the model, simulation models re-
quire a lot of computational effort. The simulation model is stochastic, so one
needs to run multiple replications to obtain reliable results.

In an analytical model, often a Markov chain is used to represent the system
behavior (Adan 2001). Markov chains with a limited number of states are com-
putationally cheap to evaluate. The input of such a model typically consists of
only mean process times and variances, hence little data is required. The model
provides steady state output, hence no replications are required. However, to
have computationally feasible Markov chains, the model has to adhere to restric-
tive assumptions (such as phase-type distributed process times). Furthermore,
if the configuration of the system is changed, an entirely new Markov chain is
required; adapting the model is not straightforward. In Table 1.1, the properties
of both analytical models and simulation models are summarized.

Both model types have their own specific advantages and disadvantages. Analyt-
ical models are computationally fast, but it is difficult to include many shop-floor
realities in the model. As a result, analytical queueing network models are little
used in manufacturing industry. The gap between model assumptions and shop
floor reality is often considered too large (Fowler and Rose 2004, Shanthikumar
et al. 2007). If one would be able to aggregate the shop-floor realities and the
processing into a single distribution for each workstation, and then be able to
actually measure this aggregate distribution from simple shop-floor events such
as lot arrivals and departures, then this may provide an opportunity to bridge
this gap. Also for simulation models aggregation of shop-floor realities into a
single workstation would be advantageous: a simulation model would require
less input data, while the model becomes computationally cheaper since only
one distribution per workstation is induced. The STW project “Effective process
time” aims to provide such an aggregation method.

1.3 STW project on effective process time

The concept of effective process time (EPT) was first introduced by Hopp and
Spearman (2001). They define the EPT as the time spent by a lot at a worksta-
tion from a logistical point of view. Thus, all time during which a lot claims
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Figure 1.2: Concept of effective process time (picture from Coenen (2004))

machine capacity is included in the effective process time, as is illustrated in
Figure 1.2. Hopp and Spearman show how the EPT of a workstation can be
computed, given distribution parameters regarding the clean process time and
preemptive and non-preemptive outages, as expressed in for instance the mean
busy time between failures tf, the mean time to repair tr and setup ∆u. Other
outages are treated as either preemptive or non-preemptive outages. The notion
of combining all individual influences on processing into a single distribution is
also used in the context of sample path analysis (Chen and Chen 1990, Dallery
and Gershwin 1992, Buzacott and Shanthikumar 1993, Rossetti and Clark 2003).
However, in many practical cases, the outages may not all be quantifiable (Pierce
1994, McMullen and Frazier 1998, Hsieh 2002, Mendes, Ramos, Simaria, and
Vilarinho 2005).

Jacobs et al. (2001, 2003) presented an algorithm to obtain effective process time
distributions for infinitely buffered workstations from simple lot arrivals and
departures. Their method does not require the quantification of the individual
contributing factors. The motivation of their work was to arrive at a measur-
able metric for variability at a workstation (variance in processing), that can
furthermore be used to build abstract but accurate aggregate models. They used
closed form queueing equations, such as Equation (1.1) as well as simulation to
predict the flow time. They feeded their EPT-based models with the first two
moments of the effective process time distribution. Jacobs, Van Bakel, Etman,
and Rooda (2006) extended their method to batch machines. Also several M.Sc.
students contributed to these initial efforts: Van Bakel (2001), Rooney (2002),
Wullems (2002) and Kock (2003). Wullems (2002) and Kock (2003) for instance
started to work on the EPT for finitely instead of infinitely buffered worksta-
tions. Finitely buffered manufacturing lines are, among others, encountered in
automotive manufacturing.

Following up on this initial work, the Systems Engineering group and the Stochas-
tic Operations Research group, both of the Eindhoven University of Technology,
initiated an STW project on the effective process time in 2004. The goal of the
project was to develop an aggregate modeling methodology that enables one to
build simple yet accurate models of manufacturing networks using operational
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data such as arrival and departure events without the need to characterize all
contributing disturbances and shop-floor realities. In the project two parts can
be distinguished:

1. Development of the effective process time paradigm for aggregate modeling
and parameter identification (carried out by the Systems Engineering group
of the department of Mechanical Engineering). The results obtained are
described in the present thesis.

2. Development of efficient queueing network approximations that fit into
the EPT-based aggregate modeling framework (performed by the Stochastic
Operations Research group of the department of Mathematics and Com-
puter Science). Former STW-researcher Van Vuuren (2007) developed sev-
eral new queueing network approximations for finitely buffered single- and
multi-server flow lines, for assembly stations and for workstations with
multiple arrival streams. The methods he developed are based on phase-
type distributions decomposition, aggregation of states, matrix analytical
methods and iterative numerical procedures. The distribution parameters
are only the first two moments, for which the EPT mean and variance will
be used.

1.4 EPT framework

A schematic overview of the EPT framework is presented in Figure 1.3. The box
at the top represents the real-life manufacturing system from which shop-floor
data is obtained. The box at the bottom represents the EPT-based aggregate
model, either a simulation model or an analytical model. The oval boxes in
between represent the EPT-algorithm and the distribution fitting procedure. The
figure emphasizes that the STW-project aims at the development of aggregate
models for which the parameters can be estimated from operational data at the
factory floor. The consecutive steps in the EPT framework are explained further
in detail.

First, based on the manufacturing system under investigation, one defines the
structure of the EPT-based aggregate model. To keep the model intuitive and
computationally cheap, the EPT-based model is kept as simple as possible, that
is, shop-floor realities affecting processing behavior are aggregated in the EPT
as much as possible.

For each workstation defined in the EPT-based model, event data, such as lot
arrivals and departures, are gathered from the manufacturing system. This
event data is used to compute the EPT-realizations per workstation. These EPT-
realizations may then be translated into model-input, by selecting appropriate
distributions and fitting the distribution parameters. The fitted distributions and
parameters are then used in the EPT-based aggregate model. With the model,
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Figure 1.3: Schematic overview of the EPT framework

predictions for throughput, flow time behavior or other desired properties of the
manufacturing system can be made.

The accuracy of the EPT-based aggregate model is evaluated by comparing the
performance indicators estimated by the aggregate model to the performance
indicators observed in the real manufacturing system. If the EPT-based model
approximates the manufacturing system accurately enough, i.e. within a pre-
specified error margin defined by the analyst, the EPT-based model is accepted.
It can then be used for e.g. bottleneck analysis, or predicting the impact of
changes in the system configuration or utilization. If the model is found not
accurate enough, part of the aggregation process may be reconsidered. Possible
solutions include: enhancing the level of modeling detail, acquiring more or
more reliable data or refining the EPT-realizations.

1.5 Contribution and outline of the thesis

In this thesis, the effective process time framework is further developed. For
finitely buffered flow lines, in Chapters 2 and 3 of the thesis, EPT-algorithms are
presented that compute the first two moments of the process time distributions,
required as input for the models developed by Van Vuuren (2007). For single
server flow lines, it is shown that effective process times can be determined from
three types of manufacturing events: lot arrivals, lot departures, and process fin-
ish times. For the multi-server case, it is shown that the single-server procedure
can be used again by sorting the events per server on which the lots are pro-
cessed, and by applying the single-server procedure for each server individually.
The developed EPT-method is applied in two industrial cases, one from the au-
tomotive industry and one from light bulb production. The examples show that
the EPT-based approximation models accurately approximate the flow time be-
havior of the system with approximation errors within a few percent. The cases
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illustrate how the accuracy of the EPT-based model may be enhanced by explic-
itly modeling two product types, and by including the offset and the skewness
as a third and fourth distribution parameter.

In Chapter 4, an EPT quantification method for assembly workstations in finitely
buffered lines is proposed. The effective process time realization only starts run-
ning if all components of an assembly have arrived. Transport times are now
explicitly modeled in the aggregate model. The new EPT-method for assembly
stations is compared to treating the assembly station as an ‘ordinary’ finitely
buffered workstation with the feeding component lines aggregated in the work-
station process time distribution. We apply both alternatives in a case inspired
by the automotive industry. The EPT-based aggregate simulation models are
found to be accurate. Additionally, an EPT-based simulation model is compared
to an EPT-based analytical queueing model such as developed by Van Vuuren
(2007), showing that the models have comparable accuracies.

In semiconductor manufacturing, lithography is one of the main operations in
the process flow. In the lithography area, litho cells are used. A litho cell consists
of a track and scanner. The track is used for pre- and postprocessing of wafers,
while the scanner is used to expose patterns onto the wafer. To this end, several
process steps are carried out on the wafers in the track and the scanner. The litho
cell can be viewed as a finitely buffered flow line. For the litho cell (track and
scanner) this thesis presents a more detailed simulation model in Chapter 5. The
model describes the processing behavior and outages of the track and scanner
part of the litho cell in detail, while an EPT-like aggregation is used to describe
the impact of the shop-floor on the performance of the litho cell. The proposed
simulation model is tested on an industrial case. The model estimates the flow
time of the considered litho cell with an error in the flow time approximation of
8% and in the throughput approximation of 2.6%.

Chapter 6 considers workstations consisting of integrated process type of ma-
chines. Recent developments in semiconductor wafer fabrication have shown a
proliferation in the use of manufacturing tools with integrated process steps. An
example of such an integrated process tool is the aforementioned track-scanner
litho cell. Chapter 6 proposes a new aggregate model that is able to represent
a multi-process step integrated manufacturing system: a G/G/m approximation
with process times depending on the level of work in progress (WIP, or number
of customers in the system) is proposed. An accompanying EPT-algorithm to de-
termine the EPT-realizations for the WIP-dependent G/G/m model directly from
operational factory data is presented. Four test scenarios show that the proposed
aggregate model gives accurate flow time approximations at a utilization region
around the training point (the utilization level at which the EPT-realizations were
measured).

The current status of the STW research on effective process time is summarized
in Table 1.2. In Table 1.2, N refers to the network level of a manufacturing system,
while W refers to the workstation level and M to the machine level.
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Table 1.2: Overview of the STW-project effective process time, categorised by level
Lvl Topic Reference
N Queueing: finitely buffered line Ch. 3, 4 of Van Vuuren (2007)

Queueing: assembly line Ch. 5 of Van Vuuren (2007)
Queueing: multiple arrival streams Ch. 6 of Van Vuuren (2007)

W EPT: infinitely buffered workstations Ch. 3 of Jacobs (2004)‡
EPT: batch processing workstation Ch. 4 of Jacobs (2004)‡
EPT: finitely buffered workstation Ch. 2 and 3 of this thesis
EPT: assembly workstation Ch. 4 of this thesis
EPT: integrated manufacturing Ch. 6 of this thesis
systems

M EPT: detailed litho cell model Ch. 5 of this thesis

1.6 Guidelines for the reader

Chapters 2 to 6 are the research chapters of this thesis. Each research chapter
is either accepted or submitted as a journal paper: Chapter 2 appeared as Kock,
Wullems, Etman, Adan, Nijsse, and Rooda (2008c) and Chapter 3 appeared as
Kock, Etman, and Rooda (2008a). Chapters 4 (Vijfvinkel, Kock, Etman, Van Vu-
uren, and Rooda 2007), 5 (Kock, Veeger, Etman, Lemmen and Rooda 2008d) and
6 (Kock, Etman, Rooda, Adan, Van Vuuren, and Wierman 2008b) are submitted
as journal papers.

Note that each of these chapters is self-contained; after this introductory chapter,
the reader may proceed with any of the chapters. As a consequence, the first
two sections of each of the research chapter are alike to some extent. For each
chapter, we have printed the abstract on the first page of the chapter.

‡The research by Jacobs was carried out as part of STW-project “ADOPT”
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Chapter 2

Finitely buffered, single server flow
lines

The present chapter extends the so-called effective process time (EPT) approach
to single server flow lines with finite buffers and blocking. The power of the EPT-
approach is that it quantifies variability in workstation process times without
the need to identify each of the contributing disturbances, and that it directly
provides an algorithm for the actual computation of EPTs. It is shown that EPT-
realizations can be simply obtained from arrival and departure times of lots,
by using sample path equations. The measured EPTs can be used for bottleneck
analysis and for lumped parameter modeling. Simulation experiments show that
for lumped parameter modeling of flow lines with finite buffers, in addition to
the mean and variance, offset is also a relevant parameter of the process time
distribution. A case from the automotive industry illustrates the approach.

This chapter originally appeared as:
Kock, Wullems, Etman, Adan, Nijsse, and Rooda. Performance Evaluation and Lumped Parame-
ter Modeling of Single Server Flowlines subject to Blocking: an Effective Process Time Approach,
Computers and Industrial Engineering 54 (4): 866-878. 2008
The original publication is available at DOI 10.1016/j.cie.2007.10.016:

http://www.science-direct.com/

11



2: Finitely buffered, single server flow lines 12

2.1 Introduction

Single server workstations with finite buffer sizes in a tandem flow line are an
important class of manufacturing systems. Examples of such flow lines are semi-
synchronous lines and assembly lines, as e.g. encountered in the automotive
industry.

The performance of a flow line is commonly expressed in terms of throughput
and flow time. Both performance indicators are influenced by blocking. The
finite capacity of the buffers in the single server flow lines considered in this
chapter introduces blocking in the line.

Blocking causes suspension of service to a lot (which implies loss of production
capacity) since a finished lot cannot be sent on due to a saturated downstream
buffer. Starvation refers to the situation where processing of the next lot is
suspended due to an empty upstream buffer.

Variability in process times is the main reason that blocking and starvation occur.
The variability of process times can be traced to several common sources. First,
natural process times are variable due to differences in product types, machine
states at product entry, operator behavior etcetera. Furthermore, disturbances
such as setups, preventive maintenance, machine failures and absence of op-
erators occur. These disturbances cause loss of production capacity effectively
available at the workstation and increase the variability of process times, which in
turn decreases the throughput. Subsequent workstations affect one another more
prominently as the variability of process times increases. Variability of process
times on workstation j can cause starvation on workstation j +1. Furthermore,
in a flow line with finite buffers, variability of process times on workstation j
can cause blocking on workstation j−1.

Obviously, for performance analysis of a finitely buffered flow line, an analysis
tool that quantifies both the production losses and the level of variability of
process times is required. A commonly applied performance analysis metric
is the overall equipment efficiency, OEE. However, OEE can only be used for
quantifying production losses. Therefore an alternative analysis tool will be
used in this chapter.

Hopp and Spearman (2001) introduced this alternative concept to account for
irregularities in process times of workstations. The alternative concept, effective
process time (EPT), is defined as the total time seen by a lot at a workstation
from a logistical point of view. Here, total time indicates the total time that
the lot has effectively consumed production capacity of the workstation. EPT is
based on the notion that, from a logistical perspective, a workstation does not
care whether production capacity is claimed since the server is processing the
lot or whether production capacity is claimed by other influences. These other
influences are included in the EPT of the workstation.
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Hopp and Spearman’s notion of including processing disturbances in the effec-
tive process times is not new, see e.g. the work of Chen and Chen (1990), Dallery
and Gershwin (1992), Buzacott and Shanthikumar (1993). The aforementioned
authors all assume, or measure, distributions for the various processing distur-
bances and combine these into one single distribution. However, from industrial
practice, it is often hard, if not impossible, to identify and quantify all individual
disturbances, see e.g. the work of Pierce (1994), McMullen and Frazier (1998),
Hsieh (2002), Mendes et al. (2005).

Starting from the concept of EPT, Jacobs et al. (2001) and Jacobs et al. (2003)
presented a method to translate lot arrivals and lot departures at an infinitely
buffered workstation into an EPT-distribution. The workstation process times
and the disturbances from the factory floor are aggregated into a single dis-
tribution without the need to quantify the individual factors. In automated
manufacturing environments, arrival and departure data are often available.

The obtained EPT-distributions can be used for performance analysis and op-
timization. Based on the characteristic parameters of the EPT-distributions, i.e.
the mean effective process time te and the coefficient of variation ce, a bottleneck
analysis can be performed, after which an approximating model can be used to
predict the changes in system performance. Two types of models may be dis-
tinguished: analytical queueing models and (discrete event) simulation models.
Analytical queueing models are fast to evaluate, usually based on assumptions
such as Markovian process times and Markovian times between failure and times
to repair, see e.g. Chen and Chen (1990), Dallery and Gershwin (1992), Buzacott
and Shanthikumar (1993), Gershwin (1994), Jeong and Kim (1999), Hopp, Spear-
man, Chayet, Donohue, and Gel (2002), Li, Alden, and Rabaey (2005), Diaman-
tidis, Papadopoulos, and Heavey (2007), Van Vuuren (2007). Analytical models
typically require the first two moments of the process times, for which te and ce
can be used. Alternatively, simulation models may be used (Banks 1999, Law
and Kelton 2000). The EPT-distributions may be directly used as input to the
simulation model, either by fitting an appropriate distribution function or by
using the EPT-distribution as an empirical distribution.

This chapter aims to generalize the EPT-approach for application to single server
flow lines subject to blocking. That is, the chapter considers finite buffers rather
than infinite ones. Workstations can no longer be analyzed in isolation due to
the dependencies introduced by blocking. Therefore, an EPT-algorithm for the
blocking case is presented. Furthermore, the effect of the distribution shape on
the accuracy of the EPT lumped parameter (ELP) model is investigated. Two the-
oretical examples and a case from automotive industry are used to illustrate the
EPT-approach. Note that throughout the chapter, mainly the effects of blocking
are discussed since starvation also occurs in infinitely buffered workstations.

The chapter is organized as follows. In Section 2.2, an outline of the EPT-
approach is presented. Subsequently, computation of EPT-realizations for single
server workstations with finite buffers is considered in Section 2.3. EPT-based
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Figure 2.1: Schematic overview of the EPT framework

lumped parameter modeling in the context of finitely buffered flow lines is dis-
cussed in Section 2.4. The concepts discussed throughout this chapter are illus-
trated using the aforementioned examples and case in Section 2.5 and Section
2.6. Finally, Section 2.7 concludes the chapter.

2.2 A framework for implementing EPT

The EPT-approach, based on the concept of Jacobs et al. (2003), consists of four
stages, as visualized in Figure 2.1.

First, EPT-realizations are obtained from the discrete manufacturing system. An
EPT-realization is defined by Jacobs et al. as: ‘the time a lot was in process plus
the time a lot (not necessarily the same lot) could have been in process’. EPT-
realizations can be computed from event data, such as arrivals and departures
of lots on workstations. The EPT-realizations are computed by means of an EPT-
algorithm. The EPT or similar concepts (such as completion time) are used in
sample path analyses of queuing systems. Sample path equations are typically
used to determine lot departures from lot arrivals and the effective process time.
The EPT-concept presented in this chapter uses the sample path equations differ-
ently, that is, effective process times are determined from arrival and departure
data. The sample path equations are thus a means to obtain EPT-realizations
from an operating production system. The operation time as defined by Rossetti
and Clark (2003) is very similar to EPT; however, Rossetti and Clark do not use
it to quantify the level of variability.

Next, the EPT-realizations are fitted to distributions. Here, distributions are
fitted based on relevant workstation properties, such as the mean EPT te and
the coefficient of variation ce. Parameter te quantifies the mean effective capacity
used for a lot by the workstation, ce quantifies the effective variability.
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Subsequently, a so-called EPT lumped parameter (ELP) model can be built using
the fitted distributions, either an analytical queueing model or a (discrete event)
simulation model. This ELP model can be used for performance prediction and
optimization. The structure of the ELP model follows the original system in
terms of the number of servers on each workstation, the buffer sizes of work-
stations, the flow of materials between workstations, etcetera. In this model,
detailed modeling of shop-floor realities such as failures, repairs, setups, opera-
tors and lot sizes is avoided. The various sources of variability are aggregated
into the EPT-distributions of the workstations. Jacobs et al. (2003) used the term
‘meta model’ rather than ‘lumped parameter model’. However, the phrase ‘meta
model’ may suggest that a simplified model is derived from another model.
Since this is certainly not the case, the terminology ‘lumped parameter model’
is used in this chapter. Here, the lumped parameters refer to the distribution
parameters of the EPT-distributions.

Before the ELP model is accepted, it is validated by comparing the throughput
and flow time as estimated by the model to those observed in the actual sys-
tem, since one is interested in how well the lumped parameter model describes
the behavior of the actual system. If the estimated throughput and flow time
are accurate enough, the ELP model and the EPT-distributions are accepted. If
they are rejected, distribution fitting and model building are reconsidered. Pos-
sible changes include enhancing the level of detail of the model or using more
parameters to fit more accurate distributions.

If the EPT-distributions and the ELP model are accepted, they can be used for
performance analysis and optimization. A bottleneck analysis can be carried
out based on the distribution parameters te and ce of the various workstations.
The effect of suggested improvements can be evaluated using the ELP model by
accordingly adjusting the EPT-distribution parameters in the model.

Implementation of the EPT-approach provides several significant advantages.
First, many shop-floor realities are included in the EPT-distributions and thus do
not have to be included explicitly in the ELP model. Now, an ELP model can be
obtained that is accurate, yet simple when compared to the detailed (simulation)
models that are typically used. Second, since the processing disturbances are
included in the EPT-distributions, directly obtained from industrial data, the
EPT-parameters te and ce readily give insight in the behavior of the flow line,
allowing for straightforward bottleneck analysis.

2.3 Measuring EPT

The EPT was introduced by Hopp and Spearman (1996, 2001) to be used in
analytical queuing models. Similar concepts, such as completion time, are used
in sample path equations. In the literature describing such concepts, referred
to in Section 2.1, the respective distributions are assumed to be known a priori.
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However, it is not specified how these distributions should be estimated from
industrial data.

Jacobs et al. (2003) presented a method to compute EPT-realizations for infinitely
buffered, isolated workstations from industrial data. Their method does not
assume the effective process time distributions a priori, but, in a way similar
to using a sample path equation, determines these distributions. For a single
machine workstation, the sample path equation is:

ei, j = di, j−max
(
ai, j,di−1, j

)
, (2.1)

where ei, j denotes the EPT-realization of lot i on workstation j, di, j is the depar-
ture of lot i from workstation j and ai, j is the arrival of lot i on workstation j.
Here, we assume that lots do not overtake. From Equation (2.1), one sees that
an EPT-realization encompasses all time during which the server could have
been processing the lot. For the events holds that ai, j 6 di, j. In case of timeless
transport, di, j−1 = ai, j.

Algorithmic extensions have been presented for workstations with multiple par-
allel servers (Jacobs et al. 2003) and with batching (Jacobs et al. 2006). However,
the algorithms are only applicable to workstations with an infinitely large buffer.
This chapter studies finite buffers, which gives rise to blocking. Due to blocking,
ei, j depends on events occurring on workstation j + 1, rendering the previous
algorithms inapplicable.

Considering finitely buffered workstations, the sample path equation for the
departure of lots is given by (see page 184 of Buzacott and Shanthikumar (1993),
or Adan and Van der Wal (1989)):

D j
i = max

[
max

{
D j−1

i ,D j
i−1

}
+S j

i ,D
j+1
i−b j+1

]
(2.2)

Herein, D j
i is the ith departure from workstation j; the term max(D j−1

i ,D j
i−1)

represents the ithtime at which processing of the lot can start; S j
i represents the

completion time, b j+1 is the total capacity that can be held at workstation j +1,
and D j+1

i−b j+1
is the time of the i− bth

j+1 departure from workstation j + 1, so that
workstation j + 1 has sufficient capacity to receive the ith lot. Substituting our
notation into Equation (2.2), and assuming that lots do not overtake, we obtain

di, j = max
(

max
{

di−1, j,di, j−1
}

+ ei, j,di−b j+1, j+1

)
, (2.3)

or with di, j−1= ai, j,

di, j = max
(

max
{

di−1, j,ai, j
}

+ ei, j,di−b j+1, j+1

)
. (2.4)

Similar to Equation (2.1), processing starts if the lot has arrived and no other
lot occupies the server (at max

(
di−1, j,ai, j

)
). Processing finishes ei, j time units
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later. If processing of the lot is done, the lot could leave workstation j, provided
that the receiving workstation has sufficient capacity. We call this the possible
departure of lot i: pdi, j. This gives

pdi, j = max
(
di−1, j,ai, j

)
+ ei, j

di, j = max
(

pdi, j,di−b j+1, j+1

)
The effective process time of lot i on workstation j is thus computed from:

ei, j = pdi, j−max
(
di−1, j,ai, j

)
. (2.5)

As can be seen, one should replace di, j in Equation (2.1) by pdi, j. Possible oc-
currences of blocking should not be included in the EPT-realization. They are a
physical part of the finitely buffered flow line and will also appear in the EPT-
based lumped parameter (ELP) model. Note that Equation (2.5) can also be used
to compute the EPT for finitely buffered, single server workstations with over-
taking. In that case, the ith EPT-realization on workstation j, ei, j, is computed
from the arrival ai, j and the possible departure pdi, j of the ith processed lot, and
the actual departure di−1, j of the previously processed lot.

2.4 Lumped parameter modeling

Distribution fitting is the second phase of the EPT-approach. The relevant dis-
tribution parameters are estimated based on the measured EPT-realizations and
appropriate distribution functions are proposed.

Process time distributions based on the first two moments of the distribution are
often used in models of manufacturing systems consisting of workstations with
infinitely large buffers. The two-moment fits are supported by queuing theory,
see e.g. Buzacott and Shanthikumar (1993), Sabuncuoglu, Erel, and de Kok (2002)
and Curry, Peters, and Lee (2003).

For workstations in a flow line with finite buffer sizes, distribution fitting could
be more complicated. Due to blocking, workstations are expected to affect one
another more prominently. Therefore, extra information may be needed. Regard-
less, in queuing theoretical approaches, two-moment distribution fits are used
for computational reasons. However, in case of simulation, the use of additional
information, such as higher moments or the offset, may be reconsidered. A typ-
ical example thereof is presented by Kim and Alden (1997). They study constant
natural process times with exponentially distributed times to failure and times
to repair. In the EPT-approach, the sources of disturbances are lumped. In this
respect, no assumptions regarding the distribution of the process times or dis-
turbances are made. The necessity of additional distributional information in
ELP models of finitely buffered flow lines will be studied here.
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Figure 2.2: Influence of the offset parameter on δ and ϕ

Using simulation, the influence of the offset parameter is investigated. The off-
set parameter is chosen since, in practice, many operations require at least a
minimum amount of time. The offset refers to the smallest possible value of a
distribution. The simulation model is a flow line consisting of three unbuffered
single server workstations in which lots do not overtake. The three workstations
have process times distributed according to a shifted Gamma distribution. The
distributional parameters are te = 1.0, ce = 1.0 and offset ∆e, which is varied from
0.0 to 0.9.

The corresponding simulation results are presented in Figure 2.2. The results
show that for large offsets, significant differences in throughput (δ ) and flow
time (ϕ) are observed. Increasing ∆e from 0.0 to 0.9 results in a throughput
increase of 50% and a flow time decrease of 21% (see Figure 2.2).

The observed phenomenon can readily be explained by considering the nature
of the offset. An offsetted distribution consists of a constant part, ∆e, that is
increased by a random variable with mean tl and coefficient of variation cl, where
tl = te−∆e. Since the variance of the process time distribution does not change,
it holds that t2

e c2
e = t2

l c2
l . Now, if tl = 0.1te, c2

l = 100c2
e . Due to the large cl, most

process times will be small (& ∆e), and sporadically a value greatly exceeding the
average (� te) will occur. The sporadic large process time realization therefore
causes massive amounts of blocking on preceding workstations and starvation
on successive workstations. If ∆e = 0.0 however, all process times will be centered
on te. Process times will thus often be larger than te, frequently causing some
blocking and starvation on preceding or successive workstations.

A new set of simulations is used to test the relevance of ∆e. As stated above, one
can expect the shape of the distribution to have more influence if the amount of
blocking and starvation increases. This expectation is investigated using simu-
lation. For a flow line consisting of three finitely buffered workstations with a
single server, the buffer space between WS0 and WS1 and between WS1 and WS2
will be changed. In addition, the level of variability is changed. Process times on
the workstations will have identical te = 1.0. However, ce,i (where i refers to the
workstation number) is chosen at 1.0 at the first workstation, but is varied from
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Figure 2.3: Influence of buffer spaces on δ and ϕ

0.5 to 2.0 at the other two workstations. The throughput and flow time will be
evaluated at offset levels of ∆e = 0.0 and ∆e = 0.9. The corresponding simulation
results are depicted in Figure 2.3.

Several observations can be made from Figure 2.3. The first observation is that
the mean throughput for ∆e = 0.9 approaches the throughput for ∆e = 0.0 as the
buffer space increases.A second important observation, from comparing Figure
2.3(a) to Figure 2.3(c), is that the difference in mean throughput between ∆e = 0.9
and ∆e = 0.0 becomes larger as the squared coefficients of variation are increased.
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A change in the squared coefficient of variation has more effect on performance
for ∆e = 0.0 than for ∆e = 0.9. This observation can be explained by the fact that a
flow line with ∆e = 0.0 is more likely to be blocked than a flow line with ∆e = 0.9.
Since an increase in variability implies an increase in the amount of blocking,
the flow line with ∆e = 0.0 is more heavily affected.

These results, and additional simulation results presented in Kock (2003), imply
that, as the amount of blocking and starvation in the flow line increases (by
reducing buffer space or by increasing the level of variability), the influence of
higher order information of the distribution shape increases.

2.5 Examples

Two examples are presented to validate the computation of EPT-realizations and
to illustrate the EPT-approach.

2.5.1 Example I

Consider a flow line consisting of five workstations labeled WSi for i = 0, . . . ,4.
Each workstation has a buffer of size one and one server. The first workstation is
never starved whereas the final workstation is never blocked. All workstations
have exponentially distributed natural process times with mean t0,i = 1.0 for all i.
The servers are subject to operation dependent failures, with busy time between
failures exponentially distributed with mean tf,i = 7.5 for all i. Once a failure
has occurred, the server is repaired. Repair times are exponentially distributed
with mean tr,i = 2 for all i. After the repair is finished, processing of the lot is
continued for a period of time equal to the remaining process time. The flow
line is represented using a detailed discrete event simulation model, explicitly
modeling the failure and repair behavior. This model will be referred to as the
‘original’ model.

The first stage of the EPT-approach is carried out by applying Equation (2.5) to
the arrival and departure events generated by the original model. This leads to a
large set of EPT-realizations for each of the workstations. During the second stage
of the approach, the realizations are translated into shifted Gamma distributions
with mean te,i, squared coefficient of variation c2

e,i, and offset ∆e,i as presented in
Table 2.1. The te and c2

e values of the table are verified using Equations (2.6) and
(2.8) as presented by Hopp and Spearman (2001). Herein, t0 is the mean natural
process time, c0 is the corresponding coefficient of variation, cr is the coefficient
of variation of the times to repair, and A is the availability. Availability A of
a workstation represents the fraction of time during which the server is able
to perform. It is computed using (2.7). Equations (2.6) and (2.8) give values
te,i = 1.13 and c2

e,i = 1.42 for all i, which corresponds to the measured equivalents
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Table 2.1: Measured EPT-parameters for example I of Chapter 2
WSi ∆e,i te,i c2

e,i
WS0 0.00 1.13 1.41
WS1 0.00 1.13 1.42
WS2 0.00 1.13 1.42
WS3 0.00 1.13 1.42
WS4 0.00 1.13 1.42

in Table 2.1.
te,i =

t0,i

Ai
, (2.6)

Ai =
tf,i

tf,i + tr,i
, (2.7)

c2
e,i = c2

0,i +
(
1+ c2

r,i
)

Ai (1−Ai)
tr,i
t0,i

. (2.8)

Since the natural process times are exponentially distributed, as are the failures
and repairs, the effective process time distributions of the workstations do not
have an offset, i.e. ∆e = 0.0. As can be seen in Table 2.1, the estimated value of
∆e is indeed 0.0.

The original simulation model has δ = 0.495±0.01% and ϕ = 14.15±0.01%. This
implies that, with a probability of 95%, the range (0.49495,0.49505) contains the
true value of δ and the range (14.1486,14.1514) contains the true value of ϕ .

During the third stage of the approach, the approximated distributions are used
as input for a discrete event EPT-based lumped parameter (ELP) model. The
structure of the ELP model follows the structure of the original system, i.e.
five workstations consisting of one buffer space and one server. Servers have
process times distributed according to the shifted Gamma distribution, with
parameters according to Table 2.1. The ELP model approximates δ̃ = 0.491 and
ϕ̃ = 14.26, which means that the difference between the EPT approximation and
the original situation is 0.81% in throughput and 0.77% in flow time. The error
in the approximation is computed by:∣∣∣∣∣δ − δ̃

δ

∣∣∣∣∣ ·100% and
∣∣∣∣ϕ− ϕ̃

ϕ

∣∣∣∣ ·100% (2.9)

Note that Equation (2.9) is used in the remainder of this chapter to compute the
error in approximations.

If both the original system and the ELP model do not contain buffer spaces, the
original model gives performance measures δ = 0.399 and ϕ = 9.23, whereas the
approximation is δ̃ = 0.393 and ϕ̃ = 9.34, giving an error of 1.5% for throughput
and 1.2% for flow time. Increasing the number of buffer spaces on all worksta-
tions to 5 leads to δ = 0.656 and ϕ = 29.72 for the original model compared to δ̃ =
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0.657 and ϕ̃ = 29.76 for the EPT-based lumped parameter model. This is an error
of 0.2% in throughput and 0.1% in flow time. Obviously, the error decreases
as the number of buffer spaces in the line increases, which corresponds to the
observations of Section 2.4.

2.5.2 Example II

Consider a flow line consisting of five workstations WSi for i = 0, . . . ,4. Work-
station WSi has bi buffer spaces and one single server, where [b0,b1,b2,b3,b4] =
[0,2,1,2,1]. The flow line produces two product types, pt0 and pt1 in the de-
terministic sequence [pt0,pt1,pt0,pt1 . . . ]. The first workstation is never starved
whereas the final workstation is never blocked. At WS0, all products are pro-
cessed with exponentially distributed natural process times with mean 1. At WS1
and WS3, natural process times for products of type pt0 are distributed according
to a shifted Gamma distribution with ∆0,0 = 0.6, t0,0 = 1.5 and c2

0,0 = 0.75, whereas
∆0,1 = 0.2, t0,1 = 0.5 and c2

0,1 = 0.75 on these stations for products of type pt1. On
workstations WS2 and WS4, products of type pt0 are processed with natural pro-
cess times according to a triangular distribution with ∆0,0 = 0.4, t0,0 = 0.5 and
maximum 0.6 and thus, c2

0,0 = 6.67× 10−3; for pt1 however ∆0,1 = 1.2, t0,1 = 1.5
and maximum 1.8 giving c2

0,1 = c2
0,0. On WSi for i = 1,2,3,4, a constant setup

time of 0.1 time units is required if the product type is changed. The servers are
subject to operation dependent failures, with busy time between failures expo-
nentially distributed with mean tf,i = 7.5 for all i. Once a failure has occurred, the
server is repaired. Repair times are exponentially distributed with mean tr,i = 2
for all i. After the repair is finished, processing of the lot is resumed at the
point where it was interrupted. Simulation results for the example have been
obtained for 95% confidence levels with a relative width of 1% or less of the
corresponding mean.

First, EPT-realizations are computed for each of the workstations by applying
Equation (2.5) to the arrival events (a) and departure events (pd,d) obtained from
the simulation model. Next, the realizations are translated into shifted Gamma
distributions with mean te,i, squared coefficient of variation c2

e,i, and offset ∆e,i

as presented in Table 2.2. The te and c2
e values of Table 2.2 are verified using

Equation (2.6). To properly apply these equations, the two natural process time
distributions of a workstation are first translated into a general natural process
time distribution. Let X denote the overall natural process time and X0 and X1
reflect the type-specific natural process times. Then

t0,i = E [Xi] , for i = {0,1} , (2.10)

c2
0,i =

E
[
X2

i
]

(E [Xi])
2 −1, (2.11)

E
[
X2]= 0.01+0.1(t0,0 + t0,1)+0.5

(
t2
0,0
(
c2

0,0 +1
)
+ t2

0,1
(
c2

0,1 +1
))

, (2.12)
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Table 2.2: Measured EPT-parameters for example II of Chapter 2 with a single EPT-
distribution

WSi ∆e,i te,i c2
e,i

WS0 0.00 1.27 1.66
WS1 0.30 1.39 1.59
WS2 0.50 1.39 0.82
WS3 0.30 1.39 1.59
WS4 0.50 1.39 0.82

t0 = E [X ] = 0.1+
t0,0 + t0,1

2
, (2.13)

c2
0 =

E
[
X2]

(E [X ])2 −1. (2.14)

Equations (2.6), (2.13) and (2.14) yield te,0 = 1.27, c2
e,0 = 1.66, te,1 = te,3 = 1.39, c2

e,1 =
c2
e,3 = 1.59 and te,2 = te,4 = 1.39, c2

e,1 = c2
e,3 = 0.82. As can be seen in Table 2.2, the

estimated EPT-parameters are correct. When considering the input distributions,
one knows that ∆e,0 = 0.0, ∆e,1 = ∆e,3 = 0.3 and ∆e,2 = ∆e,4 = 0.50, which also
corresponds to the values presented in Table 2.2.

The observed flow line performance is δ = 0.462±0.01% and ϕ = 15.70±0.01%.
This implies that, with a probability of 95%, the range (0.46195,0.46246) contains
the true value of δ and the range (15.69843,15.70157) contains the true value of
ϕ .

Next, shifted Gamma distributions with parameters as presented in Table 2.2 are
used as input for an ELP model. The ELP model approximates δ̃ = 0.444 and
ϕ̃ = 16.74, which means that the difference between the EPT approximation and
the original situation is 4.0% for throughput δ and 6.6% for flow time ϕ .

Part of these errors can be explained as follows. Firstly, the ELP model assumes
identically and independently distributed (iid) process times on all workstations.
In the case considered here, each lot is of a different type than the preceding
one. Since ti,0 differs from ti,1 for i = 1,2,3,4, a correlation is expected between
successive process times on a workstation. Due to the assumption of iid process
times in the ELP model, these correlations between successive process times on
a workstation are neglected. Secondly, in the ELP model, the process times of
one lot on the successive workstations are assumed to be independent. In the
original model however, process times for one lot on successive workstations are
correlated due to the type-specific natural process times. The lumped parameter
model again does not incorporate this correlation.

The error in the approximation can be reduced by fitting EPT-distributions for
each product type per workstation. The new distributional properties are pre-
sented in Table 2.3. Comparing these values with Equations (2.13) and (2.14)
again shows that the estimated values are correct. Inserting the distribution
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Table 2.3: Measured EPT-parameters for example II of Chapter 2 with deterministic
lot type sequence and product type specific EPT–distributions

pt0 pt1
WSi ∆e,i te,i c2

e,i ∆e,i te,i c2
e,i

WS0 0.00 1.27 1.66 0.00 1.27 1.66
WS1 0.70 2.03 1.07 0.30 0.76 1.63
WS2 0.50 0.76 1.11 1.30 2.03 0.42
WS3 0.70 2.03 1.07 0.30 0.76 1.63
WS4 0.50 0.76 1.11 1.30 2.03 0.42

properties of Table 2.2 into the lumped parameter model yields δ̃ = 0.460 and ϕ̃

= 15.78, which is an error of 0.4% for throughput and 0.5% for flow time.

The latter procedure is repeated for different levels of buffering. If both the
original system and the lumped parameter model contain no buffer spaces, the
original model gives performance measures δ = 0.364 and ϕ = 10.16, whereas
the approximation finds δ̃ = 0.358 and ϕ̃ = 10.29, giving an error of 1.7% for
throughput and 1.0% for flow time. Increasing the number of buffer spaces on
all workstations to 5 leads to δ = 0.565 and ϕ = 25.06 for the original model
compared to δ̃ = 0.565 and ϕ̃ = 25.05 for the approximation. This is an error of
less than 0.1% for both throughput and flow time. These results correspond to
the observations of Section 2.4.

2.5.3 Implications

Two main observations can be derived from the examples presented here. First,
the measured EPT-parameters comply with the analytically calculated parame-
ters. Secondly, adding detail to the ELP model, by using product type specific
EPT-distributions, results in more accurate approximations.

2.6 Industrial case

A case from an automotive manufacturing plant will be used to illustrate the
practical applicability of the EPT-approach.

2.6.1 System description

Experimental data has been obtained from one of the clients of Steelweld B.V.
This particular client produces two types of cars, called pt0 and pt1 in the re-
mainder of this section. Focus is on a small semi-synchronous flow line within
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the manufacturing plant. On this flow line, referred to as FL in the remain-
der of this section, lots are produced according to a constant product mix, i.e.
pt0/(pt0 +pt1) = 0.57. The actual sequence of lots is determined by an overhead
scheduler. Since the scheduler is not considered in this case, the stream of lots
entering the system will have a random lot type sequence.

FL consists of a transport system and eleven workstations in tandem (i.e. se-
quential). The workstations are labeled WS0 to WS10. Here, WS1 and WS2 are
manual workstations, served by one operator. Workstations WS7 and WS8 are
single buffer positions. WS0 and WS5 are handling workstations. Workstation
WS10 is used for (occasional) manual quality checks. All other workstations in
the line are used for spotwelding.

2.6.2 First stage of the EPT-approach

The event data needed for the EPT analysis is obtained from the programmable
logic controllers (PLCs) within FL. In their present configuration, only possible
departures and actual arrivals can be measured using the PLCs; the actual depar-
tures thus would have to be reconstructed. However, since the workstations can
contain at most one lot at a time, one knows that ai, j will always exceed di−1, j,
hence di−1, j is not required for determining EPT-realizations. However, di−1, j
should be known on the last workstation so that flow times can be computed for
validation.

The actual arrival occurs only after transport from the sending workstation to the
receiving workstation has ended. Therefore, if the logged actual arrival and pos-
sible departure are used, transport is excluded from the EPT-realization. How-
ever, the work cycle of these unbuffered workstations always begins with trans-
port. Therefore, the actual arrival should be adapted so that the EPT-realization
will include transport. Transport takes a fixed, known amount of time ∆min,
the value of which will not be reported here for reasons of confidentiality. By
decreasing ai, j with ∆min, transport is included in the EPT.

No data was available for WS7 and WS8. Therefore, WS5 is the last workstation on
which actual departures can be computed. Hence, workstations WS6 and above
will not be studied in the case.

Since not all gathered events are useable, the data must be filtered. First of all, a
number of the events result in EPT-realizations that are unrealistically low or even
negative if either possible or actual arrivals are registered too late. Furthermore,
since the machines are reliable, large EPT-realizations due to failures and repairs
only occur sporadically. Since only a few of these realizations occur within the
considered time period, no reliable statistics concerning these high realizations
can be obtained. EPT-realization ei, j is thus only used during the analysis if it
satisfies Equation (2.15), hence machine failures are excluded.
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Table 2.4: Automotive case: Fitted distributions
WSi te,i c2

e,i ∆e,i te,i/∆e,i

WS0 82.73 0.106 57.19 1.45
WS1 76.78 1.259 27.61 2.78
WS2 94.32 0.765 19.72 4.78
WS3 116.61 0.149 90.71 1.29
WS4 112.09 0.077 78.88 1.42
WS5 130.82 0.021 114.37 1.14

∆min 6 ei, j 6 ∆max (2.15)

2.6.3 Second stage of the EPT-approach

Distribution fitting, the second stage of the EPT-approach, is done by computing
the values for ∆e, te and c2

e per workstation from the obtained filtered EPT-
realizations, as presented in Table 2.4. On workstations WS1 and WS2, the values
for c2

e are high: these are manual workstations, where only one of the two product
types is processed. Due to the manual labor, variance for the product that is
processed is already high; however the c2

e-value is increased even further since
the second product type has very low process times on the workstation. The
other workstations are robotic workstations, which explains the low values for
c2
e . The data in Table 2.4 have been slightly rescaled, in order to respect the
confidentiality of the data. Based on this data, shifted Gamma distributions
were fitted for all workstations.

2.6.4 Third stage of the EPT-approach

In the third stage, the shifted Gamma distributions with parameters as presented
in Table 2.4 are used as input for an EPT-based aggregate model, a discrete event
simulation model in this case. The structure of the model is identical to the
structure of FL, i.e., six unbuffered single server workstations in a flow line.

A distribution capturing the starvation observed on the first workstation has been
obtained from the data to model the starvation of the first workstation in the flow
line. In order to obtain this starvation distribution, a filter similar to Equation
(2.15) has been applied. The starvation distribution has properties ts = 63.63,
c2
s = 2.564 and ∆s = 29.58. If it is starving, the first workstation requests a lot
from the generator. The generator sends a lot on to the first workstation after an
appropriate period of starvation. Similarly, for the final workstation in the flow
line, a distribution capturing the observed blocking is obtained. The parameters
of this blocking distribution are tb,5 = 15.10, c2

b,5 = 8.04 and ∆b,5 = 1.97.
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Table 2.5: Automotive case: Fitted distributions for two types
pt0 pt1

WSi te,i c2
e,i ∆e,i te,i/∆e,i te,i c2

e,i ∆e,i te,i/∆e,i

WS0 86.01 0.139 59.16 1.45 78.42 0.041 57.19 1.37
WS1 40.46 1.400 27.61 1.47 127.52 0.362 67.05 1.90
WS2 138.68 0.157 86.76 1.60 38.08 0.308 19.72 1.93
WS3 112.59 0.243 90.71 1.24 121.87 0.036 92.68 1.31
WS4 105.67 0.021 78.88 1.34 121.89 0.119 110.43 1.10
WS5 134.26 0.016 120.29 1.12 126.30 0.023 114.37 1.10

The true mean flow time ϕ of FL is determined by computing the individual
flow times from the obtained data and deleting the unrealistic flow times. Flow
time realizations are thus again filtered using a filter similar to Equation (2.15).
Due to filtering, some EPT-realizations are discarded during data analysis. Con-
sequently, the mean throughput cannot be computed as the amount of bodies
produced during the measured time period. Instead, mean throughput δ will be
computed by determining the mean interdeparture time of bodies on workstation
WS0.

The ELP model underestimates the throughput δ̃ by less than 1.0%, whereas
the flow time ϕ̃ is overestimated by 3.7% (simulation results presented in this
section have a confidence level of 99% and a relative width of less than 0.1% of
the mean). As can be seen, only a small error remains in the approximation.
This error can partially be explained using the inter- and intra-correlations of
workstations, as was presented in Section 2.5.2. To improve on this, type-specific
EPT-distributions can be fitted, as presented in Table 2.5. The new distributions
are used in the ELP model. The model now overestimates both δ̃ and ϕ̃ by
less than 1.0%. By adding more detail, the approximations have become more
accurate.

2.6.5 Fourth stage of the EPT-approach

A bottleneck analysis is performed, after which the suggested improvements
are simulated by accordingly changing the EPT-distributions. It is used to de-
termine which workstations are the major restrictions on throughput and flow
time. Workstations with high te or c2

e are potential bottlenecks since they may
cause starvation or blocking.

Using the information of Table 2.5, one can see that the values of te range from
38.08 to 138.68. Out of this range, acceptable values of te seem to lie between 100
and 125 s (although lower values are obviously desirable). Therefore, parameters
te,1,1, te,2,0, te,5,0 and te,5,1 are reduced to 125.00 s. Here, the first index refers to
the workstation number, the second index to the product type. Furthermore,
Table 2.5 illustrates that for most situations, c2

e < 0.25. Reduction of c2
e,1,1 and
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c2
e,1,2 to 0.25 is assumed to be feasible, whereas it is assumed that c2

e,1,0 can be re-
duced to 0.75. The suggested changes have been implemented in the ELP model.
Implementation of these changes would, according to the ELP model, result in
an increase of 3.5% in δ and a decrease of 4.0% in ϕ . The simulation study
with the unscaled data predicted improvements of the same order of magni-
tude; which was further confirmed (for the throughput) during implementation
on the factory floor; the flow time was not studied during implementation.

2.7 Conclusions

A new method for performance analysis and lumped parameter modeling of
single server flow lines subject to blocking has been proposed. The method
is based on the effective process time (EPT). In previous work, EPT has only
been considered for infinitely buffered, isolated workstations. Here, a calculation
method for EPT-realizations for single server flow lines subject to blocking has
been presented and validated. The method translates event data (actual and
possible arrivals and departures of lots) into EPT-realizations using sample path
like equations.

The EPT of a lot is the time experienced by the lot on a workstation from a
logistical perspective. It is implemented by means of an approach consisting
of four stages, the so-called EPT-approach. In the first stage, EPT-realizations
are gathered from industrial data. Next, the realizations are translated into
distributions. Typically, distributions are fitted using the first two moments (te,
ce). Simulation results however show that for flow lines subject to blocking the
offset ∆e should be used as an additional distribution parameter. In the third
stage, an ELP model can be built and validated. Finally, in the fourth stage, the
flow line can be optimized.

The EPT-approach has been applied to a case study taken from automotive in-
dustry. The ELP model accurately estimated both throughput and flow time.
Adding more detail to the ELP model (i.e. including product type-specific shifted
Gamma distributions) further reduced errors to less than 1.0%. Based on the
EPT-approach, changes in te and c2

e were proposed to increase throughput and
to decrease flow time. The presented industrial case shows that the concept
can be applied in an industrial context. In the following chapters, we further
extend the method to other types of workstations, including finitely buffered
multi-server stations and assembly stations where material flows converge.



Chapter 3

Finitely buffered, multi-server flow
lines

An effective process time (EPT) approach is proposed for aggregate model build-
ing of multi-server tandem queues with finite buffers. Effective process time
distributions of the workstations in the flow line are measured without iden-
tifying the contributing factors. A sample path equation is used to compute
the EPT-realizations from arrival and departure events of lots at the respective
workstations. If the amount of blocking in the line is high, the goodness of
the EPT-distribution fits determines the accuracy of the EPT-based aggregate
model. Otherwise, an aggregate model based on just the first two moments of
the EPT-distributions is sufficient to obtain accurate predictions. The approach
is illustrated in an industrial case study using both simulation and analytical
queueing approximations as aggregate models.

This chapter originally appeared as:
Kock, Etman, and Rooda. Effective Process Time for Multi-Server Flowlines with Finite Buffers.
IIE Transactions 40 (3):177-186. 2008
The original publication is available at DOI 10.1080/07408170701488029:

http://informaworld.com
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3.1 Introduction

Multi-server tandem queues with finite buffers commonly occur in industrial
practice. The performance of these lines is typically expressed in terms of
throughput and flow time. Irregularities in processing play a key role in the
throughput and flow time performance. The blocking of workstations may oc-
cur due to a limited buffer capacity.

The performance prediction of finitely buffered multi-server tandem queues is
typically performed using discrete-event simulation models (e.g., Banks (1999),
Law and Kelton (2000), Baines et al. (2003)) or queueing models. Simulation mod-
els are usually more accurate than queueing models since they can incorporate
more shop floor effects. However, queueing models tend to be computationally
far less expensive than simulation models. Both types of models have to be fed
with appropriate data on processing, disturbances and other effects that occur
on the shop floor. The methods reported in the literature either assume a dis-
tribution or measure individual influences on processing (Chen and Chen 1990,
Dallery and Gershwin 1992, Buzacott and Shanthikumar 1993).

In industrial practice, it is often hard to identify and quantify all relevant shop
floor details that contribute to the flow time performance of the workstations.
Jacobs et al. (2001, 2003) present an algorithm to obtain effective process time
distributions for infinitely buffered workstations from lot arrivals and departures.
The advantage of their method is that it does not require the quantification of
the individual contributing factors. The motivation of their work is to arrive at
a measurable metric for variability at a workstation (variance in processing).

In this chapter we generalize this concept to build Effective Process Time (EPT)-
based aggregate queueing models of finitely buffered, multi-server tandem flow
lines. Using an aggregation based on the EPT paradigm (Hopp and Spearman
1996, 2001), we aim to arrive at simplified queueing models, either simulation
or analytical, for which the aggregate process time distribution parameters can
be obtained from shop floor event data, such as arrivals and departures.

The contribution of the chapter is two-fold. First, we show that a sample path
equation can be used to compute EPT-realizations in multi-server workstations
with blocking. Second, we investigate the influence of the shape of the EPT-
distribution fit on the accuracy of the EPT-based aggregate queueing model. In
particular we consider the offset (i.e., the smallest measured EPT-realization) as
a third distribution parameter in a shifted gamma distribution in addition to
the EPT mean and variance. The accuracy of both the mean flow time and the
variance of the flow time prediction are considered.

The chapter is structured as follows. First we present our proposed aggregate
modeling approach using the EPT, and discuss the applicability of the aggrega-
tion. Then, calculation of the EPT is presented. This is followed by several exam-
ples to experimentally investigate the role of the shape of the EPT-distribution
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fit on the accuracy of the aggregate model prediction. Next, in an industrial
case problem, the use of EPT-distributions in queueing models and simulation
models is illustrated. Finally the main conclusions and some remarks on future
work are offered.

3.2 Aggregate modeling using the EPT-approach

Queueing models are used in the prediction of flow line performance. Two well-
known classes of models are discrete event simulation models and analytical
queueing models.

A simulation model is a representation of the operation of an actual real-world
system (Banks 1999) , in our case a manufacturing flow line. In a simulation
model, various shop floor details may be modeled in detail. As an example we
cite Baines et al. (2003) who included operator behavior in their model. Gen-
erally authors attempt to include the most important effects in their model so
as to arrive at an accurate simulation model representation of the factory floor.
A drawback is that running a simulation model to obtain statistically relevant
outcomes may become computationally expensive. An additional difficulty is
to obtain all the required data about the shop floor details for inclusion in the
model. In practice, some of the data may be difficult to obtain.

Analytical queueing models are an interesting alternative to simulation models.
One may distinguish between exact and approximate analytical models. Exam-
ples can be found in Dallery and Gershwin (1992), Buzacott and Shanthikumar
(1993), MacGregor Smith (2005), Van Vuuren, Adan, and Resing-Sassen (2005)
and Van Vuuren and Adan (2005b). Analytical models cannot give as detailed a
description as simulation models since they generally contain restrictive assump-
tions on the details of shop floor behavior that may be included. However, if
one can limit the number of states in the model then analytical queueing models
are less computationally expensive to evaluate compared to a simulation model.
In some cases even exact or explicit approximative expressions can be derived.
Even though the number of parameters in analytical models is typically much
smaller than in simulation models, feeding the model with appropriate data is
then not trivial.

We aim at an aggregate modeling approach that enables one to obtain its param-
eters from simple events that are readily measurable from the shop floor such
as lot arrivals and departures. For this we start by considering the EPT as the
aggregate process time distribution.
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3.2.1 Concept

The EPT aggregates the raw processing time and all the shop floor operations
and disturbances that hamper the processing operation under study, into a single
process time distribution. Examples of operations and disturbances are machine
breakdowns, setup, rework, operator availability, lot size, metrology, tool change,
etc. The combining of multiple phenomena into a single distribution is referred to
as aggregation. The EPT concept was introduced by Hopp and Spearman (2001),
although the concept of aggregation is of course not new. Hopp and Spearman
defined the EPT of a lot as “the time spent by the lot on a workstation from a
logistical point of view.” They give explicit expressions to compute the mean EPT
and the EPT coefficient of variation under various outages, either preemptive or
non-preemptive. They use the EPT mean and EPT variance in explicit queueing
approximation equations, such as Kingman’s equation, to estimate and explain
the mean flow time performance.

In many practical cases, the outages may not all be quantifiable. Nevertheless,
aggregation approaches (such as the EPT) are appealing, in particular if the EPT
can be measured without identifying the contributing factors. For workstations
with infinite buffers, a method to actually do this was first proposed by Jacobs
et al. (2001, 2003). From lot arrival and departure events they calculate an EPT-
realization for each departing lot. By collecting consecutive EPT-realizations, a
workstation EPT-distribution is obtained. All influences on processing at the
workstation are then aggregated into the EPT-distribution.

This idea may be further generalized into an EPT-based aggregate modeling
framework. Then the EPT is not only used as a performance metric that quantifies
the effective workstation capacity (mean) and variability (variance), but also to
build an aggregate simulation or analytical queueing model. So the idea is
that the EPT is a measurable quantity on the factory floor and the aggregate
queueing model can stay simple while being fed directly with parameter values
obtained from the measured EPT-distributions. The basic approach we propose
is as follows.

Step 1 Measure arrival and departure events at the workstations in the manu-
facturing system, and for multi-server workstations register which lot was
processed on which machine.

Step 2 Translate the events into EPT-realizations, one for each departing lot.

Step 3 From the EPT-realizations, compute the mean and variance.

Step 4 Build an aggregate queueing model, either simulation or analytical, using
the measured EPT means and variances of the workstations.

In this chapter we develop an EPT-based aggregate modeling approach for multi-
server tandem flow lines subject to blocking. Blocking refers to the situation
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where a lot cannot leave a machine when its processing on that machine is
finished since the receiving buffer of the subsequent station is full. As a conse-
quence, the server cannot commence processing a new lot. Blocking can have a
large impact on throughput and flow time performance.

For the aggregate model building of flow lines with blocking we will in particular
consider approximative analytical queueing methods such as those developed by
Van Vuuren and Adan (2005b) and Van Vuuren (2007). These methods require as
input for the workstations the mean and variance of the process time for which
we will obviously use the EPT mean and variance. The authors demonstrated,
using a range of test problems, the accuracy of their approximation compared
to a simulation model representation. A clear advantage of such an analytical
approximation is the speed of evaluation compared to running a simulation
model.

In the following discussions we will use the following notations and definitions.
The mean of the EPT-distribution is denoted as te. The ratio of m (the number
of parallel machines in a workstation) to te quantifies the mean effective capacity
available at the workstation. The ratio of the raw processing time t0 and the
mean effective process time te quantifies the capacity loss. The latter ratio relates
to the industry metric OEE (see e.g., SEMI (2000)) and the revision E proposed
by De Ron and Rooda (2005). The squared coefficient of variation of the EPT-
distribution is denoted as c2

e . Following Hopp and Spearman (2001) we refer
to this as a quantification of the variability in processing. We call the model in
which certain shop floor behaviors are not included explicitly but represented by
an aggregate EPT-distribution, an EPT-based aggregate model or simply an EPT-
based model. The structure of the EPT-based model (i.e., material flows, number
of workstations, number of servers per workstation and number of buffer spaces)
is identical to the original system (or detailed model of the original system).
Finally, the queuing performance is expressed in throughput (δ (lots/hour)) and
flow time (ϕ (hours)).

3.2.2 Considerations

For certain cases, shop floor behaviors may be aggregated without a significant
loss of accuracy. For an M/G/1 workstation the mean flow time depends solely
on the first two moments of the process time distribution. For a multi-server
station with generally distributed arrivals (G/G/n) this remarkable property is
approximately still valid, provided that the service times and arrivals are phase-
type distributed (Adan 2001, Van Vuuren and Adan 2005a). Hence, the perfor-
mance is predicted accurately as long as the first two moments of the process
time distribution are known, regardless of the shape of the distribution func-
tion. This implies that, for workstations with infinite buffers, it is sufficient to
fit a two-moment distribution (e.g., a gamma distribution) to the measured EPT-
realizations.
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For finitely buffered flow lines this shape independence property may no longer
hold. As a consequence, the first two moments (mean and variance) may not
be sufficient to obtain accurate predictions from the aggregate queueing model.
In this case the EPT-distribution has to be described more accurately by using a
higher-order distribution fit. For instance, in most manufacturing lines, process-
ing at the workstations takes at least some minimum time. The shift or offset
may be included as a third parameter in the distribution fit to account for this,
e.g., using a shifted gamma or other type of distribution. In Section 3.4 we in-
vestigate in further detail the contribution of the offset to the mean flow time for
flow lines subject to blocking.

Alternatively, one may decide to include one or more shop floor behaviors ex-
plicitly in the aggregate queueing model. For instance, if different lot types give
rise to different processing characteristics, one can fit a separate (two-moment)
distribution for each lot type. The lot type then becomes an integral part of the
aggregate model. For a simulation aggregate model, this poses no additional
difficulties. For an analytical aggregate model, new model equations may need
to be derived to account for the shop-floor behavior that becomes part of the
aggregate model (lot type in the example).

One may also want to leave out a certain shop floor behavior from the EPT-
distribution and measure and model it separately. This happens when the time
scales of events are different. For instance, when the machines are highly reli-
able, machine breakdowns occur only very infrequently. Thus, it may happen
that for the measurement period under consideration, one may have produced
thousands of lots (and thus have obtained the same number of EPT-realizations)
while only a couple of machine breakdowns have occurred. If the breakdowns
have a significant effect on the shape of the EPT-distribution, but only a few
actual breakdown events occur, then no statistically reliable distribution param-
eter estimates can be obtained. Data on the breakdown behavior should then
be collected separately on a different time scale, and be excluded from the EPT.
Again, the breakdown then has to be modeled explicitly in the aggregate model.
Note in this respect the analytical queueing approximations developed by Tolio,
Gershwin, and Matta (2002).

Taking these considerations into account, the EPT-approach may be recast in the
following manner:

Step 0 Define the structure of the model, and define which shop-floor realities or
disturbances are to be modeled explicitly and thus are to be excluded from
aggregation in the EPT.

Step 1 Measure arrival and departure events at the workstations in the manufac-
turing system; for multi-server workstations register which lot was pro-
cessed on which machine; obtain data regarding the explicit realities.

Step 2 Translate the events into EPT-realizations, one for each departing lot.
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Step 3 Fit for each workstation a suitable distribution to the measured EPT-realizations.

Step 4 Build an aggregate queueing model, either simulation or analytical, using
the fitted EPT-distributions.

Step 5 If the EPT model is sufficiently accurate, stop. Otherwise, return to Step 4
and reconsider the distribution fitting or go back to Step 0 and reconsider
the aggregation.

Preferably we start by building the simplest possible model, and refine this model
when necessary. The accuracy of an EPT-based model may be validated by
comparing the estimated throughput and flow time to the throughput of the
actual system and the flow time of the lots in the actual system. We will mainly
focus on mean throughput and mean flow time. Additional information, such as
higher moments or the offset, may be also considered but, as we will show, the
required quality of the EPT-distribution fit regarding the actual shape becomes
more pronounced.

3.2.3 Application

Once a suitable EPT-based model is obtained, it can serve two main purposes.

First, the obtained EPT-parameters provide insight into the performance of the
flow line. Parameter te details the average amount of time claimed by a lot at
the workstations. The workstation that has the lowest effective capacity is the
actual bottleneck. Parameter c2

e quantifies the amount of variability associated
with the effective processing of lots. Workstations with a high value for c2

e may
be a problem since they interrupt the steady flow of lots.

Second, the EPT-based model may be used to predict the effect of changes in the
line configuration or in numerical optimization procedures. Accurate but quick
to evaluate models are then a prerequisite. An analytical model has a great
advantage in such cases when compared to a simulation queueing model.

3.3 EPT computation for finitely buffered worksta-
tions

Jacobs et al. (2001, 2003) compute EPT-distributions for infinitely buffered multi-
server workstations in isolation. They present an EPT-algorithm that computes
an EPT-realization for each departing lot. Their algorithm is based on the obser-
vation that as long as there are lots in the workstation then capacity is claimed.
Each arriving lot starts a new capacity claim if the number of lots in the work-
station is less than the number of installed servers. Each departing lot ends its
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capacity claim. Thus, the number of ongoing capacity claims is equal to the
minimum of the number of lots in the system and the number of servers. The
method proposed by Jacobs et al. (2001, 2003) also incorporates time losses due
to dispatching issues (assignment of lots to machines) in the EPT, for instance for
the case where a server is available for processing but none of the lots waiting in
the queue is ever processed on that particular machine. We will refer to this as
a violation of the EPT non-idling assumption as we explain later in this section.

Workstations subject to blocking cannot be considered in isolation. We therefore
follow a different approach to calculate their EPT values. We show that a simple
sample path equation can be used to compute the EPT-realizations in a flow line
subject to blocking. The key observation when blocking is present is that the
EPT excludes time losses due to blocking. Blocking is excluded since it is due
to the finite nature of the buffers. The EPT-based model will also have the same
finite buffers, which means that the blocking phenomenon is already covered in
the structure of the EPT-based aggregate model. For similar reasons, starvation
of a workstation should not be included in the EPT.

3.3.1 EPT for finitely buffered, single server workstations

The EPT for a finitely buffered workstation is computed using three events: the
possible departure pdi, j (the time epoch at which workstation j finishes process-
ing the ith lot and tries to send it on to the next workstation in the line); the actual
departure di, j (the time epoch at which the ith lot physically leaves workstation
j); and the actual arrival ai, j (the time epoch at which the ith departing lot enters
(the buffer of) workstation j). If no blocking occurs, pdi, j = di, j holds since the
receiving workstation has sufficient capacity available to receive the lot. Note
that, if transport is instantaneous, di, j equals ai, j+1.

An EPT-realization ends upon the possible departure of the respective lot. The
EPT-realization begins at the time at which the workstation could have started
processing the lot, that is either at the moment that the lot arrived in the buffer
or the moment that the preceding lot was finished. Thus, the EPT-realization
begins at maxai, j,di−1, j and ends at pdi, j. The EPT-realization due to the ith lot
departure from the workstation can then be computed from:

ei, j = pdi, j−max
{

ai, j,di−1, j
}

, (3.1)

which is a reverse use of the sample path equation for finitely buffered, single-
server workstations (Buzacott and Shanthikumar 1993, Adan and Van der Wal
1989); instead of computing departure events, we compute EPT-realizations.
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3.3.2 EPT for finitely buffered, multi-server workstations

Calculation of EPTs for multi-server workstations subject to blocking can be done
using the same equation. First, sort the processed lots by the machine they were
processed on and then apply Equation (3.1) for each machine in the workstation.

This approach to calculating the EPT-realizations per machine assumes that lots
waiting in the queue will be processed on the next available machine. This is
often referred to as the non-idling assumption. Note that in our case the non-
idling assumption has to be interpreted from the EPT point of view. From an
EPT point of view the state of a machine that finishes processing a lot changes
from busy to available. The machine is from an EPT point of view busy again
when the next lot to be processed is present in the queue. Consider a workstation
with two parallel machines, with two lots on the workstation. From an EPT point
of view, one assumes that both machines process one lot. However, due to lot-
dedication, it may be possible that in reality both lots are processed sequentially
on the same machine. Then, the EPT non-idling assumption is violated.

The EPT non-idling assumption is violated when a machine becomes available
and lots are present in the buffer but none of these lots are processed on the
available machine. By applying Equation (3.1) to each machine separately this
particular loss of capacity is not accounted for in the EPT and has to be accounted
for separately. This case will not be further considered in this chapter.

Finally, if we have an infinitely buffered workstation instead of a finitely buffered
one, pdi, j may be replaced by di, j in Equation (3.1). When the EPT non-idling as-
sumption is satisfied, then it can be shown that using Equation (3.1) is equivalent
to the algorithm proposed by Jacobs et al. (2003)

3.4 Examples

In this section, the applicability of the EPT-method for finitely buffered, multiple-
server flow lines is evaluated using several examples. First, we briefly illustrate
that Equation (3.1) provides the correct EPT-parameters. Next, we show that
EPT-based models for finitely buffered flow lines may require more input than
just the first two moments of the EPT-distribution.We study this more extensively
using the “offset” as the third distribution parameter. Finally, we show that the
variance of the flow time distribution may also be approximated using the EPT-
approach.
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3.4.1 Validation of Equation (3.1)

Consider a two-workstation flow line. The first workstation, which consists of
a single server, is never starved. The service time at the first workstation is
exponentially distributed with mean process time λ−1 = 1.00 hours/lot. The
second workstation, which is never blocked, consists of two (identical) parallel
servers and a single buffer space. The process times are again exponentially
distributed, with mean process time µ = 2.05 hours/lot.

Following the EPT-approach, events are measured per lot per workstation. These
events are the actual and possible departures, and the arrivals. The collected
events are used as input data for Equation (3.1), with which EPT-realizations are
computed. The gathered EPT-realizations are represented as gamma distribu-
tions. For the first workstation, the mean effective process time we measure is
te,0 = 1 hour; whereas the squared coefficient of variation is c2

e,0= 1. For the sec-
ond workstation, parameters te,1 = 2.05 hours and c2

e,1 = 1 are measured. These
values correspond to the input given above.

3.4.2 Influence of the shape of the EPT-distribution

Consider a line consisting of three unbuffered workstations. The first workstation
is never starved, the third workstation is never blocked. The first workstation
contains one machine, the second and third workstation each contain two ma-
chines. The clean process time on the first workstation is triangularly distributed
with minimum 0.9, maximum 1.1 and modus 1.0. On the second and third work-
stations, the process time is also triangularly distributed, but now with minimum
1.8, maximum 2.2 and modus 2.0.

On all machines, a setup is required after every tenth lot that has been processed.
A setup is triangularly distributed with minimum 0.5, maximum 1.5 and mean
1.0. Machines are prone to failure. The busy time between failures is expo-
nentially distributed on each machine with mean tf = 15.0. After a failure, the
machine is repaired and the repair time is exponentially distributed with mean
tr = 3.0. After a repair, processing of the lot is resumed from the point at which
it was left. For this system, the simulated mean flow time is ϕ = 7.111. The 95%
confidence interval of the simulation results presented in this section is less than
1% of the corresponding parameter.

From this system, EPT-realizations were obtained using Equation (3.1). The
mean and variance of the distributions were te,0 = 1.292, c2

e,0 = 0.777, te,1 = 2.490,
c2
e,1 = 0.400, and te,2 = 2.492, c2

e,2 = 0.405 for the three workstations respectively.
These values were inserted in an EPT-based model. The model approximates
ϕ̃ = 7.563 hours. Hence, it overestimates the flow time by 6.4%.

From our measurements, we know that in the real system, the smallest EPTs
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Figure 3.1: Influence of buffer size on throughput δ and flow time ϕ for a three
workstation flow line

measured at the workstations (referred to as offset) were respectively ∆e,0 = 0.9,
∆e,1 = 1.8 and ∆e,2 = 1.8. However, this knowledge is not used in the EPT-based
model. By fitting a shifted gamma distribution (Christensen 1989), this offset can
be included in the EPT model. The estimated parameters of the shifted gamma
distribution are ∆e,0 = 0.9, te,0 = 1.292,c2

e,0 = 0.777,∆e,1 = 1.8, te,1 = 2.490,c2
e,1 = 0.400

and ∆e,2 = 1.8, te,2 = 2.492,c2
e,2 = 0.405. Then, the EPT-based model approximates

ϕ̃ = 7.223. Now, the mean flow time is only overestimated by 1.6%. Inclusion of
the offset here improves the accuracy of the EPT model.

3.4.3 Relevance of the offset

In many practical cases, a minimum (positive) value for the process time distri-
bution is present (processing requires at least a fixed minimum amount of time).
As the previous example illustrates, for flow lines subject to blocking the shape
of the EPT-distribution may need to be represented in more detail than obtained
by just using the first two moments to obtain a sufficient prediction accuracy
of the EPT-based model. In this subsection, we experimentally investigate the
contribution of the offset. Our hypothesis is that the shape of the process time
distribution (i.e., inclusion of the offset in this example) becomes increasingly
important when the flow times on one workstation heavily affect the flow times
on other workstations, i.e., when blocking occurs. The stronger the blocking
effect, the stronger we expect the shape of the EPT-distribution fit to impact the
accuracy of the EPT-based model.

First, consider a three-workstation flow line with one server per workstation.
Process times are distributed with a shifted gamma distribution with a mean of
one and a squared coefficient of variation of one. The offset (or shift) is taken
at 0.0 and 0.9. In Figure 3.1, we see that the influence of the offset is reduced
if the buffer size is increased for both the throughput and flow time. Increasing
the buffer level corresponds to decreasing the amount of blocking. Hence, this
observation confirms our hypothesis.
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Figure 3.2: Relative difference between a ten-station flow line with and without inclu-
sion of an offset of 0.9 for various levels of variability. The workstation parameters
are te = 1.0 and capacity of 1.

Next, consider a ten-workstation flow line with n∈ {1,2, . . . ,10} servers per work-
station. Each workstation has one buffer space. Process times are distributed
according to a shifted gamma distribution with a mean of one and a squared
coefficient of variation of c2

e ∈ {0.5,1.0,2.0} and offsets (shifts) of 0.0 and 0.9 re-
spectively. The results are displayed in Figure 3.2, where dδ = δ∆e= 0.0−δ∆e=0.9

δ∆e=0.0
and

dϕ = ϕ∆e= 0.0−ϕ∆e=0.9
ϕ∆e=0.0

From this figure, we see that the influence of the offset be-
comes smaller when there are more parallel servers in the system. Including
extra parallel servers leads to a reduction in blocking. Again, this observation
confirms our hypothesis. A second observation from Figure 3.2 is that, if the
level of variability in the line (i.e., c2

e) is reduced, the relevance of the offset also
becomes smaller. Reducing the variability implies that the level of blocking is
also reduced. Hence, again our hypothesis is confirmed.

From these experiments, we conclude that the offset only needs to be included
in the EPT-distribution fit if the amount of blocking is high, that is, for few
parallel servers, small buffer sizes and high levels of variability. Otherwise, an
EPT-distribution that is fit with just the mean and variance is sufficient. This
does not only hold for the offset but also for the distribution shape in general.
The advantage is then that analytical queueing models based on the first two
moments of the process time distribution, such as proposed by Van Vuuren and
Adan (2005b) and Van Vuuren (2007), can be used.

3.4.4 Estimation of the variance of the flow time

Estimation of the variance of the flow time is relevant for instance in the con-
text of customer reliability. In this example, we experimentally investigate the
possibility of estimating the second moment of the flow time. Reconsider the
three workstation example of Section 3.4.2, where the first workstation consists
of one server, while the second and third workstation both have two servers. All
three workstations are unbuffered. For that system,we obtained ϕ =7.111. The
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Figure 3.3: Layout of the industrial case study

variance of the flow time can also be measured: S2
ϕ = 8.611.

If we build an EPT-based model using solely te and c2
e , then we approximate ϕ̃

= 7.563 and S̃2
ϕ = 6.457, which are respectively an overestimation of 6.4% and

an underestimation of 25%. By explicitly including the offset in the EPT-based
model using a shifted gamma distribution, we approximate ϕ̃ = 7.223 and S̃2

ϕ=
8.120, an overestimation of 1.6% and an underestimation of 5.7% respectively.

Including more detail in the distribution fit further enhances the accuracy of
the EPT-based model. Therefore, using the work of Osogami and Harchol-Balter
(2006), we fit a shifted Erlang-Coxian distribution to the EPT of a machine. Then,
we obtain ϕ̃ = 7.118 and S̃2

ϕ = 8.434, an overestimation of 0.1% and an underes-
timation of 2.1% respectively. We see that by describing the EPT-distribution in
greater detail, the prediction accuracy of the EPT model increases. To accurately
predict the variance in the flow time a more detailed distribution fit is required
compared to predicting just the mean flow time. Refer to Blom (2007) for more
results on this subject.

3.5 Industrial lamp socket case

The proposed method is tested on a second case inspired by industry practice.
The industrial case considers a manufacturing line for lamp sockets (see Van
Vuuren (2003)). The layout of the case is shown in Figure 3.3.

At supply station S0, sheets of aluminum are die-cut into small cylinders. The
rolls of aluminum sheet arriving at S0 are large enough to safely assume that
S0 is never starved. The lots of cylinders are transported to W0, where a screw
thread is cut into the cylinders. Then, the lamp sockets are placed inside a glass
oven (W1), and a small amount of liquid glass is poured into the sockets. At
W2, the finishing bath, the socket is soaked in a solvent of either nickel or stain.
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Table 3.1: Lamp-socket case: Parameters of the workstations
Station m b µ0 µb λ0 p λ1

[lot/hr] [fails/hr] [reps./hr] [reps./hr]
S0 2 1 5.89 0.016 2 0.2 0.8
W0 4 2 1.54 0.003 2 0.4 0.8
W1 1 4 3.56 0.040 2 0.8 1
W2 1 1 32.67 0.020 12 0.5 1
W3 1 4 16.44 0.040 12 0.5 3

Finally, at W3, lots are packed into boxes and stored for shipping. It is assumed
that W3 is never blocked.

Workstation S0 has two parallel servers. At W0, lots can be placed in a finite
buffer of capacity two; the workstation has four parallel machines. W1 has a
finite buffer of capacity four, and one server. W2 has a single server and a single
buffer space; finally W3 has a single server and four buffer spaces. Note that
each single lot in this case corresponds to 6000 bulbs. The process times are
approximately constant on the workstations, aside from the failure behavior.
The time consumed by a lot on the workstation is thus accurately captured by
the clean process time, the busy time between failures (exponentially distributed)
and a description of the failure behavior.

In this chapter, failure behavior is assumed to consist of up to two exponentially
distributed stages. First, when a machine experiences a breakdown an operator
will check whether he or she can make an emergency repair, with rate λ0. With
probability p, the emergency repair suffices and the machine is fixed. With
probability 1− p, the repair is not sufficient and a professional mechanic has to
be notified. This mechanic repairs the machine in the second stage with rate λ1,
and repairs the machine with a probability of one. The respective parameters for
all workstations are presented in Table 3.1. In the table, b refers to the number
of buffer spaces per workstation, m refers to the number of parallel machines, µ0
is the inverse of the clean process time and µb is the inverse of the mean time to
failure.

A detailed simulation model was built using the simulation modeling language
χ − 0.8 (Hofkamp and Rooda 2002). In the detailed model, workstations have
clean process times modified by failures and repairs as quantified in Table 3.1.
In this case, the detailed simulation model was treated as the real-life situation,
from which the a, pd and d events were measured for each workstation. Using
the EPT-algorithms presented in Section 3.3, the EPT-realizations for all work-
stations were gathered. These EPT-realizations were fitted into (shifted) gamma
distributions. The obtained EPT-parameters are reported in Table 3.2. The fol-
lowing EPT-based aggregate models were built: a simulation model in which
the offset is incorporated in the EPT-distribution fits (this model is referred to as
EA-1); a simulation model in which the offset is included in the EPT-distribution
fit at W1,W2 and W3 (referred to as EA-2); a simulation model in which the EPT-
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Table 3.2: Lamp-socket case: EPT-parameters of the workstations
Workstation te [hr] c2

e [-] ∆e[hr]
S0 0.1738 0.3572 0.1698
W0 0.6518 0.0143 0.6494
W1 0.2888 0.1497 0.2809
W2 0.0310 0.7141 0.0306
W3 0.0614 0.0988 0.0608

Table 3.3: Lamp-socket case: estimated throughput δ̃ and flow time ϕ̃

Parameter Original EA-1 EA-2 EA-3 EA-4
δ (δ̃ )[lots/hr] 3.460 3.460 3.460 3.462 3.453

ϕ (ϕ̃)[hr] 4.138 4.138 4.139 4.136 4.04

distribution fits have no offsets (i.e., all shifts in the shifted gamma distribution
are set to zero) (called EA-3); and a queueing approximation model using the
approach of Van Vuuren and Adan (2005b) (labeled EA-4).

Simulation results comparing the four EPT-based models to the detailed model
are presented in Table 3.3. These results show that all models are very close to
each other, since the amount of blocking and starvation of the bottleneck work-
station (W1) is low. The low level of blocking and starvation is reflected by the
obtained throughput (δ = 3.460), which is nearly equal to the theoretical upper
bound for the bottleneck (δmax = (te/m)−1 = 0.2888−1 = 3.462). This illustrates
that in a (highly) unbalanced line, the level of blocking and starvation at the
bottleneck workstation is decisive for the relevance of the offset.

This assertion was tested by changing the configuration of the line. First, the
clean process times were changed to make the line more evenly balanced. Fur-
thermore, in order to increase the variance in the line, the mean times between
failure were decreased. The changes are given in Table 3.4, along with the new
EPT-parameters. The new results of the four EPT models, compared to the orig-
inal model, are presented in Table 3.5. The relevance of the offset has indeed
increased. However, the influence is still reasonably small: for EA-3 the ap-
proximation error has grown to 14% for flow time and 4% for throughput. The
queueing model (EA-4) tries to approximate the behavior of EA-3. The error
present in the queueing approximation happens to cancel out the error induced
by neglecting the offset. In other cases, the two errors may add up. Summariz-
ing, the case study illustrates that, for moderate levels of variability and moderate
levels of buffering, the shape of the distribution fit (in this case represented by
the offset) is not very influential on the prediction of the flow line performance.
The EPT-based aggregate models still provide accurate approximations.

The EPT-parameters of Table 3.2 can be used to perform a bottleneck analy-
sis.Workstations with a low effective capacity re j = m j/te, j (with m j being the
number of servers at workstation j) or high c2

e, j are potential bottlenecks. A
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Table 3.4: Lamp-socket case: changed workstation parameters and resulting EPT-
parameters

Station µ0 [hr] µb [hr] te [hr] c2
e [-] ∆e [hr]

S0 1.78 0.50 0.9836 1.1637 0.5618
W0 0.89 0.10 1.2639 0.2196 1.1236
W1 3.56 0.60 0.3990 1.1670 0.2809
W2 3.56 0.30 0.3301 0.8500 0.2809
W3 3.56 0.60 0.3230 0.2468 0.2809

Table 3.5: Lamp-socket case: estimated throughput δ̃ and flow time ϕ̃ after changes
Parameter Original EA-1 EA-2 EA-3 EA-4

δ (δ̃ ) [lots/hr] 1.925 1.931 1.899 1.860 1.933
f t (ϕ̃) [hr] 5.586 5.467 5.503 6.396 6.09

closer look at these bottleneck stations may reveal options for improvement. Be-
fore they are implemented on the shop floor, the effects of changes in te and c2

e
can be predicted using the EPT-based aggregate model.

3.6 Conclusion and future work

Process time distributions play a key role in the throughput and flow time perfor-
mance of a multi-server tandem queue subject to blocking. In industry practice,
often only average production losses are quantified. In this chapter, an EPT-
approach was proposed that enables one to measure aggregate process time
distributions of workstations which incorporate outages that delay the process-
ing without the need to quantify each of the contributing factors. The mean and
variance of a measured EPT-distribution quantify the effective workstation capac-
ity and variability, respectively, which can be used for bottleneck analysis. The
measured EPT-distributions may also be fitted using a suitable distribution func-
tion for EPT-based aggregate model building. The EPT-based aggregate model
can be either a simulation or an analytical queueing model with the advantage
that it does not require the explicit modeling of the shop floor details that are
covered by the EPT-distributions.

The EPT-distribution of a finitely buffered, multi-server workstation can be de-
termined using three manufacturing events: (i) the arrival of a lot in (the buffer
of) the workstation; (ii) the moment in time at which processing of the lot is
finished; and (iii) the departure of the lot from the workstation. Using a simple
sample path equation, these events can be translated into EPT-realizations.

For performance prediction using the EPT-based queueing model, often just the
first two moments of the EPT workstation distributions suffice. Then, compu-
tationally cheap queueing models, such as those proposed by Van Vuuren and
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Adan (2005b) and Van Vuuren (2007), can be used with the measured EPT mean
and variance as input parameters. However, if blocking plays a major role in
the system, then the shape of the EPT-distribution needs to be represented more
accurately. This happens when buffer sizes are small or zero, variability is high
and only few (or just one) parallel servers are present at a workstation.We have
illustrated this in examples using the offset as a “third” distribution parame-
ter, representing a minimum positive process time. We also showed that the
EPT-distribution shape needs to be represented in greater detail if an accurate
prediction of, for instance, the variance of the flow time is desired.

The EPT-based models presented in this chapter assume that the EPT non-idling
assumption holds. This implies that, from an EPT point of view, a server is not
idle if an unprocessed lot is in the buffer. This assumption may be violated when
one machine has a long breakdown and the other machine(s) in the workstation
take over. Jacobs et al. (2003) proposed a method to cope with such a situation
for infinitely buffered multi-server workstations.

The method developed in this chapter is potentially very interesting for perfor-
mance analysis of asynchronous assembly lines, as for instance encountered in
automotive industry. Assembly of various components into an assembled part
occurs at various stages of production. The next chapter investigates the EPT of
an assembly machine, and the role of transport therein.
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Chapter 4

Assembly lines

In many manufacturing systems, assembly is used to merge components. Mul-
tiple lines feed an assembly workstation that combines various components into
a part. We propose an approach for performance measurement and prediction
of finitely buffered assembly lines, with particular focus on the assembly sta-
tion. The proposed method is based on the effective process time (EPT). We
aggregate the various types of disturbances on the shop-floor into workstation
EPT-distributions. For this, we contribute a model that builds EPT-distributions
for each separate workstation, both in the main line and in the feeding lines.
Equations are presented to compute the EPT-realizations at the assembly station.
Two examples show that accurate, yet simple approximation models can be built
of assembly lines using the proposed method. The proposed EPT-method also
provides new opportunities to derive analytical queueing approximations for
assembly lines.

This chapter is submitted as:
Vijfvinkel, Kock, Etman, Van Vuuren, and Rooda. Performance measurement and prediction of
finitely buffered asynchronous assembly lines: an effective process time approach. submitted 2008
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4.1 Introduction

Assembly lines play a major role in the manufacturing of various types of prod-
ucts. Assembly lines are used to merge components, either into a new, big-
ger component or an end-product. Thus, in an assembly line, material flows
converge. Assembly lines can be categorized as either synchronous lines or
asynchronous lines. In a synchronous line, products are transported from all
workstations at the same time; the bottleneck workstation determines the speed
of the other workstations. In an asynchronous line, transport of products be-
tween workstations need not occur at the same time for all workstations. In this
chapter, we consider performance analysis of asynchronous, finitely buffered as-
sembly flow lines.

Throughput and flow time are two measures that quantify the overall perfor-
mance of a manufacturing line. Throughput is the number of lots that are
processed per unit of time; flow time refers to the mean time spent by a lot
(or, a product) in the manufacturing line. Due to the finite buffercapacity in
the line, capacity losses due to e.g. machine downs, setup, or rework, and the
corresponding variability may cause blocking in the system. Blocking implies
that a workstation cannot start processing a new part, the finished (old) part
remains on the workstation since the buffer of the downstream workstation is
full. This results in throughput loss in the overall system, and consequently also
in an increase in the average flow time. Therefore, one has to carefully monitor
capacity losses and variability at workstations in the manufacturing line, and
take appropriate actions where necessary.

In several industries, it is nowadays good practice to quantify capacity losses
through the overall equipment effectiveness (OEE) (SEMI 2000). The OEE is a
performance measure that quantifies average production losses and splits them
into availability losses, performance losses and quality losses. The OEE is highly
suited to identify the various types of disturbances that cause capacity losses.
However, the amount of variability in processing that results from the distur-
bances is not quantified.

Aside from performance measurement, performance prediction and performance
optimization through the use of models is typically desired. Queueing models
can be used to predict the effect of changes in the configuration of the manu-
facturing line on its performance. For asynchronous assembly lines subject to
blocking, one may distinguish discrete-event simulation (see e.g. Banks (1999),
Law and Kelton (2000)) and analytical queueing approximation models, see e.g.
Chen and Chen (1990), Dallery and Gershwin (1992), Buzacott and Shanthiku-
mar (1993), Gershwin (1994), Kim and Alden (1997), Li (2004), Li et al. (2005),
Diamantidis et al. (2007), and Van Vuuren (2007). Queueing approximation ap-
proaches are often based on aggregate model descriptions. One of the main
problems is how to provide the appropriate distribution data, in which the vari-
ous shop-floor realities are included. Typically, restrictive assumptions are made.
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On the other hand, simulation approaches allow incorporation of the various
shop-floor realities, see e.g. Pierce (1994), McMullen and Frazier (1998), Banks
(1999), Law and Kelton (2000), Hsieh (2002) and Mendes et al. (2005). However,
these realities need to be properly quantified. In large-scale manufacturing sys-
tems, it is difficult to keep such data up to date, and often it is not feasible at all.
Shanthikumar et al. (2007) surveyed data collection as one of the challenges in
queueing modeling of complex manufacturing systems. In addition, simulation
models are computationally expensive compared to queueing approximations.

In this chapter, we follow an aggregate modeling approach that requires the pa-
rameters in the aggregate model to be obtained from simple, measurable events
from the shop-floor, such as arrivals and departures of lots at workstations. We
refer to this approach as the Effective Process Time (EPT) approach. This ap-
proach combines both the data collection and the performance prediction, and
aims to arrive at simple, fast and accurate models, either simulation or analytical
queueing models.

Jacobs et al. (2001, 2003, 2006) considered the EPT of isolated workstations with
an infinite buffer. Starting from the EPT concept of Hopp and Spearman (2001),
they proposed algorithms to measure the effective process time at a workstation
without identifying the individual contributing phenomena. They considered
both single-lot and batching-type machines. Chapters 2 and 3 extended this
work to finitely buffered manufacturing flow lines with one or multiple single-
lot server(s) per workstation. Their research, in a way, starts from a reverse
approach of the sample-path analysis.

By measuring simple events from the shop-floor, Chapters 2 and 3 obtained effec-
tive process time distributions. The measured EPT-distributions provide a great
deal of information on the workstations investigated and the behavior of the
manufacturing flow line. First, the mean effective process time te indicates the
average time that a workstation effectively requires to process a lot (which relates
to the mean capacity), and thus can be used in a bottleneck analysis. Second,
the coefficient of variation of the distribution, c2

e , quantifies the effective level of
variability in the workstation. The first two moments of the effective process time
distribution can be perfectly used in analytical queueing approximations. This
may yield efficient and accurate approximations for finitely buffered manufac-
turing flow lines. But the EPT-based aggregate model may also be a simulation
model, which becomes very easy to develop.

This chapter extends the EPT-approach to asynchronous manufacturing flow
lines subject to blocking that include assembly workstations where several mate-
rial flows merge into one. First, the effective process time approach is discussed
in further detail. Next, a procedure to obtain EPT-realizations from assembly
workstations with transport systems is proposed. The simulation results that
are presented for two examples show that the EPT-based aggregate model is an
accurate approximation of the original detailed assembly line.
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Figure 4.1: Schematic representation of the EPT–approach

4.2 The effective process time

Hopp and Spearman (2001) define the effective process time (EPT) as “the time
spent by a lot on a workstation from a logistical point of view”. The EPT in-
cludes all disturbances on processing into a single distribution. The notion of
combining all individual influences on processing into a single distribution is
also used in the context of sample path analysis (Chen and Chen 1990, Dallery
and Gershwin 1992, Buzacott and Shanthikumar 1993). Here, it is referred to as
completion time, processing time or service time. EPT can be measured from a
manufacturing line using the EPT-approach.

The ideas and assumptions underlying the EPT-approach are described in de-
tail in Chapter 2. Here we summarize the approach by means of Figure 4.1.
Four steps are distinguished. The first step in the EPT-approach is to mea-
sure EPT-realizations from an existing, operating manufacturing system. An
EPT-realization represents the time a lot consumed capacity from the respec-
tive workstation. EPT-realizations are obtained from event data, such as arrivals
and departures of lots on workstations. For manufacturing flow lines subject
to blocking, Chapters 2 and 3 show that sample path equations can be used
to compute the EPT-realizations. So, instead of computing departures from ar-
rivals and effective process times with the sample path analysis, the equations
are used reversely to reconstruct the effective process times from the departure-
and arrival-events measured in the production system.

The second step is to fit the EPT-realizations to distributions. Here, distribu-
tions are fitted based on relevant workstation properties. As discussed above,
the relevant parameters are usually the mean EPT te and the squared coefficient
of variation c2

e . Chapters 2 and 3 showed that the offset (i.e., the smallest mea-
sured effective process time of a lot) ∆e may, for finitely buffered, single-server
workstations, also be relevant for distribution fitting. They compared simulation
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results for flow lines with and without an offset. They observed differences in
throughput of up to 50%, in particular if buffer sizes are small, or even zero, just
a single server is present in the workstations, and variability of the workstations
is high.

In the third step, an EPT-based aggregate model is built from the measured EPT-
distributions. The model may be a simulation model or an analytical queueing
model. The EPT-distributions are measured directly from the operational manu-
facturing system, without quantifying the individual disturbances on the shop-
floor. The EPT-based model is typically used for performance analysis of the
current configuration of the manufacturing system. The structure of the EPT-
based aggregate model follows the original system to a large extent (e.g. the
number of servers at each workstation, the buffer sizes of workstations and the
flow of materials between workstations). In the aggregate model, detailed model-
ing of shop-floor realities such as failures, repairs, setups, operators and lot sizes
is avoided. The complex workstation behavior, the shop-floor realities included,
is described in the EPT-distributions of the workstations.

The fourth step is to validate the EPT-based aggregate model by comparing the
throughput and flow time as estimated by the model to the throughput and flow
time observed in the actual system. If the estimated throughput and flow time
are found to be accurate enough, the aggregate model and the EPT-distributions
are accepted. If not, distribution fitting and aggregate model building are recon-
sidered. Possible changes include enhancing the level of detail of the model (e.g.
excluding specific shop-floor realities from the EPT-realization) or using more
parameters to fit more accurate EPT-distributions.

The measured EPT-distributions and the corresponding EPT-based aggregate
model can be used for performance analysis and optimization of the current
configuration of the operational manufacturing system. A bottleneck analysis
can be carried out based on the EPT-distribution parameters te and c2

e of the
various workstations. Stations with a high te and c2

e value may hamper overall
line performance. The effect of suggested improvements can be predicted using
the EPT-based aggregate model by accordingly adjusting the EPT-distribution
parameters in the model.

The EPT-approach provides the following benefits. First, many shop-floor real-
ities do not have to be quantified individually, but are included directly in the
measured EPT-distributions. The idea is that the aggregate model is sufficiently
accurate, yet simple when compared to the detailed models that are typically
used, and that the EPT-parameters can be measured easily from the operating
system. Second, since the workstation behavior and shop-floor realities are in-
cluded in the EPT-distributions and are directly obtained from industrial data,
the EPT-parameters te and c2

e readily give insight in the behavior of the manu-
facturing system, allowing for straightforward bottleneck analysis, even without
building an aggregate model.
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In previous work, the concept of EPT has been applied to several types of work-
stations. Jacobs et al. (2001, 2003, 2006) compute EPT-distributions for infinitely
buffered workstations in isolation. They compute the EPT-distribution of a work-
station from lot-arrivals and lot-departures; this data is usually available in auto-
mated manufacturing environments. Workstations consist of one or more (par-
allel) single-lot servers (Jacobs et al. 2003) or batch servers (with one or more
recipes) (Jacobs et al. 2006). Chapters 2 and 3 considered finitely buffered work-
stations in a manufacturing flow line. In their work, workstations have either
one or multiple single-lot servers.

4.3 EPT for finitely buffered assembly workstations

Here, we develop the concept of the EPT for application to assembly worksta-
tions. We consider an assembly workstation with two or more merging material
streams (components). For each component, there is a finite buffer between the
end of the component line and the assembly machine. We consider assembly
workstations that operate in push mode. This means that, if the corresponding
buffer in the assembly workstation has sufficient space available, a component
is transported into this buffer as soon as the component line finishes it. The
assembly process starts as soon as all component types are available. Figure 4.2
shows an example of an assembly workstation, including the last workstation
of the component lines and the transport systems. Note that in Figure 4.2, no
distinction is made between a main product stream, which supplies the most
important component, and sub-component streams, which implies that all com-
ponent lines have equal importance. In some cases, a main component line may
be distinguished.

For an assembly line, the EPT may be identified in two different ways. The
first approach analyses the assembly station with explicit inclusion of all feeding
component lines. Thus, it builds EPT-distributions for each separate workstation,
both in the main line and in the feeding lines. If one of the component lines is a
main component line, or if one of the component lines is expected to dominate
the performance of the assembly line, it may not be worthwhile to include all
component lines in the model. The second approach is then to consider only
workstations in the main component line and to aggregate the feeding compo-
nent lines into the assembly station. Both alternatives are discussed in the next
subsections.

4.3.1 Isolation of assembly workstation

By analyzing all workstations in the component lines and the assembly work-
station separately, the behavior of the component lines can be isolated from the
assembly workstation. The EPT of the assembly workstation then only includes



53 4: Assembly lines

PSfrag replacements

Feeder

Feeder

Feeder

Feeder
line 0

line 1

line x

line k

Main product
stream

AAj.0−1

AAj.1−1

AAj.x−1

AAj.k−1

PDj.0−1

PDj.1−1

PDj.x−1

PDj.k−1

ADj.0−1

ADj.1−1

ADj.x−1

ADj.k−1

AAj.0

AAj.1

AAj.x

AAj.k

BTj.0

BTj.1

BTj.x

BTj.k

PDj ADj

WSj.0−1

WSj.1−1

WSj.x−1

WSj.k−1

WSj

Figure 4.2: Example of an assembly line with finite buffers and transport systems

the processing time, disturbances and other shop-floor realities that relate to
processing at the assembly station. The time that a component has to wait for
other components is excluded from the EPT.

To compute the EPT of the assembly workstation and the sub-component lines,
we need three types of events: arrivals, possible departures and actual depar-
tures. The events for component x are depicted in Figure 4.2. Then, we need:
ai, j, pdi, j and di, j. Let ai, j.x denote the arrival of component x of assembly i in
the component buffer of the assembly workstation. Furthermore, let di, j be the
actual departure of assembly i from assembly workstation j. Event pdi, j refers
to the possible departure of assembly i from assembly workstation j; implying
that the processing of assembly i has finished (the assembly is ready to be sent
on; blocking at the downstream workstation may temporarily prevent this).

If the assembly workstation has a buffer, transport towards the assembly work-
station cannot be included in the EPT. Transport between a component line and
the assembly workstation begins when the component departs from the previous
workstation (di, j.x−1). Transport ends when the component has arrived at the as-
sembly workstation (ai, j.x). Once transport of one of the components has ended,
it is possible that not all components are available. Then, these components have
to wait for processing until all components have arrived. The EPT commences
when all component types are available and the assembly machine is idle, and
ends when processing has finished. The sample path equations to compute the
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EPT-realization ei, j for lot i on workstation j and transport time tti, j.x for the
corresponding component x are:

ei, j = pdi, j−max
{

max
x∈0,...,k

(
ai, j.x

)
,di−1, j

}
(4.1)

tti, j.x = ai, j.x−di, j.x−1 (4.2)

where we assume that lots do not overtake. Note that if transport is instanta-
neous, only Equation (4.1) is required to compute EPT-realizations. However,
even if the assembly workstation has no buffers, transport towards the assembly
workstation cannot be included in the EPT. In this chapter, Equations (4.1) and
(4.2) will be referred to as Algorithm 1AMB-t (1 Assembly Machine with finite
Buffers and Transport).

4.3.2 EPT of the main component line

In some cases, one may not want to model all individual component lines. If
a main component line can be defined, or if one component line is expected
to dominate the overall behavior, one may want to model the assembly station
as a simple station, that includes the behavior of the feeding stations. In that
case, if the main component has arrived at the assembly workstation, the time
spent waiting on sub-components is included in its EPT. Note that this waiting
time depends on the behavior of both the main component line and the sub-
component lines. If the sub-component lines are slow, and the main component
line is fast, then much waiting time will be included, which results in a high EPT.
Conversely, if the main line is slow and the feeder lines are fast, little waiting time
will be included, which results in a lower EPT. This makes the EPT-distribution
of the assembly station depend on the parameter settings at other stations.

For the EPT of the assembly workstation, of all arrivals we only use the arrival
of the main component (say, component 0). The EPT is computed similar to the
other stations in the line by means of the sample path equation for a worksta-
tion consisting of a finite buffer and one single-lot machine Chapter 2. For the
assembly station we get, assuming that lots do not overtake:

ei, j = pdi, j−max
(
ai, j.0,di−1, j

)
. (4.3)

If a workstation has a buffer, transport towards the workstation cannot be in-
cluded in the EPT. In that case, transport time is computed using the following
equation:

tti, j.0 = ai, j.0−di, j.0−1. (4.4)

A special case occurs if the workstation is unbuffered. Transport can then be
included in the EPT, since the EPT-realization then always starts at di, j.0−1 and
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ends at pdi, j:
ei, j = pdi, j−di, j.0−1. (4.5)

For a bottleneck analysis, the EPT-parameters are easily interpretable. For the
assembly workstation, high EPT-parameters (compared to the other workstations
in the main stream) may be caused by bad performance of the workstation itself,
or by bad performance of at least one sub-component line.

A disadvantage of this method is that if one of the workstations in the feeding
component lines is the bottleneck, the exact cause cannot be identified, since
its contribution is aggregated in the EPT of the assembly workstation. Another
drawback is that the resulting EPT-based model cannot be used to predict the
effect of changes in the line configuration on the performance. This is because the
EPT of the assembly workstation depends on the behavior of the main component
line and thus is only valid for this specific system configuration for which the
measurements have been carried out.

4.4 Assembly workstation test example

This simulation example illustrates the use of EPT-Algorithm 1AMB-t. The ex-
ample demonstrates the EPT-based aggregate model for varying numbers of
component workstations. The example shows that the transport time and EPT-
realizations measured by Algorithm 1AMB-t are correct. Furthermore, the ex-
ample shows that the EPT-based aggregate models are accurate approximations
of the system that is analyzed.

Consider an assembly line consisting of one assembly workstation, that is fed
by a number of (parallel) component workstations, ranging from 1 to 11. The
component workstations consist of one single-lot machine. The assembly work-
station consists of one assembly machine and a finite buffer for every component
type (possibly with size zero). All machines in the line process lots (on average)
equally fast, thus the line is balanced. We also obtained results for an unbalanced
line. Since these results correspond to the balanced case, we omit them here.
The component workstations are never starved, while the assembly workstation
is never blocked. The clean process times are exponentially distributed with
mean t0 = 1.0. A machine fails after an exponentially distributed busy time with
mean tf = 15.0. Upon failure, a machine is repaired after an exponentially dis-
tributed repair time with mean tr = 2.0. After a failure is repaired, the remaining
process time is completed. For this example, with known disturbances and clean
process times, the EPT-parameters can be derived analytically, which gives mean
effective process time te = 1.1333, squared coefficient of variation c2

e = 1.4152 and
offset ∆e = 0.0.

Transport times between the component workstations and the assembly worksta-
tion are triangularly distributed with minimum 0.2, mean 0.3 and maximum 0.4
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which leads to mean transport time tt = 0.3, transport time squared coefficient of
variation c2

t = 0.01852 and minimum transport time ∆t = 0.2. The choice of these
triangular distributions for transport reflect that in reality transport between
workstations is only lowly variable, much less than the variability in processing.
This is observed in many assembly lines, e.g. in car manufacturing.

The EPT-parameters are measured from the operational manufacturing system,
in this test example the simulation model described above. First, the required
events are measured in the real system (represented by a detailed simulation
model) and converted into EPT- and transport time realizations using Algorithm
1AMB-t. From the collected realizations, te, c2

e , ∆e, tt, c2
t and ∆t can be estimated.

The measured values correspond to the analytical ones (error< 0.1%). Hence,
Algorithm 1AMB-t measures the correct EPT- and transport time realizations.

Next, EPT-distributions are fitted to the TT- and EPT-realizations and EPT-based
aggregate models are derived. The EPT-realizations for processing are fitted into
shifted gamma distributions. The EPT-based aggregate models have the same
system structure as the real system, but the real machine behavior is replaced by
the EPT-distribution. For this example, two types of models were built. In the
first type, triangular distributions are fitted to the TT-realizations. In the second
type, transport is modeled deterministically by using tt as deterministic transport
time.

In Figure 4.3, the throughput and flow time predicted by the two EPT-based
aggregate model types are compared with the throughput and flow time of
the real system. The main observation from this figure is that the EPT-based
aggregate models are very accurate. The error in approximation of flow time
and throughput is less than 2%. Next, one can see that modeling the transport
deterministically is only slightly less accurate than modeling transport with a
distribution, for the case in which transport has a low variability. The insight
gained here, is that transport may be modeled as a constant in many practical
cases.

The simulation results presented here have been obtained for simulation run
lengths of 230.000 lots, the first 30.000 of which constituted the transient phase.
A simulation experiment consists of at least 6 simulation runs. Using these simu-
lation runs, 95% confidence intervals, based on the student-t distribution, on the
throughput and flow time are computed. Extra simulation runs are performed
until the relative width of these confidence intervals is smaller than 0.1% of re-
spectively the throughput and flow time. The simulations were conducted in
the specification language χ-0.8 Hofkamp and Rooda (2002).
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Figure 4.3: Prediction accuracy of EPT-based models for an assembly station with
feeding component workstations

4.5 Assembly line case problem

Next, we present a case problem of an assembly line in a car manufacturing
environment. The case is inspired on an industrial case by VDL Steelweld b.v.
of a part of an automotive plant, previously described in Chapter 2. Here, two
assembly workstations are fed with components from a component line. Com-
ponents are transported to the main line on a conveyor belt. Unfortunately, as of
yet, we could not extract the necessary events from the PLCs of the conveyor belt
to measure the EPT-realizations for the two assembly stations in the main line.
To nevertheless demonstrate the potential of the proposed method, we replace
the real operating line by a simulation model of the line, where we explicitly
include machine failures and repair as shop-floor realities that we want to ag-
gregate in the EPT models. The input chosen for this reality is inspired on the
knowledge we have from the VDL Steelweld simulation case, however numbers
are modified to respect the confidentiality of the data.
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Figure 4.4: Nine-workstation assembly line

The EPT-approach is used to build EPT-based aggregate models of the (sim-
ulation) industrial reality. The case illustrates that these models are accurate
approximations of the assembly line. In addition, the case shows that the EPT-
parameters and EPT-based aggregate models can be used to improve system
performance.

Case description

The assembly line consists of one main component line, that is fed by two sub-
component lines. A main component and two sub-components are assembled
in assembly workstation WS20 and continue as a single part. The line comprises
nine workstations and eight transport systems of which workstations WS00, WS10,
WS20, WS30, WS40 and transport systems TS10, TS20.0, TS30 and TS40 form the main
component line. Main components enter the line at WS0, subcomponents enter at
WS13 and WS14, assembled products leave the line at WS40. The line is considered
in isolation, which means that WS0, WS13 and WS14 are never starved and WS40
is never blocked. The assembly line is visualized in Figure 4.4.

A workstation consists of one machine and has no buffer. Machines have clean
process times which are gamma distributed with mean t0 and squared coefficient
of variation c2

0. Machines fail after a certain busy time which is exponentially
distributed with mean tf. Upon failure, a machine is repaired after an exponen-
tially distributed repair time with mean tr. The machine parameters can be found
in Table 4.1. The assembly line operates in push mode. The assembly process
starts as soon as a main component and two subcomponents are available at the
assembly machine.

Components and assembled products are transferred between workstations via
transport systems. Transport can only take place if the receiving workstation is
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Table 4.1: Workstation parameters
Workstation t0 c2

0 tf tr Availability
WS00 1.2 0.7 38.0 2.0 95.0%
WS10 0.5 0.1 60.0 2.0 96.8%
WS11 0.5 0.1 60.0 1.0 98.4%
WS12 0.5 0.1 60.0 1.0 98.4%
WS13 1.5 1.0 18.0 2.0 90.0%
WS14 1.5 1.0 31.5 3.5 90.0%
WS20 1.1 0.7 45.0 5.0 90.0%
WS30 0.5 0.1 60.0 2.0 96.8%
WS40 1.2 0.7 38.0 2.0 95.0%

Table 4.2: Transport system parameters
Transport system tmin t tmax

TS10 0.20 0.25 0.30
TS11 0.08 0.10 0.12
TS12 0.08 0.10 0.12

TS20.0 0.20 0.25 0.30
TS20.1 0.08 0.10 0.12
TS20.2 0.08 0.10 0.12
TS30 0.20 0.25 0.30
TS40 0.20 0.25 0.30

ready to accept the component or assembled product (i.e. it has enough storage
capacity). Transport times are triangularly distributed with minimum tmin, mean
t and maximum tmax. The transport parameters can be found in Table 4.2.

The performance of the assembly line is determined by means of a discrete
event simulation model. The model gives δ = 0.3773, ϕ0 = 10.21, ϕ1 = 9.486
and ϕ2 = 9.485, where δ denotes the throughput and ϕ0, ϕ1 and ϕ2 denote the
flow times of respectively the main component and two sub-components. These
results are obtained with an accuracy such that the relative width of the 95%
confidence interval is at most 0.1% of the corresponding mean.

EPT-based analysis of the main component line

First, the main component line only is investigated by using the approach pre-
sented in Section 4.3.2. Therefore, in the analysis, the behavior of WS11, WS12,
WS13 and WS14 is included in the EPT of WS20. As noted in Section 4.3.2, since the
workstations are unbuffered, transport towards a workstation can be included
in the EPT of the corresponding workstation. As a result, the only events to be
measured are the transport start times and the process finish times for the work-
stations in the main component line. For these workstations, the EPT-realizations
are computed by Equation (4.5). The measured EPT-parameters are reported in
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Table 4.3: EPT-parameters of the main component line using Equation (4.5)
Workstation te c2

e ∆e
WS00 1.2635 0.8560 0.0000
WS10 0.7666 0.1582 0.2751
WS20 2.2143 1.0691 0.2045
WS30 0.7669 0.1614 0.2958
WS40 1.5137 0.6011 0.2028

Table 4.4: EPT-parameters of the sub-component lines
Workstation te c2

e ∆e
WS11 0.6084 0.1162 0.1542
WS12 0.6083 0.1145 0.1606
WS13 1.6674 1.2401 0.0000
WS14 1.6656 1.4179 0.0000

Table 4.3. In Figure 4.4, each part of the structure of the aggregate model is
indicated by a box surrounding it.

The EPT-parameters in Table 4.3 show that in the present configuration, the
combination of the assembly workstation with the component lines is the bot-
tleneck. However, since the behavior of the component lines is aggregated into
the EPT of the assembly workstation, one does not know whether the bottle-
neck is the assembly station or one of the workstations in the component lines.
Applying solely the EPT measurement method as presented in Chapter 2 appar-
ently does not suffice. In order to find the exact bottlenecks, the behavior of the
sub-component lines must be investigated.

EPT-based aggregate model: main and sub-component lines

The behavior of the assembly workstation and sub-component lines is investi-
gated in greater detail by using the approach presented in Section 4.3.1. The
behavior of the assembly workstation is further refined to the individual work-
stations of the sub-component lines and the assembly workstation itself. For
the assembly workstation, transport is separated from the EPT, using Algorithm
1AMB-t. The EPT-parameters that are estimated from these EPT-realizations, are
presented in Table 4.4 and Table 4.5.The EPT-parameters obtained on worksta-
tions WS00, WS10, WS30 and WS40 do not change. In the EPT-based aggregate
model, the transport and machine behavior are modeled by a shifted gamma
distribution, based on the data from Table 4.5. Combined with the results of Ta-
ble 4.3, the EPT-based aggregate model gives δ̃ = 0.3680, ϕ̃0 = 10.41, ϕ̃1 = 9.702
and ϕ̃2 = 9.646 which leads to errors of respectively −2.5%, +2.0%, +2.3% and
+1.7%. Since the model is accurate, we expect that it can be used to predict the
effect of modifications of the assembly line.
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Table 4.5: EPT- and TT-parameters for assembly workstation WS20 according to the
approach presented in Section 4.3.1

Workstation te c2
e ∆e

WS20 1.2221 1.5176 0.0000
Transport system tt c2

t ∆t
TS20.0 0.2500 6.67 10−3 0.2000
TS20.1 0.1000 6.67 10−3 0.0800
TS20.2 0.1000 6.67 10−3 0.0800

The measured EPT-parameters in Tables 4.3, 4.4 and 4.5 indicate which work-
stations restrict line performance most. The table shows that workstations WS20,
WS13, WS14 and WS40 have the largest te. Note that the ratio t0/te reflects the
capacity loss (recall the t0 values of Table 4.1). The largest values of c2

e were ob-
served on WS00, WS13, WS14 and WS20. Thus, improvements in these workstations
are likely to have the greatest impact on line performance. In future work, one
may consider actual optimization tools here, such as a sensitivity analysis.

On a hypothetical basis, we assume that the sum of the te values can be reduced
by 0.5 (none of the individual te values may be increased though). Similarly, the
sum of the c2

e values may be decreased by 0.25. This means that the sums of
te and c2

e are both reduced by 5%. The aim is to reduce the largest te and c2
e

as much as possible. This means that the largest te and c2
e become 1.4489 and

1.2040 respectively, and that the performance of WS13, WS14 and WS40 needs to
be improved.

The suggested modifications are implemented in the EPT-based aggregate sim-
ulation model and their effects on throughput and flow time are predicted. The
modification predicts δ̃ = 0.3982, ϕ̃0 = 9.657, ϕ̃1 = 9.289 and ϕ̃2 = 9.293. This
would lead to improvements of respectively 8.2%, 7.2%, 4.3% and 3.7%.

To implement the suggested modifications in the original assembly line, the
modified EPT-parameters are translated into real workstation parameters. In
practice, this step is not trivial because the individual contributors to capacity
consumption and variability are not known. In this test case, the translation
is simple because the EPT-parameters can be computed analytically. Table 4.6
shows the implementation of the proposed line configuration that was chosen
by the authors. Implementing the modifications gives δ = 0.4096, ϕ0 = 9.446,
ϕ1 = 9.075, ϕ2 = 9.115, which leads to performance improvements of 8.6%, 7.5%,
4.3% and 3.9%. These results are closely matched by the predictions of the
aggregate model. Hence, for this case, the EPT-based aggregate model accurately
predicted the effect of modifications in the assembly line.
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Table 4.6: New workstation parameters after modifications
Workstation t0 c2

0 tf tr Availability
WS00 1.2 0.7 38.0 2.0 95.0%
WS10 0.5 0.1 60.0 2.0 96.8%
WS11 0.5 0.1 60.0 1.0 98.4%
WS12 0.5 0.1 60.0 1.0 98.4%
WS13 1.304 0.928 18.0 2.0 90.0%
WS14 1.323 0.844 31.5 3.0 91.3%
WS20 1.1 0.7 45.0 5.0 90.0%
WS30 0.5 0.1 60.0 2.0 96.8%
WS40 1.139 0.695 38.0 2.0 95.0%

4.6 Conclusions and recommendations

In this chapter, a new method to analyse and predict the performance of as-
sembly lines is proposed. The method is based on the effective process time
(EPT), see Hopp and Spearman (2001), Jacobs et al. (2003) and Chapters 2 and
3. The chapter addresses assembly workstations that are subject to blocking.
A new EPT-algorithm is derived for assembly workstations with finite buffers,
where transport of components to buffers requires time. This EPT-algorithm
computes EPT-realizations from easily measurable events on the shop-floor (i.e.
product arrival, completion and departure times). EPT-realizations are used to
measure workstation performance (indicated by EPT-parameters) and to model
workstation performance (by deriving an EPT-based aggregate model). The EPT-
realizations are thus measured directly from workstation data, rather than first
quantifying all disturbances affecting processing and translating these distur-
bances into EPT-distributions.

In this chapter, we contribute a method to measure EPT-realizations for assembly
systems. The method isolates the behavior of all component lines that feed the
assembly workstation. If all components have arrived, the EPT-realization of the
assembly commences. In this way, the EPT-realization of the assembly station is
independent of the performance of the component lines. The obtained realiza-
tions are used to build an EPT-based aggregate model. The EPT-realizations are
determined using Algorithm 1AMB-t, developed in this chapter

As an alternative, we study the approach to aggregate the behavior of compo-
nent lines in the EPT of the assembly station. The EPT of the assembly system
can then be obtained be obtained using the same equations as for the other sta-
tions, as presented in Chapter 2. This alternative may be attractive if a main
component line can be identified. The measured EPT-parameters clearly show
the biggest constraint in the main component flow line. However, the behavior
of the feeding component sub-lines now can not be distinguished from the as-
sembly workstation. This means the measured EPTs can be used for bottleneck
analysis but not for building an EPT-based aggregate model.
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The proposed approach is illustrated in two examples. The first example con-
siders an assembly workstation, fed by multiple component workstations. By
using EPT-distributions as a simple representation of the real machine behavior,
two types of EPT-based aggregate models have been built. In the first model,
transport is modeled according to a triangular distribution, in the second model
transport is modeled deterministically. The following conclusions stem from
this example. First, the proposed Algorithm 1AMB-t measures the correct EPT-
realizations. Second, the EPT-based aggregate models are accurate approxima-
tions of the real system. Furthermore, the example shows that, if transport has
a low variability, it can be represented by a constant value without great loss of
accuracy.

The second example studies an assembly line in the context of an automotive
plant. The assembly line consists of one unbuffered assembly workstation and
eight ordinary unbuffered workstations with transport systems in-between. Us-
ing the proposed method, an EPT-based aggregate model was built. This model
approximates both flow time and throughput within 2.5% of their actual values.
Based on the EPT-parameters measured by Algorithm 1AMB-t, improvements
are suggested for mean EPT te and squared coefficient of variation of the EPT c2

e .
It is assumed that the summed value of all te’s as well as the summed values of
c2
e can be reduced by 5%. According to the EPT-based aggregate model, the pro-
posed changes will yield a throughput increase of 8.2%. The proposed changes
in EPT-parameters are translated into a new line configuration for the assembly
line. This new configuration shows an increase in throughput of 8.6%. The EPT-
based aggregate model thus accurately predicts the effect on line performance
of the proposed changes.

In this chapter, we use discrete-event simulation to evaluate the proposed EPT-
based aggregate models and to predict the effect of line configuration changes
on line performance. Discrete event simulation models, however, are compu-
tationally expensive. A very interesting alternative are analytical queueing ap-
proximations for finitely buffered flow lines as for instance developed in Van
Vuuren et al. (2005) and the PhD thesis by Van Vuuren (2007). The thesis by
Vuuren includes queueing approximations for assembly stations. Such queueing
approximations are often computationally much cheaper. It is recommended to
investigate the use and applicability of such queueing approximations for as-
sembly lines to obtain computationally cheap and accurate EPT-based aggregate
models of assembly lines.
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Chapter 5

Lumped Parameter Modeling of the
Litho Cell

Lithography is often the bottleneck in a wafer fab. Utilization is typically high,
resulting in high WIP levels and large cycle times. To optimize performance,
one has to keep capacity losses as well as variability in processing low. Often,
insight can be gained from analytical G/G/m queueing models, or from simu-
lation models. The applicability of G/G/m models for lithography stations is
limited since they assume that just one lot is processed at a time, while most
litho cells process more than one lot at a time. On the other hand, the simulation
models that are typically developed incorporate various shop floor details, the
quantification of which may be hard and time-consuming.

In this paper, a lumped parameter model is proposed for the litho cell. The
model consists of two parts: a detailed representation of the processing inside the
track and scanner, and an aggregate representation of the factory floor feeding
the loadport. The track-scanner is modeled as a tandem flow line with blocking.
The shop floor is represented by a delay distribution that incorporates all contri-
butions outside the machine. Simulation results for both a theoretical example
and an industrial case show that the proposed model provides a reasonably
simple, yet accurate approximation of the litho cell.

This paper is submitted as:
Kock, Veeger, Etman, Lemmen and Rooda. Lumped parameter modeling of the litho cell. sub-
mitted 2008
The sections of the paper previously appeared as Kock, Etman, and Rooda (2006), Kock, Veeger,

Etman, Lemmen, and Rooda (2007)
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5.1 Introduction

The litho cell is an expensive piece of equipment in a wafer fab. A litho cell
consists of a track and scanner. The track is used for pre- and postprocessing of
wafers, while the scanner is used to expose patterns onto the wafer. The litho
cell is often the (designed) bottleneck. Furthermore, the litho cell plays a central
role in wafer fabrication. Therefore, optimal configuration and operation of a
litho cell is highly desirable.

To facilitate continuous improvement, several performance indicators are in use
including throughput δ , mean time between failures tf, mean time to repair tr and
mean cycle time ϕ . Another commonly used performance measure is the OEE
which quantifies capacity losses at the workstation (Nakajima 1988, SEMI 2000).
The OEE is the product of six equipment capacity losses grouped into three
categories: availability, efficiency and quality. The OEE classification of capacity
losses directly relates to utilization. The OEE does neither cover the contribution
of variability in processing to the flow time, nor the loss of throughput due to
blocking inside the machine.

Simulation models are also helpful in optimizing the performance. Nayani and
Mollaghasemi (1998), Arisha and Young (2004), Mummolo, Mossa, and Digiesi
(2004) developed simulation models, with explicit modeling of contributing fac-
tors such as machine downs, repairs, operating rules, setups, reticle changes,
maintenance, tool changes, operator availability and operator skill. In practice,
it may be hard to identify all elements contributing to the processing behavior
of a litho cell.

In this paper, we look at the problem of litho cell performance analysis from
the viewpoint of availability of data. We observe that on the factory floor, much
data is available on the nominal processing behavior of the litho cell (that is,
clean process times, recipes, number of wafers in a lot, etcetera). Also, the
down and repair times of the machine are known accurately. However, there
is much less data available about the impact of external factors on the litho
cell such as operator behavior, dispatching rules, maintenance, setups, reticle
changes etcetera. Identifying all external factors that affect the performance of
the litho cell is often not feasible. The simulation models described by Pierce
and Drevna (1992), Nayani and Mollaghasemi (1998), Arisha and Young (2004)
include only the internal factors. External factors were not considered, whereas
they may contribute significantly to the flow line performance.

We propose a litho cell model based on the above observations. We divide the
behavior of the litho cell into two parts: the processing inside the litho cell
(which is already well known on the factory floor) and the influences due to the
environment (which are hard to quantify). The discrete-event simulation model
consists of these two parts.

The inside part describes the processing and availability behavior of the litho cell
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in detail. Since this behavior is known on the factory floor, this part is modeled
“as is”. We use a serial flow line in which the wafers visit the various process
steps in the track and scanner.

The environmental part models the influence of the factory floor on the litho
cell. This part consists of many disturbances and factors, some of which may
be difficult to measure or identify. Therefore, we represent this part using an
aggregate distribution which lumps the contributing factors into one single dis-
tribution in such a way that the aggregated distribution can be measured from
basic events on the factory floor, such as lot arrival times and times when the
loadport becomes available to receive a new lot. For this, we use a method sim-
ilar to the effective process time method described by Jacobs et al. (2001, 2003,
2006) and Chapters 2 to 4.

The paper is organized as follows. In Section 5.2, the litho cell is described
in further detail. Then, the effective process time concept is discussed in the
context of litho cells in Section 5.3. Next, in Section 5.4, the aggregate model
of the litho cell is presented. In Section 5.5, a simulation testcase is described.
Finally, in Section 5.6, we present an industrial case study from the Crolles2
wafer fabrication plant. In Section 5.7, the main conclusions are presented.

5.2 Litho cell

A litho cell projects patterns on wafers using a reticle. Typically, 1 to 25 wafers
are combined in a lot. A lot is taken by an operator or the AMHS (automated
material handling system) from the buffer and clicked onto one of the four load-
ports (in the remainder of this paper, we will refer to the four parallel loadports
of the litho cell as the loadport), after which the wafers are sequentially loaded
onto the machine. After loading, the wafer surface is cleaned, coated and baked.
Next, the wafer is aligned by the litho cell so that the machine knows the exact
position. The desired pattern, presented on a reticle, is exposed onto the coating.
Finally, the exposed wafer is developed and hard-baked. In between these pro-
cess steps, cooling and heating plates may be used to ensure that a wafer has the
correct temperature. Typically, process steps are not all equally fast. However,
parallel units are provided to ensure that each process step has more or less the
same capacity.

The logistics of the waferstream inside the litho cell are relatively straightforward.
Wafers are never allowed to overtake one another inside the cell. If a process
step contains multiple parallel units, wafers leave it in a FIFO-way. Transport of
wafers in the litho cell can be either synchronous or asynchronous. If transport
is synchronous, all wafers are transported to the next process step when the
slowest wafer has finished processing. If transport is asynchronous, a wafer will
be transported to the next process step as soon as the current step is completed
and the next step is free.
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Not all lots are processed equally fast in the litho cell. This variability is caused
by several reasons: some are related to the lot, some to the machine, and others
to causes outside the litho cell. Significant factors that influence the required
processing time of a lot are the numbers of wafers within a lot, the recipe (i.e.,
which process steps in the litho cell are required, and the process time per step)
and the failure behavior of the litho cell. Data on these three factors can usually
be obtained in most semi-conductor fabs.

The influence of other factors is not so easily available. Examples are the avail-
ability of operators, the necessity of machine setups, the presence of reticles,
and -closely related- the time required to retrieve a reticle from a reticle stocker,
or the operator behavior in general. The large number of influences complicate
building of a simulation model of the litho cell. Aggregation of contributing
factors in a single distribution may be helpful.

5.3 Effective process time concept

The concept of using a distribution that lumps processing, failures and other
disturbances together has been discussed in literature (Dallery and Gershwin
1992, Buzacott and Shanthikumar 1993). Hopp and Spearman (2001) use for in-
stance aggregate process time distributions in their factory physics book. They
argue that, from a logistical point of view, a workstation does not care whether
the delay is caused by setup, down-time, or another reason as long as lots are
waiting in the buffer. Therefore, they use the term effective process time in their
presentation of queueing relations. Jacobs et al. (2003) propose a method to
actually ‘measure’ EPT-realizations from operational data, such as arrivals and
departures of lots at a workstation. Jacobs et al. refer to the EPT as the time
during which the lot has consumed production capacity of the workstation. The
EPT-distribution is thus obtained without quantifying the individual contribu-
tions. This work was extended by Jacobs et al. (2006) and Chapters 2 to 4. So
far, the EPT has been considered for infinitely buffered multiple (single-lot or
batch) machine workstations and for finitely buffered serial flow lines subject to
blocking. Blocking refers to the situation where process capacity of a machine
is lost since a finished product can not be sent away due to a full downstream
buffer.

The most simple case to compute EPTs is the single server workstation with
an infinite buffer (Jacobs et al. 2003). From an EPT point of view, machine
capacity is claimed if at least one lot is present in the workstation buffer. The
EPT-realization of the ith arriving lot starts upon arrival in an empty workstation
or upon departure of the previously processed lot. The EPT-realization lasts
until the lot departs from the workstation. Hence, with ai the ith arrival of a
lot in the buffer, di the corresponding departure time, and di−1 the departure of
the previously processed lot, the ith EPT-realization ei can then be expressed as
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Equation (5.1):
ei = di−max{ai,di−1} . (5.1)

Litho cells are more complicated to analyze from an EPT point of view. A
litho cell may contain up to four lots at the same time, however only one lot at
a time can start processing. Van der Eerden, Saenger, Walbrick, Niesing, and
Schuurhuis (2006) and Lazurko (2005) present a method to apply the EPT to
litho cells. They model the litho cell as a single-lot station with an additional
delay distribution to account for the multi-lot conveyor-like processing. Due to
the aggregation, their model cannot be used for predicting the effect of changes
in the litho cell configuration, including changes in throughput rate.

We consider here a different sort of model, with which the effect of changes
in the litho cell configuration can be analyzed. The inside of the litho cell is
modeled explicitly. The environment is aggregated using an EPT-like method.

5.4 Proposed litho cell model

Next, we explain our aggregate model of the litho cell in further detail. The
model assumes that the process times at the various process steps in the machine
are available in a database, and that the failure behavior of the litho cell is
recorded, expressed by the mean time between failures tf and the mean time to
repair tr SEMI (2001). The model further assumes that time losses due to the
operational environment occur, but that quantification of each of these losses is
either not feasible or is rather elaborate.

An aggregate model consisting of two parts is proposed. The first part models
the environmental factors between the arrival buffer and the litho cell, such as
transport from the stocker to the litho cell, setup, dispatching or preventive main-
tenance, are lumped into a delay distribution. This explicitly does not include
the behavior of the entire fab. The second part models in detail the processing
behavior inside the machine. Figure 5.1 visualizes the model.

Model description

The model is presented in terms of communicating parallel processes. The model
may be implemented using any discrete-event simulation environment. Each cir-
cle in Figure 5.1 represents a process. The arrows represent the communications.

Process S is a start process, which generates new lot arrivals according to a
specific distribution. The start process emulates the lot arrivals in the stocker
from the automated material handling system (AMHS). The lots are stored in
the stocker, in our model the infinitely large buffer B.
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Figure 5.2: Wafer-flow inside litho cell LC

After a lot is requested from the stocker, some time elapses before the lot is
actually clicked onto one of the four loadports of the litho cell. This elapsed
time, caused by the operational environment of the litho cell, is modeled by
delay process D. Once a lot is requested by the loadport process, delay process
D waits until at least one lot is present in buffer B (stocker). Then, the process
delays the lot according to a random variable with an appropriate distribution
(chosen by the modeler) with a mean of td and coefficient of variation of cd. After
the lot is delayed, the delay process forwards the lot to the loadport process.

Loadport process L models the four parallel loadports that are physically present.
The process is modeled as a four place (FIFO) buffer. L splits the lots into
wafers, which are sent wafer by wafer to litho cell LC. After they are processed,
the wafers are collected again into the same lot by the loadport. In the model,
finished lots are assumed to leave loadport process L immediately. Any delay in
this respect that is observed in practice is included in the delay of subsequent
lots.

Litho cell process LC represents the wafer-flow inside the litho cell. LC is mod-
eled as a single-server serial flow line with blocking, see Figure 5.2. Each process
step is modeled individually using a deterministic process time (available from
the process database). The busy time between failures and time to repair of the
litho cell as a whole are modeled with an appropriate distribution with means
tf and tr.
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Measurement of the delays

The parameters in delay process D are estimated using a method similar to the
EPT. This is done using three events. The time at which a lot arrives in buffer
B is called the arrival. The ith arrival time of a lot in B is denoted ai. The ith

moment at which loadport L requests a new lot (i.e., the machine is willing to
receive a new lot since there are less than four lots on the loadport) is ri. A
new lot is only requested after a slot on the loadport becomes available. Taking
the finished lot from the loadport is done by an operator or by the automated
material handling system. Delays caused by a finished lot being left on the
loadport are thus comparable to delays caused by lots not being moved from
the stocker to the loadport. Therefore, we combine these delays into a single
distribution: we assume that finished lots are removed immediately. Finally, the
ith moment that a lot has actually arrived on loadport L is called li.

The delay stops after a lot has arrived on loadport L. The delay starts if i) a lot
has arrived in the buffer (so current time ≥ ai) and ii) the litho cell is waiting
for a new lot (i.e., current time≥ ri). Hence, the delay experienced in the buffer
for the ith lot processed on the litho cell, which is denoted ∆i, is quantified by
Equation (5.2):

∆i = li−max(ai,ri) (5.2)

Once sufficient realizations are obtained, an appropriate distribution can be fit-
ted. From this distribution, we determine the mean delay time td and the coef-
ficient of variation in the delay cd.

5.5 Simulation example problem of a litho cell

The EPT-based aggregate model is illustrated using a simulation test setup. For
the ‘real life system’, a simulation model is used on which the proposed approach
is tested.

Real life model

The accuracy of the aggregate model is investigated using a detailed simulation
model as reference. This facilitates investigation of the accuracy of the aggregate
model for various utilization levels. An important advantage is the reproducibil-
ity of the experimental setup. Process parameters are chosen rather arbitrarily
in the simulation model. A case from industrial practice is presented in the
next section. The detailed simulation model is used to collect delay-realizations
using Equation (5.2). From the obtained realizations, parameters td and cd are
measured. These are used in the proposed aggregate model.
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The structure of the real life model corresponds to Figure 5.1. Start S, loadport L,
litho cell LC and exit E are the same as in the EPT-based aggregate model. The
aggregate part is replaced by a detailed model of setups and operator behavior.

Once the loadport requests a lot, in the real life model, an operator has to take
the lot from the stocker, place it on the loadport and perform several actions.
The time associated with this is gamma-distributed with mean 200 seconds and
CV 0.05. With a probability of 5%, the operator needs to collect a reticle for a
lot that is not readily available. In that case, the additional reticle collection time
required by the operator is 500 + X seconds, where X is exponentially distributed
with mean 500 seconds. After the operator has put a new lot on the loadport,
he leaves the machine unattended with a probability of 10%. The time during
which the operator is unavailable is exponentially distributed with mean 1800
seconds. For easy implementation of the discrete event simulation, in the real
life model, the setup and operator are implemented as part of buffer B. Note
that the aggregate model aggregates these three disturbances into a single delay
distribution.

Start process S produces a new lot with exponential inter-arrival times, with
mean ta. A lot consists of either 15, 20 or 25 wafers (with an equal probability
for either possibility). The process time of the wafers on a process step is either
30, 60 or 90 seconds inside the litho-cell (which is multiplied by capacity of the
process step). Process S sends the generated lots to the buffer.

The track-scanner part of the machine consists of 8 process steps with capacity
for 2, 5, 4, 1, 2, 1, 4 and 6 wafers respectively. The busy time between failures is
exponentially distributed with mean 10000 seconds. Upon failure of the machine,
the machine has to be repaired. Repair time is exponentially distributed with
mean 3000 seconds. After a machine failure, there is a probability of 50% that
processing of the wafers is extended with the required repair time. Otherwise,
the wafers are immediately taken from the machine and all (partly) processed
lots are removed from the loadport. In practice, partly processed lots are sent
away for strip-and-clean, after which they return to be reprocessed. Here, it
is assumed that lots that are reprocessed are already accounted for in the start
process S. Transport of wafers is asynchronous.

Results

The simulation models have been built using the χ-1.0 language (Van Beek, Man,
Reniers, Rooda, and Schiffelers 2006). The simulation results shown below have
been obtained for a confidence level of 99%. The confidence interval of parameter
Xi is given by 0.98Xi 6 Xi 6 1.02Xi.

For the case we considered, the maximal obtainable throughput is δmax = 2.9
[lots/hr]. The real life model has been compared to the aggregate model for
throughput ratios of δ/δmax of 0.65, 0.75, 0.85 and 0.95. Simulation results are
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Table 5.1: Lumped parameters and cycle time estimates
δ/δmax td [s] c2

d ϕR [hr] ϕL [hr] e
0.65 342.6 3.26 1.4278 1.4270 -0.1%
0.75 349.7 3.33 1.8409 1.8368 -0.2%
0.85 355.7 3.38 2.7595 2.7244 -1.3%
0.95 361.5 3.42 6.7272 6.5208 -3.1%

Table 5.2: cycle time estimates for delay distribution measured at δ/δmax = 0.65
δ/δmax ϕR [hr] ϕL [hr] e
0.65 1.4278 1.4270 -0.1%
0.75 1.8409 1.8182 -1.2%
0.85 2.7595 2.6557 -3.8%
0.95 6.7272 5.9137 -12.1%

reported in Tables 5.1, 5.2 and 5.3. In Table 5.1, we trained the aggregate model
at a certain throughput ratio and used it to estimate the cycle time at the same
throughput ratio. ϕR refers to the mean cycle time of the real life model, while ϕL
refers to the mean cycle time of the aggregate model. The error of the aggregate
model, e, is defined as

e =
∣∣∣∣ϕR−ϕL

ϕR
·100%

∣∣∣∣ .
Table 5.1 shows that the aggregate model closely approximates the real life
model, with observed differences in cycle times ϕL and ϕR of 3.1% or less.
Furthermore, the values of td and cd show only a small correlation with the
utilization level (changing about 5% if the throughput-ratio is increased from
0.65 to 0.95). Our aggregate model assumes that the values of td and cd are
throughput-ratio independent. Thus, for this case, the aggregate model can
be used as a predictive model at other throughput levels. This observation
is reconfirmed by the results of Tables 5.2 and 5.3. In Table 5.2, we use the
delay distributions measured at δ/δmax = 0.65 to predict the cycle time perfor-
mance for δ/δmax ∈ {0.65,0.75,0.85,0.95}. In Table 5.3, we use the delay distri-
butions measured at δ/δmax = 0.95 to predict the cycle time performance again
for δ/δmax ∈ {0.65,0.75,0.85,0.95}. The results in the tables show that the cycle
time estimations are good, even if the difference in throughput ratio is large.

Table 5.3: cycle time estimates for delay distribution measured at δ/δmax = 0.95
δ/δmax ϕR [hr] ϕL [hr] e
0.65 1.4278 1.4553 1.9%
0.75 1.8409 1.8568 0.9%
0.85 2.7595 2.7509 -0.3%
0.95 6.7272 6.5433 -2.7%
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5.6 Semiconductor manufacturing case

The proposed aggregate modeling approach is illustrated on an operational litho
cell at the Crolles2 wafer fab. First, we shortly introduce the Crolles2 wafer fab,
where we measured the data for the case. Next, we give an overview of the
data we collected and the issues that came up during the processing of the data.
The model is validated and then used to compare the cycle time contribution of
the environment of the litho cell to the cycle time contribution of the track and
scanner itself. Furthermore, a cycle time-throughput curve is generated.

Crolles2 wafer fab

In 2001, the Crolles2 Alliance was formed by Philips Semiconductors (now NXP),
STMicroelectronics and Motorola (now Freescale). The alliance built a new
300mm production facility in Crolles, France. Since its start-up, Crolles2 evolved
from a mixed R&D-PilotLine to a combined Production-R&D facility in 2007,
when we collected the data for our case. About 80% of all processed lots was
sold for commercial end-user products, whereas the remaining 20% of the lots
was used for research and development programs, as well as engineering or
process improvement.

Crolles2 can be characterized as a mid-volume multi-process multi-product Logic
fab in which both high volume products as well as small series and prototype
products are produced. Standard production lots contain 25 wafers. Lots are pro-
cessed in several so-called areas: lithography, implant, etch, thermal treatment,
metal, dielectrics, chemical mechanical polishing, wet processing, and metrology.

Case data

For the case, we used four independent sources of information. The manufactur-
ing execution software (MES) was used to collect data on the arrivals of lots in the
buffer, the moment at which lots enter the loadport and the moment at which lots
depart from the machine. Second, the fault detection software (FDC) was used
to extract data from the litho cell itself. The FDC data consisted of process-start
and process-end data per module in the machine, per recipe. Thirdly, Brooks
XSITEtm was used to collect data concerning the uptime-behavior of the litho cell.
Finally, we obtained a file with info on recipes, routing and track information
from the litho team at the area.

From the obtained data, we extracted the following information:

1. The arrival process of lots in the buffer; the series-sizes in which lots are
processed.
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2. The recipes that were processed on the machine. The frequency with which
a recipe is processed.

3. The delays, such as required for the delay-process described in the previous
section.

4. The uptime behavior of the machine (expressed in the mean time between
failures tf and the mean time to repair tr).

5. The process time per module per recipe.

6. The number of parallel modules.

While we extracted this information from the data, we encountered the following
issues:

• Hold lots: Some lots are clicked onto the loadports, but are taken off for
some reason. In such cases, the lot needs to be cleaned, reworked, or some
other action is required. These lots leave the buffer, and return later. In
between, the lot is “on hold”. Since they are gone for some time (which
is not registered as an arrival or departure in the MES), the WIP present
in the buffer is estimated incorrectly when a lot is on hold. Hence, the
delay realizations cannot correctly be reconstructed with Equation (5.2).
Therefore, delays measured while a hold lot was present are not taken into
account.

• Unscheduled machine downs: If the machine fails while processing lots,
the machine may need to be flushed. Lots are removed from the machine
and are often sent to wet processing areas. While the machine is down,
no new lots are put on the loadports. As a result, delays during a failure
are always large. Furthermore, the delay will last the entire repair-period.
Therefore, delays measured during a down are not taken into account.
From a model point of view, when the machine is down, no lots will be re-
quested from the loadport. Moreover, no new lots are assigned to the litho
cell while it is down. Thus, the arrival process is heavily affected by the
down behavior of the machine. Therefore, interarrival times that include
down time are not taken into account. In return, in the approximation
model, the generator is put on hold if the machine is down.
The times between failures and times to repair are modeled using exponen-
tial distributions. One cannot effectively predict when a failure will happen:
if one could predict the occurrence of a failure, the responsible component
would be replaced during preventive maintenance. Therefore, it is safe to
assume that times to repair and times between failure are unpredictable.
This corresponds to an exponential distribution.

• Delay times: From the measured delays, we could see that the expected
delay strongly depends on the state of the loadports. If there are three lots
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on the loadports, delays appeared to be much lower than when the load-
ports are empty. Combining these different delays into a single distribution
leads to a wrong estimation of the utilization, and an overestimation of the
variability of the delay process. Therefore, the delay process is split into
four: a delay for empty loadports, with one lot on the loadports, with two
lots or with three lots on the loadports.
In the model, we use a gamma distribution to model the delay process.
We use a gamma distribution since it gives only non-negative samples and
since nearly any desired (positive) combination of mean and variance can
be implemented with a gamma distribution.

• Process times within the scanner: During data collection, we were not able
to obtain a complete data set regarding the processing inside the scanner.
From our data, and from knowledge on the factory floor, we extracted that
the scanner contains five sequential processes, where the actual scan is the
bottleneck of the track and scanner. For the bottleneck, we estimated the
process time mean and variance based on the interarrival times on the first
process step succeeding the scanner.

Model Validation

The model is validated using measured throughput and cycle time data. Let δ̃0
and ϕ̃0 be the throughput and cycle time estimated by our model. Let δ0 and
ϕ0 be the throughput and cycle time observed in our data set. We observed that
δ̃0 = 1.027δ0 and ϕ̃0 = 0.919ϕ0, i.e. a cycle time error of 8.1%. This error may be
due to the following. First, as stated above, hold lots are excluded from the cycle
time behavior in the data-set. However, the hold lots do have an impact on the
cycle time of the other lots. This effect is included in the data-set, but neglected
in the simulation model. Second, upon a machine down, in some cases, the
machine is flushed, in other cases, it is not flushed. Although this is included
in the model, it may be that the conditions determining wether the litho cell
is flushed or not in reality differ from the way they were implemented in the
model. Finally, the cycle time behavior of the litho cell strongly depends on the
process times on the scanner. Increasing the mean process times by 1% leads
to a cycle time estimation error of 8.5% (this change is not significant), while
doubling the squared coefficient of variation (which is then still < 0.1) leads to
a cycle time underestimation of 1.8% (the error in prediction reduces).

Application of the model

The aggregate model can be used for several purposes. The model can for in-
stance be used to investigate the contribution of the environment of the litho cell
to the total cycle time. The delay represents the contribution of the dispatching
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policy, setup policies and operator behavior on the cycle time of the litho cell.
After we removed the delay, we observed that the throughput is approximately
the same (δ̃no delay = 0.99δ̃0, hence within simulation accuracy), while the mean
cycle time was reduced by 66% (ϕ̃no delay = 0.335ϕ̃0). By removing the delay, we
essentially lowered the capacity claimed by lots from the system. In other words,
the utilization was lowered. Lowering the utilization leads to a lower cycle time.

By applying different inter-arrival times to the model, a cycle time curve may be
estimated. In this curve, we vary the arrival rate between two machine downs.
We looked at the effect hereof on throughput and cycle time (expressed in the
change in throughput or cycle time relative to the working point found at the
validation, i.e. δ̃/δ̃0 and ϕ̃/ϕ̃0), see e.g. Figure 5.3. Recall that ra refers to the
arrival rate of lots when the litho cell is not down. As a result, if the arrival rate is
increased, the throughput increases as well, but with a slope of less than 1, as
can be seen in Figure 5.3(a): increasing the arrival rate increases the likelihood
of a down. The cycle time-throughput curve (left-hand side of Figure 5.3(b))
clearly shows that the cycle time increases nonlinearly with utilization and nicely
resembles the well known cycle time curves from the factory physics queueing
equation (Hopp and Spearman 2001). The righthand-side of Figure 5.3(b) zooms
in at the cycle time curve around the training point. In Figure 5.3, the original
training point (respectively δ0/δ̃0 and ϕ0/ϕ̃0) is represented by an asterisk.
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The model may be used to investigate the effect of changes in the litho cell
configuration. As an example, one may consider the effect of changing the
internal buffer. Several other applications are possible. The model can be used
to investigate what happens if an additional recipe is processed on the litho cell.
Also, one may investigate what happens if the product-mix is changed.

5.7 Conclusions and recommendations

In this paper, an aggregate model that predicts cycle time and throughput of
an individual litho cell is proposed. This model consists of two parts. In the
detailed (litho cell) part, the logistics are modeled as a serial flow line using
the process times and system failure characteristics that were obtained from the
machine logs. In the aggregate part, external factors which cause lots to be
delayed from loading onto the machine were lumped into a single distribution.
This distribution was obtained from three events: lot arrivals in the buffer ai, lot
requests from the loadports ri and lot arrivals on the loadport li. Two relevant
aggregate distribution parameters were computed: mean td and coefficient of
variation cd.

The proposed model has been applied in a simulation test example and an indus-
trial case. In the test example, the proposed approximative model is compared
to a complete detailed simulation model of the litho cell, that represents the
real life situation. The simulation results show that the aggregate model gives
an accurate representation of the real life situation, estimating cycle time and
throughput within 3.5% for the case considered. Furthermore, the performance
of the model appears to be almost independent of utilization and thus can be
used as a means to predict performance changes for the litho cell.

The simulation results of the industrial case show that the aggregate model is a
good representation of the real life situation for the case considered: the observed
error in the cycle time approximation is about 8%. The model can be used to
investigate changes in the configuration of the litho cell. The model also clearly
quantifies the contribution of the factory floor to the cycle time performance
of the litho cell. This contribution appears to be significant. Most simulation
studies only consider the track-scanner module and disregard the ‘outside’ of
the litho cell.



Chapter 6

Aggregate modeling of
multi-processing workstations

In this chapter, an aggregate model for manufacturing systems consisting of flow
lines with finite buffers and parallel servers is proposed. The proposed model
is a multi-server station with process times depending on the work in process
(WIP). An algorithm is developed to measure the WIP-dependent process times
directly from industrial data such as arrival times at and departure times from
the manufacturing system. Simulation results show that the aggregate model
accurately predicts the mean flow time.

This chapter is submitted as:
Kock, Etman, Rooda, Adan, Van Vuuren, and Wierman. Aggregate modeling of multi-processing
workstations. submitted 2008
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6.1 Introduction

In semiconductor manufacturing, there is a trend of proliferation of integrated
processing (Wood 1996). These integrated processing tools allow multiple wafers
of one or more lots to be processed simultaneously. Multiple processes or pro-
cess steps are contained within a single tool. The logistics inside such integrated
tools are often flow line alike. For example, integrated lithography cells allow
wafers of up to four lots to be pipelined through a sequence of several processes,
including resist coat, expose, and develop. In addition, vacuum processors are
integrated around standardized frames that include wafer handlers and load-
locks. Other examples of integrated processing tools are wet-benches (lots tra-
verse through a sequence of chemical baths), metal deposit tools (several surface
treatment and metal-alloy deposition processes are combined in a single tool)
and ion-implant (ion implant consists of two sequential steps: loading and ion
emanation onto the wafers).

Due to the sequence of processes that is carried out in an integrated process-
ing tool, the mean flow time ϕ and throughput δ in the tool increases as the
work in process, WIP, increases. The presence of such tools on the factory floor
complicates the performance analysis.

For the performance analysis of semiconductor manufacturing there are two
categories of models in common use: (discrete-event) simulation models and
analytical models. Simulation models allow the inclusion of various details of
the processes. However, every detail requires data to be collected and adds to
the computational expense of the simulation model. Arisha and Young (2004),
Nayani and Mollaghasemi (1998), Pierce and Drevna (1992) develop simulation
models of integrated processing tools, with explicit modeling of, e.g., machine
downs, repairs, operating rules, setups, maintenance, operator availability and
operator skill. The cluster tool model described in Pierce and Drevna uses over
1100 variables and parameters and 500 distributions.

Analytical models, on the other hand, are usually computationally cheap to eval-
uate and require little input data, such as the mean and variance of process times.
However, they adhere to restrictive assumptions, such as, e.g., phase-type dis-
tributed process times (Asmussen 2003). An appealing approach to estimate the
performance of complex manufacturing systems is to represent (part of) the sys-
tem by a so-called flow equivalent server (FES) (Norton 1926): an exponential
single-server station with service rates depending on the WIP. Indeed, under
restrictive assumptions, the aggregate system behavior can be described exactly
by a FES, i.e, it is possible to replace part of a queueing network (representing
the manufacturing system) by a single-server station without affecting the be-
havior of the rest of the network (Chandy, Herzog, and Woo 1975, Boucherie
1998). Exact FES models were originally derived for balanced, closed queueing
networks with exponential process times. Later, extensions were proposed for
special networks with Coxian process times and constant process times (Stewart
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and Zeiszler 1980, Thomasian and Nadji 1981, Rhee 2006). However, the assump-
tions required for an (exact) FES model are too prohibitive to be of practical use
in the present context of integrated tools.

In this chapter, we propose an aggregate model that, similar to the FES, replaces
the integrated tool by a single- or multi-server station with WIP-dependent pro-
cessing times. However, unlike the FES, we do not make a priori assumptions
regarding process time distributions. Key to our approach is that the process
time distributions can be obtained directly from arrival and departure events
from the factory floor. The advantage is clear: we do not need to quantify all
shop-floor realities individually. To estimate the parameters of the process time
distributions we adopt the “Effective Process Time” (EPT) paradigm (Hopp and
Spearman 1996, 2001, Jacobs et al. 2001, 2003).

The system, studied in this chapter, is an open network with finite buffers and
no feedback; in particular, the configuration is flow-line alike, motivated by the
integrated processing tools used in semiconductor manufacturing, which is com-
mon for the logistics inside integrated tools. The accuracy of the mean flow
time predicted by the aggregate model is investigated for several configurations,
ranging from a flow line with twelve sequential servers to a station with twelve
parallel servers. Simulation results convincingly demonstrate that the proposed
aggregate model yields accurate predictions. Hence, the conclusion is that the
modeling framework of multi-server stations with WIP-dependent process times
combined with the EPT paradigm provides an effective and powerful tool for
the performance evaluation of integrated tools.

The outline of this chapter is as follows: we first present an overview of the
effective process time paradigm in Section 6.2. In Section 6.3, we explain the
main concept of the aggregate model. We introduce the algorithm to translate
arrival and departure data into EPT-realizations in Section 6.3.3. The algorithm
is tested on a set of examples in Section 6.4. Finally, in Section 6.5 we present
our main findings and the discussion.

6.2 Previous work using the EPT paradigm

The phrase effective process time was originally introduced by Hopp and Spear-
man (1996, 2001). They define the EPT as ‘the time seen by a lot at a workstation
from a logistical point of view’. The EPT aggregates the raw processing time and
all shop-floor realities and disturbances on processing at a workstation into a sin-
gle process time distribution. The inclusion of multiple phenomena into a single
distribution is referred to as aggregation. Hopp and Spearman give explicit ex-
pressions to compute the mean EPT and the EPT coefficient of variation from
the raw processing time and the various outages, either preemptive (setup-alike)
or non-preemptive (breakdown-alike). They use the EPT mean and variance in
closed form approximations for G/G/m queues to explain and estimate the mean
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3
a d

Figure 6.1: Tandem flow line with finite buffers; circles indicate process steps, trian-
gles buffers, a lot arrivals and d lot departures

flow time performance.

In many practical cases, outages may not all be quantifiable. Jacobs et al. (2001,
2003) show that the EPT can be measured without the need to identify and
quantify all contributing shop-floor realities. For workstations with ample buffer
space and that process a single lot at a time, they present an algorithm to calculate
EPT-realizations directly from lot arrival and departure events. The obtained
empirical distribution can then be used to fit a parameterized EPT-distribution.

This idea can be generalized into an EPT-based modeling framework, as ex-
plained by Kock et al. (2008a). Event collection, EPT calculation, distribution
fitting and aggregate modeling are presented as an integrated framework. The
EPT is not only used as a performance metric quantifying capacity (mean) and
variability (variance), but also to build simulation or analytical models fed by
parameter values obtained from empirical EPT-distributions.

EPT-algorithms to compute EPT-realizations from arrival and departure events
were proposed by Jacobs et al. (2001, 2003, 2006), Kock et al. (2008c,a), Vijfvinkel
et al. (2007), for infinitely buffered ‘single lot’ workstations, finitely buffered ‘sin-
gle lot’ workstations, assembly workstations and batch workstations. These refer-
ences focus on discrete-event simulation models. Analytical models may be used
as an alternative. Closed form expressions for (mean) performance measures of
G/G/m queues can be used for infinitely buffered multi-server workstations. For
finitely buffered flow lines and assembly lines, queueing approximations as dis-
cussed by Dallery and Gershwin (1992), Van Vuuren et al. (2005), Van Vuuren
(2007) may be used.

6.3 An aggregate multi-server station

In the present chapter, we consider flow lines consisting of multi-server work-
stations with finite buffers. Specifically, we assume that, on arrival, lots are put
into an infinite buffer to wait until processing starts, and once in process, lots do
not recirculate. An example is visualized in Figure 6.1.
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Figure 6.2: Structure of the proposed aggregate model

6.3.1 Model concept

The idea is to aggregate the entire flow line into a multi-server station with FIFO
dispatching and WIP-dependent process times; see Figure 6.2. The number of
servers, denoted by m, is an important user-defined parameter. Initially, one
may expect that the choice of m will be related to the structure of the flow
line, i.e., the “degree of parallel processing”; this relation will be investigated in
Section 6.4. The process time of a lot depends on the WIP present in the system
just before the start of processing. The dependence on the WIP reflects that,
in the real system, the mean flow time and throughput depend on the number
of lots in the system. Clearly, the real system is not a m-server station; hence,
the challenge is to subtract the required WIP-dependent process times from the
arrival and departure events in the real system. This is explained in the following
two sections.

6.3.2 EPT measurement

The input to the calculation of EPT-realizations consists of a chronological list
of events obtained from the shop-floor. Each event is defined by the lot id,
the event type ev (arrival in the infinite buffer of the flow line, denoted ‘A’, or
departure from the flow line, denoted ‘D’) and the time of occurrence of the
event τ . Then, by acting as if the event list has been produced by an m-server
station, we are able to retrieve the EPT-realizations. Since the process times in
the multi-server station are WIP-dependent, we introduce bucket b for each WIP-
level b, 1 6 b < ∞. An EPT-realization is assigned to bucket b if b lots are present
at the start of the EPT-realization. Thus, each bucket collects EPT-realizations
corresponding to a certain WIP, and at the end of the event list, provides an
empirical EPT-distribution. Since the EPT-distributions are expected to converge
as b tends to infinity, we can limit the number of buckets by N, say, where bucket
N contains all process times registered with a WIP ≥ N.

Most likely, the real system and the m-server station do not perfectly match.
Hence, it may happen that, when lot id departs at time τ , it has not yet started
processing in the m-server station; this is readily seen to happen when a G/G/2
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is aggregated into a G/G/1, since overtaking takes place in the first, but not
in the second system. This inconsistency will be solved as follows. We pick
one of the lots in process at time τ , say lot jd that started processing at time
t when the WIP was b; the pick rule(s) will be specified in the next section.
Then we “interchange” the departure times of lot id and jd; so lot jd leaves at
time τ , having received an EPT of τ− t time units for WIP b, after which lot id
immediately enters service and remains so until the “old” departure time of lot
jd.

In the next section we describe the algorithm to calculate EPT-realizations in
more detail.

6.3.3 EPT-algorithm

The EPT-algorithm is depicted in Figure 6.3. It uses the following variables: n
represents the current WIP, list rs stores (id,τ,n) containing the start times of the
lots that are in process (according to the m-server station). List ws contains the
id of each lot in the system that has not yet started processing (again, according
to the m-server station). The algorithm uses the functions append, get, remove,
head, tail and find operating on the lists rs and ws. Function append adds an
element to the end of the list, get reads the element with lot id from the list.
Function remove removes the element with id from the list. Function head takes
the first element in the list and function tail takes all elements except the first.
Finally, find picks one specific element from the list according to a user-defined
rule, to be discussed later.

The EPT-algorithm distinguishes five cases:

(a1) A lot arrives when n < m lots are present. Capacity is available: lot start
with id, time τ and WIP-level n is added to rs.

(a2) A lot arrives when n > m lots are present. All m servers are busy, thus the
lot is stored in the buffer ws.

(d1) A lot departs, n < m lots remain behind. Bucket b and start time t of the
departing lot are retrieved from rs, after which the lot is removed.

(d2) A lot departs, n > m lots remain behind and id of the departing lot is known
in rs: bucket b and start time t of the lot are retrieved from rs after which
id is removed from rs; the first lot waiting in ws is added as new lot start
to rs with time τ and WIP-level n.

(d3) A lot departs, n > m lots remain behind, and id of the departing lot is not
known in rs. So lot id departs, while it has not started processing according
to the m-server station. Then, using function find, we select an alternative
lot that has started already, jd. We compute the EPT-realization using the
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n:= 0; rs:=[]; ws := []
loop

read id,ev,τ
if ev = ‘A’ then

n := n+1
if n 6 m then (a1)

rs:= append(rs,(id,τ,n))
elseif n > m then (a2)

ws:= append(ws, id)
endif

elseif ev = ‘D’ then
n := n−1
if n < m then (d1)

(t,b):= get(rs, id)
rs:= remove(rs, id)

elseif n > m and id ∈ rs then (d2)
(t,b):= get(rs, id)
rs:= remove(rs, id)
jd:= head(ws); ws:= tail(ws)
rs:= append(rs,( jd,τ,n))

elseif n > m and id /∈ rs then (d3)
( jd, t,b):= find(rs,rule)
rs:= remove(rs, jd)
rs:= append(rs,( jd,τ,n))
ws:= remove(ws, id)

endif
write τ− t,b

endif
endloop

Figure 6.3: EPT-Algorithm

start time of jd. Then, lot jd is restarted and lot id is removed from buffer
ws.

Note that in (d3) lot id immediately departs and lot jd (re)starts service, instead
of the other way around; the reason is that, although the lot identity is not
relevant for the EPT-realization, we should be able to connect the right lot to the
departure of lot jd after time τ .

For function find in case (d3), we propose three rules: 1) random lot, 2) lot with
the shortest elapsed process time, 3) lot with the longest elapsed process time.
The rationale behind rule 2 is that the lot might be a fast mover, and therefore, we
assign the smallest possible process time; the rationale behind rule 3 is opposite.
Clearly, for m = 1, the pick rules are identical, since then there is only one lot to
pick. The impact of the choice of the pick rule on the performance predictions
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Figure 6.4: Example Gantt-charts, (a) without overtaking, (b) with overtaking, using
rule 2

will be investigated in Section 6.4.

In case (d1), (d2) and (d3), the EPT-realization is printed as τ− t with bucket b.

6.3.4 Gantt-chart examples

Figure 6.4 shows Gantt-charts for two manufacturing systems; Figure 6.4(a) cor-
responds to a system without overtaking, and Figure 6.4(b) to a system with
overtaking. The bottom part of the Gantt-charts shows the EPT-realizations com-
puted by the EPT-algorithm, with m = N = 2; EPTs are labeled t(b), where t is
the duration of the EPT and b the bucket. Note that case (d3) is invoked twice
in Figure 6.4(b), but not in Figure 6.4(b).

6.4 Model validation

By means of discrete-event simulation we will test the aggregate model in four
scenarios depicted in Figure 6.5; all simulation results are generated using the
χ−0.8 software (Hofkamp and Rooda 2002).

In each example, the arrival process is Poisson with rate δ and the process times
on workstations are gamma-distributed with mean 1.0 and squared coefficient
of variation c2 ∈ {0.1,1.0,2.0}. Mean flow time predictions in the real system are
based on simulation runs of 2.000.000 lots. The utilization of the system is de-
fined as the ratio of the throughput δ and the maximum attainable throughput
δmax, which is determined in one simulation run of 100.000 lots using unlim-
ited supply of lots. For each scenario EPT-realizations are measured using the
EPT-algorithm (Figure 6.3) in a simulation run of 2.000.000 lots at a given uti-
lization level, the so-called training level. For scenario I, the training level is
δ/δmax ∈ {0.6,0.9} while for scenarios II, III and IV, we take δ/δmax = 0.8. On
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the empirical EPT-distributions, we fit Gamma distributions matching the mean
te and coefficient of variation c2

e . Then mean flow times are predicted by the
multi-server station with WIP-dependent Gamma-distributed process times at
utilization levels 0.3 6 δ/δmax 6 0.95; at each utilization level the mean flow time
prediction is based on five runs of 10.000.000 lots.

6.4.1 Scenario I: Twelve sequential single server workstations

The system consists of a flow line of twelve sequential single-server workstations,
see Figure 6.5(a). Each workstation has one buffer space. For this system, we
have δmax = {0.875,0.553,0.440} [lots/hour] for c2 = {0.1,1.0,2.0}.

In Figures 6.6 we present EPT-realizations measured for δ/δmax = 0.9, c2 = 1.0
and m = 1. The x-axis in Figure 6.6(a) is the WIP (or bucket), whereas the y-
z planes represent histograms of the EPT-realizations. Clearly, the bulk of the
EPT-realizations is in buckets ranging from 1 to 40, with a peak near 20. The
empirical probability distribution function (PDF) is plotted in Figure 6.6(b). From
bucket 30, say, onwards, the distributions do not significantly change; buckets 40
or higher hardly contain any realization explaining the noisy behavior. Hence,
it makes sense to aggregate all realizations in buckets ≥ 30 into bucket N = 30.

1 1

(a) Scenario 1: 12 sequential
single-server workstations

1 1

(b) Scenario 2: 3 workstations with
4 servers

1 1

1 1

1 1

1 1

(c) Scenario 3: 4 parallel lines (d) Scenario 4: 12 parallel servers

Figure 6.5: Test scenarios for algorithm of Figure 6.3
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Figure 6.7 plots the mean EPT te and squared coefficient of variation (SCV) c2
e as a

function of the WIP-level. Clearly, these plots depend on the squared coefficient
of variation c2 of the processing times in the real system.

The monotonic behavior of te as a function of WIP-level is as expected: the higher
the WIP in the flow line, the faster lots will leave the line. Also the behavior of c2

e
may be explained: initially, at low WIP, c2

e tends to increase, due to the (random)
distribution of the WIP in the flow line, and eventually, c2

e will converge to a
value close to c2. We would like to point out that monotonicity properties of
te and c2

e , as observed in Figure 6.7, may be exploited in an analytical model to
accomplish, e.g., state space reduction.

Figures 6.8(a) and 6.8(b) show, for various values of m, mean flow time predic-
tions of the aggregate model trained at utilization level δ/δmax = 0.6 and 0.9,
respectively; the EPT-realizations are obtained by employing pick rule 1. The
figure shows that, for m = 1, the best prediction is obtained at the training level
(as expected). For m = 1, mean flow time predictions are also listed in Tables
6.1 and 6.2. From the results we can conclude that mean flow times at low uti-
lization levels are more accurately predicted by the aggregate model trained at
δ/δmax = 0.6 than the one trained at δ/δmax = 0.9, whereas the reverse is true for
high utilizations. Further, the predictions seem to be more accurate for smaller
values of c2.

A naive approach is to approximate the flow line by an M/G/1 queue; in the
present context, this means that the flow line is aggregated into a 1-server station
with N = 1, i.e., all EPT-realizations are assigned to one bucket. This approach
would produce poor approximations, since it completely fails to take into account
the increased efficiency of the integrated processing tool for larger WIP-levels.

Table 6.1: Scenario I: Mean flow time prediction (m = 1, trained at δ/δmax = 0.6)
c2 = 0.1 c2 = 1.0 c2 = 2.0

δ

δmax
Approx. Real Approx. Real Approx. Real

0.3 12.02 12.85 14.11 14.67 15.40 15.77
0.5 13.39 13.79 17.16 17.18 19.44 19.29
0.6 14.49 14.49 18.86 18.85 21.62 21.62
0.7 16.23 15.51 20.94 21.06 24.19 24.69
0.85 21.75 18.58 25.22 27.26 29.19 33.54
0.95 69.62 27.07 30.36 48.94 33.38 67.10

The aggregate 1-server station may be slightly refined by exploiting the following
observation. There are two possibilities to start processing at WIP-level 1: either
a lot arrives in an empty flow line, or the previous departure left behind a single
lot. The mean EPT of a lot entering an empty flow line is 12, whereas the mean
EPT of a single lot left behind is clearly less (in fact, 6 according to simulation).
Thus, splitting bucket 1 in two buckets may improve the predictions. Figure 6.9
shows mean flow time predictions for c2 = 1.0 with training level δ/δmax = 0.6.
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Figure 6.6: Scenario I: EPT-realizations (δ/δmax = 0.9, c2 = 1.0 and m = 1)
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Figure 6.8: Scenario I: flow time prediction (c2 = 1.0, rule 1)

Since the prediction only slightly improves for low δ/δmax, we will not further
pursue the option of splitting of buckets.

Next we investigate sensitivity with respect to the number of EPT-measurements.
Figure 6.10 shows that, if the number of EPT-realizations is drastically reduced
from 2.000.000 to 15.000 lots, the mean flow time predictions are still accurate.
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Table 6.2: Scenario I: Mean flow time ϕ̃ estimation for m = 1 if the model is trained
at δ/δmax = 0.9

c2 = 0.1 c2 = 1.0 c2 = 2.0
δ

δmax
Approx. Real Approx. Real Approx. Real

0.3 11.35 12.85 13.66 14.67 15.34 15.77
0.6 13.10 14.49 19.04 18.85 22.82 21.62
0.85 18.13 18.58 28.22 27.26 35.32 33.54
0.9 21.08 20.95 32.60 32.45 41.26 41.18
0.92 22.46 22.55 35.27 36.35 44.84 47.10
0.95 26.14 27.07 40.91 48.94 52.42 67.10

This suggests that it is not necessary to collect an “enormous” amount of data,
which is convenient from a practical point of view.

Finally we consider an unbalanced flow line: the processing speed of server 6
is is slowed down by a factor 1.5, and thus it becomes the bottleneck station.
Mean flow time predictions for utilization levels from 0.3 until 0.95 are depicted
in Figure 6.11. For m = 1, the predictions are even slightly more accurate than in
the balanced case.

6.4.2 Scenario II: Three workstations, four parallel servers each

The first workstation in the three station flow line of Figure 6.5(b) has an infinite
buffer, the other two have one buffer place. The maximum obtainable throughput
is δmax = {3.666,3.174,2.989} [lots/hour] for c2 = {0.1,1.0,2.0}. The training level
is δ/δmax = 0.8.

In Figures 6.12 we show te and c2
e as a function of the WIP-level, for m = 1 and

m = 4. As expected, the shape of the te and c2
e curves depend on the choice of m;

in particular, the limiting value of te for m = 4 is (roughly) four times the limiting
value for m = 1.

Figure 6.13 presents mean flow time predictions in the range of 0.3 6 δ/δmax 6
0.95. It shows that the predictions for m = 12 are accurate at low utilizations, but
underestimate the mean flow time at high utilizations; a possible explanation
is that the 12-server station allows for more overtaking than in the real system.
The predictions for m = 1 and m = 4 are very accurate in the utilization range
0.6 6 δ/δmax 6 0.9. In this case, one might initially guess that m = 4 would be
the best choice, since it properly reflects the “degree of parallel processing”; but,
surprisingly, the predictions for m = 1 are of the same quality.

Table 6.3 gives additional results for m = 4, demonstrating the effect of the pick
rule. The estimates for the three rules are fairly close, but seem to be ordered:
rule 3 gives the lowest prediction, rule 2 the highest and rule 1 is in between.
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This ordering is also reflected in the c2
ecurves in Figure 6.14, which seems to be

a direct consequence of the pick rule.

Table 6.3: Scenario II: Mean flow time prediction (m = 4, trained at δ/δmax = 0.8)
c2 = 0.1 c2 = 2.0

δ

δmax
rule 1 rule 2 rule 3 Real rule 1 rule 2 rule 3 Real

0.3 2.90 2.90 2.89 3.02 2.50 2.85 2.29 3.03
0.6 3.08 3.08 3.08 3.18 3.12 3.36 3.00 3.33
0.7 3.23 3.23 3.23 3.32 3.51 3.73 3.38 3.62
0.8 3.50 3.50 3.50 3.58 4.12 4.39 3.95 4.18
0.9 4.14 4.15 4.13 4.29 5.46 5.92 5.09 5.68
0.95 4.91 4.94 4.89 5.63 7.28 7.84 6.57 8.04
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Figure 6.12: Scenario II: Effective process times per bucket (δ/δmax = 0.8, c2 = 1.0, rule
1)

6.4.3 Scenario III: Four parallel lines of three sequential, single
server workstations

We now consider a system of four parallel single-server flow lines, with three
workstations per line, see Figure 6.5(c). Each workstation has one buffer space,
except for the first stations in the lines sharing an infinite buffer. For this system,
the maximum obtainable throughput is δmax = {3.659,2.691,2.319} [lots/hour]
for c2 = {0.1,1.0,2.0}. The training level is δ/δmax = 0.8.

Figure 6.15 shows the mean flow time prediction for 0.3 6 δ/δmax 6 0.95; addi-
tional results for m = 4 and each of the pick rules are displayed in Table 6.4. The
results for scenario III are comparable to ones for scenario II. Note, however, at
high utilizations the prediction errors in scenario III are larger than in scenario II
(cf. Figure 6.15 and Figure 6.13). Apparently, in scenario II, the aggregate model
more accurately captures interaction between lots.

Finally, we note that the picture of mean flow times, obtained by slowing down
one of the four lines by a factor 1.5, is similar to Figure 6.11.
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Table 6.4: Scenario III: Mean flow time prediction (m = 4, trained at δ/δmax = 0.8)
c2 = 0.1 c2 = 2.0

δ

δmax
rule 1 rule 2 rule 3 Real rule 1 rule 2 rule 3Real

0.3 3.58 3.60 3.55 3.84 4.20 4.67 3.97 5.23
0.6 4.14 4.15 4.13 4.27 5.57 5.83 5.46 5.96
0.7 4.37 4.38 4.36 4.42 6.11 6.34 6.00 6.28
0.8 4.72 4.74 4.72 4.70 6.83 7.11 6.66 6.92
0.9 5.51 5.54 5.49 5.44 8.16 8.66 7.81 8.86
0.95 6.62 6.66 6.59 6.84 9.60 10.39 9.09 12.75

6.4.4 Scenario IV: One workstation with twelve parallel servers

To conclude, we consider a single workstation with twelve parallel servers, see
Figure 6.5(d). For this system, the maximum obtainable throughput is δmax =
{12,12,12} [lots/hour] for c2 = {0.1,1.0,2.0}. The training level is again set at
δ/δmax = 0.8.
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Figure 6.16: Scenario IV: Effective process times per bucket (δ/δmax = 0.8)

Figure 6.16 shows te and c2
e as a function of the WIP-level for m = 12. Clearly,

the measurements in buckets smaller than 6 or larger than 15 experience noise
(due to few observations): one would expect flat curves here.

Figure 6.17 shows mean flow time predictions for 0.3 6 δ/δmax 6 0.95. The figure
also depicts the standard M/G/12 approximation, i.e., m = 12 and N = 1. Obvi-
ously, now this “naive” approximation is very accurate, and the M/G/12 with
“WIP-dependent” process times is almost as accurate. Further, the predictions
for m = 1 are less accurate at low utilization and the ones for m = 20 are less
accurate at high utilization.

In Scenario II we already touched the issue of selecting the pick rule; see Table 6.3,
demonstrating that the effect of the pick rule on the mean flow time prediction
is limited. However, this choice may be relevant in situations where the rule is
often invoked. For example, this is expected to happen if the 12-server station
is aggregated as a 2-server station; the predicted mean flow time, as a function
of δ/δmax, is depicted in Figure 6.18, and indeed, the accuracy now strongly
depends on the pick rule. In all examples, however, it appeared that rule 1,
i.e., the random rule, performed well and thus, this rule seems to be a safe
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Figure 6.17: Scenario IV: Flow time pre-
diction (c2 = 1.0, rule 1, trained at
δ/δmax = 0.8)
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Figure 6.18: Scenario IV: Flow time pre-
diction (c2 = 1.0, m = 2, measured at
δ/δmax = 0.8)

choice. Moreover, the numerical experiments in this chapter convincingly show
that the aggregate model with m = 1 always produces accurate mean flow time
predictions, and in this case, the pick rule is irrelevant.

Finally, we consider an unbalanced case by slowing down the processing speed of
six of the twelve servers by a factor 1.5, while keeping c2 = 1.0 for all processing
times. Evaluating mean flow time predictions for m ∈ {1,2,4,12} over the range
0.3 6 δ/δmax 6 0.95 leads to similar results as shown in Figure 6.17. However, in
this case, the standard M/G/12 approximation is inaccurate: it sometimes overes-
timates the mean flow time by more than 10%, while the M/G/12 approximation
with WIP-dependent process times remains accurate.

6.5 Conclusions and discussion

In this chapter, we propose an aggregate m-server model with WIP-dependent
process times. The process times are computed from lot arrivals at and lot
departures from the system that is aggregated. An advantage is that these events
can be directly measured from the factory floor. An algorithm is presented to
calculate the WIP-dependent effective process time realizations.

The accuracy of the mean flow time prediction has been investigated in four
scenarios, ranging from a flow line to a single workstation with parallel servers.
The results show that predictions are accurate, but the quality depends on the
choice of m, and to a lesser degree, on the pick rule; surprisingly, the choice m = 1
appears to be good across all scenarios. The feature of WIP-dependent process
times appears to be crucial: the quality of mean flow time predictions by multi-
server stations with WIP-independent process times is usually poor. The overall
conclusion is that the aggregate 1-server station always performs well (and, in
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this case, the choice of the pick rule is not relevant). The simulation study in
this chapter is restricted to flow lines consisting of multi-server workstations
with finite buffers; we expect, however, that the scope of this approach goes (far)
beyond this class of manufacturing systems.

The aggregate model has been developed keeping integrated processing equip-
ment in mind. A follow-up chapter by Veeger, Etman, van Herk, and Rooda
(2008) demonstrates how the present methodology can be applied to worksta-
tions with integrated processing tools in a semiconductor manufacturing envi-
ronment, where commonly used G/G/m approximations perform unsatisfacto-
rily.



Chapter 7

Conclusions and Recommendations

The thesis presents four contributions in the framework of the Effective Process
Time for performance analysis of discrete event manufacturing systems. This
chapter reviews the main conclusions and gives an outlook towards possible
future research.

7.1 Conclusions

7.1.1 Finitely buffered workstations

In Chapters 2 and 3, an EPT-approach for flow lines consisting of finitely buffered,
(multi-)server workstations is developed. It is shown that, for such systems, the
EPT of the workstations can be determined from three manufacturing events: (i)
the arrival of a lot in (the buffer of) the workstation; (ii) the moment in time at
which processing of the lot is finished; and (iii) the departure of the lot from
the workstation. These events can be translated into EPT-realizations with a
sample path equation: the EPT-realization starts when a lot is present and the
server is idle (departure of the previously processed lot has occurred), and the
EPT-realization ends at the finish of processing.

For infinitely buffered workstations, usually the first two moments of the mea-
sured EPT workstation distributions suffice. In Chapters 2 and 3, we show that, if
blocking plays a major role in the system, then the shape of the EPT-distribution
needs to be represented more accurately. This happens when buffer sizes are
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small or zero, variability is high, and only few (or just one) parallel servers are
present at a workstation. From simulation test cases, it is concluded that using
the offset as a third distribution parameter leads to increased accuracy of the
approximations.

7.1.2 Assembly workstations

Chapter 4 addresses assembly workstations that are subject to blocking. The
chapter contributes a method to measure EPT-realizations for assembly systems.
The method isolates the behavior of all component lines that feed the assembly
workstation. In this way, the EPT-realization of the assembly station is not af-
fected by the performance of the component lines. As an alternative, the methods
of Chapters 2 and 3 may be used by aggregating the behavior of the component
lines in the EPT of the assembly station. This alternative may be attractive if
one of the components to be assembled can be seen as main component or if
one of the component lines dominates the behavior of the whole assembly line.
However, such an aggregation of the complete line prohibits the use of the EPT-
model for performance prediction. The measured EPT-distributions can only
be used for performance quantification. For performance prediction, the newly
developed EPT for assembly workstations should be used.

The proposed approach is illustrated in two examples: a theoretical example and
an industrial case. The first example illustrates the case that transport can be
modeled as a constant. The second example illustrates that the EPT-based model
accurately predicts the effect on line performance of changes that are made in
the line configuration.

7.1.3 Litho cell model

In Chapter 5 an aggregate model that predicts flow time and throughput of
an individual litho cell is proposed. This model consists of two parts. In the
detailed (litho cell) part, the logistics inside the track and scanner are modeled
as a serial flow line using the process times and system failure characteristics
that were known from the machine logs. In the aggregate part, external factors
which cause lots to be delayed from loading onto the machine were lumped into
a single delay distribution in a way similar to calculating EPTs.

The proposed model has been applied in an industrial case. The simulation
results of the industrial case show that the aggregate model is an accurate rep-
resentation of the real life situation for the case considered, the flow time is
underestimated by 8%. It is shown that 34% of the flow time is due to the oper-
ation of the machine. Also, a flow time-throughput curve is plotted for the litho
cell. With the model we can investigate changes in the configuration of the litho



99 7: Conclusions and Recommendations

cell, such as the size of the internal buffer, the capacity of the bottleneck process
step in the litho cell, or the product mix.

7.1.4 Integrated manufacturing systems

Chapter 6 proposes an aggregate G/G/m model with WIP-dependent process
times to model integrated manufacturing systems. Process times are sampled
from buckets, where the bucket in this thesis corresponds to the WIP present in
the system at the start of processing of a lot according to the aggregate model.

In four test scenarios, it is shown that the aggregate model provides accurate
flow time predictions in a region around the training point δ/δmax at which the
EPT-realizations were determined. The accuracy of the model depends on the
choice of the number of machines m in the aggregate model and the pick rule
that is used in the EPT-algorithm of Figure 6.3: in case a lot leaves the system
while, from the perspective of the aggregate model the lot is still in process.
Then, the EPT-algorithm picks the EPT-start time of one of the lots currently
in process. We considered: (1) pick random, (2) pick the lot with the shortest
elapsed process time, (3) pick the lot with the longest elapsed process time. Flow
times approximated with pick rule 2 are always larger than those approximated
with pick rule 1, while pick rule 3 always estimates the smallest flow times.

In this thesis, the G/G/m model with WIP-dependent process times is a simu-
lation model. From a mathematical perspective, it is interesting to investigate
whether an analytical counterpart within the new model class can be developed.

7.2 Recommendations

7.2.1 G/G/m station with WIP-dependent process times

In this thesis, the G/G/m station with WIP-dependent process times has only
been tested for finitely buffered flow lines without feedback. We expect the ag-
gregate model of Chapter 6 to be more widely applicable. The concept can prob-
ably also be used to approximate infinitely buffered flow lines, reentrant flow
lines and job-shop like systems. It is recommended to investigate this opportu-
nity. A second topic is to investigate whether the aggregate modeling method
can be extended such that also the flow time distribution can be predicted. The
current method considers only the mean flow time. For customer reliability, also
the distribution of the flow time is of importance. For single-lot machine work-
stations, Blom (2007) considered flow time prediction using the EPT-approach.
A topic related to this is the modeling of the dispatching rule. On the factory
floor, dispatching rules define the sequence of lots processed on the machine at
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the workstation. One may want to explicitly model the dispatching rule in the
aggregate model.

7.2.2 Networks

Currently, the EPT studies flow lines, in particular flow lines with finite buffers.
Recall that the goal of the STW project is to arrive at simple yet accurate models
of manufacturing networks, both simulation models and analytical models. Bier-
booms (2008) has proposed a first method to implement EPT in open networks
of queues.

The new aggregate modeling approach proposed in Chapter 6 may be used to
simplify the models of entire networks. As an example, one may choose to build
a (detailed) model for the bottleneck workstations and use the aggregate ap-
proach of Chapter 6 to model the remaining part(s) of the network. Alternatively,
the entire manufacturing system may be aggregated, the approach proposed in
Chapter 6 may be used to model the system at different levels of abstraction.

7.2.3 Optimization

Optimization using EPT-based aggregate models is an interesting next step to
investigate. Two types of EPT-based models may be used: simulation models
and analytical models. The simulation model makes the optimization compu-
tationally expensive, whereas the analytical model may not be able to cover
particular distribution details such as offset or product-type dependent param-
eters. A promising approach is to use an optimization method where analytical
models and simulation models are used together. Such a hybrid optimization
method was investigated by Vijfvinkel (2005). It is recommended to continue
this research.
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Samenvatting

Moderne productiesystemen worden steeds ingewikkelder. Het is vaak moei-
lijk om de invloed van veranderingen op de verblijftijd- en doorzetprestatie te
voorspellen. Wachtrijmodellen kunnen hierbij behulpzaam zijn.

Twee soorten wachtrijmodellen worden onderscheiden: analytische modellen en
simulatiemodellen. Analytische modellen kunnen snel worden doorgerekend
en behoeven weinig invoer; het ontwerpen ervan behoeft echter specialistische
kennis, waarbij strikte aannamen worden gemaakt. Simulatiemodellen zijn flex-
ibeler en kunnen gebruikt worden om ieder gewenst detail te modelleren; het
doorrekenen van zulk een model kost echter veel rekentijd, en er is veel data
nodig om de details van de fabrieksvloer te beschrijven.

Dit proefschrift stelt een methode van aggregeren voor om het aantal details
in analytische modellen of simulatiemodellen te verkleinen. Door aggregatie
wordt een werkstation weergegeven middels één effectieve-procestijdverdeling,
die tijdverliezen als gevolg van omstellen, machinefalen en beschikbaarheid van
operators omvat. Een fundamenteel aspect van de voorgestelde methode is dat
de geaggregeerde procestijdverdeling rechtstreeks gemeten kan worden uit data
van de fabrieksvloer, zoals aankomsttijden en vertrektijden van halfproducten bij
een werkstation. De individuele tijdsverliesfactoren hoeven hierbij niet gekwan-
tificeerd te worden. Deze aankomst- en vertrekdata kan verkregen worden uit
de programmeerbare logica controllers (PLCs), die veel gebruikt worden in de
machinebesturing van productiesystemen.

In het proefschrift wordt de voorgestelde methode van aggregeren aangeduid
met de Effectieve-ProcesTijd (EPT). De term effective-procestijd werd geïntro-
duceerd door Hopp and Spearman (1996, 2001) als ‘de procestijd gezien door
een lot op een workstation vanuit een logistiek oogpunt’. Jacobs et al. (2001,
2003) hebben aangetoond dat de effectieve-procestijd gemeten kan worden zon-
der de individuele tijdsverliezen te kennen. Door EPTs te meten hebben zij
de variatiecoëfficiënt van enkele single-lot machines in een halfgeleider-fabriek
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weten te bepalen. Dit tweede moment van de procestijdverdeling is nodig voor
(analytische) wachtrijmodellen van productiesystemen. Van Vuuren (2007) pre-
senteert analytische wachtrijmodellen voor eindig gebufferde productielijnen en
assemblage-stations waarin de eerste twee momenten van de EPT-verdelingen
worden gebruikt.

Het EPT-modelleerraamwerk voor de prestatie-analyse van productiesystemen
wordt in dit proefschrift verder uitgebreid. Het proefschrift presenteert meth-
odes voor het meten van de EPT voor eindig gebufferde werkstations en assem-
blage-stations. EPT-realisaties worden berekend met sample-pad vergelijkingen
op basis van drie tijdstippen: de aankomsttijd van lots, de vertrektijd van lots en
het tijdstip waarop het bewerken van een lot ten einde komt. Het gemiddelde,
de variantie, en mogelijk hogere momenten van de gemeten EPT-realisaties kun-
nen gebruikt worden als parameters van de EPT-verdeling. Daarnaast kan een
distributiefunctie gefit worden op de verzamelde realisaties. De voorgestelde
EPT-methode is getoetst in twee cases vanuit de industrie: uit de automobielin-
dustrie en uit de gloeilampenindustrie. De EPT-modellen geven nauwkeurige
benaderingen voor zowel de verblijftijd als de doorzet.

Het proefschrift laat zien dat het EPT-concept ook gebruikt kan worden om
slechts een deel van het werkstation te aggregeren. Een model van een lithografie
machine wordt gepresenteerd, waarbij de litho-cel in detail wordt gemodelleerd
terwijl de machine omgeving geaggregeerd gemodelleerd wordt. Meestal is
over het inwendige van de litho-cel veel proces-data beschikbaar, terwijl over
de omgeving (het laden) weinig bekend is. Het ontwikkelde model wordt geïl-
lustreerd middels een simulatie case en een industriële case. Beide cases laten
zien dat de aggregaat modellen nauwkeurige verblijftijdvoorspellingen oplev-
eren, en dat ze gebruikt kunnen worden om het effect van veranderingen in de
machine-configuratie te voorspellen. In de industrie-case blijkt dat tweederde
van de verblijftijd wordt veroorzaakt door de omgeving van de machine, terwijl
slechts eenderde wordt veroorzaakt door de litho-cel zelf. Daarnaast is met het
model een verblijftijd-doorzet curve berekend.

Tenslotte wordt in het proefschrift een aggregatiemodel voorgesteld voor stations
bestaande uit machines die een stroom van lots tegelijkertijd in process kunnen
hebben. Zulke machines worden veel gebruikt in de halfgeleiderindustrie. Het
voorgestelde aggregaatmodel is een G/G/m-type wachtrij model, waarvan de
procestijden afhangen van het aantal klanten in het systeem. Op vier verschil-
lende productielijn-scenarios worden simulatie-experimenten uitgevoerd. Vol-
gens de simulatie-resultaten biedt het voorgestelde model nauwkeurige verbli-
jftijdsbenaderingen. Het voorgestelde model is nauwkeuriger dan de normale
G/G/m benaderingen met WIP-onafhankelijke procestijden.

Het onderzoek, beschreven in dit proefschrift, werd uitgevoerd als deel van het
STW project EPT. Het project is een samenwerking van de Systems Engineer-
ing group (faculteit Werktuigbouwkunde) en de Stochastic Operations Research
group (faculteit Wiskunde en Informatica).
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