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Resumo
Métodos de lavra subterrânea são aplicados na extração de vários metais e minerais. O
planejamento de métodos subterrâneos difere do planejamento de métodos de superfície
pelo fato de que não é necessário extrair todas as áreas de produção dentro dos limites
econômicos finais para se ter uma sequência factível, ou seja, nos métodos subterrâneos é
fisicamente possível que algumas áreas permaneçam não lavradas mesmo estando dentro
do limites econômicos finais. Neste contexto, o planejamento estratégico é a área central
do planejamento de longo prazo de uma mina e visa definir estratégias de escala de
produção, métodos de lavra e de beneficiamento mineral, selecionar as áreas que serão
lavradas e otimizar a sequência de lavra destas áreas de produção. Para garantir a
viabilidade econômica do empreendimento, o planejamento estratégico deve considerar
as características-chave dos empreendimentos de mineração, que são: a necessidade de
capital intensivo, o longo período de retorno do investimento e o ativo (reserva) limitado.
Essas características devem ser consideradas durante o processo de valoração de um
empreendimento mineiro, que normalmente é feito através do cálculo do VPL, valor
presente líquido. Dentre as principais alavancas do planejamento estratégico, o teor de
corte utilizado na seleção dos blocos que serão lavrados e o sequenciamento de mina são
os que geram maior número de opções, fazendo com que avaliações de cenários demandem
muito tempo e se tornem inviáveis na prática, dada a necessidade de respostas rápidas para
tomadas de decisão. Neste trabalho, três diferentes modelos matemáticos são propostos
para abordar, de forma conjunta, o problema da seleção dos blocos de lavra de uma mina
subterrânea e a otimização do sequenciamento destes blocos. Tais modelos consideram o
VPL como principal objetivo a ser maximizado e resultam no uso do teor de corte como
fator que equilibra as capacidades de produção dos diferentes estágios de um sistema
de mineração. A abordagem matemática adapta a modelagem clássica de problemas de
sequenciamento considerando os blocos de lavra como tarefas e as atividades de escavação
de galerias (desenvolvimento de acessos) e de produção de minério (lavra) como máquinas.
Os modelos propostos são testados com base em casos reais, utilizando-se métodos de
solução exata e um algoritmo genético. Os resultados computacionais mostram que o
algoritmo genético é mais eficiente do que os métodos exatos, sobretudo para instâncias
maiores, mais próximas da realidade.

Palavras-chave: Pesquisa operacional. Programação linear. Algoritmos genéticos. Mine-
ração subterrânea. Otimização. Teor de corte. Sequenciamento.



Abstract
Underground mining methods are used at the extraction of many metals and minerals.
Underground mining planning differs from surface mining planning mainly because, in the
first case, it is not necessary to extract all mining blocks within the ultimate economic
limits to have a feasible sequence, i.e., it is physically possible to an underground mine
to have some areas left in situ even if they are inside the ultimate economic limits. In
this context, strategic planning is the core area of long-term mine planning and aims to
define the scale of production, mining and processing methods, to select areas that will be
mined, and to optimize the mining sequence. To guarantee the economic feasibility of a
mining asset, strategic planners must also consider the key aspects of mining businesses,
which are: capital-intensive requirements, long-term payback, and limited asset (reserves)
life. These characteristics must be considered during the valuation process of a mining
asset, which is normally conducted through NPV, net present value, calculations. Among
the main strategic planning levers, cut-off grades (used at the selection of blocks that will
be mined), and the mine sequencing are the ones that generate the greatest number of
options. As scheduling multiple scenarios requires a great deal of time, this is infeasible in
real situations given the need for quick responses. In this dissertation, three mathematical
models are proposed to tackle, at the same time, two problems: the selection of the mining
blocks in an underground mine, and the optimization of their sequence. These models
consider NPV as the main objective to be maximized and result in using cut-off grades
as a factor that balances the main capabilities of a mining system. The mathematical
approach adapts classical scheduling models considering mining blocks as jobs; and tunnel
excavation (development of accesses) and ore production (mining) activities as machines.
The proposed models are tested, with real cases, using exact-solution methods and a
genetic algorithm. Results show that the genetic algorithm is more efficient than the exact
methods, especially for greater instances that are similar to real problems.

Keywords: Operations research. Linear programming. Genetic algorithms. Underground
mining. Optimization. Cut-off grades. Scheduling.
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Introduction

Development in engineering, computation, administration, and economy has
been characterized by the increasing use of optimization models with paradigms to
represent and solve decision-making problems. Grounded in mathematics, statistics, and
computation, operations research (OR) (TAHA, 2007; WINSTON, 2004) is dedicated to
solving problems aiming to select, according to criteria, the best choice among a set of
alternatives.

Countless industries and companies face problems related to task scheduling,
which may have been caused by resource misallocation and poorly defined processes.
Processes can be optimized by executing careful task scheduling planning, which results in
a better control of the production flow: meeting deadlines and scheduling tasks to the best
use of available resources.

The mining industry has its own procedures and differs from other sectors
mainly in three aspects: large capital investment, long-term payback, and limited asset life.
Thus, planning is a crucial task in mining. (VICKERS, 1962), even in the early years of
OR applications in mining, lists six areas of application that are still relevant these days:

• Allocation of resources: being it capital, manpower, equipment, etc.;

• Scheduling: in regards to optimize the sequence that a ore deposit will be mined;

• Inventory: understanding of different supplies inventory needed to a mine operation
balancing availability and inventory size;

• Replacement and maintenance: decisions over new investments and maintenance
cycles of equipment;

• Queuing: in regards to equipment interactions within a mining operation;

• Simulation: use of simulation (OR technique) to evaluate new processes.

If the problem translation into mathematical functions adjusts to one of the
available mathematical programming techniques, a solution can be found (TAHA, 2007).
The OR problem solution proposal starts with the model definition and an exploratory study
of the mathematical and computational tools available that would better suit the presented
situation (TAHA, 2007). There are many possible classifications to an optimization problem,
fundamentally depending upon the decision variables and parameters considered. While
exact methods can be efficient at solving some problems, other problems will require
heuristic methods, once an exact solution would lead to an unmanageable complexity.
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Scheduling problems represent the decision-making process used by the manu-
facturing and services industries (PINEDO, 2016). In general, they aim to solve resource
allocation (machines) for a given set of tasks (jobs). They are crucial in any procedural
industry, being no different to mining, where there is an extra benefit: the possibility of
profit anticipation depending on the scheduling strategy.

As explained by (BRUCKER, 2006), some scheduling problems can be solved
by reducing them to combinatorial optimization problems, others by using standard
techniques, such as dynamic programming, and branch-and-bound methods. However,
as shown by (PINEDO, 2016), most of the scheduling problems are NP-hard problems,
meaning that they are complex enough to take polynomial time to be solved. This difficulty
is also the situation for mine scheduling problems, where we have to consider multiple
machines, constraints, task weights (grades, benefit, and so on), and activities. In some
cases, it is necessary to abandon the search for the optimal solution and simply look for a
quality solution in reasonable computational time through heuristic procedures.

In this context, genetic algorithms can play an important role: they are great
approaches for hard optimization problems, where classic optimization methods fail due
to difficult characteristics, (KRAMER, 2017). Genetic Algorithms can adapt to different
problems and solution spaces and have the capability of finding near-optimum solutions in
a reasonable time.

Objectives and research relevance
This dissertation aims to explore the underground mining long-term-scheduling

problem, implementing different algorithms and solvers to optimize cut-off grades (mine
blocks selection) and sequence of an underground mine.

Consequently, three areas are explored: computation, considering the implemen-
tation of different algorithms; mathematics, with the study of the optimization methods
and the proposition of models; and engineering, considering a practical problem that is
significant to both the operations research and mining industry.

Additionally, there is an emerging awareness in technology and innovation areas
for the Industry 4.0 topic (FAPESP, 2017). Industry 4.0 covers mathematical programming
strategies, data mining, artificial intelligence, and machine learning applied to production
processes focusing on turning the decision-making processes more efficient. This subject
overlaps the objectives of this dissertation.
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Dissertation outline
The first part of this dissertation comprises of the whole theoretical framework,

presenting and discussing the mining industry, the class of scheduling problems within
Operational Research, and solving methods available.

The second part of the dissertation defines the problem, proposes different
mathematical models, tests different integer linear programming solvers, and proposes an
alternative algorithm for treating the problem.

Thus, this dissertation is organized following this structure:

• Part I: Theoretical framework:

– Chapter 1 - Mining industry introduces the theoretical framework of the
mining industry and strategic mining planning, giving the technical basis for
the understanding of the problem situation herein researched;

– Chapter 2 - Scheduling problems reviews operational research techniques
with regards to scheduling problems and their linear programming approaches;

– Chapter 3 - Solving methods provides some background on techniques
for solving the models proposed in Chapter 2, giving basis to support the
development of the proposed solution;

• Part II: Project development:

– Chapter 4 - Problem definition and literature review defines the prob-
lem situation herein studied, presents a literature review of similar problems
with solutions that have been applied and, proposes mathematical models to
the problem of this dissertation;

– Chapter 5 - Implementation of the solving methods discusses the
methodology with the implementation of the proposed models using different
integer linear programming solvers, besides the proposition and implementation
of a genetic algorithm as a resolution alternative;

– Chapter 6 - Case study presents some case studies, solving a real problem,
summarizing the findings, analysis, and discussion;

– Chapter 7 - Conclusions finishes with conclusions and subjects for future
work.
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Theoretical framework

16
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1 Mining industry

In a broad sense, mining can be defined as the act of extracting mineral
substances from the Earth and making them available to human use in a profitable way.
Thus, a mineral should only be extracted (and consequently being considered ore) if it
carries value.

Mining is probably the second venture of humankind as a civilization, given
that agriculture was the first. From prehistoric times to the present, mining has played
an important role in civilization’s history being, together with agriculture, the primary
industries that provide all basic resources needed to humanity, (HARTMAN, 2002).

The historical importance of mining and its evolution alongside human civiliza-
tion is highlighted by the historical periods: from the Stone Age, through Bronze, Iron,
Steel, and Nuclear Ages.

Mining products (metals and other minerals) consumption increases as human
civilization develops. According to data from the Minerals Education Coalition, (MEC,
2019), an average person in US consumes about 18t of minerals every year.

The current mining industry is procedural and capital intensive, comprising all
sorts of challenges from productivity vs. selectivity balance, utility placement, resource
allocation, production schedule, and so on. Furthermore, the mining industry depends on
non-renewable resources, which also have huge uncertainty attached to their quantification.

As a result, the mining industry has vast optimization potential. When facing
these challenges, making the best decision will enable the extraction of the highest value
from all stakeholders’ perspective, making the most sustainable use of non-renewable
resources.

1.1 Mining methods
Each mineral deposit is mined following a precise mining method that varies

according to geological composition, geological geometry (dip, depth, etc.), geotechnical
characteristics, and economic valuation. The most known mining methods classifications,
as used by (HUSTRULID, 1982) and (HARTMAN, 2002), separate them in surface and
underground.

Surface mining is the mechanical excavation of outcropping or near-surface
mineral deposits. It can happen as open pits or open cast (stripping mining). Surface
mining also includes aqueous methods such as placer and solution mining (HARTMAN,



Chapter 1. Mining industry 18

2002, p.11).

As an example, the next figure illustrates the pushbacks (or phases) that will
be mined in each year numbered from 1 to 3, the mineralization contour (orebody), and
the waste rock that will be moved, in order to reach the ore.

Figure 1 – Open pit vertical section.

(SABANOV; BEARE, 2015)

(HUSTRULID, 1982, p.88) categorizes underground mining methods according
to the support required:

• naturally supported methods (self-supported): such as room and pillar and
sublevel stopping.

• artificially supported methods: cut and fill and longwall mining.

• caving methods: sublevel caving and block caving.

However, as also mentioned by (HUSTRULID, 1982), due to the uniqueness of
each ore deposit, the variations of each method are nearly limitless. Here, the main methods
mentioned, as seen in (HUSTRULID, 1982), aim to provide the required understanding of
the sequence of each one.

• Longwall mining: extensively applied in coal mining; it is a method more adequate
to thin-bedded deposits of uniform thickness. The ore is excavated in slices (in coal,
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usually with continuous mining machines). The face close to the excavated area is
artificially supported to provide space for drilling and ore removal. At some distance
from the face, the roof may be allowed to cave, as seen in figure 2.

Figure 2 – Longwall mining example.

(HUSTRULID, 1982)

• Room and pillar mining: in this method the orebody is excavated leaving ore in
pillars to support the roof (hanging wall). As shown in figure 3, rooms are usually
paralleled excavated and then mined from one to another, leaving the pillars in
between. It is more applicable to flat-lying orebodies. Mining might happen at
different levels.
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Figure 3 – Room and pillar mining design.

(HUSTRULID, 1982)

• Cut and fill mining: in this case, figure 4, the ore is excavated in horizontal slices
from the bottom of a panel. After ore removal of one slice, the open void is filled
with waste material (broken rock from waste development tunnels) or with hydraulic
fill that uses plant tailings. The filling will provide wall support and also the working
platform for the next cut.
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Figure 4 – Cut and fill mining method diagram.

(HUSTRULID, 1982)

• Sublevel stopping mining: as illustrated in figure 5, this method makes use of
long-hole drilling (in a fan-shape) between tunnels excavated in ore (oredrives). Each
production block (stope) from the same panel must be mined following a sequence
that allows the material to flow to the drawpoint. It is applicable to more vertical
orebodies since material flow only will happen in inclinations steeper than 40˝.
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Figure 5 – Sublevel stoping mining representation.

(HUSTRULID, 1982)

• Block caving mining: in this method, the rock is allowed to break by itself (cave)
as a result of induced stress (minimum drill and blast required), as seen in figure 6.
It is applicable to large massive orebodies.
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Figure 6 – Block caving schematic diagram.

(HUSTRULID, 1982)

Although the main idea of the algorithm proposed herein is its applicability to
optimize value by selecting and scheduling any group of chained tasks (thus, any mining
method), the work herein studied will be focused on the sublevel stoping method. There
are numerous planning tools specially developed for open pit mining while just a small
number for underground (which may not fully achieve the purpose of this work).

Therefore, for examples and case studies, sublevel stoping will be used. Nonethe-
less, the same reasoning behind the algorithms could be applied to other underground
methods and even to surface mining methods.

1.2 Mine planning
Similarly to the planning of other industries, mine planning aims to provide

a production schedule but, oppositely, dealing with engineering evaluations of limited
lifespan assets. Consequently, besides challenges such as production scheduling and re-
source allocation in uncertain environments, mine planners also must to do engineering
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considerations such as design projects of mining workings and excavations considering
geotechnical and operational constraints.

Whether during new projects, expansions evaluations, or if in operation, mining
requires a high level of detail in planning. The mine planning process’s main input is a
three-dimensional block model representation of the deposit (geological resource) generated
from the interpolation of the mineral samples gathered. Each block of this model is a
discretization of the deposit and has unique attributes such as volume, density, mass,
product grades, rock mass characteristics, etc. This model, such as shown in figure 7, is
designed and scheduled respecting constraints such as geotechnical, operational, mineral
processing, production costs, and commodity prices.

Figure 7 – Example of a block model representation of a mineral deposit.

Colors represent different gold pAuq grades (concentration) in this case.

After a project has been developed to the operational level, mine planning
generally follows three different stages where we have different focuses:

• Long term: here the focus is to optimize the return (profit) on investment. The
main objective is to set up the strategic plan of the asset. Thus, the emphasis is on
the whole life of mine, and the main decisions are about mine method and layout
definitions, capital investments, production capabilities balance, net present value
(NPV) potential of the asset, etc.
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• Medium term: this is a tactical plan that aims to detail the strategy. It usually
comprises a time window of 1 to 5 years, and the main challenges are to define
production, revenues, and costs targets (the budget of a mining company) up to a
monthly basis.

• Short term: breaking down the medium-term guidance, this stage requires an
operational plan that will look to production capacities of the whole mining cycle
from a monthly to a shift perspective. The focus is to allocate resources (machines
and teams) to comply with the medium-term plan but also keeping the highest
productivity and lowest cost of the resources.

The crucial challenge is to align business’ strategic objectives (long term) with
short term adaption needs due to internal and external changes (plan compliance, geological
model changes, commodity price, etc.).

1.3 Strategic planning
As stated by (KENNEDY, 1990), business or strategic planning is the determi-

nation of where the enterprise wants to go and how it expects to get there. It is the core of
long-term planning and aims to guarantee fulfillment of the most important management
responsibilities: survival and continued profitable growth of the business. As per the main
characteristics of mining business (capital intensive, long-term payback, and limited asset
life), it is usually said that only a few industries require more strategic planning than
mining.

(NEHRING, 2016) divides strategic mining planning decisions into five different
levers:

• Scale of operation: a trade-off between large-scale production (bigger equipment,
higher productivity, and lower costs) against higher selectivity mining (less mixing
between ore and waste, less material movement);

• Mining method selection: choice of the method that best fits the deposit, given
the pros and cons of each method;

• Processing route: choice of the ore processing route and marketable products,
given mineral characteristics;

• Cut-off grade: selection of the minimum mining grade above which material will
be mined or processed.

• Mining sequence: choice of the particular sequence of mining activities within the
applied method.
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Generally, scale, method, and processing route are decisions with a smaller
degree of freedom than cut-off grade and sequence. Consequently, trade-offs (scenarios
comparison) can be applied to guide these decisions. In addition, with mine equipment and
plant facilities in place, it becomes harder to change scale, method, and processing route.
On the contrary, even at the operational level, cut-off grade policy and mining sequence
still have a high-profit impact and are manageable strategic levers.

Cut-off grade (COG) is the grade above which the mined material should be
considered ore and thus be processed; and below which the material should be left in situ
or dumped as waste. More simplistic early approach (CUMMINS; GIVEN; AIME., 1973
apud HALL, 2014), considered just one COG, usually with a mindset that "each ton of
ore has to pay for itself" (HALL, 2014).

The following equation (1.1) can calculate this break-even COG:

Break-even COG “ costs
product priceˆ recovery (1.1)

As the cost structure is better understood and each of its component is detailed,
there is a possibility that material below this break-even COG increase value for the
company in specific circumstances.

Given its economic aspect, COG is also the decision point between ore and
waste; it will be applied not only to in situ rock decisions but also to broken rock from
development (and any other kind of material that will be moved anyway). In this latter
case, only the downstream costs are considered for the economic calculation. There may
be even limiting grades between different processing routes, denominated cut-over grades.

Thus, instead of just one fixed COG, a set of different COGs is defined (i.e., a
COG policy) and will have each COG that is applied for each case. Therefore, what may
seem an easy concept, become more complex and intricate. In addition, usually, a COG
policy is set at the beginning of the planning process, and its objective function (NPV in
most of the cases) is not assessed at this point.

For the mining sequence, there will be as many different ones as the multi-
plication of the number of decision possibilities of each time period. Since there may be
more activities to plan (tunnel development or stope ore) than the resource constraints,
prioritization is needed to decide which tasks will be considered at each period (day, month,
or year of a schedule). Normally, there are some rules of thumb (greedy algorithms from
the mathematical perspective) that are used to guide this process. These step-by-step
procedures (such as anticipating high-grade zone tasks) cannot guarantee that optimum
(or close enough to optimum) decisions are made.

(LANE, 2015) may be the main reference for cut-off grade optimization with
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his book "The economic definition of ore" first published in 1988 and with articles of the
same subject published before.

Besides production costs, (LANE, 2015) introduced three new aspects to cut-off
grade calculations:

• time factor and, therefore, NPV as the main objective of the optimization (instead
of cash flow previously used);

• deposit remaining grades and volumes;

• production capabilities at different stages of a mining system.

Although is straightforward, NPV as optimization objective turns the calcula-
tion more complex and introduces the COG calculation step to the scheduling step.

Deposit remaining grades and volumes mean the sensitiveness of the mineral
deposit with regards to the COG applied. This can be better expressed by a grade-tonnage
curve (or ton-vs.-grade graph), as shown in figure 8. Thus, in general, (LANE, 2015)
proposes a higher COG at the beginning of a mining operation (higher remaining deposit)
than in its later years.
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Figure 8 – A grade-tonnage curve showing a deposit sensitivity to cut-off grade.

(UNIVERSITY, 2019)

Production capabilities refer to the use of COG to balance the stages of the
mining system. Thus, if a particular deposit/mine system has more capacity to treat
(process) the ore than to access (developed) it, the COG used would be lower than in the
opposite situation. (LANE, 2015) particularly considered three main production capacities:

• Mining: this refers to the capacity of accessing the mineralized zone. In an under-
ground mine is the development of tunnels to reach mineralized zones.

• Treatment: this is the capacity of ore production (mining itself) and treat ore in
processing plants;

• Marketing: this is the capacity of refineries, smelters, and selling the final product.

Summing up, (LANE, 2015) optimum cut-off grades aim to optimize NPV while
making the best use of the remaining resource and balancing mine production capabilities.
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On one hand, this approach set the theoretical standard for life-of-mine optimization. On
the other, due to its iterative approach, it may be an impractical algorithm: hard to apply
(especially in underground mining) and time-consuming. Also, while the three production
stages might well cover a mining system, some cases may need the introduction of new
ones (e.g. exploration).

(HALL, 2014) proposes an updated version of (LANE, 2015) theory, but aiming
to "account for everything", i.e., all value drivers of a mining asset (including method, COG,
sequence, etc.). The final outcome of such approach is a 3D graph that plots cut-off grades
vs. production rates vs. values (usually NPV) of different mining strategies, the so-called
hill of value. An example is given in figure 9. However, it ends up being a framework for a
discrete analysis (a trade-off between some possible cases of COG and production rate).

Figure 9 – A hill-of-value graph.

(HALL, 2014)

In both cases, the cost definition (its projection and also its allocation) is a
critical input. (KING, 2004) proposes an approach for classifying costs that is more suitable
to strategic evaluations and will be used in this work. He divides costs into four classes:

• foundation costs: costs that incur at specific times regardless of processing rates,
such as exploration of new areas, clean of contaminated areas, or feasibility studies.
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This type of costs may not interfere in planning decisions, since they may occur
independently of the strategy chosen;

• activity costs: costs related to production (mining, development, processing, re-
fining, etc.) thus being expressed by ${t or ${m of the respective driver or ${h for
equipment, etc.;

• reserve timing costs: costs incurred as reserves are mined. They are costs related
to the decommissioning of mining workings, main infrastructures, dewatering, etc.
These costs are better expressed as $M ;

• period costs: costs incurred annually while the mining asset operates not varying
if more or less material is processed. This is best described as ${year.

1.4 Strategic planning workflow
All these strategic evaluations, discussed in section 1.3, are based on operational

life-of-mine designs and the schedule of the deposits of a company. Similarly to the workflow
seen in (WANG, 2019), and regardless of the mining method, commodity, or any other
specificity, a general workflow can be defined as follows:

• Mining blocks definition: in this first step, geotechnical and operational parame-
ters are considered as geometrical constraints to the design of the minimum mining
blocks. The objective is to have a file, where each solid (three-dimensionally located)
represents a mining activity and has attributes such as volume, density, mass, grades,
etc. A cut-off grade is defined, i.e., the commodity grade that represents the break-
even value between revenues and costs. Any activity with a grade below this value is
considered waste and, in the opposite case, is considered ore (a mineral that can be
profitably extracted). For instance, stopes and development solids can be broken in
sections that represent operational blasts, as seen in figure 10.
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Figure 10 – Example of a sublevel stoping design.

Green solids represent operational shapes of ore stopes; Brown solids, oredrives tunnels.
Blue ones, crosscuts tunnels; and purple ones the main decline. Light red contour

represents the orebody.

• Logical sequence: in the second step, dependencies between the solids (mining
tasks) are created accordingly to the specific mining method. Links between predeces-
sors and successors tasks are established, creating, between activities, a mandatory
sequence that can be represented in a Gantt chart.

As an example, figure 11, a dependency from a development tunnel and its related
mining excavation (stope), may be created, meaning that the stope will only be
mined after the development is excavated.
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Figure 11 – Example of the logical sequence.

Using the same design shown in figure 10 we have pink arrows representing precedencies.
Thus, crosscuts can only start after a nearby decline segment is developed, an oredrive

has to be developed before sublevel stoping starts in retreat, and so on.

• Operational sequence: in this last step, the logical sequence is leveled regarding
production capabilities constraints (such as equipment production capabilities, total
ore produced or hoisted, total development meters, total ore processed by a plant,
contaminant grades, etc.). This leveling step aims to optimize one or more previously
defined attributes, such as total profit (cash flow), NPV, grade, total production,
etc. while managing the risks of each assumption considered along with the three
steps. Figure 12 illustrates that.
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Figure 12 – Gantt chart representation of a leveled plan.

The leveled plan is then economically evaluated. Generally, the sum of all the
discounted future cash flows (the net present value, NPV) is the measure that will be
used to balance all sorts of inputs. Therefore, all decisions made during method selection,
parameters, and assumptions considered only will have their values assessed at the very
end of the workflow.

Different strategies (scale of operation, mining method, processing routes, cut-
off grades, and mine sequence) are usually evaluated by repeating the whole workflow with
different assumptions (being them in steps 1, 2, or 3) and doing trade-off analyses (from
simple scenarios comparison to more complex hill-of-value graphs).

In addition, as inputs and assumptions are dynamic, this is an iterative workflow.
With new exploration information, new geological models will be generated; with different
market perspectives, new price assumptions; with operational improvements and new
technologies, new operational parameters; and thus, this planning cycle and the decisions
attached to it need to be reviewed.

In summary, usually, cut-off grades and mine sequence are solved separately.
Some of the current algorithms solve one of them using the other as an assumption.
Furthermore, this process is, most of the time, too sophisticated (requiring numerous
scenarios) and, thus, not fully applied in the current mining industry. Underground mining
adds extra complexity: mine costs are usually higher, and, differently from an open pit, it
is not required to remove the underground stopes to access adjacent ore.
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2 Scheduling problems

A scheduling problem consists of assigning a set of tasks (jobs, processes,
actions, etc.) to a given set of resources (machines, people, etc.) while satisfying allocation
constraints and optimizing an objective function, (BRUCKER, 2006). It is a whole area of
study within the area overlapped by Operations Research and Production Planning.

Different objective functions can be used. (LEUNG, 2004) and (PINEDO, 2016)
highlight:

• minimization of makespan (the time that elapses from the start of work to the end
of all tasks);

• minimization of total tardiness (the sum of all delays in delivering tasks);

• minimization of the number of tardy jobs (delivered after due date);

• minimization of weighted tardiness (e.g., time-related cost);

• minimization of the total weighted completion time;

• minimization of the total waiting time (i.e., the sum of the differences between
starting and releasing time for each task);

• optimization of multiple objectives, and others.

General parameters considered in a scheduling problem include:

• job release time;

• job starting time;

• job processing time;

• due dates (committed finish time for a job);

• machine or job preparation time;

• number of machines;

• machines processing rates;

• machines processing flows;

• precedencies between jobs
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• possibility of preemption (job splitting);

Solutions for scheduling problems are not obtained as a closed-form expression.
They are, instead, determined by algorithms: a sequence of procedures that are applied
multiple times to the problem until the best solution is found.

According to the adopted formulation (fundamentally dependent upon con-
straints, parameters, and the number of machines), a scheduling problem can be solve for
an exact solution in polynomial time.

These problems are classified in the Complexity Theory as P problems (Poly-
nomial Time) since they can be solved by deterministic algorithms which complexity is
polynomial determined. Other examples are calculating the greatest common divisor and
determining if a number is prime.

However, there are other problems belong to the class of NP problems (Non-
Deter-ministic Polynomial Time): problems whose solutions are not found in polynomial
time by algorithms known. NP problems are considered hard to solve. Those are also
problems that belong to the NP-hard class (i.e., they are at least as hard as an NP
problem). These add expressive difficultness on the development of efficient algorithms
that find optimum solutions.

Usually, scheduling problems have exponential complexity and can not be
solved in polynomial time, given the input size. In these cases, it is required to abandon
the optimum solution and simply look for a high-quality solution ("good enough") through
heuristics procedures.

Classic scheduling problems are single machines, parallel machines, flow shop,
job shop, and open shop. A simple definition based on (PINEDO, 2016) follows:

• single machine: in this configuration, a set of jobs (or tasks) have to be processed
by a unique machine. Usually, jobs have a release time (i.e., when jobs are available
to the machine), and optimization objective function is to minimize the makespan.

• parallel machines: in this environment, a set of jobs have to be processed by any
of a set of machines. These machines can have the same processing rate or different
ones, process all or a subset of jobs;

• flow shop: in this case, there are a number of machines in series. Each job has to be
processed on each of the machines following the same processing route (unidirectional
flow).

• job shop: in this case, each job has its own predetermined route of machines to
follow (machines in series with non-unidirectional job flow).
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Figure 13 – Job shop solution example.

(OR-TOOLS, 2019)

• open shop: in this situation, there are, again, a number of machines in series, and
each job has to be processed on each of the machines. However, differently from
the flow shop problem, in open shops, there are no restrictions with regard to the
routing of each job. Thus different jobs can have different processing routes. In
addition, some of the processing times can be zero. Part of the schedule solution is
to determine the best machine sequence for each job.

Key problems to the development of this dissertation (single machine, parallel
machines and flow shop) are detailed in the next sections.

2.1 Single Machine
The single machine environment is very simple and a special case of all other

environments, such as machines in parallel or machines in series. In this section, two different
single machine models are analyzed. The minimization of total weighted completion time is
considered as the objective function (Equations 2.1 and 2.6). Even though these problems
are quite easy and can be solved by simple priority rules, these problems still serve to
assist in modeling more complex problems.

For the first model, the decision variables are defined as:

xi “ starting time that a job i is processed at the planning horizon.

wik “

#

1 if job i precedes job k.
0 otherwise.

And the integer linear programming model considering i “ 1, ..., n jobs, pi the
processing time of job i and wi the weight of job i (a priority factor) is:
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minimize
n

ÿ

i“1
wi.pxi ` piq (2.1)

subjected to xi ` pi ď xk `Mp1´ wikq @i, @k, i ‰ k (2.2)

wik ` wki “ 1 @i, @k, i ‰ k (2.3)

xi ě 0 @i (2.4)

wik P t0, 1u @i, @k (2.5)

The first two sets of constraints (Equations 2.2 and 2.3) ensures no overlap
of jobs. The second set of constraints (Equation 2.3) ensures that only one job can be
processed at any point in time. Equations 2.4 and 2.5 contain the integrality constraints
on the variables.

In this first model, M is a large coefficient. Big-M constraints are typically
used to represent the implications of an "on-off" decision. Although quite useful to the
model, this constant can propagate computational inaccuracies. The second proposed
model eliminates the use of M .

For the second model, the decision variables are indexed in time and are defined
as:

xit “

#

1 if job i starts at time t.
0 otherwise.

In this case, we have an integer programming formulation with time-indexed
variables proposed by (PINEDO, 2016). Considering i “ 1, ..., n jobs, pi the processing
time of job i and t “ 1, ..., l, with l “

ÿ

i

pi ´ 1, the model is described as:

minimize
n

ÿ

i“1

l
ÿ

t“0
wi.pt` piq.xit (2.6)

subjected to
l

ÿ

t“0
xit “ 1 @i (2.7)

n
ÿ

i“1

t
ÿ

s“maxpt´pi`1,0q
xis “ 1 @t (2.8)

xit P t0, 1u @i, @t (2.9)

The first set of constraints (Equation 2.7) ensures that a job i can start only at
one point in time. The second set of constraints (Equation 2.8) ensures that only one job
can be processed at any point in time. Equation 2.9 contains the integrality constraints
on the variables. The major disadvantage of this formulation is the number of variables
required (PINEDO, 2016).
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2.2 Parallel Machines
Parallel machine scheduling problems deal with the decision-making of allocating

jobs in any of the available machines. It is irrelevant which machine will process the job,
but it cannot be processed on more than one machine at the same time neither be processed
by more than one machine (there is no processing route).

(PINEDO, 2016) classifies this problem according to the machines:

• identical machines: job j requires a single operation and may be processed on
any of the m machines or on any that belongs to a given subset. Thus, it can
happen that a job j can only be processed on machines that belong to a specific
subset M1;

• uniform machines: parallel machines with different processing rates (speeds). Thus,
if all machines have the same processing rate then this situation will be identical to
the previous one;

• unrelated machines: in this case, the processing rate of each machine are dependent
on the job being processed. Therefore, this is a further generalization of the previous.

The integer linear programming model for the identical machine’s problem is
described as seen in (BARBOSA, 2014). Decision variables in a classic optimization model
that minimizes the makespan are defined as:

xi “ starting time that a job i is processed at the planning horizon.

zij “

#

1 if job i is allocated at machine j.
0 otherwise.

wik “

#

1 if job i precedes job k.
0 otherwise.

And the integer linear programming model with objective function (minimize
makespan Cmax, Equation 2.10) and constraints, considering i “ 1, ..., n jobs, j “ 1, ..., m

machines and pi the processing time of job i is:
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minimize Cmax (2.10)

subjected to
ÿ

j

zij “ 1 @i (2.11)

zij ` zkj ´ wik ´ wki ď 1 @i, @k,@j, i ‰ k (2.12)

zij ` zkh ` wik ` wki ď 2 @i, @k,@j, @h, i ‰ k, j ‰ h (2.13)

xi ` pi ´ p1´ wikqM ď xk @i, @k, i ‰ k (2.14)

Cmax ě xi ` pi @i, @j (2.15)

xi ě 0 @i (2.16)

wik, zij P t0, 1u @i, @k,@j (2.17)

Constraint 2.11 ensures that each job will be allocated in only one machine.
2.12 shows that if jobs i and k are allocated on the same machine, job i precedes k or
vice-versa. Complimentary, equation 2.13 reinforces that variable wik only exists for jobs
that are allocated on the same machine. Constraint 2.14 guarantees that jobs are not
overlapping on the planning horizon. 2.15 defines the makespan Cmax. Last two equations
(2.16 and 2.17) specify the type of each decision variable (positive and binary).

In order to consider the machine speed, is is required to replace pi in constraint
2.14 by zijpi{sj (where sj is machine j speed) considering this constraint for all machines.
Objective function, the minimization of makespan, would also have to be modified to adapt

to the other parameters of the model. Thus, equation 2.10 would become min maxt
n

ÿ

i“1
xi`

zijpi{sj|j “ 1, ..., nu.

2.3 Flow Shop
A flow shop is a processing system in which the processing sequence of each job

is fully specified, and all jobs visit the workstations in the same order (processing route),
(EMMONS; VAIRAKTARAKIS, 2012). The target is to optimize one or more objectives.
Resources (workstations) and jobs can take different forms. They can be machines in
a factory, products in an assembly line, baggage conveyor belts in airports, CPU in
computational operating systems, etc.

There many variants of the classic problem, most relevant are:

• permutation flow shop: in this particular case, all jobs are processed in "first in,
first served" strategy. Thus, if job j1 is the first to be processed in machine m1, j1

will also be the first in m2 and so on.
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Figure 14 – Example of two permutation schedules.

Adapted from (EMMONS; VAIRAKTARAKIS, 2012)

• flexible flow shop: is a generalization of the flow shop and parallel machine cases.
There are stages in series (processing flow) executed by parallel machines in each
stage. This is also called a hybrid flow shop or multi-processor flow shop (PINEDO,
2016).

Figure 15 – Example of a flexible flow shop.

Adapted from (SCHULZE J. RIECK, 2016)

The following integer linear programming model depicts a classic flow-shop
problem.

Considering n jobs and m machines. Each job i has m Oij operations with
pij processing times. Operation Oij has to be processed in machine Mj and precedencies
constraints Oij Ñ Oi,j`1 have to be satisfied for all job i. The objective of the problem is
to find the job processing order for each machine j.

Decision variables in a flow shop optimization model that minimizes the
makespan are:
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xij “ starting time for job i in machine j.

wikj “

#

1 if job i precedes job k in machine j.
0 otherwise.

And the integer linear programming model with objective function (minimize
makespan Cmax) and constraints, considering i “ 1, ..., n jobs, j “ 1, ..., m machines, pij

the processing time of job i in machine j:

minimize Cmax (2.18)

subjected to Cmax ě xij ` pij @i, @j (2.19)

xij ` pij ď xipj`1q @i, @j “ 1, ..., m´ 1 (2.20)

xij ` pij ď xkj `Mp1´ wikjq @i, @k, i ‰ k (2.21)

xkj ` pkj ď xij `Mwikj @i, @k, i ‰ k (2.22)

xij ě 0 @i, @j (2.23)

wikj P t0, 1u @i, @k,@j (2.24)

Objective function 2.18 minimizes the makespan Cmax. Constraint 2.19 ensures
that makespan Cmax is greater than the finishing time of all jobs in all machines, thus
greater than the finish of all work. Constraint 2.20 guarantees that, for each job, a j` 1-th
operation starts after the j-th operation concludes. Constraints 2.21 and 2.22 ensure that
if two jobs i and k are processed by the same machine j, job i is processed before job k or
vice-versa. Last two equations (2.23 and 2.24) specify the type of each decision variable
(positive and binary).

2.4 Precedence constraints
An important feature for the work presented here in this dissertation is the

existence of precedencies between jobs. Precedencies compel a specific sequence between
jobs to be followed. Therefore, this has to be modeled as an extra constraint equation,
since there is no flexibility to avoid or bypass these precedencies.
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Figure 16 – A graph representation of precedencies between jobs.

In this example, job 6 has to wait job 4 to be finished before it can starts.

Adapted from (PINEDO, 2016)

For the long-term underground mine scheduling problem here studied, these
precedencies are represented by the logical sequence (mining method) depicted in section
1.4. In practical terms, this is a 3D file with arrows connecting a point from a task to
other (showing the connection and dependency between them) but also a table where each
task has an ID and a list of predecessors tasks and other of successors.
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3 Solving methods

3.1 Mathematical programming
Computational tools that solve mathematical programming problems have an

algebraic modeling language for writing the objective function to be optimized and the
constraints considered in the model. After the model implementation, the program is
executed by a solver. There are several commercial and free packages available to entirely
solve linear programming problems. In general, they differ from each other in the methods
implemented and types of problems they are able to solve.

3.2 Heuristics
Beside the exact methods, there are alternative methods for solving optimization

problems.

Heuristics are techniques that use approximating-strategy algorithms that do
not ensure an exact solution, but that return a reasonable one. Therefore, a simple heuristic
algorithm could be a rule based on guess (“rules of thumb”), trial and error, the process
of elimination, and so on. For a scheduling problem, for example, a heuristic could be
prioritizing longer duration tasks or the highest value tasks on more efficient machines.

Therefore, for some problems that are too difficult for integer linear program-
ming or another exact approach, (e.g. scheduling) heuristics can be an interesting approach
to turn the decision-making simpler and faster through shortcuts and “good-enough”
calculations. In addition, heuristic algorithms are usually easier to model and implement
compared to most of the exact algorithms.

(MICHALEWICZ; FOGEL, 2004) mentions some reasons that make problems
challenging to solve. Some of them apply to the long-term underground mine scheduling
problem here studied:

• size of the search space

• size of input data

• challenges in modeling the problem

• constraints

• algorithm proving
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However, when using heuristics, there is, most of the time, a trade-off. The
accuracy-effort trade-off mentioned by (JOHNSON, 1985) means that if a less effort
algorithm is chosen (a simpler and faster heuristic, for example), it would mean a less
accurate result and vice-versa. Consequently, when choosing a heuristic strategy to solve a
problem, optimality, solution space coverage, solution accuracy, and execution time should
be carefully balanced.

There are many frameworks that classify heuristic strategies. However, since it
is an area in constant evolution, it is still an open discussion. A common classification
follows:

• standard heuristics: are simpler algorithms and straightforward rules focused on
improving a single solution;

• metaheuristics: consists of a set of combined heuristics that aims to find and
improve the best solutions within a solution space;

• hyper-heuristics: are search methods that consist of higher-level heuristics that
aims to automate the elaboration process of lower-level heuristics (components of
the higher-level one) to solve a problem.

Therefore, standard heuristics are rules that generate and improve one
single solution; metaheuristics search within the space of problem solutions; and hyper-
heuristics search within a space of heuristics.

(GLOVER; KOCHENBERGER, 2003) explain metaheuristics as solution meth-
ods that “orchestrate an interaction between local improvement strategies and higher-level
strategies to create a process capable of escaping from local optima and performing a
robust search of a solution space”.

In other words, a metaheuristic could also be understood as a template that
defines how multiple low-level heuristic bits (solution generation procedures, local searches,
solutions recombinations, etc.) interact in the search for the optimized solution.

A comprehensive framework, (FONTBONA, 2015) and (DRÉO et al., 2006),
classifying metaheuristics strategies, is depicted in image 17. This classification, however,
will depend also on algorithm implementation.
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Figure 17 – Classification of metaheuristic methods.

(DRÉO et al., 2006)

In this context, population heuristics is characterized by making use of several
current solutions (i.e., populations of solutions) and to combine them together to generate
new solutions.

3.3 Genetic Algorithms
As illustrated in figure 17, a genetic algorithm is a metaheuristic on the group

of population and evolutionary algorithms, meaning that genetic algorithms make use
of the improvement (evolution) of multiple solutions (population) based on biological
evolution knowledge.
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Evolutionary algorithms are problem-solving computational procedures built
on heuristics techniques based on the following fundamental sequence: reproduction
with genetic heritage, random variable introductions, competition, and selection among
individuals of a given population (MICHALEWICZ, 1996).

This process is repeated a fixed number of times, allowing it to flexibly promote
the search for solutions in a huge space of possibilities (COELLO, 2005; KNOWLES;
CORNE; DEB, 2008).

Although genetic algorithms are biologically-inspired optimization algorithms,
the iterative process that mimics the evolution of species used to optimize solutions can
be extremely time-efficient (oppositely to the evolution of species) since it makes use of
simple calculations.

This general iterative process is presented in figure 18, (KRAMER, 2017),
showing the main operators of a genetic algorithm.

Figure 18 – Genetic algorithm iterative cycle.

(KRAMER, 2017)

Initialization is the first step of a genetic algorithm. This operator creates
the first population of solutions to initialize the iterative algorithm cycle. Each individual
of a population is a solution that is usually represented by a numerical sequence that has
a physically real representation of the problem. These solutions (individuals) have only to
be feasible solutions to the problem (no optimization required at this point).

Crossover operator comprises of operations that will promote the combination
of the "genetic material" (part of the solution, i.e., pieces of the numerical sequence) of two
or more solutions (KRAMER, 2017). Similarly to the biological chromosome crossover,
this combination of parents’ genes aims to create diverse individuals in a population, thus,
exploring the solution space.
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Mutation operator changes solutions (individuals) by disturbing them. These
random changes imitate the biological mutation with the intention to create even more
diverse individuals than crossover, however, not guaranteeing that these changes will only
be positive.

There are three main requirements for mutation operators: reachability (creation
of the chance that each point in the solution space can be reached), unbiasedness (not
inducing a drift of the search to a particular direction) and scalability (a degree of freedom
of its strength, i.e., rate, adaption) (KRAMER, 2017).

Fitness computation of the solution is evaluating each individual of a popu-
lation on a fitness function (analog to an objective function). Thus, each individual is
translated to a fitness value that can be used to compare them according to the optimization
objective of the problem.

Selection of parental population, is the process that will sort and select the
best fitness value individuals (highest for maximization and lowest for minimization).
Selected individuals will form the next generation population, which is usually a mix of
selected parent individuals with crossover and mutated individuals (offspring).

There are different types of selection, such as comma selection (best solutions
from offspring solutions), plus selection (best solutions from offspring and parents solutions),
etc. (KRAMER, 2017).

Another usual strategy to improve solutions is selecting only the best-fitness
solutions (elitist selection). However, this strategy can also rapidly lead to local optima.
In addition, strategies such as forgetting some of the best solutions may help to overcome
local optima.

Termination condition is the evaluation of the stop point of the iterative cycle.
If this condition is satisfied, that means the the genetic algorithm found a good-enough
solution, and the process can be stopped. Typical termination conditions are related to
convergence (fitness value difference among population individuals) or the runtime of the
genetic algorithm.

Constraints can be considered in initialization and crossover: in this case, these
two operators can only generate feasible solutions. The other option is to deal with them
in the selection step making use of penalties for infeasible solutions ("death penalty").

Initialization, crossover, mutation and selection operators are governed by
global parameters that define global properties such as population size, mutation rate, and
selection pressure. These global parameters can be tuned to hone the genetic algorithm
aiming to find better solutions in a shorter time. An algorithm that allows tuning during
the process (adaptive algorithm) usually performs better than the opposite.
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Ultimately, genetic algorithms quality analysis that supports this tuning will
focus on the two properties: runtime and convergence. The performance of a genetic
algorithm in solving a problem can be measured in terms of the number of required fitness
function evaluations until the optimum (or approximated with the desired accuracy) is
found.
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4 Problem definition and literature review

4.1 Problem definition
Summarizing the theoretical framework, it can be said that in order to evaluate

and decide over strategic mining possibilities, schedule scenarios are developed with
different assumptions, so as to do life-of-mine trade-offs.

Although a guideline exists, there is no standard algorithm to optimize strategic
planning cycle, and usually, it works by evaluating one lever (value driver) at time, based
on the assumption that everything besides it is fixed.

Summarizing, a common workflow to generate one of the strategic planning
schedule scenarios, is shown in figure 19:

COG
definition

Mining blocks
design

Logical
sequence

Operational
sequence

NPV
assessment

Figure 19 – Typical strategic planning workflow

Schedule scenarios can be effective to evaluate scale of operation, mining
methods and processing routes. However, cut-off grades and mining sequence result in
multiple options. Scenarios covering all possibilities for these two levers would not be
practical.

Figure 20 shows, step-by-step, each production cycle for the Sublevel Open
Stope method herein considered. Right side of the figure is a vertical section at the plane
shown in gray on left side of the picture. Each step is shown herein separately, but in
practice, they happen most of the times in parallel: some levels in decline development,
others in crosscut development, others in oredrive development, and others in stope
production.
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Figure 20 – Examples of a Sublevel Open Stope mining sequence.

Besides selecting which blocks are considered, each activity (development and
production) could happen at different times according to equipment available (schedule
leveling) and rates applied (schedule priorities). A schematic design of figure 20 is depicted
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in figure 21 explaining how numerous schedules are possible.

Figure 21 – Schematic analysis of block selection (cut-off decision) possibilities.

Being more specific, figure 22 shows an example of one out of nine orebodies
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from a mine in production. This particular orebody contributes to about 35% of annual
production. Three panels were selected (colored portion of figure 22paq). They have about
2000 tasks (development and production) and 9 sublevels. From that, 40 tasks from one
sublevel were taken, circled in figure 22 pbq. Three options are showed: pcq, mine all designed
area; pdq leave the farthest portion (left block) after the waste connection; and peq, leave
part of the left block. Therefore, this ends as a combinatorial problem with multiple
options only regarding the selection of blocks that will be scheduled (cut-off lever).

Figure 22 – Examples of block selection (cut-off) possibilities of a small area.

This dissertation aims to the development of an algorithm that, with given
mine design and logical mining sequence, could optimize both cut-off selection and schedule
of the selected mining blocks, solving the herein called "underground mine scheduling
problem". In other words:

• optimize NPV;

• determine the best operational (leveled) sequence respecting given production con-
straints;

• decide cut-off grades and thus decide whether mining tasks will be excavated as ore,
waste or be left in situ;

• best allocate a given set of development and production rates to tasks;
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• consider fixed costs as a fixed parcel on the top of marginal (unit) costs, in a similar
approach as (KING, 2004), instead of considering them proportional to ore tonnes
(as unit costs);

• automate and standardize these steps of the workflow, reducing time to execute
them.

From the operations research perspective, the underground mine scheduling
problem will be modeled as a parallel machine problem.

In a given design, each solid will be a development activity (tunnel) or a
stoping activity (production) linked with precedencies that represent possible logical
sequences of the mining method. Therefore, there are two sets of unrelated parallel
machines (machine whose rates depends on the activity being processed) representing the
number of simultaneous development and production (stoping) activities that can happen
in that mine.

Although all machines could process all tasks, a null allocation value is forced
for production tasks in machines that should only be considered for development and
vice-versa, using that as a workaround to guide the solver to allocate development machines
to development tasks and mining machines to production tasks.

To better model this problem, precedencies will be divided in two types. The
first type will be the hard precedencies that represents precedencies needed to access
a given task. In other words, as a development tunnel is needed to access a production
stope physically, this will be a hard precedence.

The second type will be the soft precedencies, which will represent prece-
dencies that could be ignored (tasks that could be abandoned) and still result in a feasible
schedule. An example could be a production stope in a retreat sequence: the first stope
could be abandoned, and production started from the second stope and on. These are
depicted in figure 23.
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Figure 23 – Examples of precedencies that will be considered in the algorithm.

Access (development tunnels) will be hard precedencies (dark and light blue arrows) to
other activities (development or production). Tasks that can be left while still generating

feasible schedules are soft precedencies (green arrows between stopes).

Figure 23 depicts the same area shown in figure 22 but highlights the arrows
that represents the precedence relationships between tasks. Dark blue arrows on figure
23 pbq show the mandatory connection between a development task and others. Light
blue shows the mandatory connection between a development task and the relative stope.
Green arrows show the soft precedence between stopes (which are not access to each other,
thus, not imperative to a feasible schedule).

The aim of this precedencies is to model possible options behind cut-off decisions
and mining blocks selections. In other words, if a task’s successor is already done, there
are only two options: the task was done before the successor, or the task was abandoned.

Constraint dates will also be considered as they appear in mining environments
representing dependency on infrastructure or any other restriction to access a given area
on a specific date.

Alternatively, the underground mine scheduling problem could also be repre-
sented by a flexible flow shop scheduling with precedencies. In this case, there would be a
flow with two stages (development and production) that could be performed by uniform
parallel machines (different rates for development and production). Development activities
would have 0 duration time in the production stage and vice-versa. The parallel machine
model is deemed easier to apply while also representing the problem as good as a flexible
flow shop model.
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Genetic algorithm is chosen as an alternative solver technique because of its
successful track record in solving complex optimization problems, while also balancing
computational effort (processing time), and coding easiness, (KRAMER, 2017).

The case study presented use a sublevel open stopping design from a real gold
mine that has only one processing route; thus market demand will not be one of the
limiting factors and COG/sequence might only balance the other production capabilities
(development, mining, and processing).

All production tasks (stopes) considered have grades above the marginal cut-off,
i.e., generates revenue higher than the minimum variable cost to mine them. This is
done since negative marginal stopes would never increase NPV (objective function). Thus,
cut-off decisions will be whether to keep or left a block (never to add a block).

4.2 Literature review
Some different approaches have been applied to the underground mine schedul-

ing problem. Most common approach on mine sites is to do a cash flow analysis in each
panel or sublevel aiming to consider only full grade ore in plans (i.e., "tonnes that fully pay
for themselves") and then schedule with levelling tools (i.e., greedy algorithms) focused on
grade or value without optimizing the whole life-of-mine value.

Other more advanced propositions treat the problems separately, still not
considering different rates, time value of money, capabilities balancing, and mining blocks
selection (the possibility to abandon blocks) at the same time.

On the one hand, (BENNETT, 2018) uses a pseudo flow algorithm (usually
applied for open-pit analysis) to choose underground areas that are economically feasible.
(ANDRADE, 2018) presents and application of the generalized maximum-weight connected
subgraph problem based on (LOBODA MAXIM N. ARTYOMOV, 2016) that optimize
the cash value of the connected tree of mining activities. Both are examples of algorithms
that select the best blocks (optimizing cash flow) but still not considering the time value
or production capabilities balancing of scheduling.

On the other hand, scheduling tools, such as (SOT, 2019), optimize the NPV of
an input schedule considering multiple constraints but yet not making decisions regarding
cut-off grades (selection of mining blocks).

(SCHULZE J. RIECK, 2016) develop a specific scheduling algorithm for a
phosphate mine while mentioning some other mine scheduling algorithms that cope with
scheduling problems in different ways, but yet not considering cut-off decisions.

(OTA, 2017) propose a direct block scheduling methodology that does consider
both cut-off and scheduling; however, for open-pit problems only.
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Therefore, to the extent of the author’s knowledge, the problem presented herein
in this dissertation has not been fully studied and solved. Thus, no solution algorithm
exists yet, being that the main motivation for this work.

4.3 Mathematical modeling
Three mathematical models for this problem are proposed herein. The purpose

is to analyze the complexity of each one and understand how the differences between them
affect the problem solution.

The three proposed models are inspired by the classic scheduling models
presented in chapter 2, but also consider the particularities of the underground mine
scheduling problem.

4.3.1 Model 1: makespan minimization

Makespan plays an important role as an upper-bound limit of variables and
big´M constraints and also in NPV optimization (generally related to makespan reduction
given the same amount of tasks). With the aim of using this model result as an input of
other models, the first approach is to optimize makespan, assuming that all tasks will be
performed. Therefore, the objective function of this model is to minimize the makespan.

So, n tasks that can be processed on m uniform parallel machines. Tasks have a
precedence order. For each task i, PredSofti and PredHardi are the sets of activities that
precede i optionally or mandatorily, respectively. In addition, pij represents the processing
time of project i on machine j.

The decision variables of the problem are:

Cmax “ makespan.

xi “ task i processing start time.

yij “

#

1 if activity i is allocated at machine j

0 otherwise.

wik “

#

1 if activity i precedes activity k

0 otherwise.

Considering i “ 1, ..., n, j “ 1, ..., m, Ai the set of allowed machines for activity
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i, and pij the processing time of activity i in machine j; we have the model:

minimize z “ Cmax (4.1)

subject to:
ÿ

jPAi

yij “ 1 @i (4.2)
ÿ

jRAi

yij “ 0 @i (4.3)

xi ě xk `

m
ÿ

j“0
pkj.ykj @k P tPredHardi Y PredSoftiu, @i (4.4)

xi `

m
ÿ

j“0
pij.yij ď xk `M.p1´ wikq @i, @k, i ‰ k (4.5)

yij ` ykj ´ wik ´ wki ď 1 @i, @k, i ‰ k,@j (4.6)

yij ` ykh ` wik ` wki ď 2 @i, @k, i ‰ k,@j, @h, j ‰ h (4.7)

Cmax ě xi `

m
ÿ

j“0
pij.yij @i (4.8)

xi ě 0 @i (4.9)

wik P p0, 1q @i, @k (4.10)

yij P p0, 1q @i, @j (4.11)

Constraints 4.2 and 4.3 ensure that each task will be allocated in only one
allowed machine. Constraint 4.4 guarantees that each task i can only be started after
its predecessors k (in this case, both , hard and soft, precedence types are considered
mandatory). Constraint 4.5 shows that if jobs i and k are allocated on the same machine,
job i precedes k or vice-versa. Constraint 4.6 guarantees that jobs are not overlapping on
the planning horizon. Equation 4.7 reinforce that variable wik only exists for jobs that are
allocated on the same machine. The last equations (4.9 4.10 and 4.11) specify the type of
each decision variable (positive and binaries).

4.3.2 Model 2: time-indexed model

In this model, there is an integer programming formulation with time-indexed
variables (xijt). The l parameter can be defined as the makespan obtained in the previous
model, l “ Cmax (in which all activities are performed), or through some constructive
heuristic that yields a workable solution to a time limit. In this second model, this l

parameter is an upper-bound limit to variables and makespan itself.

Objective function models the project net present value (NPV) as discussed
at the end of section 1.3: a (negative or positive) profit value calculated from activity
costs (revenue´ costs) is attached to each task as an input to the problem. These values
are discounted by a discounting rate based (another input parameter) on each activity
start time (time index, t). On the top of the sum of all discounted profit values, a fixed
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parcel based on the total time required to process the whole project (i.e., the makespan)
is subtracted. As foundation and reserve timing costs are kept constants, they were not
included in the model. This way, the time value of money is considered, i.e., revenue
available at the present time is worth more than the identical sum in the future due to its
potential earning capacity.

In this model, not all activities need to be performed, thus, options behind
cut-off grade decisions mentioned in 1.3 are considered.

Decision variables of the problem are:

Cmax “ makespan.

xijt “

#

1 if activity i starts on machine j and time t

0 otherwise.

wi “

#

1 if the i activity is not performed
0 otherwise.

The problem is modeled as follows, with i “ 1, ..., n, j “ 1, .., m, Ai the set of
allowed machines for activity i, pij the processing time of activity i in machine j:

maximize z “
l

ÿ

t“0

m
ÿ

j“0

n
ÿ

i“0

pprofiti . xijtq

p1` rateqt
´ pperiod costsq . Cmax (4.12)

subject to: wi `

l
ÿ

t“0

m
ÿ

j“0
xijt “ 1 @i (4.13)

n
ÿ

i“0

t
ÿ

s“maxpt´pij`1,0q
xijs ď 1 @t, @j (4.14)

QPredHardi.
m
ÿ

j“0

t
ÿ

t“0
xijt ď

m
ÿ

j“0

ÿ

kPP redHardi

l
ÿ

s“0
xkjs @i (4.15)

m
ÿ

j“0

l
ÿ

t“0
t.xijt ` lwi ě

m
ÿ

j“0

l
ÿ

s“0
ps` pkjq.xkjs @k P PredHardi, @i (4.16)

m
ÿ

j“0

l
ÿ

t“0
t.xijt ` lwi ě

m
ÿ

j“0

l
ÿ

s“0
ps` pkjq.xkjs @k P PredSofti, @i (4.17)

Cmax ě
l

ÿ

t“0

m
ÿ

j“0
t.xijt `

l
ÿ

t“0

m
ÿ

j“0
pij.xijt @i (4.18)

m
ÿ

jRAi

l
ÿ

t“0
xijt “ 0 @i (4.19)

xijt P p0, 1q @i, @j, @t (4.20)

wi P p0, 1q @i (4.21)



Chapter 4. Problem definition and literature review 60

Constraint 4.13 ensures that all activity i starts on a single machine and in a
single period t (or does not start at all). Constraint 4.14 does not allow more than one
activity to be performed on machine j at the same time t.

Constraint 4.15 ensures that activity i will only be executed if all required
predecessors k P PredHardi are also executed (QPredHardi is the amount of required
predecessors). On the other hand, it is possible that some predecessors of the activity i

will be executed, but the activity i will not be. Constraint 4.16 complements constraint
4.15 to ensure that activity i starts only after its required predecessors. In this one, the
upper-limit l value has to be calculated whether summing up all the processing times or
applying an heuristic.

Constraint 4.17 ensures that activity i can only be started after its optional
predecessors k: (activity i start time) ě (end time of any activity k P PredSofti). However,
it is possible that the i activity will perform even if its optional predecessors are not;
in this case the constraint is: (activity i start time) ě 0. Also, it is not possible for any
k P PredSofti predecessor to be executed after the i activity has been executed.

Constraint 4.18 defines the makespan, Cmax. Constraint 4.19 eliminates the
possibility of i activity being allocated on any machine that does not belong to the Ai set
(set of allowed machines for activity i).

Equations (4.20 and 4.21) define the type of each decision variable (binaries).

If on one hand the time-indexed model was the best way to correctly model
the objective function (NPV), on the other model size is the main disadvantage of such
formulation.

4.3.3 Model 3: undiscounted objective function

The third proposition does not use time-indexed variables aiming to reduce
the complexity of the formulation, thus achieving reduced runtime. However, the objective
function is not the NPV, as shown in model 2, section 4.3.2. An approximation is required:
undiscounted cash flow is used. The idea is to compare this model to model 2 in terms of
NPV and runtime to evaluate if solutions of model 3 are "good enough" and close to the
solutions of model 2.

The decision variables are the same as in the model 1, section 4.3.1, but in
this model, not all activities need to be performed. Constraints resemble the ones seen in
model 2, and the objective function is based on undiscounted cash flows (the time value of
money is not considered in this case).
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maximize z “
n

ÿ

i“0

m
ÿ

j“0
pprofiti . yijq ´ pperiod costsq . Cmax (4.22)

subject to:
ÿ

jPAi

yij ď 1 @i (4.23)
ÿ

jRAi

yij “ 0 @i (4.24)

xi ď l.
m
ÿ

j“0
yij @i (4.25)

QPredHardi.
m
ÿ

j“0
yij ď

m
ÿ

j“0

ÿ

kPP redHardi

ykj @i (4.26)

xi ě xk `

m
ÿ

j“0
pkj.ykj @k P tPredHardi Y PredSoftiu, @i (4.27)

xi `

m
ÿ

j“0
pij.yij ď xk ` l.p1´ wikq @i, @k, i ‰ k (4.28)

yij ` ykj ´ wik ´ wki ď 1 @i, @k, i ‰ k,@j (4.29)

yij ` ykh ` wik ` wki ď 2 @i, @k, i ‰ k,@j, @h, j ‰ h (4.30)

Cmax ě xi `

m
ÿ

j“0
pij.yij @i (4.31)

xi ě 0 @i (4.32)

wik P p0, 1q @i, @k, (4.33)

yij P p0, 1q @i, @j, (4.34)

Constraints 4.23 and 4.24 ensure that each job will be allocated in only one
allowed machine or will not be allocated. Constraint 4.25 creates the relationship between
variables xi and yij . 4.26 ensures that activity i will only be executed if all required prede-
cessors k P PredHardi are also executed (i.e. there is an amount equal to QPredHardi

required predecessors). Conversely, it is possible that some predecessors of the activity i

will be executed, but the activity i will not be.

Constraint 4.27 ensures that activity i can only be started after its optional
and required predecessors k. Constraint 4.28 shows that if jobs i and k are allocated on the
same machine, job i precedes k or vice-versa. Constraint 4.29 guarantees that jobs are not
overlapping on the planning horizon. Equation 4.30 reinforce that variable wik only exists
for jobs that are allocated on the same machine. Constraint 4.31 defines the makespan,
Cmax. Equations (4.32, 4.33 and 4.34) specify the type of each decision variable.
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5 Implementation of the solving methods

5.1 Mathematical programming
The three models proposed in the previous chapter were implemented using

mathematical programming problem-solving packages. The models were implemented in
Python programming language, importing the ortools package. OR-Tools (OR-TOOLS,
2019) is an open source software suite for writing the optimization models. After modeling,
commercial solvers, such as CPLEX (IBM, 2019), or open-source solvers, such as CBC
(CBC, 2019) and CP-SAT (CP-SAT, 2019), can be used to solve the problem.

5.1.1 CBC

The Coin-or Branch and Cut (CBC, 2019) is an open-source mixed-integer
linear programming solver written in C++ included in OR-Tools (OR-TOOLS, 2019). Its
algorithm is based on the branch and cut method, which consists of a branch and bound
algorithm that uses cutting planes to tighten the linear programming relaxations.

5.1.2 CP-SAT

The CP-SAT is a solver for constraint programming, also included in OR-Tools
(OR-TOOLS, 2019). CP-SAT stands for Constraint programming and SAT for Boolean
satisfiability.

Constraint programming is a method for solving combinatorial problems; it
uses a variety of techniques from artificial intelligence, computer science, and operations
research. Constraints differ from other programming languages in that they do not follow
a sequence of steps, but rather they define the properties of a solution to be found.

SAT refers to the Boolean satisfiability, which is the problem of determining if
there are solutions that satisfy a given Boolean formula. That is, it evaluates whether the
variables of a given Boolean formula can be replaced by the values TRUE or FALSE in a
way that the formula evaluates to TRUE.

Integer optimization problems can be solved with either a MIP solver or the
CP-SAT solver. Some problems have a highly non-convex feasible set: when the feasible
set is defined by constraints of type "OR" (OR-TOOLS, 2019). In this case, the CP-SAT
solver is often faster than the MIP solver as mentioned by (OR-TOOLS, 2019).
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5.1.3 CPLEX

CPLEX solver (IBM, 2019) was named after the simplex method as implemented
in the C language. Currently, under the full name of IBM ILOG R© CPLEX R© Optimization
Studio, it operates as a stand-alone suite but also as a Python API where objective
function, variables, and constraints can be declared in Python language, and only the
solver can be called.

5.2 Genetic Algorithm
The Genetic Algorithm (GA) implementation begins with the initialization

of a random population of individuals (chromosomes). Next, the individuals are decoded
and evaluated, and a fitness value, representing the objective function (NPV as described
in Section 4.3.2), is assigned to each of them. This first generation go through crossover
and mutation operators. The resulted offspring will also be decoded and evaluated. A
selection operator will select the individuals that will form the next generation. Apart
from the initialization, this process is repeated by a given number of times, always using
the previous generation as the input (parent).

The main loop of the implemented Genetic Algorithm is shown in Algorithm 1.
Details on genetic operators are given in the next sections.

Algorithm 1 – Genetic Algorithm outline
random initialization of population Ñ P0 ;
decode and allocation of P0 ;
g “ 0 ;
while g < (number of generations) do

crossover in selected individuals of Pg Ñ Qg ;
mutation of Qg ;
decode and allocation of Qg ;
selection among Pg and Qg Ñ Pg`1;
g “ g ` 1 ;

end
output last generation: Individuals, Allocations, and Fitness value (NPV);
local search to improve last generation best results;
output best individual (result) found: Allocation and Fitness value (NPV);
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5.2.1 Codification

The representation of each individual in a genetic algorithm should allow
random processes (such as initialization and mutation) and unconstrained crossover
operations, avoiding repair mechanisms (when after each operator we need to manipulate
the individuals to make them feasible solutions). Therefore, initialization, crossover, and
mutation operators are flexible for tuning and indifferent to the particularities of the
underground scheduling problem (hard and soft predecessors implications, for example).

The codification chosen is to represent each individual (also called chromosome)
of a population as a priority list with indexes (IDs) of tasks (or activities) that will be
allocated. The list order is considered for the prioritization of the tasks. Thus, a “ r4, 3s will
try to allocate task 4 before task 3 and b “ r3, 4s the opposite. Required predecessors will
be added during the decoding step respecting the list order. All precedencies’ relationship
will also be considered during the allocation step. This approach guarantees that an
individual does not have to had any particular characteristic, i.e., it does not have to
include predecessors nor to be in any specific order.

Figure 24 shows an example of the underground scheduling problem. It is a
small instance with 10 tasks (IDs ranging from 0 to 9). In this case, a vector a “ r2, 1s or
b “ r4, 5, 6, 8, 0, 1, 9s are both examples of individuals for this instance. In fact, any set
A “ tx1, ..., xn | n ď 10, xi P r0, 9su can be an individual.

Figure 24 – Underground scheduling problem instance with 10 tasks.

In Figure 24, numbers over each solid (task) represent their IDs. Tunnels, such
as 0 and 1, have negative profit (only costs). Oredrives tasks, such as 2, 3, 6, and 7, usually
will have positive profit but smaller than stopes (tasks 4, 5, 8, and 9) due to their mining
cost. Development tasks are hard predecessors, and stope tasks are soft predecessors.
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5.2.2 Decodification and Evaluation

The decoding step translates the individual representation to the allocation of
activities to machines (a schedule). Then, based on this allocation, fitness function (NPV)
can be calculated, as shown in Model 2, Section 4.3.2. This decode can be applied to any
group of individuals (population), which can be the results of initialization, crossover, or
mutation operators. The general algorithm is shown in Algorithm 2.

Algorithm 2 – Decodification operator
for each individual do

while task list keeps changing do
add hard predecessors of tasks in task list;

end
create available tasks list Ñ tasks list that do not have predecessors at time 0;
while available tasks list is not empty do

get task duration for all machines;
get future times for all possible machines;
allocate first available task to the machine with minimum future time;
calculate task starting time;
remove processed task from available tasks list;
update available tasks list with tasks that became available;

end
calculate NPV (fitness) of the resultant allocation;
output allocation results:

tasks start and finish times;
tasks duration;
allocated machine (ID) for each task;
makespan for the allocation;
NPV for the allocation;

end

First, hard predecessors of tasks on the individual (priority list) are added. As
only direct predecessors are listed as input, after the first round, tasks added (predecessors)
will also have their own predecessors and so on. Thus, this will be a loop until no extra task
(predecessor) is added to the list. This inclusion of hard predecessors maintains the priority
of the individual: predecessors of higher priority tasks are added with higher priorities.

Secondly, the algorithm goes through the list of tasks (in priority order) looking
for the ones that do not have predecessors. These are possible starting points for the
allocation.
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The task is allocated to the machine with the minimum future time (i.e., the
finish time for processing a given task on that machine). Task starting time will be the
maximum between the time which the machine is available and the cumulative finish time
of the task’s predecessors.

After each allocation, processed tasks are removed from the available list, and
tasks that would require the allocated activity as predecessor are now considered available
and added to the available tasks list.

This loop follows, allocating tasks one-by-one until there are no tasks to be
allocated. After that, outputs (including makespan and NPV) are calculated.

5.2.3 Initialization

The first generation in this genetic algorithm is formed by randomly generated
individuals. They are arbitrary in a number of tasks and order of included tasks.

These individuals’ fitness may be far from the optimized solution, but they
represent feasible solutions and set up a population with good solution space coverage
(since they are randomly selected).

5.2.4 Selection

The selection is carried out in two steps of the algorithm (Algorithm 1: (i)
selection of individuals from Pg to perform the crossover and (ii) selection of individuals
from Pg YQg to update the new population.

For the selection of the individuals from Pg, two different operators (BÄCK;
FOGEL; MICHALEWICZ, 2000a; BÄCK; FOGEL; MICHALEWICZ, 2000b) are proposed.
The first one is known as the Roulette Wheel and the second, as Binary Tournament.
Both prioritize fittest parents, but in different ways.

In Roulette Wheel (Algorithm 3), parents are selected randomly but based on
a uniform distribution probability depending on their fitness, i.e., the fittest individual has
the largest share of the wheel. The relative fitness is normalized with the sum of all fitness
values in a population. This fraction of fitness can be understood as the probability for an
individual to be selected as a parent, similarly to a roulette wheel (KRAMER, 2017).
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Algorithm 3 – Roulette Wheel selection operator
normalize parents’ fitness values Ñ range between 0 and 1 (percentage);
sum these values cumulatively (from individual 1 to n) Ñ wheel value;
for (half of population) number of times do

pick a random value between 0 and 1 Ñ match random value and wheel range to
select parent 1;

pick a random value between 0 and 1 Ñ match random value and wheel range to
select parent 2;
crossover parent 1 and 2 Ñ generate offspring 1 and 2;
store offsprings in Qg ;

end
output all generated offspring individuals

In Binary Tournament (Algorithm 4), 4 parents are selected randomly. They
compete in pairs (i.e., two tournaments), and the best one of each tournament will be
crossed over to the other.

Algorithm 4 – Binary Tournament selection operator
for (half of population) number of times do

randomly select 4 parents: parent 1-1, parent 1-2, parent 2-1 and parent 2-2;
select the fittest between parent 1-1 and parent 1-2 Ñ parent 1;
select the fittest between parent 2-1 and parent 2-2 Ñ parent 2;
crossover parent 1 and 2 Ñ generate offspring 1 and 2;
store offsprings in Qg ;

end
output all generated offspring individuals

Comparisons showed that, for the number of individuals per population and
number of generations considered, Binary Tournament was better in keeping population
variability while Roulette Wheel was deemed to put excessive selective pressure.

For the selection of the individuals from Pg YQg, as outlined in algorithm 1
(Section 5.2), the input of this selection operator will be a decoded population, (after
previous generation crossover and mutation). This means that the input population will
have the double of individuals of a standard population (parents: previous generation
individuals; and offsprings: new individuals). Therefore, this selection operator will choose
the best half of individuals. In this proposed genetic algorithm, to avoid excessive selective
pressure, only part of the selected individuals are chosen due to their high fitness value
(NPV). The others are chosen randomly (Algorithm 5).
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Algorithm 5 – Selection operator
sort input population by fitness value (NPV);
keep first (selective pressure) individuals;
randomly select individuals until new generation (population) is complete;

5.2.5 Crossover

Crossover generates new individuals through the recombination of characteris-
tics of two or more individuals (genetic inheritance). The underlying principle is to keep
traits (in our case, COG selection and scheduling traits) of best individuals but not doing
excessive selective pressure that would reduce solution space representation.

As explained in Section 5.2.4, Roulette Wheel (Algorithm 3) or Binary Tourna-
ment (Algorithm 4), select pairs of parents and mix them using a middle point crossover:
parents are split in half (with regards of number of tasks in list) and parent 1 first part is
combined to parent 2 second, generating offspring 1 ; and parent 2 first part is combined
to parent 1 second, generating offspring 2. In both cases, crossover occurs the number
of times of half of a population. Since each crossover round generates two offsprings, the
offspring population have the same amount of individuals than their parent population.

5.2.6 Mutation

In this algorithm, the mutation operator randomly adds or removes an arbitrary
percentage of tasks from an input priority list (an individual). Two key parameters control
mutation: the percentage of a population (number of individuals) that will be mutated
and the percentage of an individual (number of tasks) that will be mutated (added or
removed).

For each mutation round, a random integer between 1 and 10 is picked and, if
it is greater than 5, an addition will happen. Otherwise, a removal will occur. For the first
case, random tasks that are not already in the list are inserted in a random position of
the list. For the second case, some tasks of the list are randomly removed.
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Algorithm 6 – Mutation operator
for (mutation rate) times do

randomly select an individual from the population;
a = random integer in [1,10];
if a > 5 then

randomly select (mutation element rate) tasks not presented in individual;
insert tasks on a random position of the individual;

else
randomly remove (mutation element rate) tasks from the individual;

end
end

5.2.7 Local search

In this genetic algorithm, local search can be considered post-processing over
the last generation of the genetic algorithm. The focus is to find individuals that are
similar to the best solutions (neighborhoods) aiming to improve the solution while keeping
computational requirements acceptable. It can be said that this search will work similarly
to a guided mutation operator.

Three different searches are considered: highest profit tasks addition, lowest
profit tasks removal, and both (addition and removal). Neighborhoods are then compared
to the last generation results (selection), and the best individual is considered the problem
solution.

Algorithm 7 – Local search
for i in (n last generation best solutions) do

for (number of searches) times do
search 1:

add high profit value tasks that are not presented in the individual;
search 2:

remove low profit value tasks from the individual;
search 3:

add high profit value tasks that are not presented in the individual;
remove low profit value tasks from the individual;

end
end
selection over neighborhood solutions and last generation;
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5.2.8 Parameters

One of the key concepts of a genetic algorithm is to keep the operators flexible
enough to enable tuning, adapting the algorithm to the problem-solution space. With
these parameters, the user can control the balance of selective pressure and solution space
coverage, that is, the trade-off between rapid convergence to an optimized value versus
local optima convergence risk (not intended in most of the cases).

In this algorithm, a good way to measure the selective pressure of the algorithm
is to plot the fitness function (NPV) values for the individuals generated in all generations,
as shown in figure 25.

Diverse parameters result in more varied solutions, while more selective param-
eters result in more similar solutions. Although that does not necessarily mean that the
diverse parameters will result in fittest solutions, chances that this happens are higher in
this case.

Besides, these parameters also control the computational time required to run
the algorithm, which has to be reasonable even in problem instances with a huge number
of tasks.

Figure 25 – Comparison of individuals variety according to parameters used.

Parameters considered in this genetic algorithm are:

• population size: number of individuals (chromosomes) in each generation. The greater
the number of individuals, the greater the runtime and coverage of solution space.

• number of generations: number of cycles of crossover-mutation-selection that the
initial population goes through. The rational is the same as the population size: the
greater the number of generations, the greater the runtime and coverage of solution
space.
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• minimum number of elements in an individual: minimum number of tasks in a
priority list (individual). This parameter aims to avoid artifacts such as one-task
individuals or any too small solutions which may only consume processing time with
poor solutions.

• mutation rate in a population: percentage of individuals in a population that will be
mutated. This parameter balances the randomicity of the individuals: a more diverse
population will better cover the solution space but will take longer to converge to an
optimized solution.

• mutation rate in each individual: percentage of the tasks in an individual that will
be removed or added. The rationale is similar to the previous parameter.

• selective pressure to update the population: percentage of elements in a population
(parents plus offspring) that will be selected by their rank (fitness value). The
remainder of the population (to complete the population size of the next generation)
is selected randomly.

• selective pressure for crossover: the two possibilities are Roulette Wheel or Binary
Tournament, as explained in section 5.2.5.

• number of individuals to search: individuals of the last generation that will undergo
local search process. This is a trade-off between trying to optimize results versus
computational time.

• number of searches per individual: Number of searches for each individual. Comple-
mentary to the previous parameter.
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6 Case study

6.1 Problem instances - Inputs
A practical case study is evaluated to test each model presented in chapter

5. The full problem instance, showed in figure 26, is a mine area that represents 40% of
yearly production during first 4 years of life of mine of a real Brazilian gold mine complex.
The mine method here applied is sublevel open stoping on a top-down sequence. All levels
are separated by sill pillars (horizontal pillars), therefore, the sequence in each level is
independent. There is only one processing route, a carbon-in-leach circuit. This instance is
formed by 2044 tasks among production (green solids) and development (all other colors
representing different development tasks: main decline, crosscuts, oredrives, ventilation,
etc.). This design considers at least marginally-feasible areas, i.e. areas which revenue
offsets the activity costs (section 1.3). Time is discretized in days for all cases evaluated.

Figure 26 – Problem instance with 2044 tasks.

Since maximizing NPV is the objective, it is expected that solutions try, as
much as possible, to postpone (or even exclude from schedule) lower profit tasks (higher
cost and lower revenue such as development of lower grade stopes) and to anticipate high
profit tasks (such as high grade stopes). In addition, as makespan (period costs) is a
negative parcel in the NPV, that may lead to a maximum utilization of the input set of
machines (production capability associated to the period cost that accounts for the fixed
production structure).

Therefore, a solution will aim an optimized result for cut-off grades (selection
of blocks) and machine allocation (sequencing). Each solution will represent an strategy
for fixed scale of operation, mining method and processing route (section 1.3). Scale of
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operation could be evaluated by rerunning the algorithm with different inputs for number
of machines and rates. Processing routes could be assessed changing plant recoveries (metal
content, costs, and thus, profit values of each task). Mining method would require more
work: redesign and new logical sequence (precedencies) for each different proposed method.

In order to asses the proposed algorithms and solvers, besides the full problem,
other 6 smaller instances of the same problem (10, 73, 145, 489, 716, and 1279 tasks) are
also considered. Physically, these smaller instances represents smaller mine areas (a panel,
levels and part of a level) of the whole designed orebody presented in image 26. These
smaller instances are shown in figure 27.

Figure 27 – Smaller instances of the case study set.

Each instance is a smaller area of the same data set.

Regardless of the instance (and task number), each designed solid has physical
properties attached to it (ROM mass, grades, recovered metal, activity cost, revenue,
profit, etc.) and also a list of predecessors of the logical sequence (mining method). This
data comes as an output of the design step (section 1.4). This project was designed and
scheduled (logical sequence) with use of Deswik (2020), a mining planning software. In
Deswik.CAD, solids are designed and geological models interrogated for physical attributes.
Deswik.IS is used mostly to create dependencies between tasks (logical sequence). In
Deswik.SCHED, revenue, costs, and profits are calculated.

Ultimately, all algorithms developed herein will use as input a spreadsheet with
3 sheets: parameters (discount rates and period costs), machines (number, type and rate
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of each machine), and jobs (tasks with type, driving quantities, profit, and predecessors).
Figure 28 depicts an input file. Tasks inputs are copied from Deswik.SCHED and results
can also be pasted back to it.

Figure 28 – Spreadsheet with inputs of the problem set with 2044 tasks.

6.2 Implementation - Solving tools
All algorithms are development in Python (2020), initially in Jupyter Notebook

Jupyter (2020) and later translated to .py scripts.

Pandas (2020) and NumPy (2020) are the main libraries used in this project
and play a core role in data manipulation, modelling, and input/output interface through
tables, matrices and arrays.

Swifter, (CARPENTER, 2020), is a key component that adds multiprocessing
(multi-core) capabilities to the genetic algorithm. Solvers packages, (IBM, 2019) and
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(OR-TOOLS, 2019), are also used but genetic algorithm is developed without any specific
GA package. Plotly (2020) is used to generate Gantt graphs images for rapid results
analysis.

To solve the different algorithms in a uniform platform, Google Cloud Com-
puting, Google (2020), is used with "n1-standard-16" (16 vCPUs, 60 GB memory) virtual
machines on Linux, (DEBIAN, 2020).

Each algorithm was executed constrained to a time limit of 24 hours, since that
is more than a reasonable time for mine planning scheduling.

All the implemented code is available at:

<https://github.com/alexandre-b-andrade/ug-cog-sched-opt>.

6.3 Methodology analysis - Algorithm decisions
Before comparing results for the different solvers and algorithms, the analysis

is detailed on smaller instances to explain the algorithms actions on them, i.e., how each
step of the methodology works on real data.

Figure 29 shows the ten-task problem instance and its result after CPLEX
solve model 2, optimizing NPV, (subsection 4.3.2). This schedule has only one starting
point, task 4. Even having negative profit, task 4 is scheduled since the depending chain
of tasks will offset its negative profit.

Figure 29 – 10-task instance input and output (model 2).

Legend shows machines where 0 and 1 are for development (tasks of type 0) and 2 for
stoping (tasks of type 1). Vertical axis represents the task ID and horizontal axis the time

in days. Machine 1 has a greater rate than machine 0.

https://github.com/alexandre-b-andrade/ug-cog-sched-opt
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After task 4 allocation, there are 3 branches: task 5 has negative profit and
no positive successors, thus it is not allocated and is represented by machine -1 (can
be seen in Gantt legend, figure 29); task 0 branch has tasks 0, 1 and 6 giving a smaller
cumulative profit than task 2 branch (which has tasks 2, 3, 8 and 9). The latter is prioritized
and allocated to the best machine, anticipating its side (anticipating higher profit and
improving NPV). Task 7 depends of both sides and is the last one scheduled. Besides tasks
4 and 5, profit values are much greater than the period costs (fixed cost), consequently all
tasks are scheduled. It could be said that eliminating tasks (e.g. 1 and 6) to anticipate
others (e.g. 7) and reduce the period cost parcel would not be as profitable as scheduling
the whole design.

For the same 10-task input, showed in image 29, model 1 would result in
scheduling all tasks and model 3 would eliminate task 5 but not try to anticipate task 1
(since task 1 profit adds the same parcel to the objective function regardless of the starting
time). This is depicted in figure 30.

Figure 30 – 10-task instance solutions for models 1 (makespan) and 3 (undiscounted).

A second example, solved by the genetic algorithm, considers the 73-task
instance optimized for different period costs. In this example, period costs vary from 500
US$/day to 50 000 US$/day, each of them could represent a different mining strategy. As
seen on image 31, a greater period cost pressures the selection for high margin areas. In
some cases, excluding an positive-profit area to reduce makespan (and its relative period
cost parcel) will improve NPV.
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Figure 31 – Solutions of the 73-task instance to different period costs input.

A third example, solved by CPLEX, shows results for the 145-task instance.
For testing purposes, a geology drilling development (only costs involved) is included on
design without any dependencies to production areas (positive values that could offset the
investment on the geology drilling development).

Both models 2 and 3 understand that extra development as avoidable cost and
remove it from the scheduling. This is highlighted in image 32b with red circles. Low grade
(low value) portion of production areas is also excluded by the algorithm among other
tasks that are excluded due to scheduling capacities.

Figure 32 – 145-task instance.

(a) shows the input design with grade legend (grey has 0 grade; blue, low grade; red and
pink, high grades). (b) shows the areas that were removed by the CPLEX to optimize

NPV (model 2).
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6.4 Results and findings - Outputs
The three models (section 4.3) are coded in 3 solvers (section 5.1). Therefore,

9 different solution methods for mathematical programming should be available for each
instance. Besides them, a tenth method is the genetic algorithm developed.

The instances are the same for all models. Besides the 10-task instance, which
uses 3 machines, other instances consider 5 machines among development and production.

6.4.1 Exact solvers

In general, exact solvers linear models increase their size substantially with
input tasks and machine numbers. This can be seen in graph 33 below. This graph also
highlights a key difference between models: Model 1 (makespan) and model 3 (undiscounted
value) have less variables than model 2 (that optimizes NPV with binary time-indexed
variables). On the other hand, model 2 has much less constraints on it when compared to
models 1 and 3.

Figure 33 – Number of variables and constraints per model.

Model 1 and model 3 are so similar that they basically overlap. Vertical axis is on a
logarithmic scale.

Consequently, only smaller instances could be solved by CBC (CBC, 2019),
CPLEX (IBM, 2019) and CP-SAT (CP-SAT, 2019). In more complex cases (greater number
of variables and constraints), exact solvers scripts crashed mostly due to RAM memory
constraints (some of the instances had problems even earlier, at the model creation and
allocation to memory). This is shown on table 34.
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Figure 34 – Exact solvers runs.

Completed ones are marked with "ok". Blank ones have failed.

The obtained results for the instances that could be run are shown on table 35.
It is worth noting that the instances with 489 tasks or more that could be solve reached the
time limit of 24 hours. CP-SAT results of 716-task instance is only feasible and presents a
huge GAP.

Figure 35 – Exact models results for the different instances.

The first intention in proposing model 1 was to reduce processing time of
subsequent models 2 or 3, working similarly to a preprocessing step for them. However,
since model 1 takes about the runtime of model 2 and 3, its use would not make sense
in most of the cases. In addition, model 3, could not be used to find an upper bound
input to model 2, since it could limit the makespan more than necessary and limit model
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2 results. Thus, the same allocation heuristic used in the Genetic Algorithm is used to
calculate a first upper-bound limit (makespan) for all three models, limiting all starting
time variables.

In general, model 2 and model 3 results were similar, but it has to be considered
that this is affected by the size (number of tasks) of the inputs: the smaller the size, the
smaller the discount rate impact (main difference between model 2 and 3).

It is not the main intent of this study to compare solvers in their architecture
details and for general cases. Thus, this is done only based on the runs undertaken with
these models and instances. We see that, for model 2, which has more variables, usually
CPLEX runtime is smaller than the others. CP-SAT worked better with models that have
more constraints ("or constraints"): models 1 and 3, resulting in faster solving time in
these when compared to CPLEX and CBC. CBC solver seemed to not fully enjoy the
multiprocessing CPUs as CPLEX and CP-SAT did, and had greater runtime in most of
the cases. For the same models, results varied less than 1% in all runs, not justifying an
specific solver due to solution improvement, as expected.

For the instances considered and solved herein, runtime could not be directly
related to input size (number of tasks and machines) whether linearly, exponentially, etc.

6.4.2 Genetic algorithm

Genetic algorithm requires extra runs to set up the main parameters (described
in subsection 5.2.8). Since to evaluate all parameters combinations would be tremendously
time consuming, tests are undertaken for two main parameters: population size and
selective pressure. 489-task instance is considered for this evaluations as it is deemed to
have adequate size for that. Main quality driver is the NPV evolution, runtime and number
of different NPV evaluated (i.e. minimum number of individuals considered).

Graph 36 compares the evolution of NPV (objective value) according to different
population sizes. NPV increases until penultimate generation (12th in total) for 10, 25 and
50 individuals per generation. Beyond that NPV plateaus earlier, in 10th, 6th and 8th for
100, 200 and 500 individuals per generation, respectively. And yet, improvements on this
generations compared to the 4th earliest ones were less than 1%.
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6

Figure 36 – GA population size definition.

Graph 37 shows how selective pressure affects NPV. As explained in algorithm
5 (subsection 5.2.4), this parameter controls the percentage of next generation individuals
that are selected based on their fitness value rank only (higher NPV). For this runs, 12
generations with 50 individuals per generation were used. Thus, 600 different individuals
evaluated. Altough keeping best individuals in population is desired, having different
individuals is also required. Unique NPV is presented to measure this balance, and it can
be seen that it reduces as the selective pressure increases. Based on this, 0.25 was chosen
as the selective pressure parameter. Runtime was about the same in all runs (35 to 40
min). NPV slightly greater when selective pressure was 0.25.

Figure 37 – GA selective pressure definition.
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Having chosen the parameters, all instances are run and compared to exact
solvers (best of all solvers and models) solutions, when they are available. Table 38
compare the results. It is important to emphasize that, oppositely to the exact solvers,
GA algorithm takes linear time to solve a problem. Thus, solving a 2000-task problem
would take approximately 200 times the time required to solve a 10-task problem. This
predictability of the number of calculations (and thus, of runtime) is another important
feature of this algorithm. Exact solvers could optimize the results only for the instances
up to 489 tasks. Thus, exact solver results for 716-task instance are not optimum and were
limited by the runtime of 24 hours.

Figure 38 – GA results for the different instances.

Based on these runs, it was observed that although different individuals are
indeed created, NPV improvements after local search were small (less than 1%).

Ultimately, considering comparisons presented in this chapter, it can be said
that GA seemed the best alternative to solve for large problem instances.
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7 Conclusions

The selection (definition of cut-off grades) and scheduling of tasks in under-
ground mines is a complex and highly relevant problem, both from logistical and financial
point of views. To tackle this problem, three different models are proposed herein and
implemented with different solvers.

Linear programming models developed herein have shown notable results with
regards to tasks selection and scheduling for an underground project. Genetic algorithm
implemented for model 2, section 4.3.2, has proven to better balance solution quality and
runtime, delivering reliable solutions that are practical and applicable to underground
mine planning.

The implementation of the proposed methodology and algorithm can lead
to an efficient planning and evaluation of multiple strategies through optimization and
automation of the process.

All the implemented code is available at:

<https://github.com/alexandre-b-andrade/ug-cog-sched-opt>.

In addition, the theoretical framework, presented in the first part of this
dissertation, brings a starting guide to underground mining strategic planning with
references that are currently part of the mine industry and, therefore, this may be basis
for other studies alike.

Future work can be developed, at least, through three approaches: current
algorithm performance improvement, algorithm adaption to a wider range of methods and
inputs, and study of alternative techniques.

Performance improvements, towards reduced runtime, could be achieved with
the addition of preprocessing routines, such as the accumulation of similar tasks (type and
profit). Solving the problem in different precision rounds, accepting higher GAP at the
beginning and then reducing GAP and makespan iteratively, could be beneficial specially
to model 2 algorithms. For the genetic algorithm, the allocation routine (decodification
step) concentrates most of the computational requirements. Thus, any improvement on
its performance (or solution quality) would directly improve the whole algorithm. Other
subject for improvement of the GA is the auto-tuning of parameters.

The proposed algorithms can solve many problem situations already. However,
more tests and case studies with different methods (logical sequence) and inputs could be
evaluated. An interesting addition to the models would be to consider economic parameters

https://github.com/alexandre-b-andrade/ug-cog-sched-opt
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(that determine profit values) varying with time. A second one would be to model the
GA for a multi-objective optimization (e.g. makespan and NPV) generating alternative
solutions to the current model (scenarios). Also, current user interface consists of basic
spreadsheets and could be improved to a more user-friendly interface.

Other solving methods could be subject of investigation and comparison. For
example, pseudoflow algorithms have proven to be a good tool for open pit mining planning
and should be more investigated for underground mining problems.

7.1 Participation in conferences

• "Otimização do lucro da extração de minério de uma mina subterrânea", 3o ERPO
SE - Encontro Regional de Pesquisa Operacional, Limeira, São Paulo (2018).

• "Understanding plan’s priorities: Short term scheduling optimization", 39th Inter-
national Symposium ’Application of Computers and Operations Research in the
Mineral Industry’ (APCOM 2019), Wroclaw, Poland (2019).

• "Economic optimization of rib pillars placement in underground mines", 39th Inter-
national Symposium ’Application of Computers and Operations Research in the
Mineral Industry’ (APCOM 2019), Wroclaw, Poland (2019).
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Glossary

B | C | D | F | H | M | O | R | S | T

B

blasts

Blast, with use of explosives, of holes in rocks as a method to excavate development
tunnels and production blocks (stopes).

Desmontes de rocha com explosivos em túneis de desenvolvimento ou realces de
produção.

C

crosscuts tunnels

Type of development tunnels (galleries) that connect main permanent accesses (de-
clines) to the tunnels that exposes the orebody (oredrives).

Travessas são túneis (galerias) de acesso que conectam os acesso principais e perma-
nentes aos túneis localizados no corpo de minério.

D

downstream costs

Costs from a production stage onwards given that the decision up to this stage is
already made due to other reasons. For instance, if a development tunnel is to be
excavated to access an ore block, its downstream costs will be only the haulage
and processing costs (if considered ore). In this example, drill and blast costs were
already considered at the time of the economic analysis of the stope block.

Custos que ocorrem a partir da etapa atual do processo produtivo. Assim, uma vez
que determinado volume de rocha já está desmontado e transportado para uma
pilha, seus possíveis downstream costs são os custos de destiná-lo como estéril ou
beneficiá-lo numa planta de tratamento. Ou seja, os custos de desmonte e transporte
de rocha não são considerados downstream costs.



Glossary 86

drawpoint

Type of development tunnel used for haulage ore from production blocks (stopes).

Tipo especício de galeria (túnel) destinado ao transporte de minério.

F

flat-lying orebodies

Mineral deposits (orebodies) that have low inclination (dip).

Depósitos minerais (corpos mineralizados) de baixa inclinação.

H

hanging wall

The upper wall of an inclined vein, fault, or other geologic structure. Opposed to
footwall.

Parte de rocha não mineralizada (estéril) que está acima do corpo mineralizado.
Footwall é o análogo para a parte abaixo do corpo mineralizado.

M

main decline

Type of development tunnel (gallery) that is used along the whole life of an orebody
to access its different levels. Thus it is considered a permanent access.

Rampa principal é um tipo específico de desenvolvimento (galeria, túnel) que é
utilizado ao longo de toda produção de um corpo mineralizado para acesso aos
diversos níveis. Deste modo, é considerado um acesso permanente.

mineral

A solid inorganic substance of natural occurrence. One of more minerals form rocks.

Um mineral é um composto químico sólido que ocorre naturalmente em sua forma
pura. Minerais, quando em conjunto, formam rochas.

O
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open cast

Surface mining techniques of extracting rock or minerals from the earth by their
removal in hillsides or stripes (stripping mining). This form of mining differs from
extractive methods that require tunnelling into the earth (underground mining).

Forma de lavra de um corpo mineralizado a céu aberto porém sem a formação
de uma cava (característica de um open pit). Desta forma, são lavras em encontas
ou em tiras.

open pits

Surface mining method of extracting rock or minerals from the earth by their removal
from an open pit (inverted cone shape excavation).

Método de lavra em cavas a céu aberto (formato de cone invertido).

ore

Mineral or rock from which it can be extracted one of more substances that are
economically useful. The economic definition is the factor that differentiate ore from
an mere mineral. Thus, on the same orebody, we can have ore in some zones and on
mineralization in others (economically infeasible areas).

Minério é todo mineral ou rocha do qual se pode extrair uma ou mais substân-
cias economicamente úteis. A questão econômica é o fator que diferencia minério de
um mineral. Então, num mesmo corpo mineralizado, podemos ter porções de minério
e outras de apenas mineralização (partes inviáveis de um corpo mineralizado).

ore stopes

Openings of large underground rooms by the excavation of ore usually using long-hole
drilling in vertical or sub-vertical shapes.

Realces de minério são grandes câmaras de produção em que a rocha é desmontada
para posterior transporte, beneficiamento e venda da substância de interesse ali
contida.

orebody

Mineralized zone defined three-dimensionally by specific rocks or part of them that
have different characteristics (metal grades, composition, etc.) from their surround-
ings and that has a prospect to be considered ore.

Apesar da tradução literal: corpo de minério, muitas vezes opta-se por se utilizar a
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definição "corpo mineralizado", já que a definição de minério depende da viabilidade
econômica de um corpo mineralizado. Desta forma, orebody é uma delimitação tridi-
mensional de uma determinada rocha ou de parte dela que contém características
diferentes (teor, composição, etc.) das presentes ao seu redor. Também denominada
depósito mineral.

oredrives

Type of development tunnel (gallery) that exposes the orebody for following produc-
tion activities (drill, blast and haul of stopes).

Subníveis, ou galerias de minério, é um tipo específico de desenvolvimento (ga-
leria, túnel) que corta o corpo mineralizado de modo a expô-lo para subsequente
produção.

outcropping

Mineral deposit (orebody) that are near to surface or on the surface of the earth.

Afloramento é quando ocorre de um corpo mineralizado ter continuidade até a
superfície, o que facilita sua economicidade para lavra a partir de método a céu
aberto.

R

rules of thumb

Empirical calculation rules.

São regras empíricas.

S

stripping mining

Surface mining method of extracting rock or minerals from the earth by their removal
from parallel shallow stripes. It is applied to horizontal or sub-horizontal shallow
orebodies. Commonly used in bauxite mining.

Lavra em tiras é um método de lavra aplicado para corpos horizontalizados de
baixa profundidade. Comumente aplicado a lavra de bauxita.

T
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thin-bedded deposits

Narrow and horizontal or sub-horizontal orebodies.

Corpos mineralizados (depósitos mineralizados) horizontalizados e de baixa espessura.
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