
ABSTRACT

Title of dissertation: DATA-AWARE SCHEDULING
IN DATACENTERS

Manish Purohit, Doctor of Philosophy, 2016

Dissertation directed by: Professor Samir Khuller
Department of Computer Science

Datacenters have emerged as the dominant form of computing infrastruc-

ture over the last two decades. The tremendous increase in the requirements

of data analysis has led to a proportional increase in power consumption

and datacenters are now one of the fastest growing electricity consumers in

the United States. Another rising concern is the loss of throughput due to

network congestion. Scheduling models that do not explicitly account for

data placement may lead to a transfer of large amounts of data over the

network causing unacceptable delays. In this dissertation, we study different

scheduling models that are inspired by the dual objectives of minimizing

energy costs and network congestion in a datacenter.

As datacenters are equipped to handle peak workloads, the average server

utilization in most datacenters is very low. As a result, one can achieve

huge energy savings by selectively shutting down machines when demand is

low. In this dissertation, we introduce the network-aware machine activation

problem to find a schedule that simultaneously minimizes the number of

machines necessary and the congestion incurred in the network. Our model

significantly generalizes well-studied combinatorial optimization problems

such as hard-capacitated hypergraph covering and is thus strongly NP-hard.

As a result, we focus on finding good approximation algorithms.

Data-parallel computation frameworks such as MapReduce have popular-

ized the design of applications that require a large amount of communication

between different machines. Efficient scheduling of these communication

demands is essential to guarantee efficient execution of the different appli-

cations. In the second part of the thesis, we study the approximability of

the co-flow scheduling problem that has been recently introduced to capture

these application-level demands.

Finally, we also study the question, “In what order should one process

jobs?” Often, precedence constraints specify a partial order over the set of

jobs and the objective is to find suitable schedules that satisfy the partial

order. However, in the presence of hard deadline constraints, it may be

impossible to find a schedule that satisfies all precedence constraints. In this

thesis we formalize different variants of job scheduling with soft precedence

constraints and conduct the first systematic study of these problems.

DATA-AWARE SCHEDULING IN
DATACENTERS

by

Manish Purohit

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Professor Samir Khuller, Chair/Advisor
Professor William Gasarch
Professor Bruce Golden
Professor MohammadTaghi Hajiaghayi
Professor Barna Saha

c© Copyright by
Manish Purohit

2016

Acknowledgments

The past five years that I have spent at College Park have been some of
the most fruitful and enjoyable years of my life. This acknowledgment is a
small effort to thank all those people who have enriched my time here.

Fittingly, I would first like to thank Professor Samir Khuller for being
the best advisor a student could ask for. Samir’s incredible memory, vast
repository of knowledge and his ability to explain difficult concepts intuitively
have helped me a lot over the past few years. In spite of being the department
chair, Samir has always made himself available for help and advice. In Samir,
I have found a valuable mentor, a colleague, and a friend. I shall always look
towards him for guidance even as I move on to a new career.

Over the past few years, I have had the privilege of working with some great
researchers during my summer internships. I am very grateful to my mentors
Barna Saha, Guy Kortsarz, Rishi Saket, Vinayaka Pandit, Sreyash Kenkre,
and Emily Pitler for hosting me over various summers. Their insightful
ideas and suggestions helped me develop my research interests and led to
the development of several algorithms presented in this thesis. I also take
this opportunity to thank Professor V.S. Subrahmanian and Professor Hal
Daumé III for fruitful collaborations as I explored different research areas. I
would like to thank Professors Bill Gasarch, Bruce Golden, MohammadTaghi
Hajiaghayi, and Barna Saha for agreeing to be on my thesis committee. I
would like to convey my warm regards to the entire staff of the Computer
Science department, in particular - Jennifer Story, Fatima Bangura, and
Adelaide Findlay, for their ready help.

I would like to thank Professor Rajiv Gandhi for encouraging me to pursue
a PhD. Rajiv introduced me to the field of approximation algorithms and has
been of great help in all stages of my doctoral studies.

I believe that graduate school is one of the most interesting chapters of
one’s life. I would like to thank all my friends Bhaskar, Amit, Kartik, Anshul,
Neeti, Sudha, Meethu, Ninad, Rama, any many others for filling these pages
with loads of fun and the best of memories. My lab mates Kanthi, Ioana,
Koyel, Saba, Sheng, Saurabh, Ahmed, Eunhui have all become my treasured
friends. Directly or indirectly, my thesis is a reflection of those countless
hours of brainstorming and discussions that we spent together.

Finally, I want to thank my parents, Deepak and Veena, my brother,
Mandar, and my fiancée, Priyanka for supporting me through the past few
years. None of the work in this thesis would have been possible without their
love and understanding.

ii

Contents

1 Introduction 1
1.1 Energy Efficiency: Network-Aware Machine Activation 4

1.1.1 The Framework . 5
1.2 Managing Data Transfer: Co-flow Scheduling 8
1.3 Managing Data Detours: Firewall Placement 11
1.4 Constraint Selection: Scheduling with Soft Precedences 15
1.5 Outline of the Dissertation . 18

2 Network-Aware Energy-Efficient Scheduling 20
2.1 The Framework . 21

2.1.1 Related Work on Network Aware Scheduling 23
2.1.2 Related Work on Capacitated Covering 24
2.1.3 Our Contributions and Techniques 26

2.2 Preliminaries . 29
2.3 LP Rounding for Network-Aware Machine Activation 29

2.3.1 High Level Ideas . 31
2.3.2 Stage 1 . 33
2.3.3 Stage 2 . 37
2.3.4 Stage 3 . 43
2.3.5 Stage 4 . 51

2.4 Network-Aware Machine Activation for Unit Jobs 61
2.4.1 Stage 3 . 64
2.4.2 Stage 4 . 68

2.5 LP Rounding for General Network-Aware Machine Activation 73
2.5.1 Rounding Algorithm 73
2.5.2 Analysis . 75

iii

3 Scheduling Co-flows 78
3.1 Problem Setting . 79

3.1.1 Related Work . 81
3.2 Connection to Concurrent Open Shop 82
3.3 Our Contribution and Techniques 83
3.4 Preemptive Concurrent Open Shop with Release Times 84
3.5 Improved Algorithms for Scheduling Co-flows 87

3.5.1 Reduction to Concurrent Open Shop: 88
3.5.2 Scheduling Co-Flows Without Release Times 90
3.5.3 Scheduling Co-flows With Release Times 97

3.6 Experimental Analysis . 99
3.6.1 Datasets . 100
3.6.2 Ordering Heuristics . 101
3.6.3 Scheduling Strategies 102
3.6.4 Experimental Results 103
3.6.5 Conclusions . 104

4 Firewall Placement 108
4.1 Setting and Problem Definitions 109
4.2 Related Work . 112
4.3 Our Contribution . 114
4.4 Preprocessing . 115
4.5 Firewall Placement with Soft Capacities 116
4.6 Firewall Placement with Hard Capacities 120

4.6.1 Capacitated Simultaneous Source Location 123
4.7 Firewall Placement with Hard Capacities and No Bandwidth

Violation . 125
4.8 Lower Bounds . 128
4.9 Future Directions . 132

5 Scheduling with Soft Precedences 134
5.1 Motivation and Problem Definitions 135
5.2 Related Work . 139
5.3 Our Results . 141

5.3.1 Overview of Techniques 143
5.4 Preliminaries . 145

5.4.1 LP Relaxation for Max-k-Ordering 145
5.4.2 LP Relaxation for RMAS and OffsetRMAS 147

iv

5.4.3 LP Relaxation for DED(k) 149
5.5 A 2-Approximation for Max-k-Ordering 149
5.6 Approximation for OffsetRMAS 154
5.7 Sherali-Adams Integrality Gap for Max-k-Ordering 157

5.7.1 Constructing a Sparse Instance 161
5.7.2 Constructing Local Distributions 169

5.8 The DED(k) Problem . 175
5.8.1 Combinatorial k-Approximation 176
5.8.2 k-Approximation via LP Rounding 177
5.8.3 Hardness of Approximation 179

5.9 Linear Soft Precedence Scheduling 181
5.10 Future Directions . 184

6 Conclusion 188

Bibliography 193

v

List of Figures

1.1 Global Datacenter IP Traffic Growth [1] with a predicted
compound annual growth rate (CAGR) of 25%. 2

1.2 Network-Aware Machine Activation Framework 6
1.3 An example co-flow over a 2× 2 switch. 10
1.4 Firewall Placement Framework 13

2.1 Network-Aware Machine Activation Framework 22
2.2 LP Relaxation for instance I of network-aware machine activation 30
2.3 Covering LP to satisfy jobs in J2 38
2.4 LP3 : Feasibility LP to reassign jobs in J3 46
2.5 Final LP to satisfy jobs in J4 53
2.6 LP Relaxation for instance I of network-aware machine acti-

vation with unit jobs. 62
2.7 LPunit3 : Feasibility LP to reassign jobs in J3 65
2.8 Final LP to satisfy jobs in J4 68
2.9 LP Relaxation for instance I of the network-aware machine

activation problem . 74

3.1 An example co-flow over a 2 × 2 switch. 81

4.1 Capacitated Vertex Cover to Firewall Placement reduction . . 131

5.1 LP Relaxation for instance I of Max-k-Ordering. 146
5.2 r-round Sherali-Adams constraints for LP relaxation in Figure

5.1. 148
5.3 LP Relaxation for instance I of DED(k). 149
5.4 LP for Linear Soft Precedence Scheduling 183
5.5 Approximation Landscape for Max-k-Ordering 185

vi

Chapter 1

Introduction

Large scale datacenters have emerged as the dominant form of computing

infrastructure over the last two decades. Modern datacenters serve not only

internet giants such as Google, Amazon, and Facebook, but also an increasing

number of small and medium sized organizations. The increasing popularity of

cloud-computing services such as Amazon Web Services, Microsoft Azure, and

many others has also contributed to the phenomenal growth of datacenters.

This trend is predicted to continue and some forecasts [1] anticipate a threefold

increase in datacenter traffic between 2014 and 2019 (See Figure 1.1).

Despite this tremendous growth, modern datacenters still face a number of

challenges. The explosion of big data analytics and e-commerce has led to a

1

Figure 1.1: Global Datacenter IP Traffic Growth [1] with a predicted com-

pound annual growth rate (CAGR) of 25%.

proportional increase in the power consumption by these datacenters. Indeed

as observed by the NRDC in a recent issue paper [2], datacenters are one of

the fastest growing electricity consumers in the United States. In 2013 alone,

it is estimated that datacenters in the U.S. consumed enough electricity to

power all the households in New York City twice over! Energy consumption

by datacenters is projected to increase to 140 billion kilowatt-hours annually

by 2020 costing over $13 billion in electricity bills [2]. Hamilton (see the

SIGACT news article [3]) argues that a ten fold reduction in the power needs of

datacenters may be possible if we can build systems with power management

as their primary goal. Energy efficient job scheduling in datacenters is thus

one of the most exciting research avenues today.

2

Another rising concern with the growth of big data analytics is the loss of

throughput due to increasing network congestion. Datacenters now routinely

process petabytes of data every day to help businesses with decision-making.

Data-aware placement of jobs is essential [4, 5] to ensure efficiency for such

applications as transferring large amounts of data over the network can

lead to unacceptable delays. Further, applications written for popular data-

parallel computation frameworks such as MapReduce [6] and Hadoop [7]

often alternate between computation and communication phases. Effective

scheduling of these network-intensive communication (also known as “shuffle”)

phases is essential to obtain good performance in a datacenter.

In this dissertation we take an algorithmic approach towards increasing

datacenter efficiency by specifically targeting the issues raised above. The

following sections describe the problems that we consider and give a brief

overview of our contributions and techniques.

3

1.1 Energy Efficiency:

Network-Aware Machine Activation

Before we formally introduce the problems that we study in this thesis, we

note that the workload in data centers is highly non-uniform, i.e. there are

sharp peaks and deep valleys in the workload. But as the systems are designed

for handling peak workload, the industry has over invested in hardware to

meet Service Level Agreements (SLAs) and in addition overspends in the

running costs of the machines when they are on all the time. Studies indicate

that average server utilization remained around 12 to 18 percent between

2006 and 2012 [2]. However, since the workload fluctuates over time, we can

selectively shut down parts of the system to save energy when the demand is

low. Energy savings result from not only from putting machines to a sleep

state, but also from savings in cooling costs [8].

Motivated by these issues, Khuller, Li, and Saha [9] consider the problem

of which machines to shut down and introduce the “Machine Activation”

problem as follows. Given a set of jobs that need to be processed and a set of

machines, the goal is to open a small subset of machines and schedule each job

on an open machine while minimizing the total load on any machine. However,

4

all machines in a data center are not identical. In particular, every machine

stores a limited amount of data and thus cannot execute every job unless

the requisite data is first migrated to the machine. Unless the scheduling

algorithm takes data migration into account explicitly, one may be required

to transfer huge amounts of data within the data center leading to network

congestion. In this thesis, we propose the network-aware machine activation

problem that explicitly models data migration between machines and aims to

find schedules that optimize three distinct objectives -

(i) the total activation cost of open machines,

(ii) the maximum load at any machine (makespan), and

(iii) maximum amount of data that needs to be moved to any machine.

1.1.1 The Framework

We model the data center as a star network with a central data server acting

as the root as shown in Figure 1.2. Given any job j, let δ(j) denote the subset

of machines that already have the data required to schedule j (shown by

dotted lines in Figure 1.2). In our model, if a job j is scheduled on a machine

in δ(j), then no data needs to be migrated and it requires a processing time

of pj units. On the other hand, if it is scheduled on machine i′ /∈ δ(j), then dj

5

units of data need to be transferred from the root r to i′ and it still requires

a processing time of pj units1. For example, if machine m1 is the only active

machine in Figure 1.2, then dj2 units of data need to be transferred to machine

m1 and it incurs a total processing load of pj1 +pj2 units. For a given schedule,

we call the maximum amount of data that needs to be transferred to any

machine i as the congestion incurred by the schedule.

Central Data store

Job Job

Figure 1.2: Network-Aware Machine Activation Framework

One can formulate a wide variety of interesting questions in this scheduling

model. Our goal is to open a set S ⊆M of machines of minimum total cost

1For simplicity, here we assume that the data transfer is instantaneous.

6

such that we can find a schedule with makespan at most T and congestion

at most B. We note that our framework directly generalizes the “machine

activation” framework introduced by Khuller et al. [9] (when δ(j) = M for all

jobs). We remark that while datacenters in practice do not follow the simple

star layout as in Figure 1.2, we believe that it serves as a good starting point

to facilitate a theoretical study of network-aware machine activation. We

hope that our model can be extended to more realistic datacenter topologies

and that it leads to interesting algorithmic as well as applied work in the

future.

For the network-aware machine activation problem on general, unrelated

parallel machines, we show that a simple randomized rounding scheme yields a

schedule that violates all the three parameters by a factor of O(log n) [10]. It

can be easily seen that one cannot avoid the O(log n) factor in the activation

cost due to the hardness of approximating set cover [11]. On the other hand,

data centers in practice often use a small replication factor. The Hadoop Dis-

tributed File System (HDFS), for instance, recommends a default replication

factor of 3, i.e., every data item is replicated 3 times [12]. Consequently, for

any job j, the number of machines that store the requisite data, i.e. |δ(j)|, is

often a small constant. For small |δ(j)| and unit machine activation costs, one

7

may expect an approximation factor better than log n. Our main algorithmic

result is a constant approximation algorithm for the network-aware machine

activation problem in this case [10].

1.2 Managing Data Transfer:

Co-flow Scheduling

Although processing jobs on machines with access to the relevant data can

go a long way in reducing data transfer within a datacenter, it is not the

only source of network congestion. Applications designed for data-parallel

computation frameworks such as MapReduce usually alternate between com-

putation and communication stages. Typically, intermediate data generated

by a computation stage needs to be transferred across machines during a

communication stage (called shuffle in MapReduce) for further processing.

Further, applications often need to wait before all of the intermediate

data has been transferred over to the respective machines before continuing

with the next computation phase; in MapReduce, for example, the reduce

phase does not start until the shuffle phase is complete. Since a datacenter

commonly serves hundreds of such applications simultaneously and yet has

8

limited internal bandwidth, it becomes necessary to schedule the data transfer

required by these applications in order to obtain high throughput.

Chowdhury and Stoica [13] introduce co-flows as a networking abstraction

to represent the collective communication requirements of a job. In order to

effectively isolate the problem of scheduling data transfer to satisfy application-

level objectives, the datacenter is modelled as a single m×m non-blocking

switch with m input ports and m output ports. For simplicity, we assume that

all ports have unit capacity, i.e., at most one unit of data can be transferred

through any port at a time. A co-flow is defined as a collection of parallel flow

demands that share a performance goal. For example, Figure 1.3 represents a

single co-flow that is collection of four parallel flow demands - 2 data units

from input 1 to output 1, 3 units from input 1 to output 2, 1 units from input

2 to output 1, and 4 units from input 2 to output 2 respectively. A co-flow j

is said to be complete once all of its component flows have been transferred.

Given a collection of such co-flows, the co-flow scheduling problem is to find

a feasible schedule that minimizes the average (weighted) completion time of

the schedule.

Co-flow scheduling has been a topic of active research [14, 15, 16, 17] since

its introduction and is also the basis for a successful practical network scheduler

9

2 2

1 1

Input ports Output ports

2

4

1

3

Figure 1.3: An example co-flow over a 2× 2 switch.

[14]. In spite of the existence of good practical schedulers, even in the offline

setting, when all jobs are known in advance, no O(1) approximation algorithm

was known until recently. Qiu, Stein and Zhong [16] obtain a deterministic 67
3

approximation and a randomized (9 + 16
√

2
3

) approximation for the problem

of minimizing the weighted completion time. For the special case when all

release times are zero, Qiu et al. [16] demonstrate improved bounds of 64
3

(deterministic) and (8 + 16
√

2
3

) (randomized). We highlight the connection of

the co-flow scheduling problem with the well-studied concurrent open shop

scheduling problem and give improved approximation guarantees for the

co-flow scheduling problem [18]. We give a deterministic 12 approximation

algorithm when the co-flows can have arbitrary release times. For the special

case when all release times are zero, we give a deterministic 4-approximation

algorithm.

10

1.3 Managing Data Detours:

Firewall Placement

The co-flow scheduling model described above abstracts away the network

structure of a datacenter and focuses on obtaining a provably good schedule

that minimizes the weighted completion time of the jobs. However, in practice,

machines in a datacenter are inter-connected using various hierarchical network

topologies [19, 20]. In such a network, one needs to specify the path that

the data being transferred between two machines needs to follow through the

network. As we will see shortly, simply using the “shortest path” between

two machines is not always the best way to route data.

In the Infrastructure as a Service (IaaS) cloud computing service model,

clients are provided with autonomous virtual machines (VMs) as per their

requirement and the service provider runs these virtual machines in its

datacenter. Additionally, a client may request multiple virtual machines and

require bandwidth to communicate between two machines. In this scenario, the

underlying physical network of the datacenter is used to route the data between

two virtual machines residing on different servers. While some traffic can take

a shortest path between the two VMs, different services may use middleboxes

11

(e.g. load balancer, firewalls, NAT boxes) and the corresponding traffic takes

a detour to pass through these middleboxes [21, 22]. Specifically for security

reasons, filtering the communication between different virtual machines in a

datacenter becomes a necessity. Such filtering can be accomplished by placing

firewalls at strategic nodes within the datacenter and routing the traffic to

pass through a firewall. For concreteness, we now use the term “firewall” to

mean any middlebox that a service provider wants the data to pass through.

This abstraction introduces several basic facility location problems where the

firewalls correspond to facilities and communication requests between VMs

correspond to demands.

Suppose some data needs to be transferred between machines s and t and

let P be a path in the physical network that connects those machines. If

there is no available firewall on path P , then we need to route the data first

from s to some firewall f and then back from f to the destination t. Clearly,

having too few firewalls would cause a large amount of traffic to be routed

to a particular firewall leading to increased congestion in the links leading

to the firewall. In traditional facility location problems, the objective deals

with minimizing the “distance” that a demand j needs to travel to reach a

facility i. However as the propagation delay within a datacenter is relatively

12

small, the queueing delay due to link congestion often dominates. As a result,

the maximum link congestion is a better measure of the quality of a given

firewall placement. Further, since the underlying network is shared between

other services, we have a bandwidth constraint on the links that bounds the

allowed congestion and we focus on finding a good firewall placement subject

to these bandwidth constraints. Figure 1.4 illustrates our firewall placement

model.

Servers

Edges have bandwidths

Traffic demands

Firewall

Figure 1.4: Firewall Placement Framework

The above discussion motivates the formulation of the following Firewall

Placement Problem: Given a physical network with bandwidth constraints

13

on links, an assignment of virtual machines to servers, and communication

demands between virtual machines, find the minimum number of firewalls

necessary so that all the demands can be simultaneously satisfied while

respecting the bandwidth constraints on the links. Additionally, we consider

the capacitated version of the above problem where each firewall also has a

capacity that restricts the maximum number of demands it can satisfy.

We study the approximability of the Firewall Placement problem on tree

networks [23]. We show that the soft capacitated firewall placement problem

with uniform capacities that allows one to place multiple firewalls at a single

vertex can be solved in polynomial time via a simple greedy strategy. On

the other hand, we also show that the hard capacitated firewall placement

problem where we can place at most one firewall at a vertex is NP-hard. For

this case, we design a polynomial time algorithm that requires at most the

optimum number of firewalls but violates the edge bandwidths by a factor

of at most 2. For the hard capacitated firewall placement problem on star

networks, we give a constant approximation algorithm via a reduction to a

special case of the network-aware machine activation problem.

14

1.4 Constraint Selection:

Scheduling with Soft Precedences

Many applications can be expressed as a set of jobs with precedence constraints

that encode a dependency between two jobs. For example, a precedence

constraint j1 ≺ j2 indicates that the job j1 must be completed before job j2 can

begin to process. In typical precedence constrained scheduling problems [24,

25, 26, 27, 28, 29, 30, 31], the precedence constraints are considered sacrosanct

and one aims to find the “best” schedule while satisfying every constraint.

Traditional optimization goals include finding a schedule that minimizes the

weighted sum of completion times or one that minimizes the makespan, i.e.,

the earliest time when all jobs have completed.

Let us consider the simplest case of scheduling with precedence constraints.

Suppose we have n unit length jobs with precedence constraints and an

infinite capacity machine. The objective is to find a feasible schedule with

the minimum makespan. Given such an instance, consider the associated

precedence graph G = (V,A) where V denotes the set of n jobs and there is

an edge e = (u, v) ∈ A if and only if u ≺ v. It can be easily observed that

the optimum makespan for the instance equals the number of vertices in the

15

longest directed path in G.

In practice however, it is often the case that not all precedence constraints

are made equally. For instance, Lesaint et al. [32] show that in internet

telephone, there are usually two types of precedence constraints - (1) Hard

constraints that are required by the service delivery architecture, and (2) Soft

constraints that are desired by user specifications but may be violated if it leads

to better schedules. Jaskowski and Sobotka [33] argue that such a dichotomy of

precedence constraints also occurs commonly in project scheduling problems.

Further, they show that modelling soft constraints as distinct from and

less stringent than their hard counterparts helps to significantly reduce the

makespan of the schedule. In this thesis, we perform the first systematic study

of scheduling with soft precedence constraints subject to a deadline [34]. We

formalize the notion of “soft precedences” in a few different ways. Interestingly,

these formalizations lead to natural generalizations of several well-known

graph optimization problems such as maximum directed cut and maximum

acyclic subgraph.

16

Linear Soft Precedences

In this model, we try to capture scenarios where the cost incurred due to

violating a precedence constraint is proportional to the extent by which the

constraint is violated. Let sj and fj denote the starting time and finishing

time of job j respectively. We say a precedence constraint u ≺ v is satisfied if

and only if sv ≥ fu, i.e., job v is processed only once u has finished processing.

However, if the constraint is not satisfied, then we incur a penalty of (fu− sv).

In this setting, given a set of n jobs along with their processing times

and precedence constraints, an infinite capacity machine and a deadline k,

the Deadline Linear Soft Precedence Scheduling problem is to find a feasible

schedule that minimizes the total penalty such that all jobs finish by the

deadline. We show that the Deadline Linear Soft Precedence Scheduling

problem can be solved optimally in polynomial time by an appropriate LP-

formulation.

Discrete Soft Precedences

In this model, we assume that the cost incurred for a violating a constraint

is fixed irrespective of the degree of the violation. We model the precedence

constraints by a directed precedence graph G = (V,A) as discussed earlier.

17

Further we allow every edge to have a weight w(e) that signifies the importance

of the associated precedence constraint. Now if a schedule does not satisfy

the precedence constraint u ≺ v then it incurs a cost of w(u, v).

In this setting, given a set of n jobs along with their processing times and

precedence constraints, an infinite capacity machine, and a deadline k the

Deadline Discrete Soft Precedence Scheduling problem is to find a feasible

schedule that maximizes the total weight of satisfied constraints such that all

jobs finish by the deadline. We introduce the Max-k-Ordering problem

and show that it is equivalent to the Deadline Discrete Soft Precedence

Scheduling problem. We obtain a polynomial time 2-approximation algorithm

via randomized rounding of the natural LP relaxation. We also provide

matching lower bounds and thus prove that our algorithm is tight up to lower

order terms. We also consider the minimization variant where the objective

is to minimize the weight of the violated constraints.

1.5 Outline of the Dissertation

In the following chapters we formally define the different models that we have

described in the previous sections and present our algorithms and analyses

18

on these models.

In Chapter 2, we study the network-aware machine activation problem and

give approximation algorithms for different problem variants in this setting.

In Chapter 3, we introduce the Co-flow scheduling model and give improved

approximation algorithms both in the setting of general release times and

with zero release times.

In Chapter 4, we formalize the firewall placement model and show that

the soft-capacitated firewall placement problem on trees admits an optimal

polynomial time algorithm. We also show that hard-capacitated version is

NP-complete and give the first approximation algorithms.

In Chapter 5, we perform a systematic study of scheduling with soft

precedence constraints. We formulate the Max-k-Ordering problem to

accurately capture the maximization variant of discrete soft precedences and

give a tight approximation algorithm for it using a novel LP rounding scheme.

19

Chapter 2

Network-Aware

Energy-Efficient Scheduling

In this chapter we formally define our framework for network-aware energy-

efficient scheduling and develop approximation algorithms for the different

problem variants in this framework. Section 2.1 formally defines the network-

aware machine activation problem and briefly describes some prior related

work in this area. In Sections 2.2- 2.5, we design approximation algorithms

for different variants of the network-aware machine activation problem. Our

algorithms are based on rounding the natural linear programming relaxation

in multiple phases that may be of independent interest. In particular, many of

20

our rounding stages themselves solve auxiliary linear programs and critically

rely on the sparsity of basic feasible solutions to obtain an integral solution

of bounded cost.

2.1 The Framework

We model the data center as a star network with a central data server acting

as the root r. In addition, we have a set M of m machines that form the

leaves of the star. Each machine i ∈M is associated with an activation cost

ai that is the cost incurred if machine i is utilized in a schedule. Finally, we

are given a set J of n jobs where each job j has a processing requirement

of pj and a data requirement of dj units1. In addition, let δ(j) ⊆M denote

the set of machines that already have the data required to schedule j. In

particular, if the job j is scheduled on a machine i ∈ δ(j), then no data needs

to be migrated and it requires a processing time of pj units. On the other

hand, if job j is scheduled on machine i′ /∈ δ(j), then dj units of data need to

be transferred from the root r to i′ and it still requires a processing time of

1In the unrelated machines setting, the processing (pij) and data (dij) requirement of a

job depends on the machine on which it is scheduled.

21

pj units2. For a given schedule, the congestion of the schedule is defined as

the maximum amount of data that needs to be transferred to any machine

i ∈M . Figure 2.1 illustrates our framework for network-aware energy-efficient

scheduling.

Central Data store

Machines M

Job Job

Figure 2.1: Network-Aware Machine Activation Framework

One can formulate a variety of interesting questions in this scheduling

model. Our goal is to open a subset S ⊂M of machines of minimum total

cost such that we can find a schedule with makespan at most T and congestion

at most B. We note that our framework directly generalizes the “machine

activation” framework introduced by Khuller et al. [9] (when δ(j) = M for

all jobs).

2For simplicity, here we assume that the data transfer is instantaneous.

22

2.1.1 Related Work on Network Aware Scheduling

In a seminal paper Papadimitriou and Yannakakis [35] initiated the study

of scheduling with communication delay. In this model there are m parallel

machines and a set of precedence constrained jobs. With every arc (j, k)

between two jobs in the precedence constraints, there is an accosted com-

munication delay cjk. If jobs j and k are processed on different machines,

then the processing of k cannot start before cjk time units have elapsed after

the completion of j. However, if jobs j and k are processed on the same

machine, then k can start as soon as j has been completed. Papadimitrou and

Yannakakis showed even for unit jobs, and when job duplication is allowed,

minimizing makespan with uniform communication delay is NP-hard. Since,

their work, approximation algorithms [36, 37, 38, 39, 40, 41], and strong

non-approximability results have been shown for unrelated job processing

time even under simple hierarchical precedence constraints [42, 43] .

In a similar spirit, Phillips, Stein and Wein [44] introduced an interesting

model of network scheduling in which before a job can be started on a machine,

the job and its data need to be moved to the machine. Here there is a graph

that induces the time a job requires to be moved to a machine. When moving

a job’s data through the network, jobs can freely share links in the network.

23

This essentially results in jobs having different “arrival” times depending

on the machine they are scheduled on. Interestingly, except for the only

recent work by Im and Moseley [45], we did not find any work in theoretical

scheduling literature that considers network congestion along with scheduling.

The work of [45] focuses on a tree network with unit bandwidth, and assumes

all jobs are located only at the root initially. The goal is to find a dispatch

time for jobs and a leaf to run the job to minimize the average flow time in

an online setting. The problem has an O(1
ε7

)-approximation ratio with (2 + ε)

speed augmentation for unrelated machines. While their model essentially

considers communication delay and not bandwidth, success of their approach

is an indicative of the potential benefits of studying network-aware scheduling

problems.

2.1.2 Related Work on Capacitated Covering

The early work of Wolsey [46] shows that the simple greedy algorithm gives

a log n approximation for the capacitated set cover problem. The vertex

cover with hard capacities problem was first studied by Chuzhoy and Naor

[47] who gave a 3-approximation for the problem using randomized rounding

followed by alteration. Gandhi et al.[48] later improved this result to give a

24

2-approximation. However, both of these approaches only work for simple

graphs and fail for multigraphs where one can have multiple edges between

the same set of vertices. Saha and Khuller [49] give the first constant approx-

imation for the hard-capacitated vertex cover problem on multigraphs and

hypergraphs. In a recent improvement, Cheung et al. [50] obtain a determinis-

tic 3-approximation and a randomized 2.155-approximation algorithm for the

problem on multigraphs and a 2f -approximation algorithm on hypergraphs

where f denotes the size of the largest hyperedge.

Khuller et al. [9] introduce the machine activation problem and obtain a

bi-criteria approximation algorithm. In particular, they show that if there

exists a schedule with makespan T and activation cost A, then one can obtain

a schedule with makespan at most (2 + ε)T and activation cost at most

2(1 + 1/ε)(ln n
A

+ 1)A for any ε > 0 using a linear programming rounding

method. In the same setting, they also show that a greedy algorithm obtains a

(2, lnn) bi-criteria approximation exploiting the submodularity of generalized

flow [51]. For the online setting where jobs arrive online, Azar et al. [52]

obtain a bicriteria algorithm with a poly-logarithmic competitive ratio on

both makespan and activation cost.

25

2.1.3 Our Contributions and Techniques

We first consider the general network aware machine activation problem with

arbitrary machine activation costs, processing times and data requirements.

We show that a simple randomized rounding scheme finds a schedule that

violates all the three parameters by a factor of O(log n). The proof of the

following theorem is deferred to Section 2.5.

Theorem 1. For the general network-aware machine activation problem on

unrelated machines, if there exists a schedule with total activation cost A,

makespan T , and congestion B, then there is a polynomial time algorithm that

constructs a schedule of cost O(log n)A, makespan O(log n)T , and congestion

O(log n)B.

It can be easily seen that one cannot avoid the O(log n) factor in the

activation cost due to the hardness of approximating set cover [11]. On

the other hand, data centers in practice often use a small replication factor.

The Hadoop Distributed File System (HDFS), for instance, recommends a

default replication factor of 3, i.e., every data item is replicated 3 times [12].

Consequently, for any job j, the number of machines that store the requisite

data, i.e. |δ(j)|, is often a small constant. For small |δ(j)| and unit activation

26

cost, one may expect an approximation factor better than log n. The main

algorithmic result of this chapter is a constant approximation algorithm for

the network-aware machine activation problem in this case. In particular, we

show the following theorem.

Theorem 2. For the network-aware machine activation problem with unit

activation costs, if there exists a solution with assignment cost A, makespan

T , and congestion B, then there is a polynomial time algorithm that finds a

schedule with assignment cost at most (8f + 9)A, makespan at most 5T , and

congestion at most 4B where f = maxj |δ(j)|.

Our approximation algorithm is based on a novel rounding of the natural

LP relaxation of the problem. The rounding proceeds over multiple stages

such that in each stage we open a bounded number of machines integrally,

until finally all the jobs can be satisfied by the integrally opened machines.

As opposed to the traditional hypergraph cover problem, in our setting it is

feasible to assign a job j to a machine v /∈ δ(j) at a cost of contributing to

the congestion at v. This flexibility of a job being satisfied by a machine not

incident on it makes the rounding process significantly more challenging than

that for the traditional hypergraph cover with hard capacities problem. Our

techniques demonstrate that explicitly constructing auxiliary linear programs

27

that maintain feasibility of the original LP relaxation is a promising strategy

for rounding complex LP relaxations. In particular, using the sparsity induced

by basic feasible solutions, we can effectively bound the loss in solution quality

at each step. We believe that these techniques are of independent interest

and may be applicable to other problems that do not admit an easy rounding

strategy.

For the case when all jobs have unit processing and data requirements,

i.e. pj = dj = 1,∀j ∈ J , we obtain the following improved approximation

algorithm. We note that the following theorem yields a true approximation

algorithm as the solution satisfies all the makespan and congestion constraints.

Theorem 3. For the network-aware machine activation problem with unit

activation costs and unit processing and data requirements for all jobs, if there

exists a solution with assignment cost A, makespan T , and congestion B, then

there is a polynomial time algorithm that finds a schedule with assignment

cost at most (4f + 5)A, makespan at most T , and congestion at most B where

f = maxj |δ(j)|.

28

2.2 Preliminaries

Figure 2.2 shows the natural LP relaxation of the network-aware machine

activation problem with unit activation costs. The variables yi indicate

whether machine i is chosen into the solution or not. If job j is assigned to a

machine i ∈ δ(j), we set xij = 1. Similarly, if job j is assigned to a machine

i /∈ δ(j), we set zij = 1. For ease of notation, we also introduce variables xij

where i /∈ δ(j) and zij where i ∈ δ(j), but note that we can assume that they

are set to 0 without loss of generality.

2.3 LP Rounding for Network-Aware Machine

Activation

Let (x∗, y∗, z∗) denote an optimal solution to the LP in Figure 2.2. In the

rest of this section, we process the optimal fractional solution (x∗, y∗, z∗) in a

number of stages to obtain an integral solution. We first provide an intuitive

discussion regarding the high level ideas of the proof.

29

LP1 : min
∑
i∈M

yi

subject to,

∀j ∈ J,
∑
i∈δ(j)

xij +
∑
i/∈δ(j)

zij ≥ 1 (2.1)

∀i ∈M, and j ∈ J, xij + zij ≤ yi, (2.2)

∀i ∈M,
∑
j∈J

pj(xij + zij) ≤ Tyi (2.3)

and,
∑
j∈J

djzij ≤ Byi, (2.4)

∀i ∈M, 0 ≤ yi ≤ 1. (2.5)

∀i ∈M and j ∈ J, xij ≥ 0 and zij ≥ 0. (2.6)

Figure 2.2: LP Relaxation for instance I of network-aware machine

activation

30

2.3.1 High Level Ideas

Initially, we only attempt to round the machine opening variables. Our goal

is to integrally open a bounded number of machines and maintain a feasible

(or approximate feasible) fractional assignment. Once we have such a solution,

we can obtain an integral assignment of jobs using techniques akin to those

used for the Generalized Assignment Problem [53]. We now provide a high

level overview of the main ideas used to obtain the set of integrally open

machines.

Since in the fractional LP solution, a job j can be satisfied partially

by machines i ∈ δ(j) and partially by machines outside δ(j), we aim to

handle these two components separately. Let us call
∑

i∈δ(j) x
∗
ij as the internal

demand of j and
∑

i/∈δ(j) z
∗
ij as the external demand of j. In the first stage,

we open all machines with high y∗i values (call this set U1). We then note that

since a job j can be assigned to any machine i /∈ δ(j) as long as the vertex has

enough bandwidth, it is sufficient to open a few additional vertices with high

residual bandwidth (call this set U2) to satisfy the external demand of all

jobs j. We then observe that jobs whose internal demand is partially satisfied

by U1 ∪ U2 can be handled by adapting the techniques used by Cheung et al.

[50] for hard-capacitated hypergraph covering.

31

We are now still left with jobs whose internal demand is non-zero but

is satisfied outside of U1 ∪ U2. Handling such jobs proves to be the most

challenging aspect of the problem. Indeed, it is possible that for every job jk,

there is one machine ik ∈ δ(jk) with xikjk = yik = ε. Now, if we try to satisfy

this contribution of xikjk by integrally open machines, we may be forced

to open all such machines ik leading to a bad solution. Our approach is to

reshuffle the assignments of external and internal demands in a way that we can

bound the number of such jobs. We achieve this by writing two intermediate

linear programs that consider the unsatisfied internal demands of these jobs

as well as their already satisfied external demands. The first linear program

massages the assignments using iterative rounding in an attempt to make

constraints of Equation (2.2) tight. In this stage, we open a few additional

vertices to satisfy the jobs that are not amenable to tight assignments. In

the final stage, the tight assignment constraints allow us to drop the capacity

constraints on the vertices and we formulate a linear program to obtain the

final solution. Once again, we use the sparsity introduced by basic feasible

solutions to bound the total number of vertices that we need to open in this

step.

32

2.3.2 Stage 1

Given the optimal fractional solution (x∗, y∗, z∗), we partition M as follows -

U1 = {i ∈M | y∗i ≥ 1
f+1
}

V1 = {i ∈M \ U1 | y∗i > 0}

Sort vertices i ∈ V1 in non-increasing order of
(
T −∑j∈J

pjx
∗
ij

y∗i

)
U2 = d(f + 1)

∑
i∈V1

y∗i e machines from V1 in above order.

Lemma 1. There exists a feasible solution (x1, y1, z1) to LP1 that satisfies

the following properties -

(i) y1
i = 1, ∀i ∈ U1 ∪ U2 and y1

i = y∗i , otherwise.

(ii) z1
ij = 0, ∀i /∈ U1 ∪ U2

(iii)
∑

i∈M z1
ij ≥ min(1, (f + 1)out(j)), ∀j ∈ J where out(j) =

∑
i∈V1

z∗ij

(iv) x1
ij = x∗ij, ∀i ∈M and j ∈ J

Proof. For the sake of analysis, consider the following linear program where

C̄i denotes the capacity of machine i ∈ V1 that is available for jobs not

incident on it, i.e. C̄i = (T −∑j|i∈δ(j)
pjx
∗
ij

y∗i
). All external assignments that

are feasible for the following LP maintain capacity and bandwidth constraints

at all machines i ∈ V1. In addition, the first constraint guarantees that the

33

external demand of every job j is satisfied as well (even after scaling up by

(f + 1)).

minimize
∑
i∈V1

yi

subject to∑
i∈V1

zij ≥ min(1, (f + 1)out(j)) ,∀j ∈ J (2.7)

∑
j∈J

pjzij ≤ C̄iyi ,∀i ∈ V1

∑
j∈J

djzij ≤ Byi ,∀i ∈ V1

zij ≤ yi ,∀i ∈ V1,∀j ∈ J

0 ≤ zij, yi ≤ 1 ,∀i ∈ V1,∀j ∈ J

Since we have z∗ij ≤ y∗i <
1

f+1
,∀i ∈ V1 and ∀j ∈ J , it is easy to observe

that setting zij = (f + 1)z∗ij and yi = (f + 1)y∗i is a feasible solution to the

above linear program. We now claim that we can obtain a feasible solution

to the above linear program such that the set of machines with non-zero y

variables is exactly the set U2 as defined earlier. Given such a feasible solution

(y, z) to the above LP, we set y1
i = 1, ∀i ∈ U2 and y1

i = y∗i ,∀i ∈ V1 \ U2 and

z1
ij = zij,∀i ∈ V1,∀j ∈ J . Finally since we have x1

ij = x∗ij,∀i ∈M,∀j ∈ J , we

34

are guaranteed that (x1, y1, z1) is a feasible solution to LP1.

Proof of the claim: Consider a feasible solution (y, z) to the above linear

program such that there are two machines a and b with 0 < ya, yb < 1.

Without loss of generality, let C̄a > C̄b. We now obtain a new feasible solution

(y′, z′) with one less fractional y variable as follows - Set y′a = min(ya + yb, 1)

and y′b = max(0, ya+yb−1). The z values are changed proportionately as well

- z′bj = zbj(
y′b
yb

) and z′aj = zaj + zbj − z′bj for all j ∈ J . For all other machines

and jobs, (y′, z′) is identical to (y, z).

To show that (y′, z′) is feasible, we observe that
∑

i∈V1
z′ij =

∑
i∈V1

zij for

all jobs j and hence constraints (2.7) are satisfied. Also the bandwidth and

capacity constraints are satisfied at all machines other than a and b since their

assignments remain unchanged. For machine b,
∑

j pjz
′
bj =

∑
j pjzbj

y′b
yb
≤ C̄by

′
b

and similarly
∑

j djz
′
bj =

∑
j djzbj

y′b
yb
≤ By′b. For machine a, we consider two

cases.

Case 1: y′a = ya + yb and y′b = 0. Now we have
∑

j pjz
′
aj =

∑
j pj(zaj +

zbj − 0) ≤ C̄aya + C̄byb ≤ C̄ay
′
a and hence the capacity constraint is satisfied.

35

Case 2: y′a = 1 and y′b = ya + yb − 1. We have the following.

∑
j

pjz
′
aj =

∑
j

pj(zaj + zbj − z′bj) ≤ Caya +
∑
j

pjzbj(1−
ya + yb − 1

yb
)

≤ Caya + Cbyb(
1− ya
yb

) ≤ Ca = Cay
′
a

Analogously, we can show that the bandwidth constraints are satisfied at

machine u as well. We repeat this procedure until we have at most one

fractional y variable. Since we always choose to open the machine with larger

residual capacity, and initially we have
∑

i∈V1
yi = (f + 1)

∑
i∈V1

y∗i , the final

set of machines with non-zero fractional values is exactly the set U2 defined

earlier. Recall that U2 is defined as the set of d(f + 1)
∑

i∈V1
y∗i e machines

from V1 with the highest residual capacity.

Let Ĵ denote the set of jobs that are not completely satisfied by the open

machines in U1 and U2, i.e., Ĵ = {j ∈ J | ∑i∈U1∪U2
(x1

ij + z1
ij) < 1}. The

following claim follows immediately from the definition of Ĵ and Lemma 1.

Claim 1. Every job j ∈ Ĵ must have out(j) < 1
f+1

.

The following lemma is useful to bound the total number of machines

opened in this stage.

Lemma 2. |U1|+ |U2| ≤ (f + 1)
∑

i∈V y
∗
i + 1

36

Proof. Since y∗i ≥ 1
f+1

for all i ∈ U1, we have |U1| ≤ (f + 1)
∑

i∈U1
y∗i . On the

other hand, by definition U2 consists of d(f + 1)
∑

i∈V \U1
y∗i e machines and

the desired bound follows.

2.3.3 Stage 2

Let J2 = {j ∈ Ĵ |∑i∈U1∪U2
x1
ij > 0} denote the set of unsatisfied jobs that

are assigned internally to at least one open machine. For convenience, also

define W = V1 \ {U1 ∪U2} to be the set of machines with fractional y1 values.

In this stage, we aim to open a few more machines from W in order to satisfy

all jobs in J2. We follow the approach of Cheung, Goemans and Wong [50].

The main idea is to associate the deficit of every job j ∈ J2 to the open

machines in U1∪U2 and then write a covering LP that opens new machines in

order to meet these deficits. Since for a job j ∈ J2, δ(j) may contain multiple

machines from U1∪U2, we distribute its deficit in proportion to its assignment.

In particular, for a job j ∈ J2 and a machine u ∈ δ(j)∩{U1∪U2}, define γuj =

x1
uj∑

i∈δ(j)∩{U1∪U2}
x1
ij

and associate with u a partial deficit of pjγuj
∑

w∈δ(j)∩W x1
wj .

In this way, the deficit of job j is completely distributed among the machines

37

in δ(j) ∩ {U1 ∪ U2}. The total deficit at a machine u ∈ U1 ∪ U2 is thus

r(u) =
∑

j∈J2|u∈δ(j)

pjγuj
∑

w∈δ(j)∩W

x1
wj

Next, we define the amount of coverage that a machine w ∈ W can provide.

For a job j such that w ∈ δ(j), and u ∈ δ(j) ∩ {U1 ∪ U2}, w can offer a

coverage of pjγujx
1
wj/y

1
w. We scale this coverage down by a factor of (f − 1)

to avoid potential non-linearity in the formulation and defer the reader to

[50] for further details regarding this point. Thus, machine w if opened can

provide

M(u,w) =
∑

j∈J2|{u,w}⊆δ(j)

pjγujx
1
wj

(f − 1)y1
w

units of coverage to u. We now write the covering LP in Figure 2.3.

LP2 : min
∑
w∈W

ỹw

subject to, ∀u ∈ U1 ∪ U2,
∑
w∈W

M(u,w)ỹw ≥ r(u).

∀w ∈ W, ỹw ≥ 0.

Figure 2.3: Covering LP to satisfy jobs in J2

Let ỹ denote an optimum basic feasible solution for the above LP and

38

let U3 = {w ∈ W | ỹw > 0} denote the machines in W that are assigned a

non-zero value.

Lemma 3. There exists a feasible solution (x2, y2, z2) to LP1 that satisfies

the following properties -

(i) y2
i = 1, ∀i ∈ U3 and y2

i = y1
i , otherwise.

(ii) z2
ij = z1

ij, ∀i ∈M and j ∈ J

(iii)
∑

i∈U1∪U2∪U3
(x2

ij + z2
ij) ≥ 1, ∀j ∈ J2

Proof. Let ỹ denote an optimum basic feasible solution for the LP2 and let

U3 = {w ∈ W | ỹw > 0} denote the machines in W that are assigned a

non-zero value. We use ỹ to define (x2, y2, z2) that are feasible for LP1 as

follows. We open all the machines in U3 and keep other opening variables

unchanged. We also do not change the external assignments for any job.

y2
i =


1 , ∀i ∈ U3

y1
i , otherwise

(2.8)

z2
ij = z1

ij ,∀i ∈M and ∀j ∈ J

39

The internal assignments are defined using U3 as follows.

x2
ij =



x1
ij ,∀j /∈ J2 and ∀i ∈M

x1
ij

(f−1)y1
i

,∀j ∈ J2 and i ∈ δ(j) ∩ U3

0 ,∀j ∈ J2 and i ∈ δ(j) ∩ {W \ U3}

γij

(
1−∑v/∈δ(j) z

2
vj −

∑
w∈δ(j)∩W x2

wj

)
, ∀j ∈ J2 and i ∈ δ(j) ∩ {U1 ∪ U2}

(2.9)

Since we have x2
ij = x1

ij and z2
ij = z1

ij for any job j /∈ J2, constraint (2.1)

is satisfied for all such jobs. On the other hand, for a job j ∈ J2, we have

∑
i∈δ(j)

x2
ij +

∑
i/∈δ(j)

z2
ij =

∑
u∈δ(j)∩{U1∪U2}

x2
uj +

∑
w∈δ(j)∩W

x2
wj +

∑
i/∈δ(j)

z2
ij

=
∑

u∈δ(j)∩{U1∪U2}

γuj

1−
∑
v/∈δ(j)

z2
vj −

∑
w∈δ(j)∩W

x2
wj

+
∑

w∈δ(j)∩W

x2
wj +

∑
i/∈δ(j)

z2
ij

= 1

where the last equation follows as
∑

u∈δ(j)∩{U1∪U2} γuj = 1.

It can be verified from the definition that all constraints in (2.2), (5.4), (2.6)

are satisfied. Also, since we have z2 = z1 and y2
i ≥ y1

i , ∀i ∈ M , constraints

(2.4) are also satisfied for all vertices. We now show that all the capacity

constraints of equation (2.3) are also satisfied and hence (x2, y2, z2) is a

feasible LP solution.

40

First, we note that y2
i ≥ y1

i for every vertex i. Also for any vertex

i ∈ W \ U3, we have x2
ij ≤ x1

ij and z2
ij = z1

ij for all jobs j and hence the

capacity constraints are trivially satisfied since (x1, y1, z1) is a feasible solution.

For a vertex w ∈ U3, we have

∑
j∈J

pj
(
x2
wj + z2

wj

)
=
∑
j∈J2

pjx
2
wj +

∑
j∈J\J2

pjx
2
wj + 0 =

∑
j∈J2

pj

(
x1
wj

(f − 1)y1
w

)
+
∑
j∈J\J2

pjx
1
wj

≤ 1

(f − 1)y1
w

(∑
j∈J

pjx
1
wj

)
≤ Cw = Cwy

2
w.

Finally for a vertex u ∈ U1 ∪ U2, the feasibility of the covering LP2

guarantees that the capacity constraints are satisfied as follows -

∑
j∈J

pj
(
x2
uj + z2

uj

)
=
∑
j∈J

pjz
2
uj +

∑
j∈J\J2

pjx
2
uj +

∑
j∈J2

pjx
2
uj

=
∑
j∈J

pjz
1
uj +

∑
j∈J\J2

pjx
1
uj +

∑
j∈J2

pjγuj

1−
∑
v/∈δ(j)

z2
vj −

∑
w∈δ(j)∩W

x2
wj


=
∑
j∈J

pjz
1
uj +

∑
j∈J\J2

pjx
1
uj +

∑
j∈J2

pjγuj

1−
∑
v/∈δ(j)

z2
vj

−∑
j∈J2

∑
w∈δ(j)∩U3

pjγuj
x1
wj

(f − 1)y1
w

=
∑
j∈J

pjz
1
uj +

∑
j∈J\J2

pjx
1
uj +

∑
j∈J2

pjγuj

1−
∑
v/∈δ(j)

z1
vj

−∑
w∈U3

M(u,w)

But by definition of U3 we have,
∑

w∈U3
M(u,w) ≥∑w∈W M(u,w)ỹw ≥ r(u).

This gives us the following.

41

∑
j∈J

pj
(
x2
uj + z2

uj

)
≤
∑
j∈J

pjz
1
uj +

∑
j∈J\J2

pjx
1
uj +

∑
j∈J2

pjγuj

1−
∑
v/∈δ(j)

z1
vj

− r(u)

=
∑
j∈J

pjz
1
uj +

∑
j∈J\J2

pjx
1
uj +

∑
j∈J2

pjγuj

1−
∑
v/∈δ(j)

z1
vj

−∑
j∈J2

pjγuj
∑

w∈δ(j)∩W

x1
wj

=
∑
j∈J

pjz
1
uj +

∑
j∈J\J2

pjx
1
uj +

∑
j∈J2

pjγuj

1−
∑
v/∈δ(j)

z1
vj −

∑
w∈δ(j)∩W

x1
wj


Since (x1, y1, z1) is a feasible solution, we have

∑
i∈δ(j)∩{U1∪U2} x

1
ij+
∑

v/∈δ(j) z
1
vj+∑

w∈δ(j)∩W x1
wj ≥ 1 and hence

≤
∑
j∈J

pjz
1
uj +

∑
j∈J\J2

pjx
1
uj +

∑
j∈J2

pjγuj

 ∑
i∈δ(j)∩{U1∪U2}

x1
ij


=
∑
j∈J

pjz
1
uj +

∑
j∈J\J2

pjx
1
uj +

∑
j∈J2

pjx
1
uj ≤ Cuy

1
u = Cuy

2
u

Hence we have shown that the solution (x2, y2, z2) constructed here is a

feasible solution for LP1. Further from (2.8)-(2.9), it can be seen that all the

three conditions of the lemma are satisfied.

The following lemma bounds the size of the set U3 that we have opened

in this stage.

Lemma 4. |U3| ≤ (f − 1)
∑

w∈W y∗w + |U1|+ |U2|

Proof. By definition, we have U3 = {w ∈ W | ỹw > 0}. Hence, we have

|U3| ≤
∑

w∈W ỹw + |Fỹ| where Fỹ denotes the set of machines with fractional

42

ỹ values. Inspecting the covering LP in Figure 2.3, we observe that setting

ỹw = (f − 1)y1
w yields a feasible solution and hence due to optimality we have∑

w∈W ỹw ≤ (f − 1)
∑

w∈W y1
w = (f − 1)

∑
w∈W y∗w.

Let Fỹ = {w1, w2, . . . , wr} be the r fractional variables in the basic feasible

solution ỹ. As shown in Theorem 5.2 of Cheung et al. [50], we know that there

exist r distinct machines u1, u2, . . . , ur ∈ U1∪U2 such that Πr
i=1M(ui, wi) 6= 0.

Hence we have, r ≤ |U1 ∪ U2| and the lemma follows.

2.3.4 Stage 3

Let J3 = {j ∈ J |∑i∈U1∪U2∪U3
(x2

ij + z2
ij) < 1} denote the set of jobs that are

not completely satisfied by the machines opened in the previous stages. Also,

for convenience, we define W ′ = V1 \ {U1 ∪U2 ∪U3} to be the set of machines

with fractional y2 values. By the definition of J2 and Lemma 3, we know that

for all jobs j ∈ J3,
∑

i∈U1∪U2
x1
ij = 0. We now setup some additional notation.

For any job j ∈ J3, define

require(j) =
∑
w∈W ′

x2
wj +

∑
u∈U1

z2
uj

Claim 2. For every job j ∈ J3, require(j) > |δ(j)∩W ′|
f+1

.

43

Proof. For job j ∈ J3, recall that we have

∑
i∈M

(x∗ij + z∗ij) ≥ 1

Since
∑

i∈U1∪U2
x∗ij = 0, we can rewrite this as

∑
w∈W ′

x∗wj +
∑
u∈U3

x∗uj +
∑
u∈U1

z∗uj +
∑

u∈V \U1

z∗uj ≥ 1

However, Claim 1 guarantees that
∑

u∈V \U1
z∗uj = out(j) < 1

f+1
. Further

∀u ∈ U3, we have x∗uj ≤ y∗u <
1

f+1
. Substituting these values, we get

∑
w∈W ′

x∗wj +
∑
u∈U1

z∗uj ≥
|δ(j) ∩W ′|
f + 1

Since we have z2
ij = z∗ij for all i ∈ U1 and x2

ij = x∗ij for all i ∈ W ′, the claim

follows.

A new LP formulation

In this section we alter the assignment variables x2
wj and z2

uj for jobs j ∈ J3

and machines w ∈ W ′ and u ∈ U1 while maintaining that their sum is at least

require(j).

Consider a bipartite graph G1 where on the LHS we have vertices corre-

sponding to U1 ∪W ′ and on the RHS we have vertices corresponding to J3.

For every job j ∈ J3 and w ∈ δ(j) ∩W ′, we add an edge (w, j). Similarly we

44

add edge (u, j) for every u ∈ U1 and j ∈ J3. Let E denote the edge set of

graph G1.

We now consider a new LP formulation. Let variables αwj and βuj represent

the assignment of job j to machine w ∈ W ′ and u ∈ U1 respectively. For

every machine u ∈ U1, let C̄u and B̄u denote the remaining capacity and

bandwidth still available at u, i.e. C̄u = (T −∑j∈J x
2
uj −

∑
j∈J\J3

z2
uj) and

B̄u = (B −∑j∈J\J3
z2
uj). For every machine w ∈ W ′, we initially set C̄w = T .

The following feasibility LP tries to reassign the jobs in J3 while maintaining

all makespan and congestion constraints. Note that for the purposes of this

LP, the y2
w values are considered a constant and simply setting αwj = x2

wj

and βuj = z2
uj is a feasible solution. Initially we set W̃ ′ = W ′ and Ũ1 = U1.

The following lemma follows from the sparsity of basic feasible solutions.

Lemma 5. For any basic feasible solution (α, β) to the LP in Figure 2.4 at

least one of the following hold -

1. ∃ αwj ∈ {0, y2
w} or ∃ βuj = 0

2. There exists a job j ∈ J3 or machine w ∈ W̃ ′ of degree ≤ 1 in G1

3. There exists a machine u ∈ Ũ1 of degree ≤ 3 in G1

Proof. Let (α, β) be a basic feasible solution to LP3. Let us assume that

45

∀j ∈ J3,
∑

w∈W ′|(w,j)∈E

αwj +
∑

u∈U1|(u,j)∈E

βuj = require(j)

∀w ∈ W̃ ′,
∑

j∈J3|(w,j)∈E

pjαwj ≤ C̄wy
2
w (2.10)

∀u ∈ Ũ1,
∑

j∈J3|(u,j)∈E

pjβuj ≤ C̄u

∀u ∈ Ũ1,
∑

j∈J3|(u,j)∈E

djβuj ≤ B̄u

∀(w, j) ∈ E : w ∈ W ′, 0 ≤ αwj ≤ y2
w (2.11)

∀(u, j) ∈ E : u ∈ U1, βuj ≥ 0 (2.12)

Figure 2.4: LP3 : Feasibility LP to reassign jobs in J3

46

0 < αwj < y2
w,∀(w, j) ∈ E and βuj > 0,∀(u, j) ∈ E since otherwise, we are

done.

Since none of the constraints of type (2.11) and (2.12) are tight, the total

number of tight constraints is at most |J3|+ |W̃ ′|+ 2|Ũ1|. Since (α, β) is a

basic feasible solution, the number of non-zero variables is bounded by the

number linearly independent tight constraints and we have the following.

|E| ≤ |J3|+ |W̃ ′|+ 2|Ũ1| (2.13)

Now suppose for the sake of contradiction, that every job j ∈ J3 and

machine w ∈ W̃ ′ has degree at least 2 and every machine u ∈ Ũ1 has degree

at least 4 in G1. Since G1 is a bipartite graph with edge set E, we obtain the

following.

|E| ≥ |J3|+ |W̃ ′|+ 2|Ũ1| (2.14)

From Equations (2.13) and (2.14), we have |E| = |J3|+ |W̃ ′|+ 2|Ũ1| and

every machine i /∈ W̃ ′ ∪ Ũ1 has degree zero. Consequently E is the edge set

of a bipartite graph where J3 is one side of the bipartition and W̃ ′ ∪ Ũ1 forms

the other side. Since all the constraints defined by vertices of a bipartite

graph cannot be linearly independent, we have at most |J3|+ |W̃ ′|+ 2|Ũ1| − 1

47

linearly independent tight constraints. The basic feasibility of the solution

then implies that |E| ≤ |J3|+ |W̃ ′|+ 2|Ũ1| − 1 leading to a contradiction.

Iterative Rounding

We create another bipartite graph G2 with the same vertex set as G1 but

with no edges initially. Intuitively, while graph G1 represents the assignments

that are yet to be processed in this stage, G2 indicates the assignments that

are carried forward to the next stage.

Algorithm: While graph G1 is not empty, apply the following steps as

long as one of them applies; after each application re-solve the LP on the

remaining variables and constraints to obtain a new basic feasible solution.

1. Solve LP3 to obtain a basic feasible solution (α, β). By Lemma 5, one

of the following conditions must hold.

2. If αwj = 0 or βuj = 0 for some edge e ∈ E, remove e from E. Set

x3
wj = 0 or z3

uj = 0.

3. If αwj = y2
w for some edge (w, j) ∈ E, remove (w, j) from E and add

it to graph G2. Assign x3
wj = αwj. For the LP, set C̄w = C̄w − pj and

update require(j) = require(j)− αwj.

48

4. If ∃w ∈ W̃ ′ of degree ≤ 1 in G1: Let (w, j) be the incident edge. Delete

w from W̃ ′, i.e. we drop the makespan constraint (Eq (2.10)) associated

with w. Since at most one additional job j can be assigned to machine

w, the total load at w is at most T + maxj pj.

5. If ∃u ∈ Ũ1 of degree ≤ 3 in G1: For every neighbor j of u, do the

following. Remove edge (u, j) from E and add it to G2. Assign z3
uj =

βuj. We say that the job j is accounted for by u. For the LP, set

require(j) = require(j)− βuj.

Delete vertex u from G1. As a result u can account for at most 3 jobs.

6. If there exists a vertex j ∈ J3 of degree 1 in G1:

(a) Let (w, j) be the incident edge where w ∈ W ′: Now, by claim

2, we know that initially require(j) > |δ(j)∩W ′|
f+1

. Since we have

αw′j ≤ y2
w′ <

1
f+1

for all w′ ∈ W ′, this implies that we must

have at least one edge (u, j) in G2 where u ∈ U1. In other words,

job j has been accounted for by some vertex u ∈ U1. We call u

responsible for w and open w and finalize its assignments, i.e. set

y3
w = 1 and x3

wj′ = αwj′ for all edges (w, j′) in G1. Delete vertices

j and w from G1 and set require(j′) = require(j′) − αwj′ for all

49

j′ 6= j incident to w in G1.

(b) Let (u, j) be the incident edge where u ∈ U1: Move edge (u, j) to

G2 and assign z3
uj = βuj. For the LP, delete vertex j from G2 and

set C̄u = C̄u − pjβuj and B̄u = B̄u − djβuj .

7. If G1 is not empty, return to Step 1.

Structure at the end of Stage 3

Let U4 denote the set of vertices that we open in Step 6a. We set y3
u = y2

u for

all u /∈ U4. Similarly, the assignment variables for j /∈ J3 remain unchanged,

i.e., x3
ij = x2

ij and z3
ij = z2

ij . From the description of the algorithm, it is easy to

verify that (x3, y3, z3) satisfies constraints (2.1)-(2.2) and (2.4)-(2.6). Step 4

also guarantees that the makespan constraint (2.3) is satisfied approximately,

i.e., we have ∑
j∈J

pj(x
3
ij + z3

ij) ≤ Ty3
i + max

j
pj

The following claim bounds the number of vertices that we open in this

step.

Claim 3. |U4| ≤ 3|U1|.

50

Proof. Each vertex w ∈ U4 has a vertex u ∈ U1 responsible for it. Step 5

ensures that a vertex u ∈ U1 can be responsible for at most 3 vertices.

Let W̃ ⊆ W ′ denote the set of vertices not yet open with at least one edge

incident on it in G2. Also let J4 = {j ∈ J | ∑i∈U1∪U2∪U3∪U4
(x3

ij + z3
ij) < 1}

denote the set of jobs that are not yet completely satisfied by the integrally

open vertices. So at the end we have the following properties.

1. For every j ∈ J4, δ(j) ∩ W̃ 6= φ

2. For every j ∈ J4 and w ∈ δ(j) ∩ W̃ , x3
wj > 0 ⇒ x3

wj = y3
wj. This is

because we only move an edge (w, j) to G2 if the associated constraint

is tight.

3. For every j ∈ J4, define require′(j) =
∑

w∈W̃ x3
wj +

∑
u∈U1

z3
uj. As in

Claim 2, we get require′(j) > |δ(j)∩W̃ |
f+1

.

2.3.5 Stage 4

Property 2 above ensures that if we decide to open a new machine w ∈ W̃ ,

then we can assign all jobs j with nonzero x3
wj value completely to it without

violating its makespan constraint (beyond the violation in (2.3.4)). Note that

these jobs do not contribute to the congestion at w. We will now rewrite a

51

new linear program to modify the y values. We no longer need to maintain

the makespan constraints on machines in W̃ as they are all maintained

automatically.

A Final LP formulation

We define a variable ωuj for every u ∈ U1 and j ∈ J4 such that (u, j) ∈ E2

where E2 is the edge set of graph G2. We define a new variable λw for every

w ∈ W̃ with y3
w > 0 that represents whether machine w should be opened.

As before, let C̄u and B̄u denote the remaining capacity and bandwidth of a

machine u ∈ U1. Figure 2.5 shows the complete LP formulation where we aim

to minimize the number of vertices that we open from W̃ while maintaining

that all jobs get satisfied and the other constraints remain satisfied. Note

that setting λw = y3
w = y∗w and ωuj = z3

uj is a feasible solution.

Iterative Rounding - Final LP

Let (λ, ω) be an optimal basic feasible solution for the LP in Figure 2.5. In

this section, we now define (x4, y4, z4) with integral y values. We initialize

(x4, y4, z4) = (x3, y3, z3) and always maintain x4
wj ∈ {0, y4

w} for all w ∈ W̃ .

We now define some more terminology for convenience.

52

LP4 : min
∑
w∈W̃

λw

subject to,

∀j ∈ J4,
∑

w∈W ′|(w,j)∈E2

λw +
∑

u∈U1|(u,j)∈E2

ωuj ≥ require′(j)

∀u ∈ Ũ1,
∑

j∈J4|(u,j)∈E2

pjωuj ≤ C̄u

∀u ∈ Ũ1,
∑

j∈J4|(u,j)∈E2

djωuj ≤ B̄u

∀(u, j) ∈ E2 where u ∈ U1, ωuj ≥ 0

∀w ∈ W̃ , 0 ≤ λw ≤ 1

Figure 2.5: Final LP to satisfy jobs in J4

53

For any job j ∈ J4

- If
∑

w∈W ′|(w,j)∈E2
λw ≥ require′(j), we say j is fully satisfied internally.

- If
∑

u∈U1|(u,j)∈E2
ωuj ≥ require′(j), we say j is fully satisfied externally.

- Otherwise, j is satisfied partially internally and partially externally.

The rounding now proceeds as follows -

1. We apply each of the following three steps as long as any one of them

applies and re-solve the LP after each step.

(a) We open (set y4
w = 1) all w ∈ W̃ with λw ≥ 1

(f+1)
. We also

set x4
wj = 1 for all j ∈ J4 such that (w, j) ∈ E2. Now since

require′(j) > |δ(j)∩W̃ |
f+1

, any job j that was fully satisfied internally,

is now satisfied.

(b) If there is a job j that is fully-satisfied externally, we simply

allocate it externally according to ωuj, i.e., set the z4
uj = ωuj and

appropriately adjust the capacity C̄u and bandwidth B̄u of u ∈ U1.

Job j is then removed from J4.

(c) If there is a machine u ∈ U1 that has at most three jobs assigned

to it, i.e. ωuj > 0. For each such job j, do the following. Since j

must be satisfied partially internally and partially externally, there

54

must exist a vertex w ∈ W̃ ∩ δ(j) such that λw > 0. We open (i.e.

set y4
w = 1) the vertex w and say that u is responsible for w. The

newly opened vertex w can now satisfy all jobs j′ incident on it

(set x4
wj′ = 1) and thus we remove all such jobs from J4. Remove

machine w from W̃ .

Delete vertex u from G2. As a result u is responsible for at most 3

newly opened machines.

2. Since none of the above steps apply, each job j ∈ J4 must have at

least two incident non-zero variables and machine u ∈ U1 must have

at least four associated non-zero variables. Therefore, the number of

non-zero variables is ≥ 2|J4| and also ≥ 4|U1|. However, the number of

tight linearly independent constraints is at most |J4|+ 2|U1|. Since we

computed a basic feasible solution, it must hold that |J4| = 2|U1|.

Now for every job j ∈ J4, we open at most one vertex w from W̃ ∩ δ(j)

such that λw > 0. In this process we satisfy all the jobs and open at

most |J4| = 2|U1| new vertices from W̃ . For all remaining w′ ∈ W̃ , set

y4
w′ = 0.

Claim 4. Let U5 ⊂ W̃ denote the set of vertices that we opened in this step.

55

Then we have

|U5| ≤ (f + 1)
∑

w∈W̃ y∗w + 3|U1|.

Proof. We add at most 3|U1| vertices in step 1(c) and (2) as each new vertex

w that we open in step 1(c) has a u ∈ U1 that is responsible for it. Recall

that after a vertex u is marked responsible in step 1(c), it is removed from

consideration and not charged again in step 2. In Step 1(a), we add a vertex

to U5 only if λw ≥ 1
f+1

. Thus we have, |U5| ≤ (f + 1)
∑

w∈W̃ λw + 3|U1|.

However, as setting λw = y3
w = y∗w is a feasible LP solution, we must have∑

w∈W̃ λw ≤
∑

w∈W̃ y∗w and the claim follows.

The following lemma is the result of the previous 4 stages.

Lemma 6. There exists a polynomial time algorithm to obtain (x, y, z) such

that

(i) y is integral

(ii) (x, y, z) satisfy constraints (2.1)-(2.2) and (2.4)-(2.6)

(iii) For any open machine i,
∑

j∈J pj(xij + zij) ≤ T + maxj pj

(iv)
∑

i∈M yi ≤ 8(f + 1)
∑

i∈M y∗i + 2

Proof. The final solution (x4, y4, z4) obtained at the end of Stage 4 satisfies

the first three properties of the lemma. Recall that constraint (2.3) may be

56

violated by an additive factor of maxj pj since we drop the capacity constraint

in Step 4 in Stage 3. We now bound the cost of this solution as follows.

∑
i∈M

y4
i = |U1|+ |U2|+ |U3|+ |U4|+ |U5|

Substituting from Lemma 2, Lemma 4, Claim 3, and Claim 4,

≤ 2|U1|+ 2|U2|+ (f − 1)
∑
w∈W

y∗w + 3|U1|+ (f + 1)
∑
w∈W̃

y∗w + 3|U1|

≤ 8(f + 1)
∑
i∈M

y∗i + 2

We next adapt the rounding algorithm for the generalized assignment

problem by Shmoys and Tardos [53] to obtain an integral solution to yield

Theorem 4.

Theorem 4. For the network-aware machine activation problem with unit

activation costs, if there exists a solution with assignment cost A, makespan

T , and congestion B, then there is a polynomial time algorithm that finds a

schedule with assignment cost at most (8f + 9)A, makespan at most 5T , and

congestion at most 4B where f = maxj |δ(j)|.

Proof. Let (x, y, z) denote the solution that satisfies the conditions of Lemma

6 and let T ′ = T + maxj pj. Let O denote the set of open machines, i.e.

57

O = {i ∈M | yi = 1}. From Lemma 6, we have |O| ≤ (8f +8)
∑

i∈M y∗i +2 ≤

(8f + 9)A where A is the activation cost of the optimal schedule. The last

inequality follows as we can safely assume that A ≥ 2.

We now construct an instance of the generalized assignment problem

with two dimensional job sizes as follows. Let O denote the set of available

machines. For each job j ∈ J , let pij = pj,∀i ∈ O, dij = dj,∀i ∈ O \ δ(j),

and dij = 0, ∀i ∈ O ∩ δ(j). Our task is to find an assignment of jobs such

that for each machine i, the total processing requirement of assigned jobs is

at most T ′ and the total data requirement of assigned jobs is at most B. The

following linear program captures these constraints and relaxes the integrality

condition. Initially we set E = {(i, j) | i ∈ O, j ∈ J}, Õ = O, T ′i = T ′, and

Bi = B.

LPGAP :
∑

i:(i,j)∈E

x′ij = 1 , ∀j ∈ J (2.15)

∑
j:(i,j)∈E

pijx
′
ij ≤ T ′i ,∀i ∈ Õ (2.16)

∑
j:(i,j)∈E

dijx
′
ij ≤ Bi ,∀i ∈ Õ (2.17)

x′ij ≥ 0 ,∀(i, j) ∈ E

58

From Lemma 6, we observe that setting x′ij = xij + zij yields a feasible

solution to LPGAP. We now describe an iterative rounding procedure that

yields integral assignments and only violates constraints (2.16) and (2.17) by

an additive factor of 3 maxj pj and 3 maxj dj respectively.

Let x′ denote a basic feasible solution for LPGAP. We first claim that

either (i) ∃x′ij ∈ {0, 1} or (ii) ∃i ∈ Õ such that degE(i) < 4. Suppose we have

0 < x′ij < 1 for all (i, j) ∈ E. If not, then the claim is trivially true. Hence

there are at most |J |+ 2|Õ| − 1 linearly independent tight constraints. The

minus one above follows since not all vertex constraints associated with a

bipartite graph can be independent. Since x′ is a basic feasible solution, we

must have |E| ≤ |J |+ 2|Õ| − 1. Constraint (2.15) requires that degE(j) ≥ 2.

Now suppose for contradiction that degE(i) ≥ 4 for all i ∈ Õ. Then by a simple

counting argument, we obtain |E| ≥ |J |+ 2|Õ| leading to a contradiction.

The following iterative rounding algorithm now yields the integral assign-

ment with the desired properties.

1. Set F = ∅, T ′i = T ′, Bi = B, Õ = O.

2. Solve LPGAP to obtain a basic feasible solution x′.

3. (a) If ∃x′ij = 0: Delete (i, j) from E.

59

(b) If ∃x′ij = 1: Move (i, j) from E to F . Set T ′i = T ′i − pij and

Bi = Bi − dij. Remove j from J .

(c) Else ∃i ∈ Õ such that degE(i) < 4: Delete i from Õ. Since at most

3 more jobs can be assigned to machine i, constraints (2.16) and

(2.17) at machine i can only be violated by an additive factor of

3 maxj pj and 3 maxj dj respectively.

4. If E 6= ∅, return to Step 2.

The set F obtained by the above rounding procedure denotes the set of

integral assignments. By the discussion above, at any machine i we have the

following. ∑
j:(i,j)∈F

pj ≤ T ′ + 3 max
j
pj ≤ T + 4 max

j
pj ≤ 5T

Similarly, we also have that
∑

j:(i,j)∈F dij ≤ B + 3 maxj dj ≤ 4B for all

machines i ∈ O.

60

2.4 Network-Aware Machine Activation for

Unit Jobs

In this section, we show that our algorithm yields better approximation

guarantees when the jobs are restricted to have unit processing and data

requirements, i.e. we have pj = dj = 1 for all jobs j ∈ J . In fact, our results

hold for a slightly more general version where each machine i has an integer

capacity to process Ci jobs and an integral available bandwidth Bi.

Analogous to Figure 2.2, we define the linear programming relaxation of

the network-aware machine activation problem with unit jobs as shown in

Figure 2.6.

Let (x∗, y∗, z∗) denote an optimal feasible solution to LPunit in Figure

2.6. We first claim that when constructing a feasible integral solution for

the network-aware machine activation problem with unit jobs, we only need

integrality of the y variables and not of x or z. The proof of the following

lemma follows from the integrality of network flows.

Lemma 7. If (x, y, z) is a feasible solution for LPunit in Figure 2.6 and y is

integral, then we can efficiently find integral x′ and z′ such that (x′, y, z′) is

also feasible.

61

LPunit : min
∑
i∈M

yi

subject to,

∀j ∈ J,
∑
i∈δ(j)

xij +
∑
i/∈δ(j)

zij ≥ 1

∀i ∈M, and j ∈ J, xij + zij ≤ yi,

∀i ∈M,
∑
j∈J

(xij + zij) ≤ Ciyi (2.18)

and,
∑
j∈J

zij ≤ Biyi,

∀i ∈M, 0 ≤ yi ≤ 1.

∀i ∈M and j ∈ J, xij ≥ 0 and zij ≥ 0.

Figure 2.6: LP Relaxation for instance I of network-aware machine

activation with unit jobs.

62

Proof. Since the y variables are integral, we can construct the following flow

network.

The set of nodes is M ∪ J ∪ {r, s, t} where s and t denote a source and

sink node respectively while r denotes a dummy node whose role will

be apparent soon.

For all i ∈M , add arcs (i, j) with capacity 1 if and only if i ∈ δ(j).

For all i ∈M , add arcs (s, i) with capacity Ci if and only if yi = 1.

For all j ∈ J , add arcs (j, t) with capacity 1.

For all i ∈M , add arcs (i, r) with capacity Bi if and only if yi = 1.

For all j ∈ J , add arcs (r, j) with capacity 1.

Since (x, y, z) is a feasible solution, one can construct a flow of value J

by sending a flow of xij through edge (i, j) and a flow of zij through edges

(i, r) and (r, j). But since all the capacities are integers, there must exist an

integral flow of the same value and hence we can recover a feasible integral

solution (x′, y, z′) using a simple maximum flow computation.

The rest of the algorithm is similar to that in the previous section. In this

63

section, we only highlight the differences between the two. Stages 1 and 2

remain identical to those seen in Sections 2.3.2 and 2.3.3.

2.4.1 Stage 3

Since all jobs have unit processing and data requirements, the feasibility

LP that we consider in this stage has a simpler structure than that for the

general case. As in Section 2.3.4, we consider a bipartite graph G1 where

on the LHS we have vertices corresponding to U1 ∪W ′ and on the RHS we

have vertices corresponding to J3. Let αuj be the assignment variable that

denotes the fraction of job j ∈ J3 that is assigned to machine u ∈ U1. Since

the makespan and congestion constraints must be satisfied at vertex u, the

assignment variables must satisfy
∑
j∈J3

αuj ≤ Cu −
∑
j∈J

x2
uj −

∑
j∈J\J3

z2
uj as well

as
∑
j∈J3

αuj ≤ Bu −
∑
j∈J\J3

z2
uj.

As a result, we define C̄u = min(Cu −
∑
j∈J

x2
uj −

∑
j∈J\J3

z2
uj, Bu −

∑
j∈J\J3

z2
uj)

to be the residual capacity / bandwidth at vertex u. Figure 2.7 denotes the

new feasibility LP to capture the reassignments in this stage.

The following lemma in analogous to Lemma 5 and follows from the

sparsity of basic feasible solutions.

Lemma 8. For any basic feasible solution (α, β) to the LP in Figure 2.7 at

64

∀j ∈ J3,
∑

w∈W ′|(w,j)∈E

αwj +
∑

u∈U1|(u,j)∈E

βuj = require(j)

∀w ∈ W̃ ′,
∑

j∈J3|(w,j)∈E

pjαwj ≤ C̄wy
2
w

∀u ∈ Ũ1,
∑

j∈J3|(u,j)∈E

pjβuj ≤ C̄u

∀(w, j) ∈ E : w ∈ W ′, 0 ≤ αwj ≤ y2
w (2.19)

∀(u, j) ∈ E : u ∈ U1, βuj ≥ 0 (2.20)

Figure 2.7: LPunit3 : Feasibility LP to reassign jobs in J3

65

least one of the following hold -

1. ∃ αwj ∈ {0, y2
w} or ∃ βuj = 0

2. There exists a job j ∈ J3 or machine i ∈ Ũ1 ∪ W̃ ′ of degree ≤ 1 in G1.

Proof. Let (α, β) be a basic feasible solution to LPunit3. Let us assume that

0 < αwj < y2
w,∀(w, j) ∈ E and βuj > 0,∀(u, j) ∈ E since otherwise, we are

done.

Since none of the constraints of type (2.19) and (2.20) are tight, the total

number of tight constraints is at most |J3| + |W̃ ′| + |Ũ1|. Since (α, β) is a

basic feasible solution, the number of non-zero variables is bounded by the

number linearly independent tight constraints and we have the following.

|E| ≤ |J3|+ |W̃ ′|+ |Ũ1| (2.21)

Now suppose for the sake of contradiction, that every job j ∈ J3 and

machine i ∈ Ũ1 ∪ W̃ ′ has degree at least 2. Since G1 is a bipartite graph with

edge set E, we obtain the following.

|E| ≥ |J3|+ |W̃ ′|+ |Ũ1| (2.22)

From Equations (2.21) and (2.22), we have |E| = |J3|+ |W̃ ′|+ |Ũ1| and

every machine i /∈ W̃ ′ ∪ Ũ1 has degree zero. Consequently E is the edge set

66

of a bipartite graph where J3 is one side of the bipartition and W̃ ′ ∪ Ũ1 forms

the other side. Since all the constraints defined by vertices of a bipartite

graph cannot be linearly independent, we have at most |J3|+ |W̃ ′|+ |Ũ1| − 1

linearly independent tight constraints. The basic feasibility of the solution

then implies that |E| ≤ |J3|+ |W̃ ′|+ |Ũ1| − 1 leading to a contradiction.

Iterative Rounding

The iterative rounding algorithm remains almost identical to that in Section

2.3.4. In Step 4, when we drop the capacity constraint (delete w from W̃ ′),

the integrality of the capacity C̄w guarantees that assignments remain feasible

for LPunit.

Similarly, in Step 5, now since there must exist a vertex u ∈ Ũ1 of degree

at most 1, the vertex u can account for at most 1 job. The following claim

follows as every machine opened in this stage has a unique machine in U1

responsible for it.

Claim 5. |U4| ≤ |U1|

67

2.4.2 Stage 4

Once again, the final linear program that we consider in Stage 4 has a simpler

structure as all jobs have unit processing and data requirements. Figure 2.8

illustrates the final linear programming relaxation adapted for unit jobs. As

in the Stage 3, the makespan and congestion constraints at machine u ∈ Ũ1

are collapsed into one constraint.

LP4 : min
∑
w∈W̃

λw

subject to,

∀j ∈ J4,
∑

w∈W ′|(w,j)∈E2

λw +
∑

u∈U1|(u,j)∈E2

ωuj ≥ require′(j)

∀u ∈ Ũ1,
∑

j∈J4|(u,j)∈E2

ωuj ≤ C̄u

∀(u, j) ∈ E2 where u ∈ U1, ωuj ≥ 0

∀w ∈ W̃ , 0 ≤ λw ≤ 1

Figure 2.8: Final LP to satisfy jobs in J4

68

Iterative Rounding - Final LP

Let (λ, ω) be an optimal basic feasible solution for the LP in Figure 2.8. We

use notation as defined in Section 2.3.5.

The rounding now proceeds as follows -

1. We apply each of the following three steps as long as any one of them

applies and re-solve the LP after each step.

(a) We open (set y4
w = 1) all w ∈ W̃ with λw ≥ 1

(f+1)
. We also

set x4
wj = 1 for all j ∈ J4 such that (w, j) ∈ E2. Now since

require′(j) > |δ(j)∩W̃ |
f+1

, any job j that was fully satisfied internally,

is now satisfied.

(b) If there is a job j that is fully-satisfied externally, we simply

allocate it externally according to ωuj, i.e., set the z4
uj = ωuj and

appropriately adjust the capacity C̄u and bandwidth B̄u of u ∈ U1.

Job j is then removed from J4.

(c) If there is a machine u ∈ U1 that has at most one job assigned

to it, i.e. ωuj > 0 for only one job j. Since j must be satisfied

partially internally and partially externally, there must exist a

vertex w ∈ W̃ ∩ δ(j) such that λw > 0. We open (i.e. set y4
w = 1)

69

the vertex w and say that u is responsible for w. The newly opened

vertex w can now satisfy all jobs j′ incident on it (set x4
wj′ = 1)

and thus we remove all such jobs from J4. Remove machine w

from W̃ .

Delete vertex u from G2. As a result u is responsible for at most

one newly opened machine.

2. Since none of the above steps apply, each job j ∈ J4 must have at

least two incident non-zero variables and machine u ∈ U1 must have

at least two associated non-zero variables. Therefore, the number of

non-zero variables is ≥ 2|J4| and also ≥ 2|U1|. However, the number of

tight linearly independent constraints is at most |J4|+ |U1|. Since we

computed a basic feasible solution, it must hold that |J4| = |U1|.

Now for every job j ∈ J4, we open at most one vertex w from W̃ ∩ δ(j)

such that λw > 0. In this process we satisfy all the jobs and open at

most |J4| = |U1| new vertices from W̃ . For all remaining w′ ∈ W̃ , set

y4
w′ = 0.

Claim 6. Let U5 ⊂ W̃ denote the set of vertices that we opened in this step.

Then we have

70

|U5| ≤ (f + 1)
∑

w∈W̃ y∗w + |U1|.

Proof. We add at most |U1| vertices in step 1(c) and (2) as each new vertex

w that we open in step 1(c) has a u ∈ U1 that is responsible for it. Recall

that after a vertex u is marked responsible in step 1(c), it is removed from

consideration and not charged again in step 2. In Step 1(a), we add a vertex

to U5 only if λw ≥ 1
f+1

. Thus we have, |U5| ≤ (f + 1)
∑

w∈W̃ λw + |U1|.

However, as setting λw = y3
w = y∗w is a feasible LP solution, we must have∑

w∈W̃ λw ≤
∑

w∈W̃ y∗w and the claim follows.

The following lemma is analogous to Lemma 6 and is the result of the

previous four stages.

Lemma 9. There exists a polynomial time algorithm to obtain (x, y, z) such

that

(i) y is integral,

(ii) (x, y, z) is a feasible solution for LPunit in Figure 2.6, and

(iii)
∑

i∈M yi ≤ 4(f + 1)
∑

i∈M y∗i + 2.

Proof. The final solution (x4, y4, z4) obtained at the end of Stage 4 satisfies

the first two properties of the lemma. Recall that constraint (2.18) is satisfied

71

even though we drop the capacity constraint in Step 4 in Stage 3 as the

capacity is an integer and jobs are unit. We now bound the cost of this

solution as follows.

∑
i∈M

y4
i = |U1|+ |U2|+ |U3|+ |U4|+ |U5|

Substituting from Lemma 2, Lemma 4, Claim 5, and Claim 6,

≤ 2|U1|+ 2|U2|+ (f − 1)
∑
w∈W

y∗w + |U1|+ (f + 1)
∑
w∈W̃

y∗w + |U1|

≤ 4(f + 1)
∑
i∈M

y∗i + 2

Theorem 5. For the network-aware machine activation problem with unit

activation costs and unit processing and data requirements for all jobs, if there

exists a solution with assignment cost A, makespan T , and congestion B, then

there is a polynomial time algorithm that finds a schedule with assignment

cost at most (4f + 5)A, makespan at most T , and congestion at most B where

f = maxj |δ(j)|.

Proof. The theorem follows from Lemma 7 and Lemma 9.

72

2.5 LP Rounding for General Network-Aware

Machine Activation

In this section, we consider the general network aware machine activation

problem with arbitrary machine activation costs, processing times and data

requirements. We show that a simple randomized rounding scheme (also used

by Khuller et al. [9]) yields a schedule that violates the capacity (makespan)

and bandwidth constraints by a factor of O(log n) and has activation cost at

most O(log n) times the optimal.

Figure 2.9 shows the natural LP relaxation of the network-aware machine

activation problem. As in the previous problem, the variables yi indicate

whether machine i has been opened and variables xij and zij denote the

assignment.

2.5.1 Rounding Algorithm

Let (x∗, y∗, z∗) denote the optimum solution of the above LP relaxation. The

randomized rounding algorithm is as follows -

1. Independently for each (unopened) machine i, open i with probability

y∗i .

73

min
∑
i∈M

aiyi

subject to, ∀j ∈ J,
∑
i∈δ(j)

xij +
∑
i/∈δ(j)

zij ≥ 1.

∀i ∈M, and j ∈ J, xij + zij ≤ yi,

∀i ∈M,
∑

j∈J :i∈δ(j)

pijxij +
∑

j∈J :i/∈δ(j)

pijzij ≤ Ciyi.

and,
∑

j∈J :i/∈δ(j)

dijzij ≤ Biyi,

∀i ∈M, yi ≥ 0.

∀i ∈M, and j ∈ J, xij ≥ 0 and zij ≥ 0.

Figure 2.9: LP Relaxation for instance I of the network-aware machine

activation problem

74

2. For each newly opened machine i, set Xij =
x∗ij
y∗i

for all incident jobs,

i.e. jobs such that (i ∈ j). Similarly, set Zij =
z∗ij
y∗i

for jobs that are not

incident on i. Independently for each job, assign job j to machine i

with probability Xij if i ∈ j and with probability Zij otherwise.

3. If there exists an unassigned job, repeat from Step 1.

4. If a job is assigned to multiple machines, choose one arbitrarily.

2.5.2 Analysis

In each iteration of the algorithm, we open machine i with probability y∗i .

Hence, the expected activation cost of machines opened in any iteration is at

most the cost of the optimal LP solution. The following lemmas bound the

number of iterations (approximation factor for the activation cost) and the

processing and data loads on each machine.

Lemma 10. The rounding algorithm terminates in O(log n) iterations with

high probability.

Proof. Consider any job j and a machine i ∈ j. In a single iteration, we have

Pr(job j is not assigned to machine i) ≤ (1− y∗i) + y∗i (1−
x∗ij
y∗i

) = 1− x∗ij.

75

Similarly, for a machine i /∈ j, we have that Pr(job j is not assigned to machine i) ≤

1− z∗ij.

Consequently, we have that

Pr(job j is not assigned in an iteration) ≤∏i∈j(1−x∗ij)
∏

i/∈j(1−z∗ij) ≤ (1−

1
m

)m ≤ 1
e

It is now easy to observe that the probability that job j is not assigned

after 2 lnn iterations is at most 1
n2 . Therefore, by union bound all the jobs

are assigned after 2 lnn iterations with probability at least 1− 1
n
.

Lemma 11. For any machine i, the total processing time of jobs assigned to

it is O(log n)Ci with high probability. Similarly, the total data requirement of

jobs assigned to i is O(log n)Bi with high probability.

Proof. Consider any iteration h. Let Xh
ij denote the value of Xij and Zh

ij

denote the value of Zij at iteration h . For each open machine i and every

job j, define a random variable as follows -

L̂hij =


pij
Ci

, if j is assigned to i

0, , otherwise

Now consider Li =
∑

j,h L̂
h
ij . By linearity of expectation and the definition

of L̂hij, we have

76

E[Li] =

∑
h

(∑
j3i pijX

h
ij +

∑
j 63i pijZ

h
ij

)
Ci

≤
∑
h

1 ≤ Θ(log n)

Now if Pi denotes the total processing time of jobs assigned to i, we

have E[Pi] = CiE[Li] = Θ(Ci log n). Hence, the claim follows by a standard

application of the Chernoff bound.

Similarly, for each open machine i and every job j that is not incident on

i, define a random variable -

M̂h
ij =


dij
Bi

, if j is assigned to i

0, , otherwise

Now, consider Mi =
∑

j,h M̂
h
ij . Once again, by the linearity of expectation

we have

E[Mi] =

∑
h

∑
j 63i dijZ

h
ij

Bi

≤
∑
h

1 ≤ Θ(log n)

Now, if Di denotes the total data requirement of external jobs assigned to

i, we have E[Di] = BiE[Mi] = Θ(Bi log n). The claim follows by the Chernoff

bound.

77

Chapter 3

Scheduling Co-flows

Large scale data centers have emerged as the dominant form of computing

infrastructure over the last decade. The success of data-parallel computing

frameworks such as MapReduce [6], Hadoop [7], Google DataFlow [54], Spark

[55] has led to a proliferation of applications that are designed to alternate

between computation and communication stages. Typically, the intermediate

data generated by a computation stage needs to be transferred across different

machines during a communication stage for further processing. For example,

there is a “Shuffle” phase between every consecutive “Map” and “Reduce”

phases in MapReduce. With an increasing reliance on parallelization, these

communication stages are responsible for a large amount of data transfer in a

78

datacenter. Since an application can only proceed with its next computation

stage after all its transfer requirement is met, traditional flow-based scheduling

metrics are not appropriate to measure the quality of a schedule. Chowdhury

and Stoica [13] introduce co-flows as an effective networking abstraction to

represent the collective communication requirements of a job. In this chapter,

we consider the problem of scheduling co-flows to minimize the weighted

completion time and give improved approximation algorithms.

In Section 3.1, we formally define the co-flow scheduling problem and

provide an overview of prior work. Section 3.2 highlights the connection

between co-flow scheduling and well-studied concurrent open shop scheduling

problem. Our improved approximation guarantees in Sections 3.3 - 3.5 stem

from this connection. In Section 3.6, we demonstrate the efficacy of our

approximation algorithm on synthetic datasets via a preliminary experimental

analysis.

3.1 Problem Setting

As in prior work [14, 16], a datacenter is modeled as a single m ×m non-

blocking switch, i.e., there are m input ports and m output ports. There are

79

capacity constraints on all ports. For simplicity, we assume that all ports

have unit capacity - i.e., at most one unit of data can be transferred through

any port at a time.

A co-flow is defined as a collection of parallel flow demands that share

a performance goal. Each co-flow j has weight wj, release time rj, and

is represented as a m × m integer matrix Dj = [djio] where the entry djio

represents the number of data units that must be transferred from input port

i to output port o for co-flow j. Figure 3.1 shows a single co-flow over a 2 ×

2 switch. For instance, the co-flow depicted needs to transfer 2 units of data

from input 1 to output 1 and 3 units of data from input 1 to output 2.

A co-flow j is available to be scheduled at its release time rj and is said to

be completed when all the flows in the matrix Dj have been scheduled. More

formally, the completion time Cj is defined as the earliest time by which djio

units of its data have been transferred from input port i to output port o

for every i and o. We assume that time is slotted and data transfer within

the switch is instantaneous. Since each input port i can transmit at most

one unit of data and each output port o can receive at most one unit of data

in each time slot, a feasible schedule for a single time slot is described by a

matching. Our goal is to find a feasible, integral schedule that minimizes the

80

2 2

1 1

Input ports Output ports

2

4

1

3

Figure 3.1: An example co-flow over a 2 × 2 switch.

total, weighted completion time of the co-flows, i.e. minimize
∑

j wjCj.

3.1.1 Related Work

Co-flow scheduling has been a topic of active research [14, 15, 16, 17] since its

introduction and is also the basis for a successful practical network scheduler

[14]. In the online setting, jobs arrive online and the scheduler needs to

make decisions without knowledge of future arrivals. Chowdhury and Stoica

[15] design Aalo, a system for scheduling co-flows without prior information.

Although their algorithms do not admit provable guarantees, it is shown

to perform very well in practice. Even in the offline setting, when all jobs

are known in advance, no O(1) approximation algorithm was known until

recently. Qiu, Stein and Zhong [16] obtain a deterministic 67
3

approximation

and a randomized (9 + 16
√

2
3

) approximation for the problem of minimizing

the weighted completion time. For the special case when all release times are

81

zero, Qiu et al. [16] demonstrate improved bounds of 64
3

(deterministic) and

(8 + 16
√

2
3

) (randomized).

3.2 Connection to Concurrent Open Shop

The co-flow scheduling problem as described above generalizes the well-studied

concurrent open shop problem [56, 57, 58, 59, 60]. In the concurrent open

shop problem, we have a set of m machines and each job j with weight wj

is composed of m tasks {tji}mi=1, one on each machine. Let pji denote the

processing requirement of task tji . A job j is said to be completed once

all its tasks have completed. Any machine can perform at most one unit

of processing at a time. The objective is to find a feasible schedule that

minimizes the total weighted completion time of jobs. An LP-relaxation using

completion time variables yields a 2-approximation algorithm for concurrent

open shop scheduling when all release times are zero [57, 58, 59] and a 3-

approximation algorithm for arbitrary release times [58, 59]. Mastrolilli et al.

[56] show that a simple greedy algorithm also yields a 2-approximation for

concurrent open shop without release times using primal-dual techniques.

It can be seen that the concurrent open shop problem is a special case

82

of co-flow scheduling when the demand matrices Dj for all co-flows j are

diagonal [14, 16]. At first glance, it appears that co-flow scheduling is much

harder than concurrent open shop: For example, while concurrent open shop

always admits an optimal permutation schedule [56], such a property is not

true for co-flows [14]. Indeed, even without release times, the best known

approximation algorithm for scheduling co-flows has an approximation factor

of 64
3

[16], in contrast to the many 2-approximations known for the concurrent

open shop problem.

3.3 Our Contribution and Techniques

The main algorithmic contribution of this paper is the following improved

approximation guarantee for the offline co-flow scheduling problem. Our

results significantly improve upon the approximation ratios obtained by Qiu

et al. [16].

Theorem 6. There exists a deterministic, polynomial time 4-approximation

algorithm for co-flow scheduling without release times.

Theorem 7. There exists a deterministic, polynomial time 12-approximation

algorithm for co-flow scheduling with release times.

83

Qiu et al. [16] suggest a two-staged approach to finding good co-flow

schedules. In the first stage, they find a good permutation of the co-flows

by rounding an interval-indexed LP relaxation similar to that of Wang and

Cheng [60]. The second stage groups together co-flows based on this permu-

tation and obtains a feasible co-flow schedule.

In this paper, we show that the first stage in the above approach can

be replaced by a reduction to the concurrent open shop scheduling problem.

This explicit reduction allows us to use a 2-approximation algorithm for the

concurrent open shop scheduling problem (3-approximation for the case with

release times). We then show that greedily scheduling co-flows in order yields

a feasible co-flow schedule such that the completion time of co-flow j is at

most twice the completion time of the corresponding job in the concurrent

open shop instance.

3.4 Preemptive Concurrent Open Shop with

Release Times

Before we discuss our approximation algorithms for the co-flow scheduling

problem, we first focus on the concurrent open shop scheduling problem

84

when job preemptions are allowed, i.e., a machine is allowed to interrupt the

processing of any job j, start processing some other job j′ and then return to

the processing j without any penalty. When all jobs have release time zero,

one can easily convert any optimal preemptive schedule to a non-preemptive

schedule of the same cost by a simple swapping argument. Indeed, it can

be shown that not only is the optimal schedule non-preemptive, but there is

an optimal schedule in which every machine processes the jobs in the same

permutation [56]. However, when jobs have different release times, the optimal

preemptive schedule may be better than the optimal non-preemptive schedule.

In this section, we show that the schedule obtained by the algorithm of Garg

et al. [58] and Leung et al. [59] is a 3-approximation even with respect to the

optimal preemptive schedule.

Consider the following linear programming relaxation for the concurrent

open shop problem with release times and job preemptions are allowed.

85

LP1 : minimize
∑
j

wjCj

subject to

Ci,j ≥ rj + pji , ∀i ∈M,∀j ∈ J

Cj ≥ Ci,j ,∀i ∈M, ∀j ∈ J

∑
j∈S

pjiCi,j ≥
1

2

(∑
j∈S

pji

)2

+
∑
j∈S

(pji)
2

 ,∀i ∈M, ∀S ⊆ J

We observe that LP1 defined above is a valid relaxation for the concurrent

open shop problem even when preemption of jobs is allowed. The first two

sets of constraints ensure that the completion time of a job is at least its

release time plus its processing requirement on any machine. The third set of

constraints are standard in the scheduling literature [61] and only require that

the completion time of a job j on machine i is at least the sum of processing

times (on machine i) of all jobs k that complete before j in the schedule. Since

this constraint too must be satisfied by any optimal (preemptive) schedule,

LP1 is a valid linear programming relaxation.

The following lemma by Garg et al. [58] and Leung et al. [59] thus implies

a 3-approximation for concurrent open shop scheduling with release times

even with respect to an optimal preemptive schedule.

86

Lemma 12. Let C̄1, C̄2, . . . , C̄n denote an optimal solution for LP1. Then

there exists a polynomial time algorithm that obtains a feasible concurrent

open shop schedule such that C̃j ≤ 3C̄j, where C̃j denotes the completion time

of job j in the schedule.

3.5 Improved Algorithms for Scheduling Co-

flows

We first introduce some notation to facilitate the following discussion. For

every co-flow j and input port i, we define the load Lji =
∑m

o=1 d
j
io to be

the total amount of data that co-flow j needs to transmit through port i.

Similarly, we define Ljo =
∑m

i=1 d
j
io for every co-flow j and output port o.

Our algorithm consists of two stages. In the first stage, we obtain a

permutation of the co-flows via a reduction to the concurrent open shop

scheduling problem. In the second stage, we show how one can obtain

provably good co-flow schedules using the permutation obtained earlier. We

now describe the two stages separately in the following sections.

87

3.5.1 Reduction to Concurrent Open Shop:

Let I denote an instance of the co-flow scheduling problem. We now construct

an instance I ′ of the concurrent open shop scheduling problem on 2m machines

(one for each port) and n jobs (one for each co-flow). For a job j, set pjs = Ljs,

i.e., the processing requirement of job j on a machine s is set to be the load

of the co-flow j on the corresponding port. Let OPT (I) denote the cost of

an optimal co-flow schedule for instance I and OPT (I ′) denote the cost of

an optimal concurrent open shop schedule for the instance I ′.

Lemma 13. OPT (I ′) ≤ OPT (I)

Proof. Let S∗ denote an optimal co-flow schedule for instance I. For a co-flow

j and port s, let T js denote the set of time slots when data corresponding

to co-flow j is being processed (either input or output) at port s as per

schedule S∗. Now note that processing one unit of the corresponding job j on

machine s in the concurrent open shop instance I ′ at all times in T js leads to a

feasible schedule. We remark that the concurrent open shop schedule obtained

here is preemptive. As we show in Section 3.4, the LP-based approximation

algorithms [58, 59] for concurrent open shop scheduling also yield guarantees

with respect to the optimal preemptive schedule.

88

Let C̄j denote the completion time of job j in an α-approximate schedule

for the concurrent open shop instance I ′. Further, let us assume without loss

of generality that the co-flows are ordered so that the following holds.

C̄1 ≤ C̄2 ≤ . . . ≤ C̄n (3.1)

Note that since a job j can only be processed after it is released the

following holds for every job (co-flow) j.

C̄j ≥ rj + max
s
pjs (3.2)

Similarly, Equation (3.1) guarantees that for any job k, all jobs j ≤ k

must be processed completely before time C̄k. Consequently, the following

holds for every job k. If all the jobs have zero release times, then a job k

can be processed on a machine s as soon as the previous jobs have finished

processing and the following holds with equality.

C̄k ≥ max
s

∑
j≤k

pjs (3.3)

Corollary 1.
∑

j wjC̄j ≤ 3×OPT (I). Further if all release times are zero,

then
∑

j wjC̄j ≤ 2×OPT (I)

Proof. The concurrent open shop scheduling problem with release times

has well-known 3-approximation algorithms [59, 58] that also yield a 2-

89

approximation when all release times are zero. Combining any of these

algorithms with Lemma 13 yields the corollary.

3.5.2 Scheduling Co-Flows Without Release Times

In the rest of this section, we assume that all the co-flows are released at time

zero, i.e. rj = 0,∀j. Further, without loss of generality, we assume that the

co-flows are ordered as per Equation (3.1). We now introduce some notation

to facilitate the discussion in this section.

Change of Notation

In Section 3.1, we represent a co-flow j as an m × m integer matrix Dj.

Equivalently, a co-flow j can be represented by a weighted, bipartite graph

Gj = (I, O,Ej) where the set of input ports (I) and the set of output ports

(O) form the two sides of the bipartition and an edge (i, o) with a weight of

djio represents that the co-flow j requires djio units of data to be transferred

from input port i to output port o. Looking at a co-flow from such a graphical

perspective guides the algorithm developed in this section.

Representing a co-flow as a bipartite graph simplifies some of the notation

that we’ve seen previously. For instance, for any co-flow j, the load of j on

90

port i is simply the weighted degree of vertex i in graph Gj , i.e., we have the

following.

Lji = degGj(i)

For any co-flow k, let G̃k = (I, O,
⋃k
j=1 Ej) denote the bipartite graph

obtained by the union of the first k co-flows. For any vertex s ∈ I∪O, degG̃k(s)

denotes the total processing requirement of the first k jobs on machine s in

the concurrent open shop instance. Thus, from Equation (3.3) (with equality

as release times are all zero), we have the following.

C̄k = ∆(G̃k) = max
s∈I∪O

degG̃k(i)

We now restate Corollary 1 in terms of the weighted degree of the cumu-

lative graphs G̃k.

Corollary 2.
∑

j wj∆(G̃j) ≤ 2×OPT (I).

Finding Matching Schedules

Recall that in any feasible co-flow schedule, every input port and every output

port can process at most one unit of data at any time, i.e., the data processed

91

in any time slot can be described by a matching. The following lemma by Qiu

et al. [16] follows from repeated applications of Hall’s theorem and bounds

the number of time steps it takes to schedule a single co-flow.

Lemma 14. There exists a polynomial time algorithm that schedules co-flow

j in max{maxi L
j
i ,maxo L

j
o} = maxs p

j
s time slots, were it to be scheduled

alone, i.e. the edges of the bipartite graph Gj can be partitioned into ∆(Gj)

matchings.

We now show that a simple greedy algorithm that processes all co-flows

sequentially in the permutation given by Equation (3.1) yields a provably

good co-flow schedule. By Lemma 14, if we näıvely process each co-flow

sequentially and find a matching schedule for each co-flow separately, then

co-flow k completes by time
∑k

j=1 ∆(Gj) >> ∆(G̃k). The key idea behind

our algorithm is that we can safely “move” edges back from a graph Gk to

graph Gj where k > j as long as the maximum degree of Gj does not increase.

Effectively, we can now find a matching schedule that not only processes

the co-flow j in time ∆(Gj) but also processes some edges of the co-flow k.

Algorithm 1 describes the complete pseudocode.

In Algorithm 1, we first initialize all G′j = Gj for all co-flows j. For all

k > j, we then move edges from graph G′k to G′j as long as the maximum

92

Input : Bipartite graphs G1, G2, . . . , Gn representing n co-flows

Output : Feasible co-flow schedule

// Initialization;

for j = 1, 2, . . . , n do

G′j = Gj

// Moving Back Edges;

for j = 1, 2, . . . , n− 1 do

for k = j + 1, j + 2, . . . , n do

for e ∈ G′k do

if ∆(G′j + e) = ∆(G′j) then

G′j = G′j + e;

G′k = G′k − e;

// Scheduling;

for j = 1, 2, . . . , n do

Schedule G′j using Lemma 14 in ∆(G′j) time steps;

Algorithm 1: Greedily Scheduling Co-Flows

93

degree of G′j does not increase. Intuitively, in doing so we can process parts

of co-flow k while we schedule co-flow j in ∆(G′j) time. The following lemma

bounds the sum of degrees of the graphs G′j,∀j ≤ k in terms of the degree of

the union of the k graphs.

Lemma 15. For all k ∈ {1, 2, . . . n}, ∑j≤k ∆(G′j) ≤ 2∆(G̃k).

Proof. Since the graphs G′j keep changing during the course of the algorithm,

for the sake of analysis, let Gj|k where j < k be the state of the graph G′j

immediately after we have transferred all possible edges from G′k to G′j. Let

Gk|k denote the graph G′k after all possible edges have been moved to G′k−1.

Since, we move edges back to a graph G′j only if it doesn’t increase the

maximum degree, we have the following.

∆(G′j) = ∆(Gj|k) for all j ≤ k. (3.4)

For any k ∈ {1, 2, . . . , n}, consider the set S of graphs G1|k, G2|k, . . . Gk|k.

Let u be a vertex of maximum degree in Gk|k, i.e. degGk|k(u) = ∆(Gk|k) and

consider any edge e = (u, v) incident on u in Gk|k. Since edge (u, v) was not

moved to any of the graphs Gj|k for j < k, we must have that either u or v

had maximum degree in Gj|k. Let Su = {Gj|k | degGj|k(u) = ∆(Gj|k)} and

94

Sv = {Gj|k | degGj|k(v) = ∆(Gj|k)} denote the subsets of the graph where

vertex u or v has the maximum degree respectively.

Now, let Ĝk =
⋃k
j=1Gj|k be the union of the graphs Gj|k. Since Ĝk

contains all edges from the graphs G1, . . . , Gk and no edges from graphs Gl

for l > k, Ĝk is identical to the cumulative graph of the first k co-flows. In

particular, we have the following.

∆(Ĝk) = ∆(G̃k) (3.5)

Let us now consider the maximum degree of the graph Ĝk.

∆(Ĝk) ≥ max
{
degĜk(u), degĜk(v)

}
≥ max

{∑
G∈Su

degG(u),
∑
G∈Sv

degG(v)

}

= max

{∑
G∈Su

∆(G),
∑
G∈Sv

∆(G)

}
From Equation (3.4), we have the following.

∑
j≤k

∆(G′j) =
∑
j≤k

∆(Gj|k) =
∑
G∈S

∆(G)

However, since Su ∪ Sv = S as either u or v has maximum degree in every

graph in S, we get the following.

∑
j≤k

∆(G′j) ≤ 2 max

{∑
G∈Su

∆(G),
∑
G∈Sv

∆(G)

}

≤ 2∆(Ĝk) = 2∆(G̃k)

95

where the last equality follows from Equation (3.5).

The following theorem shows that Algorithm 1 combined with the per-

mutation of co-flows obtained via the reduction to the concurrent open-shop

problem yields a 4-approximation algorithm for co-flow scheduling without

release times and thus proves Theorem 6.

Theorem 8. For any co-flow k, let Ck(alg) denote the completion time of co-

flow k when scheduled as per Algorithm 1. Then
∑

k wkCk(alg) ≤ 4OPT (I).

Proof. Algorithm 1 sequentially schedules the graphsG′j obtained after moving

the edges using Lemma 14. The completion time of co-flow k is thus at most

the sum of the degrees of graphs G′j where j < k.

Ck(alg) ≤
∑
j≤k

∆(G′j) ≤ 2∆(G̃k)

where the second inequality is due to Lemma 15. Corollary 2 now yields the

desired theorem.

∑
k

wkCk(alg) ≤
∑
k

wk2∆(G̃k) ≤ 4OPT (I).

96

3.5.3 Scheduling Co-flows With Release Times

In this section, we consider co-flow scheduling where each co-flow j has an

arbitrary release time rj. Following the strategy by Qiu et al. [16], we obtain

a feasible schedule for all co-flows by grouping together the co-flows j that

have similar C̄j values. We divide the time slots into geometrically increasing

intervals - let I1 = [1] and Il = (2l−2, 2l−1] for l > 1 denote these intervals.

Let Sl denote the set of co-flows j whose C̄j lies in the interval Il.

Sl = {j ∈ J |C̄j ∈ Il}

We then group together all the co-flows that lie in a group and then

schedule the groups sequentially as shown in Algorithm 2.

for l = 1, 2, . . . do

Wait until the last co-flow in Sl is released AND all co-flows in Sl−1

have finished (whichever is later).

Group all co-flows in Sl and schedule as per Lemma 14.

Algorithm 2: Grouping Algorithm to Schedule Co-Flows

Analysis: Let Ĉl denote the time by which all co-flows in Sl have been

scheduled by the above algorithm.

Claim 7. Ĉl ≤ 2× 2l−1 = 2l for every group Sl.

97

Proof. We prove by induction. For group S1, we start executing the schedule

at maxj∈S1 rj ≤ maxj∈S1 C̄j ≤ 21−1 = 1 and the schedule takes time at most

C̄k ≤ 21−1 = 1 where k is the last co-flow in the group. So the base case is

true.

Now assume that the claim is true for some group Sl. As per the algorithm,

the co-flows in group Sl+1 start executing at max{Ĉl,maxj∈Sl+1
rj} whichever

is later. By induction hypothesis, we are guaranteed that Ĉl ≤ 2l. Also

maxj∈Sl+1
rj ≤ maxj∈Sl+1

C̄j ≤ 2l where the first inequality follows from

Equation (3.2). Thus the co-flows in group Sl+1 start executing latest at time

2l. By Lemma 14, all these co-flows require at most maxs
∑

j∈Sl+1
pjs ≤ C̄k ≤ 2l

time units to complete where k in the last co-flow in Sl+1. The first inequality

above follows from Equation (3.3). As a result, all the co-flows in this

group are scheduled by time 2l + 2l = 2l+1. And thus the claim follows by

induction.

Claim 8. For any co-flow j, let Cj(alg) denote the completion time of co-flow

j as per the algorithm. Then Cj(alg) < 4C̄j.

Proof. Consider any co-flow j, and let l be such that j ∈ Sl. Hence we have

C̄j > 2l−2. By Claim 7, we have

Cj(alg) ≤ Ĉl ≤ 2l = 4× 2l−2 < 4C̄j

98

Claim 8 and Corollary 1 then imply the following theorem.

Theorem 9. There exists a deterministic, polynomial time 12-approximation

algorithm for co-flow scheduling with release times.

3.6 Experimental Analysis

In this section we perform a preliminary experimental analysis to evaluate

the performance of the approximation algorithm developed in Section 3.5.

As we discussed in the previous section, algorithms for co-flow scheduling

consist of two stages - first an ordering stage that finds a permutation of

the co-flows, and then a scheduling stage that processes the co-flows in that

permutation to find a feasible schedule. In our experiments, we consider

different algorithms and heuristics for both the stages to study the effect of

our proposed algorithm on the two stages separately.

In our experiments, we consider different ordering heuristics for the first

stage including the one obtained via a reduction to the concurrent open shop

scheduling problem. For the scheduling stage, we use both Algorithm 1 as

well as the grouping strategy proposed by Qiu et al. [16].

99

3.6.1 Datasets

A recent preprint by Qiu, Stein and Zhong [62] proposed a distribution

over random co-flow instances to evaluate the performance of different co-

flow scheduling algorithms. We generate synthetic datasets by following

the methodology described therein. We create 30 instances, each having

n = 160 co-flows over a network with m = 16 inputs and outputs. The first

5 instances represent workloads with sparse co-flows and each co-flow only

has m flows, i.e., the matrix Dj for any co-flow j only has m non-zero entries.

Instances 6− 10 represent workloads with dense co-flows and every co-flow

here consists of m2 flows. For instances 11 − 30, each co-flow consists of

some u flows where u is an integer chosen uniformly at random from the

range {m,m + 1, . . . ,m2}. Given the number k of flows in any co-flow j,

k pairs of input and output ports are chosen at random, i.e., k entries in

the m×m matrix Dj are chosen uniformly at random. For each pair (i, o)

that is selected, an integer processing requirement dji,o is randomly selected

from the uniform distribution on {1, 2, . . . , 100}. For the purposes of these

experiments, we only consider co-flows with zero release times.

100

3.6.2 Ordering Heuristics

In addition to ordering of co-flows obtained via a reduction to the concurrent

open-shop scheduling problem (Section 3.5.1), we consider different simple

greedy ordering heuristics.

1. Random (RAND): The co-flows are ordered via a random permuta-

tion.

2. Shortest Total Processing Time First (STPT): The co-flows are

arranged in non-decreasing order of their total processing requirement,

i.e.,
∑

i

∑
o d

j
io.

3. Shortest Maximum Processing Time First (SMPT): The co-

flows are arranged in non-decreasing order of their maximum processing

requirement at any port, i.e. max
{

maxi L
j
i ,maxo L

j
o

}
4. Shortest Maximum Completion Time First (SMCT): For this

heuristic, we treat every input and output port as an independent ma-

chine and solve the single machine scheduling problem at each machine

separately. For a machine s, we order the co-flows (jobs) in order of

non-decreasing Ljs where Ljs is the load of co-flow j on port s and

compute the completion time of co-flow j on machine s as Cs(j). The

101

SMCT heuristic then orders the co-flows in non-decreasing order of

their maximum completion times, i.e. maxsCs(j).

5. Concurrent Open-Shop Scheduling (COSS): We use the reduction

from Section 3.5.1 to obtain an instance of the concurrent open shop

scheduling problem. We use a primal-dual 2-approximation algorithm

by Mastrolilli et al. [56] to solve the concurrent open shop instance. The

co-flows are then ordered in non-decreasing order of their completion

times in the obtained schedule.

3.6.3 Scheduling Strategies

Given an ordering of the co-flows, we have multiple strategies to obtain an

actual feasible schedule of the co-flows. For instance, Qiu et al. [16] propose

grouping together co-flows that have similar aggregate demand and scheduling

the group together using Lemma 14. In contrast, in Section 3.5.2, we present

an algorithm that consolidates the co-flows by moving back edges between

co-flows as long as the maximum load of a co-flow does not increase and then

schedules the consolidated co-flows using Lemma 14. In our experiments, we

consider the following different scheduling strategies.

102

1. Greedy Scheduling: The co-flows are scheduled using Algorithm 1.

2. Grouping with backfilling: Co-flows with similar aggregate loads are

grouped together and scheduled sequentially using Algorithm 2. When

the grouped co-flows are scheduled using Lemma 14, the decomposition

into matchings may introduce unforced idle time since all machines

in the group may not have identical loads (i.e. the graph may not be

regular). If while processing group Sl, the schedule matches input i and

output o even though Sl has no demand between those ports, we move

back the edge (i, o) from other co-flow groups Sl′ (l′ > l). It is clear that

such backfilling can only help to improve the average completion time.

3.6.4 Experimental Results

We consider 10 different co-flow scheduling algorithms - the 5 ordering heuris-

tics described in Section 3.6.2, followed by the 2 scheduling strategies described

in Section 3.6.3. Our 4-approximation algorithm in Section 3.5 corresponds to

COSS ordering followed by the Greedy scheduling strategy. We compare the

performance of all the 10 algorithms on each of the 30 randomly generated

synthetic instances.

Tables 3.1 and 3.2 show the average completion time of the co-flows for

103

each of the 30 instances. All the values are normalized with respect to the

COSS Ordering and Greedy scheduling strategy. Table 3.1 compares the

performance of the five different ordering strategies when the co-flows are

scheduled greedily as per Algorithm 1. We observe that the Concurrent

Open-Shop Scheduling based ordering yields gains of up to 8% over the other

greedy ordering heuristics and up to 17% improvement over random ordering.

Although the STPT ordering sometimes performs better, the loss in quality

is never over 2%. As shown in Table 3.2, when co-flows are scheduled using

the grouping strategy of Qiu et al. [16], the average completion time of jobs

is up to 66% higher when using the COSS ordering.

3.6.5 Conclusions

Our preliminary experimental analysis demonstrates the important of intel-

ligent ordering schemes to obtain good co-flow schedules. We observe that

especially for sparse co-flows, a good ordering of co-flows can lead to substan-

tial savings in the average completion times. We also show that scheduling the

co-flows sequentially using Algorithm 1 leads to significantly better schedules

as compared to the grouping strategy of Qiu et al. [16]. Thus our algorithm

not only yields an improved approximation ratio but also yields substantial

104

Instance # of flows in each co-flow RAND STPT SMPT SMCT COSS

1 m 1.176 1.045 1.058 1.014 1

2 m 1.132 1.026 1.089 1.003 1

3 m 1.110 1.018 1.058 1.030 1

4 m 1.129 1.054 1.056 1.018 1

5 m 1.180 1.061 1.080 1.024 1

6 m2 1.026 1.000 1.005 1.005 1

7 m2 1.018 0.991 1.003 0.997 1

8 m2 1.023 0.996 1.008 1.005 1

9 m2 1.012 0.986 1.001 1.001 1

10 m2 1.016 0.998 1.003 1.002 1

11 Unif(m,m2) 1.006 0.986 1.000 0.993 1

12 Unif(m,m2) 1.015 0.992 1.003 0.998 1

13 Unif(m,m2) 1.191 1.059 1.082 1.021 1

14 Unif(m,m2) 1.018 0.990 0.998 0.993 1

15 Unif(m,m2) 1.015 0.983 1.001 0.989 1

16 Unif(m,m2) 1.046 0.994 1.020 1.002 1

17 Unif(m,m2) 1.007 0.997 1.000 0.995 1

18 Unif(m,m2) 1.009 0.990 1.000 0.999 1

19 Unif(m,m2) 1.042 1.017 1.024 1.003 1

20 Unif(m,m2) 1.014 0.996 1.011 0.997 1

21 Unif(m,m2) 1.049 1.006 1.032 0.998 1

22 Unif(m,m2) 1.008 0.991 1.003 0.995 1

23 Unif(m,m2) 1.037 0.988 1.002 0.999 1

24 Unif(m,m2) 1.017 0.989 0.998 0.996 1

25 Unif(m,m2) 1.016 0.987 1.005 1.002 1

26 Unif(m,m2) 1.017 0.996 1.013 1.002 1

27 Unif(m,m2) 1.010 0.996 1.015 1.007 1

28 Unif(m,m2) 1.023 0.989 1.014 1.000 1

29 Unif(m,m2) 1.015 0.999 1.007 1.003 1

30 Unif(m,m2) 1.019 0.987 0.992 0.995 1

Table 3.1: Average Completion Time Of Co-Flows With Respect to Different

Ordering Heuristics Scheduled using Algorithm 1.

105

Instance # of flows in each co-flow RAND STPT SMPT SMCT COSS

1 m 1.808 1.540 1.527 1.552 1.613

2 m 1.651 1.522 1.580 1.594 1.664

3 m 1.627 1.633 1.584 1.561 1.654

4 m 1.807 1.564 1.587 1.545 1.643

5 m 1.832 1.514 1.509 1.526 1.622

6 m2 1.356 1.336 1.333 1.340 1.385

7 m2 1.360 1.330 1.332 1.334 1.386

8 m2 1.348 1.333 1.336 1.335 1.394

9 m2 1.359 1.342 1.328 1.335 1.376

10 m2 1.360 1.342 1.344 1.331 1.380

11 Unif(m,m2) 1.325 1.301 1.318 1.300 1.371

12 Unif(m,m2) 1.370 1.326 1.324 1.326 1.397

13 Unif(m,m2) 1.625 1.473 1.552 1.590 1.727

14 Unif(m,m2) 1.397 1.363 1.377 1.360 1.502

15 Unif(m,m2) 1.391 1.356 1.355 1.348 1.423

16 Unif(m,m2) 1.512 1.482 1.435 1.385 1.611

17 Unif(m,m2) 1.313 1.308 1.318 1.304 1.350

18 Unif(m,m2) 1.352 1.331 1.323 1.327 1.387

19 Unif(m,m2) 1.425 1.416 1.427 1.441 1.576

20 Unif(m,m2) 1.316 1.324 1.324 1.300 1.347

21 Unif(m,m2) 1.389 1.389 1.350 1.322 1.451

22 Unif(m,m2) 1.331 1.297 1.287 1.303 1.368

23 Unif(m,m2) 1.344 1.301 1.337 1.310 1.381

24 Unif(m,m2) 1.344 1.310 1.309 1.291 1.361

25 Unif(m,m2) 1.393 1.370 1.351 1.365 1.441

26 Unif(m,m2) 1.358 1.320 1.318 1.304 1.355

27 Unif(m,m2) 1.334 1.297 1.324 1.310 1.357

28 Unif(m,m2) 1.353 1.319 1.321 1.338 1.398

29 Unif(m,m2) 1.392 1.364 1.377 1.351 1.435

30 Unif(m,m2) 1.406 1.378 1.356 1.382 1.491

Table 3.2: Average Completion Time Of Co-Flows With Respect to Different

Ordering Heuristics Scheduled using Algorithm 2 with Backfilling.

106

gains in practice. Finally, we note that although the greedy ordering heuristics

such as shortest processing time first (STPT), shortest maximum processing

time first (SMPT) and shortest maximum completion time first (SMCT) seem

to perform very well on the random instances, none of these heuristics are

guaranteed to perform well on all instances. Indeed, Leung, Li and Pinedo [59]

showed that these heuristics are only m-approximation algorithms for the

related concurrent open-shop scheduling problem.

107

Chapter 4

Firewall Placement

This chapter considers the Firewall Placement problem in datacenters. A

cloud service provider often needs to place firewalls at strategic nodes in

its network in order to filter the communication between different client-

owned virtual machines. Given a datacenter network, and the communication

demands between virtual machines, the firewall placement problem is to

determine the minimum number of firewalls necessary so that all the demands

can be routed via a firewall and all bandwidth constraints on the network

links are respected.

In Section 4.1, we describe the problem setting and formally define the

different problems we consider. Section 4.2 reviews prior work on related

108

problems and we list our results in Section 4.3. In Sections 4.4-4.8, we present

our algorithms for the soft and hard capacitated versions of the firewall

placement problem and associated hardness results.

4.1 Setting and Problem Definitions

We restrict our attention to datacenters that are arranged in a tree layout.

Here, the physical network is a rooted tree T = (V,E) where the internal

vertices denote various switches and routers while the leaf vertices denote

the physical servers that are available to host the virtual machines. Every

edge e ∈ E in the tree has a bandwidth b(e) that is simultaneously available

both in the uplink and downlink directions. Each physical server (leaf of the

tree) accommodates a number of virtual machines and we assume that this

assignment of virtual machines to the servers is fixed. Finally, we are given

communication requests between pairs of virtual machines. We model these

requests as a demand graph H = (L,D) where L ⊂ V denotes the set of

leaves of the tree T . An edge (s, t) ∈ D indicates that one must route unit

flow from s to t. We allow D to contain self-loops and multi-edges.

Our objective is to place the minimum number of firewalls on the nodes

109

of T so that all the demands can be simultaneously satisfied where a demand

(s, t) is satisfied if we can route unit flow from s to some firewall f and also

from f to the sink t. The bandwidth b(e) of an edge upper bounds the number

of demands that may be routed through that edge. In addition, each firewall

has a capacity Cv that represents the maximum number of demands it can

satisfy. Formally, the capacitated firewall placement is defined as follows.

Definition 1. Firewall Placement Problem: We are given a tree

T = (V,E) rooted at r ∈ V with bidirectional edges having bandwidth b(e) =

b(u, v) = b(v, u). Let H = (L,D) be a directed multi-graph that denotes the

communication demands where L ⊂ V is the set of leaves of T . Let Cv denote

the capacity of a firewall at node v ∈ V . The goal is to find the minimum

number of firewalls to open such that all demands can be feasibly routed via a

firewall while respecting both edge bandwidths and firewall capacities.

We study two variants of the above problem, namely, with soft capacities

and hard capacities. In the soft-capacitated firewall placement problem,

one can place multiple copies of the firewall on the same vertex. In the

hard-capacitated version, however, one can place at most one firewall at any

vertex.

For our algorithm for the hard-capacitated firewall placement problem,

110

we use an algorithm for the Simultaneous Source Location problem on trees

(SSL) as a subroutine. We now define the SSL problem and mention relevant

results. In the simultaneous source location problem on trees, each vertex

of the tree has a demand dv, and the task is to open the minimum number

of sources, so that a flow of dv units can be feasibly routed to each vertex v.

More formally.

Definition 2. Capacitated Simultaneous Source Location on Trees:

Given a tree T = (V,E), with edge bandwidths b′ : E → R+, potential source

capacities c : V → R+, and a set of vertex demands d : V → R+, what is the

minimum number of sources that need to be opened so that all demands can

be satisfied simultaneously?

We note that on general graphs, the firewall placement problem is hard to

approximate within any non-trivial factor. The feasibility problem of given a

general graph with edge bandwidths and communication demands between

pairs of vertices, can we route a unit flow between all the demand pairs while

satisfying the bandwidth constraints generalizes the well-studied Edge Disjoint

Paths problem and is thus NP-hard. We note that even when the underlying

graph is a star, in the most general version where a vertex v has capacity Cv

and one can place at most 1 firewall at any vertex, the capacitated firewall

111

placement problem generalizes the well-studied hard capacitated vertex cover

problem. Recall that given an undirected graph G = (V,E) where vertex

v ∈ V has a capacity kv, the hard-capacitated vertex cover problem is to find

the smallest set of vertices such that each edge is covered by one of its end

points and a vertex v covers at most kv incident edges. The reduction follows

by creating a star network where the leaves of the star correspond to the

vertices of G and the communication demands correspond to the edges of G.

4.2 Related Work

In recent years, minimizing congestion in datacenters has been an important

research topic. A number of papers [63, 64, 65] consider the problem of

assigning virtual machines to the physical servers, so that the congestion due

to communication is minimized. Bansal et. al. [63] consider the problem of

assigning virtual machines to the physical servers, so that the congestion due

to both communication on links as well as processing on nodes is minimized.

Dutta et. al. [64] consider a similar assignment problem but in the special

case of rooted path requests, where each “request” is in the form of a chain of

VMs with an uplink bandwidth to a gateway node. Wen et al. [65] consider

112

the problem of migrating virtual machines so as to relieve network congestion

when required and provide heuristics for the same. Closer in spirit to our work

is the Simultaneous Source Location (SSL) problem introduced by Andreev et

al. [66]. SSL is a special case of our problem where each pair of communicating

VMs resides on the same physical server and firewalls are uncapacitated.

The hard-capacitated vertex cover problem was first studied by Chuzhoy

and Naor [47] who gave a 3-approximation for the problem using randomized

rounding followed by alteration. Gandhi et al. [48] later improved this result

to give a 2-approximation. However, both of these approaches work only

for simple graphs and fail for multigraphs where one can have multiple

edges between the same pair of vertices. Saha and Khuller [49] give the

first constant approximation algorithm for hard-capacitated vertex cover on

multigraphs and hypergraphs. In a recent improvement, Cheung et al. [50]

obtain a deterministic 3-approximation and a randomized 2.155-approximation

algorithm for hard-capacitated vertex cover on multigraphs.

The edge disjoint paths problem (EDP) and related problems on directed

and undirected graphs have been an area of very active research over the past

decade. On general directed graphs, the best known approximation algorithm

[67, 68, 69] achieves a factor of Õ(min(n2/3,
√
m)) while Guruswami et al.

113

[70] give a matching Ω(m1/2−ε) hardness of approximation. Chuzhoy and Li

[71] give a polylogarithmic approximation on the number of demand pairs

satisfied but allow violating the edge bandwidths by a factor of 2.

4.3 Our Contribution

We show that the soft-capacitated firewall placement problem with

uniform capacities can be solved optimally in polynomial time using a

greedy algorithm.

In stark contrast, we show that the hard-capacitated firewall placement

problem is NP-hard.

We extend the dynamic programming algorithm for Andreev et al. [66]

to solve the Capacitated Simultaneous Source Location problem on a

tree.

For the hard-capacitated firewall placement problem, we design an

algorithm that uses at most the optimum number of firewalls but

violates the edge bandwidths by a factor of at most 2.

For the hard-capacitated firewall placement problem on a star, we give

114

a 13-approximation algorithm without any bandwidth violation.

4.4 Preprocessing

We first perform a simple preprocessing step that reduces the Firewall

Placement Problem to a generalization of the SSL problem that we call

Path-SSL.

Consider any feasible solution S to the Firewall Placement Problem.

For any demand d = (s, t), S sends unit flow from s to t via some firewall f .

Since the underlying network is a tree, S must always send unit flow from

s to t via the unique path (pst) between them in the tree and further send

unit flow from a vertex v ∈ pst to a firewall f and back. Hence, without

loss of generality, we can always send unit flow on the unique paths between

the end points of each demand and then try to find the minimum number

of firewalls required so that we can send and receive a unit flow from some

vertex on every such path. More formally, we take the following steps - for

every demand (s, t), decrement the bandwidth of every edge on the unique

path pst between s and t in the tree T . We then replace every bidirectional

edge by an undirected edge having minimum of the two bandwidths,i.e.

115

b({u, v}) = min(b((u, v)), b((v, u))). Now, a demand d = (s, t) is satisfied if

one can route unit flow from a firewall f to any vertex on the path pd = pst.

As a result, we have reduced the Firewall Placement Problem to

the following generalization of the SSL problem.

Definition 3. Path-SSL: Given an undirected, rooted tree T = (V,E), with

edge bandwidths b : E → Z+ ∪ {0}, potential firewall capacities C : V → Z+,

and a set of m demand paths {pd}md=1, find the minimum number of firewalls

to place (on vertices) such that one can route a unit flow from a firewall to

some vertex vd ∈ pd for every demand path pd.

4.5 Firewall Placement with Soft Capacities

We now consider the Firewall Placement Problem with Soft Capacities

where all firewalls have the same capacity denoted by C. In this setting, one is

allowed to place multiple firewalls at the same node in the network. We show

that a simple greedy algorithm yields an optimal solution for this problem.

We first apply the preprocessing steps described in the previous section and

are thus interested in solving the Path-SSL problem with soft-capacities.

We now setup some notation that will be useful for the description of the

116

algorithm. For any vertex v ∈ T , let Tv denote the subtree rooted at v and

V (Tv) be the vertices in Tv. Let Dv denote the set of all demand paths fully

contained in Tv. For convenience, we refer to b(v) = b(parent(v), v), i.e., b(v)

denotes the bandwidth of the edge between v and its parent.

F ← φ ; // F is the multiset of firewalls

foreach vertex v ∈ V in leaf to root order do

Fv ← F ∩ V (Tv);

Compute the maximum number of demands in Dv that can be

satisfied by Fv. This is a flow problem in an auxiliary graph. Let D

denote number of unsatisfied demands in Dv;

if b(v) < D then

Add
⌈
D−b(v)
C

⌉
copies of v to F ; // Place firewalls at v

Algorithm 3: Algorithm for Firewall Placement with Soft Capacities

Algorithm 3 describes our complete algorithm. We process vertices in leaf

to root order. At every vertex v, we first try to satisfy as many demands fully

contained in Tv using the firewalls that have already been placed inside Tv

earlier. Note that given a set of firewalls, computing the maximum number

of demands that can be satisfied is a maximum flow problem in an auxiliary

117

network obtained from the tree by adding a source for every demand that is

connected to every vertex on the demand path, and adding a single sink node

that is connected to all the firewalls. Let D denote the number of unsatisfied

demands. Now, intuitively, D − b(v) denotes the number of demands that

must be satisfied within Tv itself. This is accomplished by placing
⌈
D−b(v)
C

⌉
firewalls at v.

Claim 9. There exists an optimal solution such that for any vertex v, there

do not exist demands d ∈ Dv and d′ /∈ Dv such that d is assigned to facility

f ′ /∈ Tv and d′ is assigned to facility f ∈ Tv.

Proof. Let OPT be an optimal solution such that there is a vertex v with

d assigned to f ′ and d′ assigned to f . Let n be node on demand d that f ′

supplies to, and similarly n′ be the node on d′. Hence, we have the available

paths n → v → f ′ and n′ → v → f to satisfy both the demands. Now

consider an alternative solution OPT ′ which is same as OPT except that d

is assigned to f and d′ is assigned to f ′. This assignment is feasible as there

exist paths n → v → f and n′ → v → f ′ (edges are undirected). Thus, we

have an optimal solution satisfying the required properties.

Lemma 16. Algorithm 3 returns an optimal solution.

118

Proof. We claim that we maintain the following invariant after processing

each vertex - Let V ′ ⊆ V denote the set of visited vertices, let S ′ denote

the multi-set of facilities that have been opened so far, and R′ = V ′ \ S ′1

denote the visited vertices where we do not place a facility. Then there exists

an optimal solution OPT such that S ′ ⊆ OPT and further OPT ∩ R′ = φ.

Clearly, if this invariant is maintained, then the algorithm terminates with

an optimal solution.

We prove the claim by induction. Initially, both the statements are trivially

true. Consider one iteration and let v be the vertex under consideration.

Consider a demand d ∈ Dv. By Claim 9, without loss of generality, one

can assign d to a reachable facility in Fv rather than a facility outside Tv.

Also as OPT ∩ R′ = φ, we know that any demand d ∈ Dv that is not

satisfied by Fv can be satisfied by a facility at v, and can hence be replaced

by a (v, v) demand. Let D denote the number of demands that cannot

be satisfied by the facilities in Fv. Now, if b(v) < D, then OPT must

open at least one facility in Tv to satisfy the D − b(v) extra demands. By

induction hypothesis, no vertex in (Tv − {v}) \ S ′ can be in OPT . Hence,

OPT must contain dD−b(v)
C
e facilities at v and we maintain the invariant that

1Abusing notation slightly to incorporate multisets

119

S ′new = S ′ ∪ {v} ⊆ OPT . If on the other hand, u(v) ≥ D, then a facility at v

can be replaced by a facility at parent(v) without violating edge capacities.

And hence {R′new = {R′ ∪ {v}}} ∩OPT = φ.

4.6 Firewall Placement with Hard Capacities

In this section, we consider firewall placement with hard capacity constraints.

In contrast with the previous section, we do not allow multiple facilities

to be placed at a node. We now describe an algorithm that provides a

placement using at most the minimum number of firewalls, but violates the

edge bandwidths by a factor of at most 2. Note that in this case we do not

apply the preprocessing steps described in Section 4.4.

We reduce the firewall placement problem with hard capacities to the

capacitated simultaneous source location problem as follows. We create an

instance I ′ of the capacitated simultaneous source location on the same tree

T and edge bandwidths b̃ as follows - For every internal vertex v, set the

demand d(v) = 0, and for every leaf v set d(v) = |{d ∈ D|d = (v, w)}|, i.e.,

we set d(v) to be the number of demand paths having v as the start vertex.

The potential capacities for all vertices are retained as c(v). Further, we

120

assume that every tree edge e = {u, v} is undirected and has bandwidth

b̃(e) = b(u, v) = b(v, u). We then solve the capacitated simultaneous source

location problem on a tree using dynamic programming.

A feasible solution to the instance I ′ of the capacitated simultaneous source

location problem guarantees that there exists a feasible flow that satisfies all

bandwidth and capacity constraints so that a unit flow can be routed from

source vertex s to a facility f and back to s. Given such a solution, we further

send unit flow from s to t along the unique simple path between the two

leaves in the tree for each demand pair d = (s, t) in order to obtain a feasible

firewall placement solution. For any edge e, F2(e) = |{d ∈ D|e ∈ pd}| ≤ b(e)

denotes the additional flow that we send in this stage. As a result, the total

flow through any edge e is at most twice the bandwidth b(e). The following

claim now guarantees that we open at most the optimum number of firewalls

and thus proves the theorem.

Lemma 17. Let k denote the optimal number of firewalls for the given

instance of the firewall placement problem. Then there exists a solution to the

instance I ′ of the capacitated simultaneous source location problem using k

sources.

Proof. Let OPTFP denote an optimal solution to the firewall placement

121

problem that uses k firewalls S ⊆ V (|S| = k) be the set of open facilities

in OPTFP . For a demand j (between leaves sj and tj), let f(j) ∈ S be the

firewall that is assigned to j in OPTFP . Further, let F (e) denote the flow

through edge e = (u, v) in OPTFP . Since OPTFP must send a unit flow from

sj to f(j) (and from f(j) to tj), we have F (e) ≥ |{j ∈ D|e ∈ P(sj ,f(j))}| where

P(sj ,f(j)) denotes the unique simple path in the tree between vertices sj and

f(j).

We now claim that the set S is also a feasible solution to the instance

I ′ of the capacitated simultaneous source location problem. Let f ′(j) ∈ S

denote the facility to be assigned to demand j for the instance I ′. Initially

suppose f ′(j) = f(j) for all demands j. We note that any feasible solution to

the capacitated simultaneous source location problem must be able to route

unit flow from sj to a facility (f ′(j)) and back to sj and hence this facility

assignment may not lead to a feasible flow. We now successively update the

assignments and demonstrate that a feasible flow exists.

Consider any pair of adjacent vertices u and v in the tree. The edge

e = {u, v} divides the tree into two parts. Let T (u)(T (v)) denote the

subtree containing u(v). Now suppose there exists demands j and k such

that sj ∈ T (u) and sk ∈ T (v) while f ′(j) ∈ T (v) and f ′(k) ∈ T (u). In

122

this case, we update the assignments so that demand f ′new(j) = f ′(k) and

f ′new(k) = f ′(j). It can be observed that such a swap only reduces the flow

through edge e and er while maintaining the flow through all other edges.

We apply the above swapping procedure to every edge in the tree and

let f̃(j) denote the final facility assigned to demand j and F ′(e) = |{j ∈

D|e ∈ P(sj ,f̃(j))}| denote the flow from through any edge e in the tree. Due

to the previous swaps, we are now guaranteed that for any pair of adjacent

vertices {u, v}, either F ′(u, v) = 0 and/or F ′(v, u) = 0. Now, let F̃ (e) =

|{j ∈ D|e ∈ P(sj ,f̃(j)) ∪ P(f̃(j),sj)
}| denote the flow through edge e as required

by the instance I ′. Hence, we have F̃ (e) = F ′(e) +F ′(er) ≤ b(e) and hence, S

is a feasible solution to the capacitated simultaneous source location problem

of size k.

4.6.1 Capacitated Simultaneous Source Location

We now show that the capacitated simultaneous source location problem can

be solved in polynomial time on trees using an extension of the dynamic

programming algorithm given by Andreev et al. [66]. We assume that the tree

is binary. Note that this is without loss of generality, as any non-binary tree

can be converted to a binary tree by adding dummy nodes (with cv = 0). Let

123

f(v, i) denote the amount of flow that needs to be sent into Tv by parent(v)

in order to satisfy all demands assuming that Tv has i sources. It is easy to

observe that the minimum k such that f(root, k) ≤ 0 is the desired solution.

We compute f using dynamic programming as follows.

1. For every leaf v (Base Case):

(a) f(v, 0) = dv (deficit)

(b) If cv >= dv, f(v, i) = −min{u(v), (cv − dv)} (surplus)

(c) Else, f(v, i) = dv − cv (deficit)

2. For every vertex v such that f is defined for both children:

(a) f(v, i) = min(A,B) where

(b) A = mini1+i2=i(max{f(v1, i1) + f(v2, i2) + dv,−u(v)})

(c) B = mini1+i2=i−1(C(i1, i2)) where

(d) If cv >= f(v1, i1)+f(v2, i2)+dv, then C(i1, i2) = −min{u(v), (cv−

f(v1, i1)− f(v2, i2)− dv)} (surplus)

(e) Else C(i1, i2) = f(v1, i1) + f(v2, i2) + dv − cv (deficit)

The base cases are easy. If v does not have a source, then it needs dv flow

from its parent. On the other hand, if v does have a source, it can send flow

124

to its parent (upper bounded by u(v)) depending upon whether the capacity

is sufficient to meet all of v’s demand.

For the inductive case, to compute f(v, i), we consider two cases namely -

(A) : There is no source at v, and (B) : There is a source at v. To compute

A, we find the best way to divide the i sources among the two subtrees. The

total demand now is dv along with the flows needed by the two subtrees, i.e.

f(v1, i1) + f(v2, i2) + dv. We have a max() there to ensure that v can send

more surplus than u(v). Similarly to compute B, we find the best way to

divide the remaining i − 1 sources among the two subtrees. f(v, i) is then

computed depending upon whether cv is sufficient to meet all the demand or

not as in the base case.

4.7 Firewall Placement with Hard Capacities

and No Bandwidth Violation

We now consider the firewall placement problem with hard capacity constraints

(and no bandwidth violation) when the underlying tree T is a star. In this

setting, we are given a star T = ({r}∪V,E) and a demand graph H = (V,D).

We first apply the preprocessing step described in Section 4.4.

125

The following lemma shows that we can assume without loss of generality

that firewalls can only be placed on leaves of the star.

Lemma 18. Given an instance I of the firewall placement problem on a star,

we can obtain an instance I ′ such that the root of the star in instance I ′ has

capacity zero, i.e. Cr′ = 0, and OPT (I) = OPT (I ′) where OPT (I) denotes

the cost of the optimal solution for instance I.

Proof. Let instance I be defined on a star T = ({r} ∪ V,E) and the demand

graph H = (V,D). We create a new star graph T ′ = ({r′} ∪ V ′, E ′) where

V ′ = {r} ∪ V forms the set of leaves and r′ is the new root. For every edge

(r′, v) ∈ E ′ where v ∈ V , we set b(r′, v) = b(r, v), i.e., we leave the bandwidth

of every vertex v ∈ V unchanged. Finally, we set b(r′, r) = |D|. This allows

any demand d = (s, t) to be assigned to r in the instance I ′ as long as r has

enough capacity to handle it. We set Cr′ = 0 and the capacities of all other

vertices remain unaltered. The new instance I ′ is defined by the star T ′ and

the original demand graph H.

Now consider any optimal solution S to instance I. If r /∈ S, then it

is easy to observe that S is also a feasible solution to instance I ′. This is

because both the bandwidths and capacities of vertices other than the root

remain unchanged. On the other hand if r ∈ S, then S is still a feasible

126

solution for I ′ as r now has enough bandwidth to satisfy all demands and its

capacity is unchanged. Similarly, given any optimal solution S ′ to instance I ′,

it is easy to observe that S ′ is feasible of I as well and the lemma follows.

For the rest of this section, we now assume that capacity of the root r

of the star is zero. The problem now is to select the smallest set U ⊂ V of

vertices such that one can feasibly route unit flow from a vertex u ∈ U to one

of {r, s, t} for every demand (s, t).

Consider any demand d = (s, t). If d is satisfied by a vertex u /∈ {s, t},

then unit flow must be routed from u to r; in other words vertex u can satisfy

at most b(u) demands that are not incident on it where b(u) denotes the

bandwidth of the edge (r, u). On the other hand, due to capacity constraints,

a vertex u can satisfy a total of at most Cu demands. The firewall placement

problem with hard capacities on a star network thus naturally reduces to

an instance of the network-aware machine activation problem with unit jobs

as considered in Section 2.4. In this reduction, we introduce a job j such

that δ(j) = {s, t} for every demand d = (s, t). Theorem 5 thus applies and

we obtain the following constant approximation for the firewall placement

problem on a star.

Theorem 10. There exists a polynomial time 13-approximation algorithm

127

for the hard-capacitated firewall placement problem on a star.

Proof. Theorem 5 yields a (4f + 5)-approximation algorithm where f =

maxj |δ(j)|. Since we have δ(j) = {s, t} for every demand d = (s, t) in the

reduction, we have f = 2 and the theorem follows.

4.8 Lower Bounds

We note that the hard and soft capacitated versions of the firewall placement

problem with non-uniform firewall capacities generalize the respective versions

of the capacitated vertex cover problem. Let G = (V,E) be the graph in

an instance of capacitated vertex cover. One can now create an equivalent

instance of the firewall placement problem by creating a star network as

follows - Let V be the leaves of a star rooted at r. We set the capacity of

r to be zero and the capacities of the other vertices remain as they were

in the vertex cover instance. The graph G = (V,E) forms the demand

graph by considering an arbitrary orientation of the edges. Finally the edge

bandwidths are set so that no edge has any surplus bandwidth, i.e., we have

b(v, r) = b(r, v) = max(degout(v), degin(v)). As a result, demand edge (u, v)

can only be satisfied be satisfied by either u, v or the root r. As the root

128

has zero capacity, we have exactly the vertex cover problem. As a result

both the hard and soft capacitated firewall placement problems with non-

uniform firewall capacities are as hard as vertex cover and hence cannot

be approximated with a factor better than 2 assuming the Unique Games

Conjecture [72].

We now show that the hard-capacitated firewall placement problem re-

mains NP-complete even with uniform firewall capacities by a reduction from

hard-capacitated vertex cover with uniform capacities.

Theorem 11. The hard-capacitated firewall placement problems with uniform

capacities is NP-complete.

Proof. An instance of hard-capacitated vertex cover with uniform capacities

consists of a graph G = (V,E), an integer C ≤ n and an integer k ≤ n

where n = |V | is the number of vertices of G. Given such an instance the

hard-capacitated vertex cover problem is to decide if G contains a vertex

cover of size ≤ k such that any selected vertex covers at most C incident

edges.

We perform the same reduction as described in the case of the non-uniform

capacities with the exception that now the root r of the star also has capacity

C. Figure 4.1 shows an example of the reduction.

129

We first observe that if G has a hard-capacitated vertex cover of size k,

then placing firewalls on the same k vertices is a feasible solution for the

firewall placement instance. On the other hand, let us suppose that the

firewall placement instance has a solution with k firewalls. Now, in this

solution if the root r does not have a firewall, then the reduction ensures that

the k selected vertices also form a vertex cover of G. But if r does have a

firewall, then it may satisfy up to C demands. Consider an edge e = (v1, v2)

that is satisfied by r in the firewall placement instance. Further suppose there

exists a path p in G from v1 (or v2) to some vertex v′ such that either (a)

there is no firewall that v′ or (b) v′ has spare capacity. In this case, one can

assign the edge e to v1 and propagate the assignments along the path p by

placing a new firewall at v′ if necessary. On the other hand, if no such path

exists, then edge e belongs to a connected component with edge density > C

and hence no feasible vertex cover solution exists. As a result, given a firewall

placement solution with k firewalls, one can either determine that the vertex

cover instance is infeasible or find a vertex cover of size k + C.

We have shown that if the hard-capacitated firewall placement problem

with uniform capacities can be solved in polynomial time, then one can obtain

an additive C approximation to the hard-capacitated vertex cover problem.

130

However, the existence of such an additive C approximation algorithm actually

implies that the hard-capacitated vertex cover with uniform capacities problem

can be solved in polynomial time. Given a graph G = (V,E) and a capacity

C, we create C + 1 disjoint copies of the graph to obtain a new instance

G ′. Now, if G has a vertex cover of size k then G′ has a vertex cover of size

k(C + 1). We then use the above additive C approximation algorithm to

obtain a solution with at most k(C + 1) + C vertices. Since G′ consists of

C + 1 disjoint copies of G, at least one of the copies uses at most k + C
C+1

vertices. As the solution size must be an integer, we obtain a solution of size

at most k.

v1

v2 v3

v4 v5 v6

a b

c

d e f
v1 v2 v3 v4 v5 v6

a

b

c

d

e
f

R

⇒

Figure 4.1: Capacitated Vertex Cover to Firewall Placement reduction

131

4.9 Future Directions

In this section we summarize some of the prominent open problems related

to firewall placement and future research directions.

No Bandwidth Violation

In Section 4.6, we gave a polynomial time algorithm for the hard-capacitated

firewall placement problem that places the minimum number of firewalls but

violates edge bandwidths by a factor of at most 2. Our first open problem

is to obtain an approximation algorithm for the firewall placement problem

with hard capacities that respects all edge bandwidths.

In Section 4.7, we make partial progress on this problem by designing a

constant approximation algorithm for hard-capacitated firewall placement

when the underlying physical network is a star.

Non Uniform Soft Capacities

As discussed in Section 4.5, the soft-capacitated firewall placement problem

with uniform firewall capacities can be solved in polynomial time. However,

if firewall capacities are allowed to be non-uniform, then it generalizes the

132

soft-capacitated vertex cover problem and is thus NP-hard. Our next open

problem is to obtain an approximation algorithm soft capacitated firewall

placement on a tree with non uniform capacities.

133

Chapter 5

Scheduling with Soft

Precedences

We now consider the soft-precedence constrained scheduling problem. We

model the precedence constraints between jobs as a directed graph where an

edge e = (u, v) denotes that u must be executed before v in the schedule. We

then claim that different soft-precedence constrained scheduling problems can

be treated as variants of a certain vertex ordering problem on this associated

directed graph. We first tackle the problem of Discrete Soft Precedence

Scheduling. In Section 5.1, we formally define the Max-k-Ordering and

OffsetRMAS problems that accurately model the scheduling problem

134

with discrete soft precedences. In Sections 5.4- 5.6, we provide randomized

approximation algorithms for the different problems considered. Section

5.7 proves a matching integrality gap that is retained even after almost

polynomial rounds of the Sherali-Adams hierarchy. In Section 5.8, we consider

the minimization version of the Discrete Soft Precedence Scheduling problem.

Finally, in Section 5.9, we study the Linear Soft Precedence Scheduling

problem and show that it can be solved optimally in polynomial time using

linear programming.

5.1 Motivation and Problem Definitions

We first consider the following simple case of discrete time scheduling: given n

unit length jobs with precedence constraints and an infinite capacity machine,

find a schedule so that all the jobs are completed by timestep k. Since it may

not be feasible to satisfy all the precedence constraints, the goal is to satisfy

the maximum number.

One can now associate the following directed, precedence graph G = (V,A)

with such an instance where V denotes the set of all jobs and e = (u, v) ∈ A if

and only if u needs to be scheduled before v as per the precedence constraint.

135

Note that if we are forced to satisfy all the precedence constraints, then the

precedence graph must be acyclic and the makespan1 of the optimal schedule

is exactly equal to one plus the length of the longest path in G. As a result,

we can reformulate the soft-precedence constrained scheduling problem on

unit jobs as - “Given a directed graph G = (V,A) and an integer deadline k,

find an acyclic subgraph H = (V,A′) of G having maximum number of edges

such that H does not have any directed paths of length k.” Further, we allow

each edge e (precedence constraint) to have a weight w(e) and the objective

is then to maximize the total weight of edges in H.

We now formally define the Max-k-Ordering problem that we con-

sider in this work and prove its equivalence to soft-precedence constrained

scheduling on unit jobs.

Definition 4. Max-k-Ordering: Given an n-vertex digraph D = (V,A)

with a non-negative weight function w : A→ R+, and an integer 2 ≤ k ≤ n,

find a labeling to the vertices ` : V → [k] that maximizes the weighted fraction

of edges e = (u, v) ∈ A such that `(u) < `(v), i.e. forward edges.

It can be seen that Max-k-Ordering is equivalent to the problem of

1Makespan of the schedule refers to the earliest timestep by which all the jobs have

been completed.

136

computing the maximum weighted subgraph of D which is acyclic and does

not contain any directed path of length k. The following lemma implies this

equivalence.

Lemma 19. Given a digraph D = (V,A), there exists a labeling ` : V → [k]

with each edge e = (u, v) ∈ A satisfying `(u) < `(v), if and only if D is acyclic

and does not contain any directed path of length k.

Proof. If such a labeling ` exists then every edge is directed from a lower

labeled vertex to a higher labeled one. Thus, there are no directed cycles in

D. Furthermore, any directed path in D has at most k vertices on it, and is

of length at most k−1. On the other hand, if D satisfies the second condition

in the lemma, then choose `(v) for any vertex v to be tv + 1, where tv is

the length of the longest path from any source to v. It is easy to see that

`(v) ∈ [k] and for each edge (u, v), `(u) < `(v).

We now generalize the Max-k-Ordering problem to model more complex

scheduling scenarios. In particular, we now allow jobs to have arbitrary lengths

(processing times). The arbitrary processing times can be modelled by “offsets”

for every edge - an edge e = (u, v) with offset oe is satisfied by a labelling ` if

and only if `(u) + oe ≤ `(v). In particular, setting oe = p(u) where p(u) is the

137

processing time of job u is sufficient to ensure that the precedence constraint

is satisfied only if job v starts after job u has finished execution. In addition,

each job can have a set of allowable timesteps when it can be scheduled. Such

a setting corresponds to the availability of certain resources only at particular

timesteps. We model this requirement by associating a finite set Sv ⊆ Z+

with every job v that restricts the set of labels that v can be assigned.

The following generalizations of Max-k-Ordering studied in this work,

viz. RMAS and OffsetRMAS, model these scheduling scenarios.

Definition 5. OffsetRMAS: The input is a digraph D = (V,A) with a

finite subset Sv ⊆ Z+ of labels for each vertex v ∈ V , a non-negative weight

function w : A → R+, and offsets oe ∈ Z+ for each edge e ∈ A. A labeling

` to V s.t. `(v) ∈ Sv,∀v ∈ V satisfies an edge e = (u, v) if `(u) + oe ≤ `(v).

The goal is to compute a labeling that maximizes the weighted fraction of

satisfied edges. RMAS is the special case when each offset is unit.

Also of interest is the minimization version of Max-k-Ordering on

directed acyclic graphs (DAGs). We refer to it as DAG edge deletion or

DED(k) where the goal is to delete the minimum number of directed edges

from a DAG so that the remaining digraph does not contain any path of length

k. Note that the problem for arbitrary k does not admit any approximation

138

factor on general digraphs since even detecting whether a digraph has a path

of length k is NP-hard.

Definition 6. DED(k): Given a DAG D = (V,A) with a non-negative

weight function w : A→ R+, and an integer 2 ≤ k ≤ n− 1, find a minimum

weight set of edges F ⊆ A such that (V,A \ F) does not contain any path of

length k.

5.2 Related Work

The Max-k-Ordering problem naturally generalizes several well-known

NP-hard optimization problems on directed graphs. When k = n, the Max-

k-Ordering problem reduces to the Maximum Acyclic Subgraph problem

(MAS): Given a directed graph, find a subgraph of maximum number of edges

that is acyclic. It is easy to see that MAS admits a trivial 2-approximation,

by taking any linear ordering or its reverse, and this is also obtained by a

random ordering. For Max-k-Ordering the random k-ordering yields a

2k/(k − 1)-approximation for any k ∈ {2, . . . , n}.

For k = 2, the Max-k-Ordering problem reduces exactly to the well

known Max-DiCut problem : Given a directed graph G = (V,A), find a

139

directed cut of maximum weight, i.e., find a subset S ⊂ V that maximizes

|δ(S, V \ S)|. For Max-DiCut the semidefinite programming (SDP) relax-

ation is shown to yield a ≈ 1.144-approximation in [73], improving upon

previous analyses of [74], [75], and [76]. As mentioned above, RMAS is a

generalization of Max-k-Ordering, and a 2
√

2-approximation for it based

on linear programming (LP) rounding was shown recently by Grandoni et

al. [77] which is also the best known approximation for Max-k-Ordering

for k = 3. For 4 ≤ k ≤ n − 1, to the best of our knowledge the proven

approximation factor for Max-k-Ordering remains 2k/(k − 1).

On the hardness side, Newman [78] showed that MAS is NP-hard to

approximate within a factor of 66/65. Assuming Khot’s [79] Unique Games

Conjecture (UGC), Guruswami et al. [80] gave a (2− ε)-inapproximability

for any ε > 0. Note that Max-DiCut is at least as hard as Max-Cut.

Thus, for k = 2, Max-k-Ordering is NP-hard to approximate within factor

(13/12 − ε) [81], and within factor 1.1382 assuming the UGC [82]. For

larger constants k, the result of Guruswami et al. [80] implicitly shows a

(2− ok(1))-inapproximability for Max-k-Ordering, assuming the UGC.

For the vertex deletion version of DED(k), Paik et al. [83] gave linear

time and quadratic time algorithms for rooted trees and series-parallel graphs

140

respectively. The problem reduces to vertex cover on k-uniform hypergraphs

for any constant k thereby admitting a k-approximation, and a matching

(k − ε)-inapproximability assuming the UGC was obtained by Svensson [84].

5.3 Our Results

The main algorithmic result of this paper is the following improved approxi-

mation guarantee for Max-k-Ordering.

Theorem 12. There exists a polynomial time 2-approximation algorithm for

Max-k-Ordering on n-vertex weighted digraphs for any k ∈ {2, . . . , n}.

The above approximation is obtained by appropriately rounding the

standard LP relaxation of the CSP formulation of Max-k-Ordering and

improves on the previously known approximation factors of 2
√

2 for k = 3

(implicit in [77]), and 2k/(k − 1) for 4 ≤ k ≤ n− 1. The details are given in

Section 5.5.

Using an LP rounding approach similar to Theorem 12, in Section 5.6

we show the following improved approximation for OffsetRMAS which

implies the same for RMAS. Our result improves the previous 2
√

2 ≈ 2.828-

approximation for RMAS obtained by Grandoni et al. [77].

141

Theorem 13. There exists a polynomial time 4
√

2
/

(
√

2 + 1) ≈ 2.344 ap-

proximation algorithm for OffsetRMAS on weighted digraphs.

Our next result shows a lower bound – matching the approximation

obtained in Theorem 12 – for the LP relaxation of Max-k-Ordering aug-

mented with nearly polynomial rounds of the Sherali-Adams hierarchy of

constraints. We prove the following theorem in Section 5.7.

Theorem 14. For any small enough constant ε > 0, there exists γ > 0

such that for Max-k-Ordering on n-vertex weighted digraphs and any

k ∈ {2, . . . , n}, the LP relaxation with n(γ/log log k) rounds of Sherali-Adams

constraints has a (2− ε) integrality gap.

For DED(k) on DAGs we prove in Section 5.8 the following approximation

for any k, not necessarily a constant.

Theorem 15. The standard LP relaxation for DED(k) on n-vertex DAGs

can be solved in polynomial time for k = {2, . . . , n − 1} and yields a k-

approximation. The same approximation factor is also obtained by a combi-

natorial algorithm.

We complement the above by showing in Section 5.8.3 a (bk/2c − ε) hard-

ness factor for DED(k) via a simple gadget reduction from Svensson’s [84]

142

(k − ε)-inapproximability for the vertex deletion version for constant k, as-

suming the UGC.

5.3.1 Overview of Techniques

The approximation algorithms we obtain for Max-k-Ordering and its

generalizations are based on rounding the standard LP relaxation for the

instance. Max-k-Ordering is viewed as a constraint satisfaction problem

(CSP) over alphabet [k], and the corresponding LP relaxation has [0, 1]-valued

variables xvi for each vertex v and label i ∈ [k], and yeij for each edge (u, v) and

pairs of labels i and j to u and v respectively. We show that a generalization

of the rounding algorithm used by Trevisan [85] for approximating q-ary

boolean CSPs yields a 2-approximation in our setting. The key ingredient in

the analysis is a lower bound on a certain product of the {xui }, {xvi } variables

corresponding to the end points of an edge e = (u, v) in terms of the {yeij}

variables for that edge. This improves a weaker bound shown by Grandoni et

al. [77]. For OffsetRMAS, a modification of this rounding algorithm yields

the improved approximation.

The construction of the Sherali-Adams LP integrality gap for Max-k-

Ordering begins with a simple integrality gap instance for the basic LP

143

relaxation. This instance is appropriately sparsified to ensure that subgraphs

of polynomially large (but bounded) size are tree-like. On trees, it is easy

to construct a distribution over labelings from [k] to the vertices (thought

of as k-orderings), such that the marginal distribution on each vertex is

uniform over [k] and a large fraction of edges are satisfied in expectation.

Using this along with the sparsification allows us to construct distributions

for each bounded subgraph, i.e. good local distributions. Combining this

with a geometric embedding of the marginals of these distributions followed

by Gaussian rounding yields modified local distributions which are consistent

on the common vertex sets. These correspond to an LP solution with a high

objective value, for large number of rounds of Sherali-Adams constraints. Our

construction follows the approach in a recent work of Lee [86] which is based

on earlier works of Arora et al. [87] and Charikar et al. [88].

For the DED(k) problem, the approximation algorithms stated in Theorem

15 are obtained using the acyclicity of the input DAG. In particular, we show

that both, the LP rounding and the local ratio approach, can be implemented

in polynomial time on DAGs yielding k-approximate solutions.

144

5.4 Preliminaries

This section describes the LP relaxations for the Max-k-Ordering, Off-

setRMAS, and the DED(k) problems. All of our approximation algorithms

are obtained by appropriately rounding an optimal solution to the corre-

sponding LP relaxation. Finally, we also describe the LP relaxation after

augmentation by r rounds of Sherali-Adams constraints.

5.4.1 LP Relaxation for Max-k-Ordering

From Definition 4, an instance I of Max-k-Ordering is given by D = (V,A),

k, and w. Viewing it as a CSP over label set [k], the standard LP relaxation

given in Figure 5.1 is defined over variables xvi for each vertex v and label i,

and yeij for each edge e = (u, v) and labels i to u and j to v.

The xvi variables denote if vertex v is assigned label i. The constraint (5.1)

guarantees that every vertex is assigned a color (fractionally). The variable

y
(u,v)
ij is intended to represent the event that u is assigned to label i and v is

assigned to label j. Such a variable denoting the joint probability distribution

is necessary so that the objective can be expressed as a linear function of the

variables. The set of constraints (5.2) and (5.3) ensure that the marginals

induced by the y variables are consistent with the x variables.

145

max
∑
e∈A

w(e) ·
∑
i,j∈[k]
i<j

yeij

subject to,

∀v ∈ V,
∑
i∈[k]

xvi = 1. (5.1)

∀e = (u, v) ∈ A, and i, j ∈ [k],
∑
`∈[k]

yei` = xui , (5.2)

and,
∑
`∈[k]

ye`j = xvj . (5.3)

∀v ∈ V, and i ∈ [k], xvi ≥ 0.

∀e ∈ A, and i, j ∈ [k], yeij ≥ 0. (5.4)

Figure 5.1: LP Relaxation for instance I of Max-k-

Ordering.

146

Sherali-Adams Constraints

Let zSσ ∈ [0, 1] be a variable corresponding to a subset S of vertices, and a

labeling σ : S → [k]. The LP relaxation in Figure 5.1 can be augmented with

r rounds of Sherali-Adams constraints which are defined over the variables

{zSσ | 1 ≤ |S| ≤ r + 1}. The additional constraints are given in Figure

5.2. The Sherali-Adams variables define, for each subset S of at most (r + 1)

vertices, a distribution over the possible labelings from [k] to the vertices in

S. The constraints given by Equation (5.5) ensure that these distributions

are consistent across subsets. Additionally, Equations (5.6) and (5.7) ensure

the consistency of these distributions with the variables of the standard LP

relaxation given in Figure 5.1.

5.4.2 LP Relaxation for RMAS and OffsetRMAS

The LP relaxation for RMAS is a generalization of the one in Figure 5.1 for

Max-k-Ordering and we omit a detailed definition. Let S = ∪v∈V Sv denote

the set of all labels. For convenience, we define variables {xvi | v ∈ V, i ∈ S}

and {yeij | e = (u, v) ∈ A, i, j ∈ S} and force the infeasible assignments to be

zero, i.e. xvi = 0 for i /∈ Sv. The other constraints are modified accordingly.

For OffsetRMAS, an additional change is that the contribution to the

147

∀S ⊆ T ⊆ V,

1 ≤ |S|, |T | ≤ r + 1,

and σ : S → [k], zSσ =
∑

ρ:T→[k]
ρ|S=σ

zTρ . (5.5)

∀S ⊆ V, 1 ≤ |S| ≤ r + 1,

and σ : S → [k], 0 ≤ zSσ ≤ 1.

∀v ∈ V, and σ : {v} → [k],

s.t. σ(v) = i, xvi = z{v}σ . (5.6)

∀e = (u, v) ∈ A, and,

σ : {u, v} → [k],

s.t. (σ(u), σ(v)) = (i, j), yeij = z{u,v}σ . (5.7)

Figure 5.2: r-round Sherali-Adams constraints for LP relax-

ation in Figure 5.1.

148

objective from each edge e = (u, v) is
∑

i∈Su,j∈Sv ,i+oe≤j y
e
ij.

5.4.3 LP Relaxation for DED(k)

The natural LP relaxation for DED(k) on an n-vertex DAG D = (V,E) is

given in Figure 5.3. The variable xe indicates whether edge e has been deleted

or not. Constraint (5.8) ensures that for every directed path of length k, at

least one edge has been deleted.

min
∑
e∈E

w(e)xe

subject to,

∀ paths P of length k,
∑
e∈P

xe ≥ 1. (5.8)

∀e ∈ E, xe ≥ 0.

Figure 5.3: LP Relaxation for instance I of DED(k).

5.5 A 2-Approximation for Max-k-Ordering

This section proves the following theorem that implies Theorem 12.

149

Theorem 16. Let {xvi }, {yeij} denote an optimal solution to the LP in Figure

5.1. Let ` : V → [k] be a randomized labeling obtained by independently

assigning to each vertex v label i with probability

(
1

2k
+
xvi
2

)
. Then, for any

edge e = (u, v),

Pr[`(u) < `(v)] ≥ 1

2

∑
i,j∈[k]
i<j

yeij

 .

To analyze the rounding given above, we need the following key lemma

that bounds the sum of product of row and column sums of a matrix in terms

of the matrix entries. It improves a weaker bound shown by Grandoni et

al. [77] and also generalizes to arbitrary offsets.

Lemma 20. Let A = [aij] be a k × k matrix with non-negative entries. Let

ri =
∑

j aij and cj =
∑

i aij denote the sum of entries in the ith row and jth

column respectively, and let 1 ≤ θ ≤ k − 1 be an integer offset . Then,

∑
i+θ≤j
i,j∈[k]

ricj ≥
k − θ + 1

2(k − θ)

∑
i+θ≤j
i,j∈[k]

aij


2

.

150

Proof. The LHS of the above is simplified as,

∑
i+θ≤j

ricj =
∑
i+θ≤j

[(∑
j′

aij′

)(∑
i′

ai′j

)]
(5.9)

≥
∑
x+θ≤y

a2
xy + 2 ·

∑
x+θ≤y
x+θ≤y′
y<y′

axyaxy′ +
∑
x+θ≤y
x′+θ≤y′
x<x′

axyax′y′ , (5.10)

where all the indices above are in [k]. Note that (5.10) follows from (5.9)

because:

(i) For any x+ θ ≤ y, a2
xy appears in the RHS of (5.9) when i = x and j = y.

(ii) For x+ θ ≤ y and x+ θ ≤ y′, axyaxy′ appears in the RHS of (5.9) both,

when i = x, j = y, and when i = x, j = y′.

(iii) For any x+ θ ≤ y and x′+ θ ≤ y′ (say x < x′), it must be that x+ θ ≤ y′,

and hence axyax′y′ appears in the RHS of (5.9) when i = x and j = y′.

Thus, we obtain,

∑
i+θ≤j

ricj ≥
(∑
x+θ≤y

axy

)2

−


∑
x+θ≤y
x′+θ≤y′
x<x′

axyax′y′

 .

Therefore, it is sufficient to show that

∑
x+θ≤y
x′+θ≤y′
x<x′

axyax′y′ ≤
k − θ − 1

2(k − θ)

(∑
x+θ≤y

axy

)2

. (5.11)

151

Substituting,(∑
x+θ≤y

axy

)2

=
∑
x+θ≤y

a2
xy + 2 ·

∑
x+θ≤y
x+θ≤y′
y<y′

axyaxy′ + 2 ·
∑
x+θ≤y
x′+θ≤y′
x<x′

axyax′y′ ,

and simplifying, inequality (5.11) can be rewritten as,

∑
x+θ≤y

a2
xy + 2

∑
x+θ≤y
x+θ≤y′
y<y′

axyaxy′ −
(

2

k − θ − 1

)
·
∑
x+θ≤y
x′+θ≤y′
x<x′

axyax′y′ ≥ 0,

⇔ aTMa ≥ 0,

where a ∈ RZ , Z := {(x, y) | x + θ ≤ y and x, y ∈ [k]} with a(x,y) := axy,

and M ∈ RZ×Z is a symmetric matrix defined as follows:

M(x,y)(x′,y′) =



1 if (x, y) = (x′, y′),

1 if x′ = x, and y 6= y′,

−1/(k − θ − 1) if x 6= x′.

To complete the proof of the lemma we show that M is positive semidefinite.

Consider the set of unit vectors {vx | 1 ≤ x ≤ k− θ} given by the normalized

corner points of the (k− θ− 1)-dimensional simplex centered at the origin. It

is easy to see (for e.g. in Lemma 3 of [89]) that, 〈vx, vx′〉 = −1/(k − θ − 1) if

x 6= x′. Thus, M is the Gram Matrix obtained by associating the vector vx

with the row (column) indexed by (x, y) for 1 ≤ x ≤ k − θ.

152

Proof of Theorem 16. For brevity, let ze =
∑

i<j y
e
ij denote the contribution

of the edge e to the LP objective. From the definition of the rounding

procedure we have,

Pr[`(u) < `(v)] =
∑
i<j

Pr[`(u) = i] Pr[`(v) = j]

=
∑
i<j

(
1

2k
+
xui
2

)(
1

2k
+
xvj
2

)

=
1

4

(
(k − 1)

2k
+

1

k

∑
i<j

(xui + xvj) +
∑
i<j

xui x
v
j

)

We can now apply Lemma 20 to the k × k matrix [yeij]. The LP constraints

guarantee that ri = xui and cj = xvj are equal to the row and column sums

respectively. Further, substituting offset θ = 1, we obtain

Pr[`(u) < `(v)] ≥ 1

4

(
(k − 1)

2k
+

1

k

∑
i<j

(xui + xvj) +
k

2(k − 1)
z2
e

)
.(5.12)

On the other hand,

∑
i<j

(xui + xvj) =
k−1∑
i=1

(k − i)xui +
k∑
j=2

(j − 1)xvj

≥
k−1∑
i=1

[
(k − i)

∑
j′>i

yeij′

]
+

k∑
j=2

[
(j − 1)

∑
i′<j

yei′j

]
. (5.13)

For a < b, yeab appears (k− a) times in the RHS of the above inequality when

i = a, and (b− 1) times when j = b. Since k − a+ b− 1 ≥ k, we obtain that

RHS of Equation (5.13) is lower bounded by k
∑

a<b y
e
ab = kze. Substituting

153

back into Equation (5.12) and simplifying gives us that Pr[`(u) < `(v)] is at

least,

ze
4

[
1 +

1

2

(
(k − 1)

kze
+

kze
(k − 1)

)]
≥ ze

4
(1 + 1) =

ze
2
,

where we use t+ 1/t ≥ 2 for t > 0.

5.6 Approximation for OffsetRMAS

Let D = (V,A), {Sv}v∈V , w, and {oe}e∈A constitute an instance of OffsetR-

MAS as given in Definition 5. Without loss of generality, one can assume that

for each edge e = (u, v) ∈ A, min(Su) + oe ≤ max(Sv), otherwise no feasible

solution can satisfy e and that edge can be removed. A simple randomized

strategy that independently assigns each vertex v either `vmin := min(Sv) or

`vmax := max(Sv) with equal probability is a 4-approximation. The recent

work of Grandoni et al. [77] show that combining this randomized scheme with

an appropriate LP-rounding yields a 2
√

2 ≈ 2.828 approximation algorithm

for RMAS.

We show that the rounding scheme developed in Section 5.5 can be

adapted to obtain an improved approximation algorithm for OffsetRMAS.

In Section 5.5, we assigned label i to vertex u with probability (1
2k

+
xui
2

). This

154

can be seen as an instance of the following general strategy: for a vertex u, let

pu denote some prior distribution over its allowed labels. In addition, the LP

variables {xui } represent another probability distribution over the labels of u.

The rounding scheme is then to assign label i to vertex u with probability

(
pui
2

+
xui
2

). For OffsetRMAS, we let pu be the distribution defined by the

simple randomized strategy described above, i.e. pui = 1
2

for i ∈ {`umin, `umax}

and pui = 0 for all i ∈ Su \ {`umin, `umax}. The rest of this section proves the

following theorem which implies Theorem 13.

Theorem 17. Let {xvi }, {yeij} denote an optimal solution to the linear pro-

gramming relaxation of OffsetRMAS described in Section 5.4. Let ` be a

randomized labeling obtained by independently assigning labels to each vertex

v with the following probabilities:

Pr[`(v) = i] =


1
4

+
xvi
2

if i ∈ {`vmin, `vmax}

xvi
2

if i ∈ Sv \ {`vmin, `vmax}
(5.14)

Then, for any edge e = (u, v) we have

Pr[`(u) + oe ≤ `(v)] ≥ 1

4

(
1 +

1√
2

) ∑
i∈Su,j∈Sv
i+oe≤j

yeij

 .

Proof. Let S = ∪v∈V Sv denote the set of all labels and let ze =
(∑

i+oe≤j y
e
ij

)
155

denote the contribution of the edge e to the LP objective. We have,

Pr[`(u) + oe ≤ `(v)] =
∑
i+oe≤j

i∈Su,j∈Sv

Pr[`(u) = i] Pr[`(v) = j]

Substituting the assignment probabilities from (5.14) into the above and

simplifying we obtain,

Pr[`(u) + oe ≤ `(v)]

=
1

16
+

1

8

 ∑
i≤`vmax−oe

i∈S

xui +
∑

j≥`umin+oe
j∈S

xvj

+
1

4

 ∑
i+oe≤j
i,j∈S

xui x
v
j


Note that we allow i, j ∈ S in the above sums instead of Su and Sv. This does

not affect the analysis as the LP forces xui = 0 for i /∈ Su and similarly for

v. Now, consider the |S| × |S| matrix [yeij]. Since xui and xvj are equal to the

row sums and column sums of this matrix respectively, Lemma 20 guarantees

that,

∑
i+oe≤j
i,j∈S

xui x
v
j ≥
|S| − oe + 1

2(|S| − oe)

 ∑
i∈Su,j∈Sv
i+oe≤j

yeij


2

≥ (|S| − oe + 1)

2(|S| − oe)
z2
e ≥

z2
e

2
.

156

We thus have,

Pr[`(u) + oe ≤ `(v)]

≥ 1

16
+

1

8

 ∑
i≤`vmax−oe

xui +
∑

j≥`umin+oe

xvj

+
z2
e

8

≥ 1

16
+

1

8

 ∑
i≤`vmax−oe

(∑
j≥i+oe

yei,j

)
+

∑
j≥`umin+oe

(∑
i+oe≤j

yei,j

)+
z2
e

8

=
1

16
+

1

8

2
∑
i+oe≤j

i∈Su,j∈Sv

yei,j

+
z2
e

8

≥ 1

16
+
ze
4

+
z2
e

8

=
ze
4

(
1 +

1

2

(
1

2ze
+ ze

))
≥ ze

4

(
1 +

1√
2

)
,

where the last inequality uses t+ 1/at ≥ 2/
√
a for a, t > 0.

5.7 Sherali-Adams Integrality Gap for Max-

k-Ordering

We now show that the rounding algorithm developed in Section 5.5 is tight.

In fact, we show that even after augmenting the LP with nearly polynomial

rounds of the Sherali-Adams hierarchy, there is a 2− ε integrality gap. We

begin with a simple construction of an n-vertex digraph which is a (2− 2/n)

157

integrality gap for the standard LP relaxation for Max-k-Ordering in

Figure 5.1, for 2 ≤ k ≤ n.

Claim 10. Let D = (V,A) be the complete digraph on n vertices, i.e. having

a directed edge for every ordered pair (u, v) of distinct vertices u and v. Thus,

|A| = 2
(
n
2

)
. Let k ∈ {2, . . . , n}. Then,

The optimum of Max-k-Ordering on D is at most 1
2

(
1− 1

k

) (
n
n−1

)
.

There is a solution to the standard LP relaxation for Max-k-Ordering

on D with value
(
1− 1

k

)
.

In particular, the above implies a (2− 2/n) integrality gap for the LP relax-

ation in Figure 5.1.

Proof. The number of forward edges is simply the number of ordered pairs of

vertices (u, v) with distinct labels. By Turan’s Theorem, the optimal integral

solution is to partition the vertices into k subsets whose sizes differ by at most

1, giving each subset a distinct label from {1, . . . , k}. This implies that there

are at most n2

2

(
1− 1

k

)
forward edges. Hence, the optimal integral solution

has value,

1

2

(
1− 1

k

)(
n

n− 1

)
.

158

On the other hand, consider an LP solution that assigns xui = 1
k

for all u ∈ V

and i ∈ [k], and yei,i+1 = 1
k

for all e = (u, v) ∈ A and i ∈ [k − 1]. Each edge e

contributes,
k−1∑
i=1

yei,i+1 =

(
1− 1

k

)
,

to the objective.

We now claim that the above integrality gap is essentially retained even

after near polynomial rounds of the Sherali-Adams constraints given in Figure

5.2. In particular, we prove the following that implies Theorem 14.

Theorem 18. For any constant ε > 0, there is γ > 0 such that for large

enough n ∈ Z+ and any k ∈ {2, . . . , n}, there is a weighted digraph D∗ =

(V ∗, A∗) satisfying,

The optimum of Max-k-Ordering on D∗ is at most 1
2

(
1− 1

k

)
+ ε.

The LP relaxation for Max-k-Ordering augmented with n(γ/log log k)

rounds of Sherali-Adams constraints has objective value at least
(
1− ε)(1− 1

k

)
.

The rest of this section is devoted to proving the above theorem. Our

construction of the integrality gap uses the techniques of Lee [86] who proved

a similar gap for a variant of the graph pricing problem. We begin by showing

that a sparse, random subgraph D′, of the complete digraph D mentioned

159

above, also has a low optimum solution. For this, we require the following

result on ε-samples [90] for finite set systems that follows from Hoeffding’s

bound. The reader is referred to Theorem 3.2 in [91] for a proof.

Theorem 19. Let (U ,S) denote a finite set system2. Suppose Ã is a multi-set

obtained by sampling from U independently and uniformly m times where

m ≥ 1
2ε2

ln 2|S|
δ

. Then with probability at least 1− δ,∣∣∣∣∣ |Ã ∩ S||Ã|
− |S||U|

∣∣∣∣∣ ≤ ε, ∀S ∈ S.

Ã is referred to as an ε-sample for (U ,S).

In order to construct a solution that satisfies Sherali-Adams constraints

for a large number of rounds, we require the instance to be locally sparse, i.e.

the underlying undirected graph is almost a tree on subgraphs induced by

large (but bounded) vertex sets. We use the notion of path decomposability

as defined by Charikar et al. [88] as a measure of local sparsity.

Definition 7. [Path Decomposability] A graph G is l-path decomposable if

every 2-connected subgraph H of G contains a path of length l such that every

vertex of the path has degree 2 in H.

2A set system (U ,S) consists of a ground set U and a collection of its subsets S ⊆ 2U .

It is called finite if |U| is finite.

160

We proceed to show that the sparse graph D′ obtained as above can be

further processed so that it is locally sparse. Applying the techniques in [88]

and [86] yields a solution with high value that satisfies the Sherali-Adams

constraints.

5.7.1 Constructing a Sparse Instance

Lemma 21. Let D = (V,A) be the complete digraph on n vertices, let

k ∈ {2, . . . , n} and ε > 0 be a small constant. The weighted digraph D′ =

(V,A′) obtained by sampling Ω(n log k
ε2

) edges uniformly at random satisfies

Opt(D′) ≤ 1
2

(
1− 1

k

)
+ε with high probability, where Opt denotes the optimum

of Max-k-Ordering.

Proof. Let V = [n] and A ⊆ [n] × [n] denote the vertices and edges of the

digraph D. Let ρ : [n] → [k] denote some labeling of the vertices. Let

Sρ := {(i, j) | ρ(i) < ρ(j), (i, j) ∈ A} denote the subset of edges that are

satisfied by ρ, and S := {Sρ | ∀ labelings ρ} denote the collection of such

subsets induced by all feasible labelings. Since the number of distinct labelings

is kn, we have that |S| ≤ kn.

We now construct an (ε/2)-sample for the set system (A,S) by randomly

sampling edges (with replacement) as per Theorem 19. Let Ã denote the

161

bag of randomly chosen
(

2
ε2

ln 2kn

δ

)
edges. Substituting δ = 1

n
, we get that

|Ã| = Ω(n log k
ε2

) and with probability at least 1− 1
n

we have,∣∣∣∣∣ |Sρ ∩ Ã||Ã|
− |Sρ||A|

∣∣∣∣∣ ≤ ε/2, ∀ρ. (5.17)

In order to avoid multi-edges in the construction, we define the weight of an

edge w(u, v) to be the number of times that edge is sampled in Ã and let A′

denote the set of thus weighted edges obtained from Ã. Equation (5.17) along

with Claim 10 guarantees that the optimum integral solution of the weighted

graph D′ induced by the edges A′ is bounded by Opt(D′) ≤ Opt(D) + ε ≤

1
2

(
1− 1

k

) (
n
n−1

)
+ ε/2 ≤ 1

2

(
1− 1

k

)
+ ε as desired.

Given a digraph, let its corresponding undirected multigraph be obtained

by replacing every directed edge by the corresponding undirected one. Note

that if the digraph contains both (u, v) and (v, u) edge for some pair of

vertices, then the undirected multigraph contains two parallel edges between

u and v.

We now show that D′ obtained in Lemma 21 can be slightly modified so

that its corresponding underlying multigraph is almost regular, has high girth,

and is locally sparse i.e. all small enough subgraphs are l-path decomposable

for an appropriate choice of parameters.

162

Lemma 22. Let k = {2, . . . , n} and ε > 0 be a small enough constant. Given

the complete digraph D = (V,A) on n vertices, let D′ = (V,A′) be obtained

by sampling (with replacement) Θ(n log k
ε2

) edges uniformly at random. Then,

with high probability there exists a subgraph D′′ = (V,A′′) of D′ obtained

by removing at most ε|A′| edges, such that the undirected multigraph G′′

underlying D′′ satisfies the following properties:

1. Bounded Degree: The maximum degree of any vertex is at most 2∆ and

G′′ has Ω(∆n) edges, where ∆ = Θ(log k
ε2

).

2. High Girth: G′′ has girth at least l = O(logn
log ∆

).

Proof. Since D′ is obtained by sampling Θ(n log k
ε2

) edges uniformly, the proba-

bility that any given edge is selected is p = Θ(log k
ε2n

). In addition, these events

are negatively correlated. Therefore given any set of edges S, the probability

that all the edges in S are sampled is upper bounded by p|S|.

Bounded Degree: As the maximum degree of any vertex in D is at most 2n,

the expected degree of any vertex v ∈ V in D′ is at most ∆ = 2pn = Θ(log k
ε2

).

Call a vertex v ∈ V bad if it has degree more than 2∆ in D′, and call and edge

(u, v) ∈ A′ bad if either u or v is bad. Now, for any edge (u, v), the probability

that (u, v) is bad given that (u, v) ∈ A′ is at most 2e−
∆
3 by Chernoff bound.

163

Hence, the expected number of bad edges is at most 2e−
∆
3 |A′|. Finally, by

Markov’s inequality, with probability at least 1
2
, the number of bad edges

is at most 4e−
∆
3 |A′|. Deleting all bad edges guarantees that the maximum

degree of D′ is at most 2∆ and with probability at least half, we only delete

4e−
∆
3 |A′| edges which is much smaller than ε|A′| since ∆ = Θ(log k

ε2
).

Girth Control: Let G′ denote the undirected multigraph underlying D′.

Since the degree of any vertex in D is at most 2n, we have

E[Number of cycles in G′ of length i] ≤ n(2n)i−1pi ≤ (C∆)i

for some constant C. For i = O(logn
log ∆

), we get

E[Number of cycles in G′ of length i] ≤ n0.5

Summing up over all i in 2 . . . l = O(logn
log ∆

), we get that the expected

number of cycles of length up to l is at most O(n0.6) and hence it is less

than O(n0.7) with high probability. We can then remove one edge from each

such cycle (i.e. o(n) edges) to ensure that the graph G′′ so obtained has

girth at least l. In particular, note that the corresponding digraph D′′ has no

2-cycles.

164

Ensuring Local Sparsity

Using Lemma 22 we ensure that the subgraph of G′′ induced by any subset

of nδ vertices is l-path decomposable for some constant δ > 0. The following

lemma shows that 2-connected subgraphs of G′′ of polynomially bounded size

are sparse.

Lemma 23. The undirected multigraph G′′ underlying the digraph D′′ satisfies

the following p, i.e., there exists δ > 0 such that every 2-connected subgraph

G̃ of G′′ containing t′ ≤ nδ vertices has only (1 + η)t′ edges where η = 1
3l

.

Proof. Let G denote the undirected multigraph underlying the graph D that

was used as a starting point for Lemma 22. The proof proceeds by counting the

number of possible “dense” subgraphs of G and showing that the probability

that any of them exist in G′′ after the previous sparsification steps is bounded

by o(1). We consider two cases based on the value of t′.

Case 1: 4 ≤ t′ ≤ 1
η
. We first bound the total number of 2-connected

subgraphs of G with t′ vertices and t′ + 1 edges. It is easy to verify that

the only possible degree sequences for such subgraphs are (4, 2, 2, . . .) or

(3, 3, 2, 2, . . .). Suppose it is (4, 2, 2, . . .) and let v be the vertex with degree

4. Now, there must be a sequence of t′ + 2 vertices (v, . . . , v, . . . , v) that

165

represents an Eulerian tour. But the number of such sequences is upper

bounded by nt′(n)t
′−1 = t′nt

′
(n for guessing v, t′ for guessing the position of

v in the middle, and nt
′−1 to guess the other t′ − 1 vertices). Now assume

that the degree sequence is (3, 3, 2, 2, . . .) and u, v be the vertices with degree

3. Now, there must a sequence of t+ 2 vertices (u, . . . , v, . . . , u, . . . , v) that

represents an Eulerian path from u to v. By a similar argument, the number

of such sequences is bounded by t′2nt
′
. Hence, we are guaranteed that the

total number of 2-connected subgraphs of G with t′ vertices and t′ + 1 edges

is at most 2t′2nt
′
.

Therefore, the probability that there exists a subgraph of G′′ with t′

vertices and t′ + 1 edges for 4 ≤ t′ ≤ 1
η

= 3l is at most

3l∑
t′=4

2t′
2
nt
′
pt
′+1 =

3l∑
t′=4

2t′
2
nt
′
(

∆

2n

)t′+1

≤ C

n
l3
(

∆

2

)3l+1

,

where C is an appropriate constant. For l = O(logn
log ∆

), we have that (C
n

)l3(∆
2

)3l+1 ≤

n−0.1 = o(1).

Case 2: nδ ≥ t′ > 1
η

= 3l. In this case, we count the number of subgraphs

of G with t′ vertices and (1 + η)t′ edges. As shown by Lee [86], the number

of such subgraphs is bounded by Cαt
′
nt
′
(et
′

2η
)2ηt′ for some constants C and α.

166

Therefore, the probability that such a subgraph exists in G′′ is at most

Cαt
′
nt
′
(
et′

2η

)2ηt′

p(1+η)t′ = Cαt
′
nt
′
(
et′

2η

)2ηt′ (
∆

2n

)(1+η)t′

≤ (C1∆2)t
′
(
C2
l2t′2

n

)t′/3l
,

where C1 and C2 are appropriate constants. We choose l = O(logn
log ∆

) and

δ ∈ (0, 0.1), such that above quantity is less than n−0.1. Summing up over

all t′ = 3l, . . . , nδ, we still have that probability such a subgraph exists is

bounded by o(1).

Finally, we need the following lemma proved by Arora et al. [87] regarding

the existence of long paths in sparse, 2-connected graphs.

Lemma 24. [87] Let l ≥ 1 be an integer and 0 < η < 1
3l−1

, and let H be a

2-connected graph with t vertices and at most (1 + η)t edges and H is not a

cycle. Then H contains a path of length at least l + 1 whose internal vertices

have degree 2 in H.

Corollary 3. Every subgraph G̃ of G′′ that is induced on at most t′ ≤ nδ

vertices is (l − 1)-path decomposable.

Proof. Consider any 2-connected subgraph H of G̃. If H is not a cycle, then

Lemma 23 and Lemma 24 together guarantee that H contains a path of

167

length at least l + 1 such that all internal vertices have degree 2 in H, which

gives us a path of length (l − 1) with all vertices of degree 2 in H. On the

other hand, if H is a cycle, then Lemma 22 guarantees that H has at least

l + 1 vertices and hence again the required path exists.

For convenience we replace (l − 1) in Corollary 3 with l, and since l =

Θ(logn
log ∆

), this does not change any parameter noticeably.

Final Instance

Theorem 20. Given k ∈ {2, . . . , n} and constants ε, µ > 0, there exists a

constant γ > 0, and parameters ∆ = Θ(log k
ε2

), and l = Θ(logn
log ∆

) such that there

is an instance D̂ (with underlying undirected graph Ĝ) of Max-k-Ordering

with the following properties

Low Integral Optimum: Opt(D̂) ≤ 1
2
(1− 1

k
) + ε.

Almost Regularity: Maximum Degree of Ĝ ≤ 2∆, and Ĝ has Ω(∆n)

edges.

Local Sparsity: For t < nγ/ log ∆, every induced subgraph of G on (2∆)lt

vertices is l-path decomposable.

Large Noise: For t < nγ/ log ∆, (1− µ)l/10 ≤ µ
5t

.

168

Note that nγ/ log ∆ = nΩ(1/log log k).

Proof. Let D′′ be the digraph obtained from Lemma 22. Lemmas 21 and 22

imply that the digraph D′′ so obtained (i) has low integral optimum, (ii) is

almost regular, and (iii) has girth ≥ l.

The large noise condition is satisfied by l ≥ (Cγ log n/log ∆) for an

appropriate constant C.

Corollary 3 guarantees that the local sparsity condition is satisfied if

(2∆)lt ≤ nδ, i.e. l ≤ C ′(δ − γ) log n for another constant C ′. Hence, by

selecting a small enough constant γ and an appropriate l = Θ(logn
log ∆

), the

instance D′′ obtained in Lemma 22 satisfies all the required properties.

5.7.2 Constructing Local Distributions

Let D = (V,A) be the instance of Max-k-Ordering constructed in Theorem

20 and let G = (V,E) be the underlying undirected graph. We now show that

there exists a solution to the LP after t = nγ/ log ∆ rounds of the Sherali-Adams

hierarchy whose objective is at least (1−ε)(1− 1
k
). Our proof for the existence

of such a solution essentially follows the approach of Lee [86]. Given a set of

t ≤ nγ/ log ∆ vertices S = {v1, v2, . . . , vt}, our goal is to give a distribution on

events {`(v1) = x1, `(v2) = x2, . . . , `(vt) = xt}x1,x2,...,xt∈[k].

169

Let d(u, v) be the shortest distance between u and v in the (undirected)

graph G. Let V ′ ⊂ V be the set of vertices that are at most l distance away

from S and let G′ be the subgraph induced by V ′ on G. Since the maximum

degree of vertices is bounded by 2∆, we have |V ′| ≤ (2∆)lt and hence G′ is

l-path decomposable by Theorem 20.

The first step of the construction relies on the following theorem by

Charikar et al. [92] that shows that if a graph G′ is l-path decomposable,

then there exists a distribution on partitions of V such that close vertices are

likely to remain in the same partition while distant vertices are likely to be

separated.

Theorem 21 (Charikar et al. [92]). Suppose G′ = (V ′, E ′) is an l-path

decomposable graph. Let d(·, ·) be the shortest path distance on G , and

L = bl/9c; µ ∈ [1/L, 1]. Then there exists a probabilistic distribution of

multicuts of G′ (or in other words random partition of G′ into pieces) such

that the following properties hold. For every two vertices u and v,

1. If d(u, v) ≤ L, then the probability that u and v are separated by the

multicut (i.e. lie in different parts) equals 1− (1− µ)d(u,v); moreover, if

u and v lie in the same part, then the unique shortest path between u

and v also lies in that part.

170

2. If d(u, v) > L, then the probability that u and v are separated by the

multicut is at least 1− (1− µ)L.

3. Every piece of the multicut partition is a tree.

Based on this random partitioning, we define a distribution on the vertices

in S (actually in V ′). As each piece of the above partition is a tree, given

some vertex u with an arbitrary label i, we can extend it to a labeling ` for

every other vertex in that piece such that every directed edge (x, y) in the

piece satisfies `(y)− `(x) = 1 (mod k).

For vertices u and v with d(u, v) ≤ L, we say that label i for u and

i′ for v match if the labeling `(u) = i, `(v) = i′ can be extended so that

for every directed edge (x, y) on the unique shortest path between u and v,

`(y)− `(x) = 1 (mod k). Note that there are exactly k such matching pairs

for every u and v. We can now use Theorem 21 to obtain a random labeling

as follows.

Corollary 4. Suppose G′ = (V ′, E ′) is an l-path decomposable graph. Let

L = bl/9c;µ ∈ [1/L, 1]. Then there exists a random labeling r : V ′ → [k] such

that

1. If d = d(u, v) ≤ L, then

171

Pr[r(u) = i, r(v) = i′] =


(1−µ)d

k
+ 1−(1−µ)d

k2 if i and i′ match

1−(1−µ)d

k2 otherwise

2. If d > L, then

1−(1−µ)L

k2 ≤ Pr[r(u) = i, r(v) = i′] ≤ 1−(1−µ)L

k2 + (1−µ)L

k
for any i, i′ ∈ [k]

Proof. We first sample from the distribution of multicuts given by Theorem

21. For every piece obtained, we pick an arbitrary vertex u and assign r(u)

to be a uniformly random label from [k]. Now, since each piece is a tree, we

can propagate this label along the tree so that for every directed edge (v, w)

we have r(w)− r(v) = 1 (mod k). Note that the final distribution obtained

does not depend on the choice of the initial vertex u.

Consider any two vertices u and v. If d(u, v) ≤ L, then if u and v are in

the same piece, then the path connecting u and v in the piece is the shortest

path. If i and i′ are matching labels, then

Pr[r(u) = i, r(v) = i′] = Pr[u, v in the same piece] ·
(

1

k

)
+ Pr[u, v are separated] ·

(
1

k2

)
.

172

On the other hand, if i and i′ are not matching,

Pr[r(u) = i, r(v) = i′] = Pr[u, v in the same piece] · 0

+ Pr[u, v are separated] ·
(

1

k2

)
.

Similarly, if d(u, v) > L, then Pr[r(u) = i, r(v) = i′] is lower bounded by

Pr[u, v are separated]/k2 and upper bounded by Pr[u, v in the same piece]/k+

Pr[u, v are separated]/k2 . Substituting the separation probabilities in Theo-

rem 21 proves the desired result.

The above random labeling defines a distribution νS over labels of pairs

of vertices as follows.

Definition 8. Let S = {v1, v2, . . . , vt} be a fixed set of vertices. For any two

vertices u, v ∈ S and i, i′ ∈ [k], let νS(u(i), v(i′)) = Pr[x(u) = i, x(v) = i′] in

the local distribution on S defined by r in Corollary 4.

We now define another distribution ρ over labels for pairs of vertices that

is independent of the choice of the set S as follows.

Definition 9. For any vertices u 6= v and i, i′ ∈ [k], let ρ(u(i), v(i′)) =

Pr[x(u) = i, x(v) = i′] if d(u, v) ≤ L, and 1
k2 otherwise. Also define

ρ(u(i), u(i)) = 1
k

and ρ(u(i), u(i′)) = 0 for i 6= i′. Since the shortest path

173

between u and v is unique when d(u, v) ≤ L, ρ is uniquely defined by D and

G and is independent of the choice of set S.

Lee [86] shows that it is possible to use the ρ and νS distributions defined

above to produce consistent distributions over events of the form {`(v1) =

x1, . . . , `(vt) = xt}x1,...,xt∈[k]. Further, these distributions need to be consistent,

i.e., the marginal distribution on S ∩ S ′ does not depend on the choice of

its superset (S or S ′) that is used to obtained the larger local distribution.

The key idea here as shown by Charikar et al. [88] is to embed ρ into

Euclidean space with a small error to obtain tk vectors {v(i)}v∈S,i∈[k] such

that u(i) · v(i′) ≈ ρ(u(i), v(i′)). This uses the large noise property in Theorem

20. The following lemma appears as Lemma 5.7 in [86].

Lemma 25 (Lee [86]). There exist tk vectors {v(i)}v∈S,i∈[k] such that ||v(i)||22 =

µ+ 1
T+1

and u(i) · v(i′) = µ
2

+ ρ(u(i), v(i′)).

Given such tk vectors, one can use a geometric rounding scheme to

define the consistent local distributions. Note that the local distribution is

completely defined by the pairwise inner products of the vectors which, for any

two vectors, is independent of the subset S. Lee [86] shows that the following

simple rounding scheme suffices to obtain a good distribution: choose a

random Gaussian vector g, and for each vertex v, let `(v) = arg maxi(v(i) · g).

174

Lemma 26 (Lee [86] 3). There exists a µ > 0 depending on k and ε such

that, in the above rounding scheme, for any edge (u, v) and any label i ∈ [k]

the probability that `(u) = i and `(v) = i+ 1 (mod k) is at least 1−12ε
k

.

Consider the solution to nγ/ log ∆ rounds of the Sherali-Adams hierar-

chy obtained by the above rounding process. For any edge (u, v) ∈ A, its

contribution to the objective is

∑
1≤i<i′≤k

Pr[`(u) = i, `(v) = i′] ≥
∑

i∈[k−1]

Pr[`(u) = i, `(v) = i+ 1]

≥
∑

i∈[k−1]

1− 12ε

k

The last inequality follows due to Lemma 26. Thus we have a fractional

solution with value at least (1−12ε)(1− 1
k
). This, along with the low optimum

of the instance from Theorem 20 completes the proof of Theorem 18.

5.8 The DED(k) Problem

Recall that the DED(k) problem is to remove the minimum weight subset of

edges from a given DAG so that the remaining digraph does not contain any

path of length k.

3The lemma follows from the proof of Lemma 5.8 of Lee [86] by substituting lA(u, v) = 1.

175

5.8.1 Combinatorial k-Approximation

In the unweighted case (i.e. all edges have unit weight), the following simple

scheme is a k-approximation algorithm. As long as the DAG contains a

directed path P of length k, delete all edges of that path. It is easy to see

that the above scheme guarantees a k-approximation as the optimal solution

must delete at least one edge from the path P while the algorithm deletes

exactly k edges.

The following slightly modified scheme that uses the local ratio technique

yields a k-approximation for weighted DAGs.

Algorithm LocalRatio:

1. S ← {e ∈ E | w(e) = 0}

2. While (V,E \ S) contains a path P of length k

(a) wmin ← mine∈P (w(e))

(b) w(e) = w(e)− wmin,∀e ∈ P

(c) S =← {e ∈ E | w(e) = 0}

Theorem 22. LocalRatio is a polynomial time k-approximation to the DED(k)

problem on weighted DAGs.

176

Proof. We note that the LocalRatio terminates in at most |E| iterations as the

weight of at least one edge reduces to 0 in each iteration. Also, since one can

check if there exists a path of length k in DAG via a dynamic programming,

it follows that LocalRatio runs in polynomial time.

Let O ⊆ E be an optimal solution and S ⊆ E be the solution returned

by LocalRatio. Note that an edge is in S if its weight is reduced to 0 in

some iteration of the algorithm. Thus, the weight of S is upper bounded by

the total reduction in the weight of the edges. At each iteration, for a path

P of length k, the reduction is at most k times the minimum weight edge

(according to the current weights) on in P . Since there is at least one edge e

in P which is in O, we charge this reduction to the weight of e. Then the

weight of e decreases by at least 1/k factor of what is charged to it, and it

cannot decrease beyond 0. Thus, the weight of S is at most the k times the

weight of O.

5.8.2 k-Approximation via LP Rounding

The natural LP relaxation for DED(k) on an n-vertex DAG D = (V,E) is

given in Figure 5.3. This relaxation has nO(k) constraints. However, when the

input graph is a DAG, it admits the following polynomial time separation

177

oracle for any k ∈ {2, . . . , n− 1}.

Separation Oracle and Rounding.

For each vertex v ∈ V and integer t ∈ [n], define avt = minP (
∑

e∈P xe) where

P is a path of length t that ends at vertex v. Once we compute all these avt

values, then a constraint is violated if and only if there is a vertex v such that

avk < 1.

On a DAG the {avt | v ∈ V, t ∈ [n]} can be computed by dynamic

programming. First assume that the vertices are arranged in a topological

order. For any vertex v with no predecessors, set avt = 0,∀t. Otherwise, we

have the following recurrence,

avt = min
u∈predecessors(v)

(x(u,v) + aut−1).

It is easy to see that the above recurrence leads to a dynamic program on

a DAG. Once we obtain an optimal solution to the LP relaxation, a simple

threshold based rounding using a threshold of 1/k yields a k-approximation.

Theorem 23. The standard LP relaxation for DED(k) on n-vertex DAGs

can be solved in polynomial time for k = {2, . . . , n − 1} and yields a k-

approximation.

178

5.8.3 Hardness of Approximation

For fixed integer k ≥ 2 and arbitrarily small constant ε > 0, Svensson [84]

showed factor (k−ε) UGC-hardness of the vertex deletion version of DED(k),

which requires deleting the minimum number of vertices from a given DAG

to remove all paths with k vertices. In particular, [84] proves the following

structural hardness result.

Theorem 24 (Svensson [84]). For any fixed integer t ≥ 2 and arbitrary

constant ε > 0, assuming the UGC the following is NP-hard: Given a DAG

D(V,E), distinguish between the following cases:

(Completeness): There exist t disjoint subsets V1, . . . , Vt ⊂ V satisfying

|Vi| ≥ 1−ε
t
|V | and such that a subgraph induced by any t − 1 of these

subsets has no directed path of t vertices.

(Soundness): Every induced subgraph on ε|V | vertices has a path with

|V |1−ε vertices.

The following theorem provides a simple gadget reduction from the above

theorem to a hardness for DED(k) on DAGs.

Theorem 25. Assuming the UGC, for any constant k ≥ 4 and ε > 0, the

DED(k) problem on weighted DAGs is NP-hard to approximate with a factor

179

better than (bk/2c − ε).

Proof. Fix t = bk/2c. Let D = (V,E) be a hard instance from Theorem 24

for the parameter t and small enough ε > 0. The following simple reduction

yields a weighted DAG H = (VH , EH) as an instance of DED(k). Assign

w(e) = 2|V | to every edge e ∈ E. Split every vertex v ∈ V into vin and vout

and add a directed edge (vin, vout) of weight 1. Also every edge entering v now

enters vin while edges leaving v now leave vout. It is easy to see that removing

all edges of weight 1 from H eliminates all paths with 2 edges, implying that

the optimum solution has weight at most |V |. Thus, we may assume that the

optimum solution does not delete any edge of weight 2|V |.

We now show that Theorem 24 implies that it is UG-hard to distinguish

whether: (Completeness) H has a solution of cost ≤ (1
t
+ε)|V |, or (Soundness)

H has no solution of cost (1− ε)|V |. This immediately implies the desired

(t− ε′) = (bk/2c − ε′) UGC-hardness for DED(k).

(Completeness) There exists a subset S ⊆ V of size at most (1
t

+ ε)|V |,

such that removing S eliminates all paths in D of t vertices. Let S ′

denote the set of edges in H corresponding to the vertices in S. It is

easy to observe that H(VH , EH \ S ′) has no paths of length (number

of edges) 2t. Thus, S ′ is a feasible solution to the DED(k) problem of

180

cost (1
t

+ ε)|V |.

(Soundness) Assume for the sake of contradiction, that we have an

optimal solution S ′ ⊆ EH of cost at most (1 − ε)|V |. Since S ′ is an

optimal solution it only has edges of weight 1, each of which correspond

to a vertex in V . Let S denote this set of vertices in V . By construction,

since H(VH , EH \ S ′) has no paths with k edges, D[V \ S] has no

induced paths with bk/2c + 1 = t + 1 vertices. Further, since |S ′| =

|S| ≤ (1 − ε)|V |, we have |V \ S| ≥ ε|V |. Thus, we have a set of size

ε|V | that has no induced paths of length t+ 1. This is a contradiction

since every induced subgraph of ε|V | vertices has a path of length

|V |1−ε ≥ t+ 1.

5.9 Linear Soft Precedence Scheduling

In this section, we consider the Linear Soft Precedence Scheduling problem.

Once again, the input consists of a set n jobs, precedence constraints between

the jobs, and a deadline k. We wish to schedule all jobs so that all jobs are

completed by their deadline and we try to satisfy the precedence constraints

181

as well as we can. We now try to capture the scenario where the penalty

incurred due to violation of a precedence constraint is proportional to the

extent by which the constraint is violated. Let sj and fj denote the starting

time and finishing time of a job j respectively in a given schedule. We say a

precedence constraint u ≺ v is satisfied if and only if sv ≥ fu, i.e., job v is

processed only after job u has finished processing. However, if the constraint

is not satisfied, then we incur a penalty of (fu − sv).

Formally, we define the Linear Soft Precedence Scheduling problem as

follows -

Definition 10. Linear Soft Precedence Scheduling: We are given

a set V of n jobs, their associated integer processing times {p(j)}nj=1, and

an integer deadline k. In addition, we have weighted precedence constraints

between jobs where e = (u, v) indicates that u must be finished before v is

started and w(e) is the weight of constraint e. The objective is to find a

schedule that processes all jobs by the deadline k and minimizes the sum of

penalties for every violated constraint. If a constraint u ≺ v is violated, we

incur a penalty of (fu − sv).

Due to the nature of the penalty, we can formulate the Linear Soft

Precedence Scheduling problem naturally as a linear program as shown

182

in Figure 5.4. As a result, we can solve the problem optimally in polynomial

time. The LP has variables sv and fv that represents the starting and finishing

times of a job v ∈ V respectively. The variable ce equals the penalty that

constraint e = (u, v) needs to bear.

min
∑
e∈A

ce · w(e)

subject to,

∀v ∈ V, fv = sv + p(v)

∀v ∈ V, fv ≤ k

∀e = (u, v) c(u,v) ≥ fu − sv

∀e = (u, v), ce ≥ 0

∀v ∈ V, sv ≥ 0

Figure 5.4: LP for Linear Soft Precedence Scheduling

.

183

5.10 Future Directions

The Max-k-Ordering and related problems that we defined in this chapter

lead the way to a number of interesting research directions. In this section,

we summarize some of the prominent open problems and future research

directions.

Improved Approximation using Semidefinite Program-

ming

In Section 5.5, we develop an LP-rounding based randomized 2-approximation

algorithm for the Max-k-Ordering problem for any k ∈ [2, n]. Further we

showed that the LP relaxation in Figure 5.1 has an integrality gap of 2− ε

even after augmentation with almost polynomial rounds of the Sherali-Adams

hierarchy for all k ∈ [2, n]. This lower bound rules out the existence of better

algorithms based on the natural LP relaxation.

On the other hand, Guruswami et al. [80] show that the Maximum Acyclic

Subgraph problem (Max-k-Ordering when k = n) is hard to approximate

with a factor better than 2 assuming the Unique Games Conjecture. Hence

for general k, we cannot hope for a better than 2 approximation. However

184

much better results are known in the special case of Max-DiCut (Max-k-

Ordering when k = 2). Following the breakthrough work of Goemans and

Williamson [93], a series of papers [76, 75, 74, 73] gave successively improved

approximations for Max-DiCut leading to the best-known approximation

factor of ≈1.144. On the other hand, Khot et al. [82] show that Max-DiCut

is hard to approximate with a factor better than 1.1382 assuming the Unique

Games Conjecture. Figure 5.5 shows the current status of the approximation

factor for Max-k-Ordering for different values of k.

Figure 5.5: Approximation Landscape for Max-k-Ordering

It remains unclear if the gray line in Figure 5.5 can be achieved. Our

first open problem is to design an SDP-rounding based algorithm for the

Max-k-Ordering problem that improves on the 2-approximation for small

value of k.

185

Improved Algorithms for DAGs

The Max-k-Ordering problem is motivated by the scheduling jobs with soft

precedence constraints by a hard deadline. Indeed, in most practical scenarios,

the underlying precedence graph for a set of jobs is acyclic. However, our

algorithms and analysis do not make use of this fact and instead assume that

the precedence graph G is a general directed graph. Our next open question

is to design improved algorithms for the important case when the underlying

graph is a DAG.

Indeed, since Max-DiCut remains NP-complete on a DAG [94], Max-

k-Ordering remains a hard problem even on DAGs. Surprisingly even for

Max-DiCut on DAGs, better approximations than on a general digraph

are not known. Hence, we continue our quest for improved approximation

algorithms.

Closing the Gap for OffsetRMAS

In Section 5.6, we develop an LP-rounding based randomized 2.344-approximation

algorithm for the OffsetRMAS problem. Since OffsetRMAS generalizes

the Max-k-Ordering problem, it retains the inapproximability beyond a

factor of 2 (assuming the UGC). Our final open question is to close this gap

186

in the understanding of OffsetRMAS by either finding a 2-approximation

algorithm or by improving the lower bound.

187

Chapter 6

Conclusion

Job scheduling and resource allocation are among the most fundamental

problems in Computer Science. While scheduling algorithms are mechanisms

that assign tasks to machines, more broadly, they play a major role of assigning

scare resources to competing jobs. To quote from an article by Birmal et al.

(SIGACT News, [3]), “Scheduling, it turns out, comes down to deciding how

to spend money.” New computing environments bring new challenges and

the design and analysis of appropriate scheduling models is fundamental to

realize the true potential of these advances.

In this thesis, we have studied various scheduling problems motivated by

the need to minimize energy costs as well as network congestion in datacenters.

188

In Chapter 2, we introduced our framework for network-aware energy-efficient

scheduling and designed approximation algorithms for the same. Our model

simultaneously generalizes previous work on energy-efficient scheduling such

as the machine activation problem [9] as well as fundamental graph theoretic

problems such as hypergraph covering with hard capacities [49, 50]. Modern

datacenters are composed of tens of thousands machines interconnected with

a fast, high bandwidth network. Consequently any job has a large amount of

flexibility in the machine on which it can be processed and yet not all machines

are identical. Traditional models do not accurate capture this flexibility and

either treat all machines as identical (For e.g. [9]) or limit the number of

machines to which a job can be assigned (For e.g. [49, 50]). Our results indicate

that effectively balancing energy efficiency as well as network congestion leads

to new challenges that cannot be overcome by obvious extensions of prior

work in either domain. Although we obtain algorithms that yield provably

good schedules with respect to all the three criteria (machine activation cost,

makespan, network congestion) in polynomial time, our algorithms are not

yet applicable in practice. In particular, our algorithms rely on iterative

rounding of auxiliary linear programs and are thus prohibitively slow to use

in a real datacenter. Our primary focus in this work is to demonstrate that it

189

is possible to obtain good approximation algorithms in this highly non-trivial

scheduling scenario. We believe that the existence of such a result should

provide an impetus to future work that yields both better approximation

algorithms as well as fast heuristics that work well in practical settings.

In Chapters 3 and 4, we have considered two causes for congestion in

datacenter networks. Application frameworks such as MapReduce [6] and

Hadoop [7] encourage the development of applications that alternate between

computation and communication phases. Massively parallelizable applications

distribute their computation tasks over hundreds of machines and the inter-

mediate data generated is then “shuffled” and grouped together to be passed

on to the next computation stage during a communication phase. Traditional

scheduling frameworks that treat each job as an atomic unit fail to account for

application-level objectives in this setting. Co-flow scheduling is a recent net-

working abstraction introduced by Chowdhury and Stoica [13] to accurately

capture these application-level scheduling objectives. In Chapter 3, we have

shown that co-flow scheduling shares greater similarities with the well-studied

concurrent open shop scheduling problem than previously believed and utilized

this connection to obtain improved approximation algorithms. In contrast to

the data transfer necessitated due to actual communication requirements for

190

jobs, data often needs to be routed through a network for monitoring and

security purposes. In Chapter 4, we focused on the data detours that are

caused due to the deployment of middleboxes in a datacenter. By exploiting

the hierarchical layout of datacenters, we have developed efficient algorithms

for middlebox deployment that are either optimal (in the soft-capacitated

case) or have small approximation factors (in the hard-capacitated case).

Note that while the co-flow scheduling problem models the datacenter as a

single non-blocking switch, machines in a datacenter are usually connected

in some hierarchical fashion. In this work we leave open the question of

scheduling co-flows over a hierarchical datacenter network.

While the previous chapters deal with the question of where should a job

be scheduled and how should its data be transferred over the network, in

Chapter 5 we study the question of in what order should jobs be processed.

For a large number of applications, precedence constraints specify a partial

order over the set of jobs that need to be executed. However, in the presence

of hard deadline constraints, it is often impossible to find a schedule that

satisfies all precedence constraints. Since some precedence constraints are

more important than others, we introduced the Max-k-Ordering problem

to maximize the total weight of satisfied constraints while completing all

191

the jobs by their deadline and design tight approximation algorithms for

the same. Soft precedence constraints add a new dimension to many well

studied scheduling problems and we believe that it will inspire more interesting

algorithmic work in the future.

192

Bibliography

[1] Cisco Visual Networking. Cisco Global Cloud Index: Forecast and
Methodology, 2012-2017 White Paper, 2013.

[2] Data Center Efficiency Assessment. http://www.nrdc.org/energy/

files/data-center-efficiency-assessment-IP.pdf.

[3] Ken Birman, Gregory Chockler, and Robbert van Renesse. Toward a
cloud computing research agenda. ACM SIGACT News, 40(2):68–80,
2009.

[4] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong
Pan, Navindra Yadav, George Varghese, et al. CONGA: Distributed
congestion-aware load balancing for datacenters. In ACM SIGCOMM
Computer Communication Review, volume 44, pages 503–514. ACM,
2014.

[5] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram Rao, Konstantin
Makarychev, and Matthew Caesar. Network-aware scheduling for data-
parallel jobs: Plan when you can. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, pages
407–420. ACM, 2015.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113,
2008.

[7] Tom White. Hadoop: The definitive guide. “O’Reilly Media, Inc.”, 2012.
https://hadoop.apache.org.

193

http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
https://hadoop.apache.org.

[8] Koyel Mukherjee, Samir Khuller, and Amol Deshpande. Algorithms for
the thermal scheduling problem. In Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on, pages 949–960.
IEEE, 2013.

[9] Samir Khuller, Jian Li, and Barna Saha. Energy efficient scheduling
via partial shutdown. In Proceedings of the twenty-first annual ACM-
SIAM symposium on Discrete Algorithms, pages 1360–1372. Society for
Industrial and Applied Mathematics, 2010.

[10] Manish Purohit and Barna Saha. A Framework for Network-Aware
Energy-Efficient Scheduling. Submitted, 2016.

[11] Uriel Feige. A threshold of ln n for approximating set cover. Journal of
the ACM (JACM), 45(4):634–652, 1998.

[12] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In Mass Storage Systems
and Technologies (MSST), 2010 IEEE 26th Symposium on, pages 1–10.
IEEE, 2010.

[13] Mosharaf Chowdhury and Ion Stoica. Coflow: A networking abstraction
for cluster applications. In Proceedings of the 11th ACM Workshop on
Hot Topics in Networks, pages 31–36. ACM, 2012.

[14] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Efficient coflow
scheduling with varys. In Proceedings of the 2014 ACM Conference
on Special Interest Group on Data Communication, SIGCOMM, pages
443–454, 2014.

[15] Mosharaf Chowdhury and Ion Stoica. Efficient coflow scheduling without
prior knowledge. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM, pages 393–406,
2015.

[16] Zhen Qiu, Cliff Stein, and Yuan Zhong. Minimizing the total weighted
completion time of coflows in datacenter networks. In Proceedings of the
27th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’15, pages 294–303. ACM, 2015.

194

[17] Yangming Zhao, Kai Chen, Wei Bai, Minlan Yu, Chen Tian, Yanhui Geng,
Yiming Zhang, Dan Li, and Sheng Wang. Rapier: Integrating routing
and scheduling for coflow-aware data center networks. In Computer
Communications (INFOCOM), 2015 IEEE Conference on, pages 424–
432. IEEE, 2015.

[18] Samir Khuller and Manish Purohit. Improved Approximation Algorithms
for Scheduling Co-Flows. Submitted, 2016.

[19] Charles E Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. Computers, IEEE Transactions on, 100(10):892–901,
1985.

[20] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson
Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya,
and Amin Vahdat. Portland: A scalable fault-tolerant layer 2 data
center network fabric. SIGCOMM Comput. Commun. Rev., 39(4):39–50,
August 2009.

[21] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar,
and Minlan Yu. SIMPLE-fying Middlebox Policy Enforcement Using
SDN. In Proceedings of the 2013 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM, pages 27–38. ACM, 2013.

[22] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew
Warfield. Split/merge: System support for elastic execution in vir-
tual middleboxes. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, NSDI’13, pages 227–240,
Berkeley, CA, USA, 2013. USENIX Association.

[23] Seungjoon Lee, Manish Purohit, and Barna Saha. Firewall placement
in cloud data centers. In Proceedings of the 4th annual Symposium on
Cloud Computing, page 52. ACM, 2013.

[24] Chandra Chekuri and Rajeev Motwani. Precedence constrained schedul-
ing to minimize sum of weighted completion times on a single machine.
Discrete Applied Mathematics, 98(1):29–38, 1999.

[25] Fabián A Chudak and Dorit S Hochbaum. A half-integral linear pro-
gramming relaxation for scheduling precedence-constrained jobs on a
single machine. Operations Research Letters, 25(5):199–204, 1999.

195

[26] Fabián A Chudak and David B Shmoys. Approximation algorithms for
precedence-constrained scheduling problems on parallel machines that
run at different speeds. Journal of Algorithms, 30(2):323–343, 1999.

[27] Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell
System Technical Journal, 45(9):1563–1581, 1966.

[28] Eugene L Lawler. Sequencing jobs to minimize total weighted completion
time subject to precedence constraints. Annals of Discrete Mathematics,
2:75–90, 1978.

[29] François Margot, Maurice Queyranne, and Yaoguang Wang. Decom-
positions, network flows, and a precedence constrained single-machine
scheduling problem. Operations Research, 51(6):981–992, 2003.

[30] Andreas S Schulz. Scheduling to minimize total weighted completion
time: Performance guarantees of lp-based heuristics and lower bounds.
In Integer Programming and Combinatorial Optimization, pages 301–315.
Springer, 1996.

[31] Ola Svensson. Conditional hardness of precedence constrained scheduling
on identical machines. In Proceedings of the forty-second ACM symposium
on Theory of computing, pages 745–754. ACM, 2010.

[32] David Lesaint, Deepak Mehta, Barry O’Sullivan, Luis Quesada, and Nic
Wilson. A soft global precedence constraint. In IJCAI, pages 566–571,
2009.

[33] Piotr Jaskowski and Anna Sobotka. Using soft precedence relations
for reduction of the construction project duration. Technological and
Economic Development of Economy, 18(2):262–279, 2012.

[34] Sreyash Kenkre, Vinayaka Pandit, Manish Purohit, and Rishi Saket. On
the approximability of digraph ordering. In Algorithms-ESA 2015, pages
792–803. Springer, 2015.

[35] Christos H Papadimitriou and Mihalis Yannakakis. Towards an
architecture-independent analysis of parallel algorithms. SIAM journal
on computing, 19(2):322–328, 1990.

196

[36] Evripidis Bampis, Rodolphe Giroudeau, and Alexander Kononov.
Scheduling tasks with small communication delays for clusters of pro-
cessors. In Proceedings of the thirteenth annual ACM symposium on
Parallel algorithms and architectures, pages 314–315. ACM, 2001.

[37] David Bernstein and Izidor Gertner. Scheduling expressions on a pipelined
processor with a maximal delay of one cycle. ACM Transactions on
Programming Languages and Systems (TOPLAS), 11(1):57–66, 1989.

[38] Ph Chrétienne and C Picouleau. Scheduling with communication delays:
A survey. Scheduling theory and its applications, pages 65–90, 1995.

[39] Daniel W Engels, Jon Feldman, David R Karger, and Matthias Ruhl.
Parallel processor scheduling with delay constraints. In Proceedings of
the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages
577–585. Society for Industrial and Applied Mathematics, 2001.

[40] Theodora Varvarigou, Vwani P Roychowdhury, T Kallath, Eugene Lawler,
et al. Scheduling in and out forests in the presence of communica-
tion delays. Parallel and Distributed Systems, IEEE Transactions on,
7(10):1065–1074, 1996.

[41] Bart Veltman, BJ Lageweg, and Jan Karel Lenstra. Multiprocessor
scheduling with communication delays. Parallel computing, 16(2):173–
182, 1990.

[42] Rodolphe Giroudeau and Jean-Claude König. General scheduling non-
approximability results in presence of hierarchical communications. Eu-
ropean Journal of Operational Research, 184(2):441–457, 2008.

[43] Christophe Picouleau. New complexity results on scheduling with small
communication delays. Discrete Applied Mathematics, 60(1):331–342,
1995.

[44] Cynthia Phillips, Clifford Stein, and Joel Wein. Task scheduling in
networks. SIAM Journal on Discrete Mathematics, 10(4):573–598, 1997.

[45] Sungjin Im and Benjamin Moseley. Scheduling in bandwidth constrained
tree networks. In Proceedings of the 27th ACM on Symposium on Paral-
lelism in Algorithms and Architectures, pages 171–180. ACM, 2015.

197

[46] Laurence Wolsey. An analysis of the greedy algorithm for the submodular
set covering problem. Combinatorica, 2(4), 1982.

[47] Julia Chuzhoy and Joseph Naor. Covering problems with hard capacities.
SIAM Journal on Computing, 36(2):498–515, 2006.

[48] Rajiv Gandhi, Eran Halperin, Samir Khuller, Guy Kortsarz, and Aravind
Srinivasan. An improved approximation algorithm for vertex cover with
hard capacities. In Automata, Languages and Programming, pages 164–
175. Springer, 2003.

[49] Barna Saha and Samir Khuller. Set cover revisited: Hypergraph cover
with hard capacities. In Automata, Languages, and Programming, pages
762–773. Springer, 2012.

[50] Wang Chi Cheung, Michel X Goemans, and Sam Chiu-wai Wong. Im-
proved algorithms for vertex cover with hard capacities on multigraphs
and hypergraphs. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1714–1726. SIAM, 2014.

[51] Lisa Fleischer. Data center scheduling, generalized flows, and submodu-
larity. In ANALCO, pages 56–65. SIAM, 2010.

[52] Yossi Azar, Umang Bhaskar, Lisa Fleischer, and Debmalya Panigrahi.
Online mixed packing and covering. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 85–100.
SIAM, 2013.

[53] David B Shmoys and Éva Tardos. An approximation algorithm for the
generalized assignment problem. Mathematical programming, 62(1-3):461–
474, 1993.

[54] Cloud dataflow. https://cloud.google.com/dataflow/.

[55] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, pages 2–2. USENIX
Association, 2012.

198

https://cloud.google.com/dataflow/

[56] Monaldo Mastrolilli, Maurice Queyranne, Andreas S Schulz, Ola Svens-
son, and Nelson A Uhan. Minimizing the sum of weighted completion
times in a concurrent open shop. Operations Research Letters, 38(5):390–
395, 2010.

[57] Zhi-Long Chen and Nicholas G Hall. Supply chain scheduling: Conflict
and cooperation in assembly systems. Operations Research, 55(6):1072–
1089, 2007.

[58] Naveen Garg, Amit Kumar, and Vinayaka Pandit. Order scheduling
models: hardness and algorithms. In FSTTCS 2007: Foundations of
Software Technology and Theoretical Computer Science, pages 96–107.
Springer, 2007.

[59] Joseph Y-T Leung, Haibing Li, and Michael Pinedo. Scheduling orders
for multiple product types to minimize total weighted completion time.
Discrete Applied Mathematics, 155(8):945–970, 2007.

[60] Guoqing Wang and TC Edwin Cheng. Customer order scheduling to
minimize total weighted completion time. Omega, 35(5):623–626, 2007.

[61] Maurice Queyranne. Structure of a simple scheduling polyhedron. Math-
ematical Programming, 58(1-3):263–285, 1993.

[62] Zhen Qiu, Cliff Stein, and Yuan Zhong. Experimental Analysis of
Algorithms for Coflow Scheduling. ArXiv e-prints, 2016.

[63] Nikhil Bansal, Kang-Won Lee, Viswanath Nagarajan, and Murtaza Zafer.
Minimum congestion mapping in a cloud. In Proceedings of the 30th
annual ACM SIGACT-SIGOPS symposium on Principles of distributed
computing, pages 267–276. ACM, 2011.

[64] Debojyoti Dutta, Michael Kapralov, Ian Post, and Rajendra Shinde.
Embedding paths into trees: Vm placement to minimize congestion. In
ESA, pages 431–442. Springer, 2012.

[65] Xitao Wen, Kai Chen, Yan Chen, Yongqiang Liu, Yong Xia, and
Chengchen Hu. Virtualknotter: Online virtual machine shuffling for
congestion resolving in virtualized datacenter. In ICDCS, pages 12–21.
IEEE, 2012.

199

[66] Konstantin Andreev, Charles Garrod, Daniel Golovin, Bruce Maggs, and
Adam Meyerson. Simultaneous source location. ACM Transactions on
Algorithms (TALG), 2009.

[67] Aravind Srinivasan. Improved approximations for edge-disjoint paths,
unsplittable flow, and related routing problems. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science, pages 416–416.
IEEE Computer Society, 1997.

[68] Stavros G Kolliopoulos and Clifford Stein. Approximating disjoint-path
problems using greedy algorithms and packing integer programs. Springer,
1998.

[69] Chandra Chekuri and Sanjeev Khanna. Edge disjoint paths revisited. In
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 628–637. Society for Industrial and Applied Mathemat-
ics, 2003.

[70] Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, Bruce
Shepherd, and Mihalis Yannakakis. Near-optimal hardness results and
approximation algorithms for edge-disjoint paths and related problems.
Journal of Computer and System Sciences, 67(3):473–496, 2003.

[71] Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm
for edge-disjoint paths with congestion 2. In Foundations of Computer
Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 233–242.
IEEE, 2012.

[72] Subhash Khot and Oded Regev. Vertex cover might be hard to ap-
proximate to within 2- ε. Journal of Computer and System Sciences,
74(3):335–349, 2008.

[73] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding tech-
niques for the MAX 2-SAT and MAX DI-CUT problems. In Integer
Programming and Combinatorial Optimization, pages 67–82, 2002.

[74] Shiro Matuura and Tomomi Matsui. 0.863-approximation algorithm for
MAX DICUT. In Approximation, Randomization, and Combinatorial
Optimization: Algorithms and Techniques, APPROX, pages 138–146,
2001.

200

[75] Uri Zwick. Analyzing the MAX 2-SAT and MAX DI-CUT approximation
algorithms of Feige and Goemans. Manuscript, 2000.

[76] Uri Feige and Michel X Goemans. Approximating the value of two prover
proof systems, with applications to MAX 2SAT and MAX DICUT. In
Proc. ISTCS, pages 182–189, 1995.

[77] Fabrizio Grandoni, Tomasz Kociumaka, and Micha l W lodarczyk. An
LP-rounding-approximation for restricted maximum acyclic subgraph.
Information Processing Letters, 115(2):182–185, 2015.

[78] Alantha Newman. Approximating the maximum acyclic subgraph. PhD
thesis, Massachusetts Institute of Technology, 2000.

[79] Subhash Khot. On the power of unique 2-prover 1-round games. In
Proceedings on 34th Annual ACM Symposium on Theory of Computing,
STOC, pages 767–775, 2002.

[80] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra.
Beating the random ordering is hard: Inapproximability of maximum
acyclic subgraph. In Proceedings of the 49th Annual IEEE Symposium
on Foundations of Computer Science, FOCS, pages 573–582, 2008.

[81] Johan H̊astad. Some optimal inapproximability results. JACM, 48(4):798–
859, 2001.

[82] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell.
Optimal inapproximability results for MAX-CUT and other 2-variable
CSPs? SIAM Journal on Computing, 37(1):319–357, 2007.

[83] Doowon Paik, Sudhakar Reddy, and Sartaj Sahni. Deleting vertices to
bound path length. IEEE Transactions on Computers, 43(9):1091–1096,
1994.

[84] Ola Svensson. Hardness of vertex deletion and project scheduling. In
Proc. APPROX, pages 301–312, 2012.

[85] Luca Trevisan. Parallel approximation algorithms by positive linear
programming. Algorithmica, 21(1):72–88, 1998.

201

[86] Euiwoong Lee. Hardness of graph pricing through generalized Max-Dicut.
Proceedings of the 47th ACM Symposium on Theory of Computing, STOC,
pages 391–399, 2015.

[87] Sanjeev Arora, Béla Bollobás, and László Lovász. Proving integrality
gaps without knowing the linear program. In Proceedings of the 43rd
Symposium on Foundations of Computer Science, FOCS, pages 313–313,
2002.

[88] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integral-
ity gaps for Sherali-Adams relaxations. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC, pages 283–292, 2009.

[89] Alan Frieze and Mark Jerrum. Improved approximation algorithms for
MAX k-CUT and MAX BISECTION. Algorithmica, 18(1):67–81, 1997.

[90] Vladimir Vapnik and A Ya Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability
and its Applications, 16(2):264–280, 1971.

[91] Hubert Chan. COMP8601 Lecture-9 Notes. Department of Computer
Science, HKU, Fall 2013. http://i.cs.hku.hk/~hubert/teaching/

c8601_2013/notes9.pdf.

[92] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Local
global tradeoffs in metric embeddings. SIAM Journal on Computing,
39(6):2487–2512, 2010.

[93] Michel X Goemans and David P Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems using semidefinite
programming. Journal of the ACM (JACM), 42(6):1115–1145, 1995.

[94] Michael Lampis, Georgia Kaouri, and Valia Mitsou. On the algorith-
mic effectiveness of digraph decompositions and complexity measures.
Discrete Optimization, 8(1):129–138, 2011.

202

http://i.cs.hku.hk/~hubert/teaching/c8601_2013/notes9.pdf
http://i.cs.hku.hk/~hubert/teaching/c8601_2013/notes9.pdf

	Introduction
	Energy Efficiency: Network-Aware Machine Activation
	The Framework

	Managing Data Transfer: Co-flow Scheduling
	Managing Data Detours: Firewall Placement
	Constraint Selection: Scheduling with Soft Precedences
	Outline of the Dissertation

	Network-Aware Energy-Efficient Scheduling
	The Framework
	Related Work on Network Aware Scheduling
	Related Work on Capacitated Covering
	Our Contributions and Techniques

	Preliminaries
	LP Rounding for Network-Aware Machine Activation
	High Level Ideas
	Stage 1
	Stage 2
	Stage 3
	Stage 4

	Network-Aware Machine Activation for Unit Jobs
	Stage 3
	Stage 4

	LP Rounding for General Network-Aware Machine Activation
	Rounding Algorithm
	Analysis

	Scheduling Co-flows
	Problem Setting
	Related Work

	Connection to Concurrent Open Shop
	Our Contribution and Techniques
	Preemptive Concurrent Open Shop with Release Times
	Improved Algorithms for Scheduling Co-flows
	 Reduction to Concurrent Open Shop:
	Scheduling Co-Flows Without Release Times
	Scheduling Co-flows With Release Times

	Experimental Analysis
	Datasets
	Ordering Heuristics
	Scheduling Strategies
	Experimental Results
	Conclusions

	Firewall Placement
	Setting and Problem Definitions
	Related Work
	Our Contribution
	Preprocessing
	Firewall Placement with Soft Capacities
	Firewall Placement with Hard Capacities
	Capacitated Simultaneous Source Location

	Firewall Placement with Hard Capacities and No Bandwidth Violation
	Lower Bounds
	Future Directions

	Scheduling with Soft Precedences
	Motivation and Problem Definitions
	Related Work
	Our Results
	Overview of Techniques

	Preliminaries
	LP Relaxation for Max-k-Ordering
	LP Relaxation for RMAS and OffsetRMAS
	LP Relaxation for DED(k)

	A 2-Approximation for Max-k-Ordering
	Approximation for OffsetRMAS
	Sherali-Adams Integrality Gap for Max-k-Ordering
	Constructing a Sparse Instance
	Constructing Local Distributions

	The DED(k) Problem
	Combinatorial k-Approximation
	k-Approximation via LP Rounding
	Hardness of Approximation

	Linear Soft Precedence Scheduling
	Future Directions

	Conclusion
	Bibliography

