209 research outputs found

    Approximating Maximin Share Allocations

    Get PDF
    We study the problem of fair allocation of M indivisible items among N agents using the popular notion of maximin share as our measure of fairness. The maximin share of an agent is the largest value she can guarantee herself if she is allowed to choose a partition of the items into N bundles (one for each agent), on the condition that she receives her least preferred bundle. A maximin share allocation provides each agent a bundle worth at least their maximin share. While it is known that such an allocation need not exist [Procaccia and Wang, 2014; Kurokawa et al., 2016], a series of work [Procaccia and Wang, 2014; David Kurokawa et al., 2018; Amanatidis et al., 2017; Barman and Krishna Murthy, 2017] provided 2/3 approximation algorithms in which each agent receives a bundle worth at least 2/3 times their maximin share. Recently, [Ghodsi et al., 2018] improved the approximation guarantee to 3/4. Prior works utilize intricate algorithms, with an exception of [Barman and Krishna Murthy, 2017] which is a simple greedy solution but relies on sophisticated analysis techniques. In this paper, we propose an alternative 2/3 maximin share approximation which offers both a simple algorithm and straightforward analysis. In contrast to other algorithms, our approach allows for a simple and intuitive understanding of why it works

    Fair and Efficient Allocations under Subadditive Valuations

    Get PDF
    We study the problem of allocating a set of indivisible goods among agents with subadditive valuations in a fair and efficient manner. Envy-Freeness up to any good (EFX) is the most compelling notion of fairness in the context of indivisible goods. Although the existence of EFX is not known beyond the simple case of two agents with subadditive valuations, some good approximations of EFX are known to exist, namely 12\tfrac{1}{2}-EFX allocation and EFX allocations with bounded charity. Nash welfare (the geometric mean of agents' valuations) is one of the most commonly used measures of efficiency. In case of additive valuations, an allocation that maximizes Nash welfare also satisfies fairness properties like Envy-Free up to one good (EF1). Although there is substantial work on approximating Nash welfare when agents have additive valuations, very little is known when agents have subadditive valuations. In this paper, we design a polynomial-time algorithm that outputs an allocation that satisfies either of the two approximations of EFX as well as achieves an O(n)\mathcal{O}(n) approximation to the Nash welfare. Our result also improves the current best-known approximation of O(nlogn)\mathcal{O}(n \log n) and O(m)\mathcal{O}(m) to Nash welfare when agents have submodular and subadditive valuations, respectively. Furthermore, our technique also gives an O(n)\mathcal{O}(n) approximation to a family of welfare measures, pp-mean of valuations for p(,1]p\in (-\infty, 1], thereby also matching asymptotically the current best known approximation ratio for special cases like p=p =-\infty while also retaining the fairness properties

    Approximate Maximin Shares for Groups of Agents

    Full text link
    We investigate the problem of fairly allocating indivisible goods among interested agents using the concept of maximin share. Procaccia and Wang showed that while an allocation that gives every agent at least her maximin share does not necessarily exist, one that gives every agent at least 2/32/3 of her share always does. In this paper, we consider the more general setting where we allocate the goods to groups of agents. The agents in each group share the same set of goods even though they may have conflicting preferences. For two groups, we characterize the cardinality of the groups for which a constant factor approximation of the maximin share is possible regardless of the number of goods. We also show settings where an approximation is possible or impossible when there are several groups.Comment: To appear in the 10th International Symposium on Algorithmic Game Theory (SAGT), 201

    Computing large market equilibria using abstractions

    Full text link
    Computing market equilibria is an important practical problem for market design (e.g. fair division, item allocation). However, computing equilibria requires large amounts of information (e.g. all valuations for all buyers for all items) and compute power. We consider ameliorating these issues by applying a method used for solving complex games: constructing a coarsened abstraction of a given market, solving for the equilibrium in the abstraction, and lifting the prices and allocations back to the original market. We show how to bound important quantities such as regret, envy, Nash social welfare, Pareto optimality, and maximin share when the abstracted prices and allocations are used in place of the real equilibrium. We then study two abstraction methods of interest for practitioners: 1) filling in unknown valuations using techniques from matrix completion, 2) reducing the problem size by aggregating groups of buyers/items into smaller numbers of representative buyers/items and solving for equilibrium in this coarsened market. We find that in real data allocations/prices that are relatively close to equilibria can be computed from even very coarse abstractions

    Maximin Fairness with Mixed Divisible and Indivisible Goods

    Full text link
    We study fair resource allocation when the resources contain a mixture of divisible and indivisible goods, focusing on the well-studied fairness notion of maximin share fairness (MMS). With only indivisible goods, a full MMS allocation may not exist, but a constant multiplicative approximate allocation always does. We analyze how the MMS approximation guarantee would be affected when the resources to be allocated also contain divisible goods. In particular, we show that the worst-case MMS approximation guarantee with mixed goods is no worse than that with only indivisible goods. However, there exist problem instances to which adding some divisible resources would strictly decrease the MMS approximation ratio of the instance. On the algorithmic front, we propose a constructive algorithm that will always produce an α\alpha-MMS allocation for any number of agents, where α\alpha takes values between 1/21/2 and 11 and is a monotone increasing function determined by how agents value the divisible goods relative to their MMS values.Comment: Appears in the 35th AAAI Conference on Artificial Intelligence (AAAI), 202

    Multi-agent Online Scheduling: MMS Allocations for Indivisible Items

    Full text link
    We consider the problem of fairly allocating a sequence of indivisible items that arrive online in an arbitrary order to a group of n agents with additive normalized valuation functions. We consider both the allocation of goods and chores and propose algorithms for approximating maximin share (MMS) allocations. When agents have identical valuation functions the problem coincides with the semi-online machine covering problem (when items are goods) and load balancing problem (when items are chores), for both of which optimal competitive ratios have been achieved. In this paper, we consider the case when agents have general additive valuation functions. For the allocation of goods, we show that no competitive algorithm exists even when there are only three agents and propose an optimal 0.5-competitive algorithm for the case of two agents. For the allocation of chores, we propose a (2-1/n)-competitive algorithm for n>=3 agents and a square root of 2 (approximately 1.414)-competitive algorithm for two agents. Additionally, we show that no algorithm can do better than 15/11 (approximately 1.364)-competitive for two agents.Comment: 29 pages, 1 figure (to appear in ICML 2023
    corecore