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Abstract

We study the problem of allocating a set of indivisible goods among agents with subad-
ditive valuations in a fair and efficient manner. Envy-Freeness up to any good (EFX) is the
most compelling notion of fairness in the context of indivisible goods. Although the exis-
tence of EFX is not known beyond the simple case of two agents with subadditive valuations,
some good approximations of EFX are known to exist, namely 1

2 -EFX allocation [PR18] and
EFX allocations with bounded charity [CKMS20].

Nash welfare (the geometric mean of agents’ valuations) is one of the most commonly
used measures of efficiency. In case of additive valuations, an allocation that maximizes
Nash welfare also satisfies fairness properties like Envy-Free up to one good (EF1). Al-
though there is substantial work on approximating Nash welfare when agents have additive
valuations, very little is known when agents have subadditive valuations. In this paper, we
design a polynomial-time algorithm that outputs an allocation that satisfies either of the
two approximations of EFX as well as achieves an O(n) approximation to the Nash welfare.
Our result also improves the current best-known approximation of O(n log n) [GKK20] and
O(m) [NR14] to Nash welfare when agents have submodular and subadditive valuations,
respectively.

Furthermore, our technique also gives an O(n) approximation to a family of welfare
measures, p-mean of valuations for p ∈ (−∞, 1], thereby also matching asymptotically the
current best approximation ratio for special cases like p = −∞ [KP07] while also retaining
the remarkable fairness properties.

1 Introduction

Discrete fair division of resources is a fundamental problem in various multi-agent settings,
where the goal is to partition a set M of m indivisible goods among n agents in a fair and
efficient manner. Each agent i has a valuation function vi : 2M → R≥0 that quantifies the
amount of utility i derives from every subset of goods. We assume that vi’s are monotone, i.e.,
vi(A) ≤ vi(A ∪ {g}) for all g ∈ M , normalized i.e., vi(∅) = 0 and subadditive, i.e., vi(A ∪ B) ≤
vi(A) + vi(B), for all A,B ⊆ M . Subadditive functions naturally arise in practice because
they capture the notion of complement-freeness [LLN06]. Furthermore, they strictly contain
submodular functions1, which capture the notion of diminishing marginal returns.

Among various choices, envy-freeness is the most natural fairness concept, where no agent i
envies another agent j’s bundle, i.e., partition of goods into n bundles X1, X2, . . . , Xn so that for
all agents i and j, we have vi(Xi) ≥ vi(Xj). However, envy-free allocation do not always exist,
e.g., consider allocating a single valuable good among two agents. Its mild relaxation envy-
freeness up to any good (EFX) [CKM+16] is arguably the most compelling notion of fairness in
discrete setting, where no agent envies other’s allocation after the removal of any good, i.e., for
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1A function v(.) is submodular if v(A) + v(B) ≥ v(A ∪B) + v(A ∩B),∀A,B ⊆M .
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all agents i and j, we have vi(Xi) ≥ vi(Xj \ {g}) for all g ∈ Xj . While it is not known whether
an EFX allocation always exists or not beyond the simple case of two agents under subadditive
valuations, the following relaxations exist:

• 1
2 -EFX allocation X = 〈X1, X2, . . . , Xn〉 where vi(Xi) ≥ 1

2 · vi(Xj \ {g}), for all g ∈
Xj [PR18]. In this paper we will be referring to a relaxed version of 1

2 -EFX namely,
(12 − ε)-EFX allocation where vi(Xi) ≥ (12 − ε) · vi(Xj \ {g}) for all g ∈ Xj . A (12 − ε)-
EFX allocation can also be computed in polynomial time when agents have subadditive
valuations.

• EFX allocation with bounded charity X = 〈X1, X2, . . . , Xn〉 where we do not allocate a
set P of goods (set P is donated to charity) where |P | < n and vi(Xi) ≥ vi(P ),for all
i ∈ [n] and the partial allocation X is EFX [CKMS20]. There is also a polynomial time
algorithm to find an (1 − ε)-EFX allocation with bounded charity for general valuations
for any ε > 0 [CKMS19]2.

Another popular (and stronger) relaxation is envy-freeness up to one good (EF1) [Bud11],
where no agent envies other’s allocation after the removal of some good from the other’s bundle,
i.e., vi(Xi) ≥ vi(Xj \ {g}), for some g ∈ Xj . Clearly, EFX implies EF1. Although the existence
of EFX allocations still remains a major open question, an EF1 allocation always exists for
general valuations and can be obtained in polynomial time [LMMS04].

We note that none of the above algorithms provides, as such, any efficiency guarantees.
For efficiency, among many choices, maximum Nash welfare, defined as the geometric mean of
agents’ valuations, serves as a focal point. In contrast to other popular welfare measures such
as social welfare and max-min welfare, Nash welfare is scale invariant, i.e., scaling one agent’s
valuation by any positive constant does not change the outcome. In case of additive valua-
tions3, an allocation that maximizes Nash welfare is both EF1 and Pareto optimal4 [CKM+16].
However, such an allocation does not provide the EF1 property beyond additive (e.g., subad-
ditive valuations [CKM+16]), and further, no meaningful guarantee in terms of EFX even in
the case of additive valuations [ABF+20]. Furthermore, maximizing the Nash welfare is a hard
problem, and the best known approximation guarantees are O(n log n) and O(m) for submod-
ular [GKK20] and subadditive [NR14] valuations, respectively. As the case with the algorithms
providing fairness guarantees, these Nash welfare approximation algorithms do not provide any
fairness guarantees. Therefore, a natural question is:

Does there exist a polynomial-time algorithm that provides the best known fairness
guarantees as well as the best known efficiency guarantees simultaneously?

In this paper, we answer this question affirmatively. We design a simple algorithm that
outputs an allocation that provides (i) either of the best-known EFX approximations mentioned
above, (ii) EF1 guarantee, and (iii) O(n) approximation to the maximum Nash welfare. The
latter also improves the best-known approximation factor. Further, we show that our algorithm
can be easily adapted to obtain the same guarantees for the entire family of p-mean welfare
measures Mp(X), defined as,

Mp(X) = (
∑
i

1
n(vi(Xi))

p)1/p for p ∈ (−∞, 1].

The p = −∞, 0, and 1 correspond to the well-studied cases of max-min welfare, Nash welfare,
and social welfare, respectively. We note that this also matches the current best approxima-
tion ratio for the max-min welfare [KP07] while also retaining the above mentioned fairness
guarantees.

2This is an updated version of the paper which goes beyond the preliminary version published in SODA 2020
3A valuation function v(.) is additive if vi(S) =

∑
j∈S vi({j}), ∀S.

4An allocation X ′ = (X ′1, . . . , X
′
n) Pareto dominates another allocation X = (X1, . . . , Xn) if vi(X

′
i) ≥

vi(Xi), ∀i and vk(X ′k) > vk(Xk) for some k. An allocation X is Pareto optimal if no allocation X ′ dominates X.
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One crucial difference between Nash welfare and p-mean welfare when p 6= 0 is that p-mean
is no longer scale invariant. Therefore, it is not intuitive that the allocation that maximizes
welfare will be fair.5 However, we manage to give a polynomial time algorithm that achieves a
good approximation (independent of the number of goods in the instance) to the p-mean welfare
while still retaining all the fairness properties.

1.1 Technical Overview

In this section, we briefly sketch our main result and overall approach. One of the primary moti-
vation of our techniques is to show that finding certain “fair allocations” can give us “reasonably
efficient allocations”. While any arbitrary EF1 allocation does not give us any guarantee on the
generalized p-mean welfare even in the context of additive valuations, we would outline in this
paper that certain EFX allocations (need not be Pareto-optimal) and even approximate EFX
allocations can help us get good approximations to a broad class of welfare measures like the
generalized p-mean welfare, further showing the strength of this measure of fairness. We now
state the main result of our paper

Theorem 1. Given a discrete fair division instance with a set [n] of n agents, a set M of m
indivisible goods, where each agent i has a subadditive valuation function vi : 2M → R≥0, for
any ε > 0, we can find in polynomial time

• a partition 〈X1, X2, . . . , Xn〉 of M such that X is (12 − ε)-EFX and Mp(X) ≥ 1−2ε
8(n+1) ·

Mp(X
∗), and

• a partition 〈X1, X2, . . . , Xn, P 〉 of M such that X is (1 − ε)-EFX with bounded charity
and Mp(X) ≥ 1−ε

4(n+1) ·Mp(X
∗),

where X∗ is the allocation with maximum p-mean value.

We now briefly sketch our main techniques: Let us consider the scenario that a given instance
admits an envy-free allocation, i.e., a partition of the goods into n bundles X1, X2, . . . , Xn such
that for all pairs of agents i and j we have vi(Xi) ≥ vi(Xj). In that case for each agent i we
have

n · vi(Xi) ≥
∑
j∈[n]

vi(Xj)

≥ vi(∪j∈[n]Xj) (by subadditivity)

= vi(M)

This implies that vi(Xi) ≥ 1
n ·vi(M). Since in any optimal allocation no agent can get a valuation

more than vi(M), we can conclude that each agent has a bundle worth 1
n times his bundle at

optimum. This would immediately give us an n approximation for generalized p-mean welfare.
However, most instances may not admit an envy-free allocation. Naturally, we then look into
the closest relaxation of envy-freeness that is known to exist in the context of indivisible goods6.
(12 -EFX [PR18] and EFX with bounded charity7 [CKMS20]). So let us consider the 1

2 -EFX
allocation: Here we can partition the given instance into n bundles X1, X2, . . . , Xn such that for

5Consider a special case when p = −∞. Here the p-mean welfare is equal to the valuation of the agent with
smallest valuation. In particular, consider the scenario with two agents and n goods where agent 1 has a valuation
of 1 for each good and agent 2 has a valuation of ε < 1

n
for each good. The allocation that maximizes the p-mean

welfare here will give exactly one good to agent 1 and n − 1 goods to agent 2, which is very far from satisfying
any relaxation of envy-freeness.

6In our algorithm we consider relaxed variants of these notions like ( 1
2
−ε)-EFX and (1−ε)-EFX with bounded

charity, but for clarity in this section we keep the original notions
7defined in Section 2
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all pairs of agents i and j we have vi(Xi) ≥ 1
2vi(Xj \ {g}) for all g ∈ Xj . Let us first look into

all the bundles Xj that are not singleton, i.e., |Xj | ≥ 2: We have that vi(Xi) ≥ 1
2 · vi(Xj \ {g})

for all g ∈ Xj , implying that vi(Xi) ≥ 1
2 ·max

(
vi(Xj \ {g}), vi({g})

)
(as |Xj | ≥ 2). Thus,

n · vi(Xi) ≥
∑
|Xj |≥2

1

2
· 1

2
·
(
vi(Xj \ {g}) + vi({g})

)
≥ 1

4
·
∑
|Xj |≥2

vi(Xj) (by subadditivity)

≥ 1

4
· vi(∪|Xj |≥2Xj) (by subadditivity) (1)

Let S be the set of all the goods in singleton bundles in X, i.e., S = {g | there is a Xj = {g}}.
Then from (1) we have the guarantee that for every agent vi(Xi) ≥ 1

4n ·vi(M \S). Therefore, in
any 1

2 -EFX allocation every agent has an 1
4n fraction of his valuation on the goods he receives

from M \ S in the optimal allocation, i.e., vi
(
X∗i ∩ (M \ S)

)
where X∗ = (X∗1 , . . . , X

∗
n) is the

allocation that has the highest generalized p-mean welfare. The only problem is how to allocate
the goods in the set S appropriately.

The only scenario where an incorrect allocation of the goods in S causes a significant decrease
in the p-mean welfare is when there are agents who have a substantially high valuation for some
goods in S. However, we could very well be in a scenario where there are only a few goods in S
(say less than n

3 ) which are very valuable to many agents and then we may not be able to give
every agent a bundle that he values 1

n times the whole set S.8 Therefore we need to compare
our allocation with the allocation that maximizes the p-mean welfare.

We briefly sketch how we overcome this barrier. The good aspect of the situation is that the
number of goods in S are small, i.e., |S| ≤ n. Let Hi denote the set of n goods that are valued
by agent i the most, i.e., all goods in Hi are more valuable than any good outside Hi. Now we
find a single good allocation (where each agent gets exactly one good) of the high valued goods,
namely the set H = ∪i∈[n]Hi, optimally to the agents assuming that we can give each agent

at least 1
n times their valuation for the low valued goods, namely the set M \Hi. That is, we

find a single good allocation, where every agent i gets exactly one high valued good hi ∈ Hi,
that maximizes

∑
i∈[n]

(
vi({hi}) + 1

nvi(M \Hi)
)p

(such allocations can be found efficiently with
matching algorithms). Let us call the current single good allocation Y . Note that Y is trivially
EFX as every agent has exactly one good (therefore Y is also 1

2 -EFX). We then run the 1
2 -EFX

algorithm starting with Y as the initial partial 1
2 -EFX allocation. The intuition being that the

low valued goods appear in non-singleton bundles and the high valued goods occur in singleton
bundles in the final 1

2 -EFX allocation, but we have allocated the high valued goods correctly
(up to a factor of 1

n as we computed a single good allocation, while the optimum need not
necessarily give every agent exactly one high valued good) as we started out with an optimal
allocation of the high valued goods. Since the low valued goods occur in non-singleton bundles
we are indeed able to give every agent 1

n times their valuation for the low valued goods.

1.2 Related Work

Fair division has been extensively studied for more than seventy years since the seminal work
of Steinhaus [Ste48]. A complete survey of all different settings and the fairness and efficiency
notions used is well beyond the scope of this paper. We limit our attention to the discrete
setting (as mentioned in Section 1) and the two most universal notions of fairness, namely
envy-freeness and proportionality9. Both of these properties can be guaranteed in case of di-

8A very simple scenario is to divide n goods among n agents with identical additive valuations, where all
agents have a valuation of 1 for a single good and ε� 1

n
for the rest of the goods. In any division there will be

n− 1 agents who do not get 1
n

of their valuation on the set of n goods
9In a proportional share, each agent receives at least a 1/n share of the goods.
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visible goods. For indivisible goods, there are trivial instances (mentioned in Section 1) where
neither of these notions can be achieved by any allocation. However there has been exten-
sive studies on relaxations of envy-freeness like EF1 [BCKO17, BBMN18, LMMS04, CKM+16]
and EFX [CKMS20, CGH19, CKM+16, PR18] and relaxations of proportionality like max-
imin shares (MMS) [Bud11, BL16, AMNS17, BK17, KPW18, GHS+18, GMT19, GT19] and
proportionality up to one good (PROP1) [CFS17, BK19, GM19].

While there is a significant interest in finding fair allocations, there has also been a lot of
interest in guaranteeing efficient fair allocations. A common measure of efficiency in economics is
Pareto-Optimality10. Caragiannis et al. [CKM+16] showed that any allocation that maximizes
the Nash welfare is guaranteed to be Pareto-optimal (efficient) and EF1 (fair). Hence the Nash
welfare in itself also a good measure of efficiency of fair allocations. Unfortunately, finding
an allocation with the maximum Nash welfare is APX-hard [Lee17]. However, approximation
algorithms for Nash welfare under different types of valuations have received significant attention
recently, e.g., [CG18, CDG+17, AGSS17, GHM18, AMGV18, BKV18, CCG+18, GKK20].

1.3 Independent Work

Independently of our work, Barman et al. [BBKS20] also find an O(n)-approximation algorithm
for the generalized p-mean welfare when agents have subadditive valuations. On a high level,
both algorithms, first carefully allocate a single highly valuable good to each agent and then
carefully allocate the remaining goods. However, the procedures used to determine the initial
(the single highly valuable good allocation) and the final allocations are significantly different.
Also, contrary to the allocation determined by the algorithm in [BBKS20], we are able to
obtain guarantees on the fairness of our allocation, namely the properties of EF1 and the two
relaxations of EFX.

In the same paper, Barman et al. [BBKS20] show that it requires an exponential number of
value queries to provide any sublinear approximation for the generalized p-mean welfare under
subadditive valuations. Therefore, in polynomial time, our algorithm yields an allocation that
satisfies the best relaxations of EFX known for subadditive valuations, and also achieves the
best approximation for the generalized p-mean welfare possible in polynomial time (assuming
P 6= NP).

2 Preliminaries

Any discrete fair division instance I is a tuple 〈[n],M,V〉 comprising of a set of n agents ([n]),
a set of m goods (M) and a set of valuation functions V = {v1, v2, . . . , vn}. The valuation
function vi : 2M → R≥0 tries to capture agent i’s utility for each subset of goods. Throughout
this paper we will be dealing with the case where all the valuation functions are

• normalized : vi(∅) = 0 for all i ∈ [n],

• monotone: vi(A ∪ {g}) ≥ vi(A) for all i ∈ [n] and A ⊂M , and

• subadditive: for any sets A,B ⊆M we have vi(A) + vi(B) ≥ vi(A ∪B) for all i ∈ [n].

For ease of notation we use vi(g) instead of vi({g}) and vi(A \ g) instead of vi(A \ {g})

Generalized p-mean welfare: Given an allocation X the p-mean welfare of X (parametrized
by p) is defined by

Mp(X) =
( 1

n

∑
i∈[n]

vi(Xi)
p
)1
p

10Defined in Section 1
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This captures a wide range of fairness and efficiency measures that have been used frequently
in the literature: Nash welfare for p = 0, max-min welfare (also known as the egalitarian welfare)
for p = −∞ and social welfare for p = 1. Barman and Sundaram [BS20] also mention that,

“generalized means with p ∈ (−∞, 1] exactly constitute the family of welfare func-
tions that satisfy the Pigou-Dalton transfer principle and a few other key axioms.”

In the same paper they show that when agents have identical valuations, there is an algorithm
that provides an O(1) factor approximation to the p-mean welfare.

EFX Allocations and Relaxations: EFX is arguably the strongest notion of fairness in
the context of indivisible goods. Formally,

Definition 2. An allocation X = 〈X1, X2, . . . , Xn〉 is said to be an EFX allocation if for all
pairs of agents i and j, we have vi(Xi) ≥ vi(Xj \ g) for all g ∈ Xj.

Although the existence of complete EFX allocations is not known yet, there have been results
pertaining to the existence of certain relaxations of EFX. We state two major relaxations here.
Plaut and Roughgarden [PR18] introduced the notion of approximate EFX or equivalently
α-EFX:

Definition 3. An allocation X is α-EFX with α ∈ (0, 1) if and only if for all pairs of agents i
and j we have vi(Xi) ≥ α · vi(Xj \ g) for all g ∈ Xj.

Plaut and Roughgarden [PR18] showed that 1
2 -EFX allocations exist and can be computed

in pseudo-polynomial time. With a very minor change in their algorithm11 we can obtain an
(12 − ε)-EFX allocation in polynomial time.

Another relaxation introduced by Chaudhury et al. [CKMS20] is EFX with bounded charity :

Definition 4. A partial allocation X is an EFX allocation with bounded charity with the set of
unallocated goods P such that

• X is EFX,

• |P | < n, and

• vi(Xi) ≥ vi(P ) for all i ∈ [n].

The updated version of the paper [CKMS19] gives a polynomial time algorithm to determine
(1− ε)-EFX allocation with bounded charity.12

Throughout the paper we will outline algorithms that find allocations with high welfare and
are flexible with the fairness that the allocations satisfy, i.e., we can get (12 −ε)-EFX allocations
with high welfare or (1− ε)-EFX allocations with bounded charity and high welfare. Therefore
we now introduce some common notation for ease of referring to both these relaxations of EFX
at the same time:

Definition 5. An allocation X is an (α, c)-EFX allocation with α ∈ (0, 1) and c ∈ {0, 1} if and
only if

• X is α-EFX and EF1,

• |P | < n, and

• vi(Xi) ≥ vi(P ) for all i ∈ [n].

11Just run the same algorithm replacing the violation condition from 1
2
-EFX to ( 1

2
− ε)-EFX

12Just relax the first condition in Definition 4 to “X is (1− ε)-EFX”
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• P = ∅ if c = 1.13

Therefore an (α, 1)-EFX allocation would refer to an α-EFX (which is also EF1) alloca-
tion and a (α, 0)-EFX allocation would refer to an α-EFX allocation with bounded charity.
In particular we would only be interested in ((12 − ε), 1)-EFX allocation and (1 − ε, 0)-EFX
allocation.

Similarly, we also introduce the notion of an (α, c)-EFX algorithm:

Definition 6. An (α, c)-EFX algorithm takes as input any partial α-EFX allocation X and
outputs an (α, c)-EFX allocation Y as the final allocation such that

• the valuation of every agent in the final valuation is at least as high as his valuation in
the initial allocation, i.e., vi(Yi) ≥ vi(Xi), and

• if there exists an agent i such that |Yi| = 1 and Yi 6= Xi, then vi(Yi) > vi(Xi).

In particular an (α, c)-EFX algorithm outputs a final (α, c)-EFX allocation that preserves
(if not improves) all the welfare guarantees of the initial α-EFX allocation. Both the existing
algorithms for determining an (12 − ε, 1)-EFX allocation (a trivial modification of the algorithm
in [PR18]) and (1 − ε, 0)-EFX [CKMS19] allocation are an (12 − ε, 1)-EFX algorithm and an
(1− ε, 0)-EFX algorithm respectively.

3 Algorithm

In this section, we show that we can determine an (α, c)-EFX allocation with an O(n) approxi-
mation on the p-mean welfare. The algorithm is very simple and it has just two phases: In the
first phase we try to determine a reasonable allocation of high valued goods (we call this alloca-
tion Y ) and then in the second phase we just run an (α, c)-EFX algorithm with the remaining
set of goods (we call our final allocation Z).

Allocating the high valued goods Y : We first formally define the notion of high valued
goods for an agent: For each agent i let us order the goods in M as

{
gi1, g

i
2, . . . , g

i
m

}
such that

vi(g
i
1) ≥ vi(g

i
2) ≥ · · · ≥ vi(g

i
m). Let Hi =

{
gi1, g

i
2, . . . , g

i
n

}
. We refer to Hi to be the set of high

valued goods for agent i. Also for each good gik and an agent i we define rank i(g
i
k) = k. Notice

that if for any agent i rank i(g) < rank i(g
′), then vi(g) ≥ vi(g′).

We now outline how we compute the initial allocation Y . We construct the complete bi-
partite graph G = ([n] ∪M, [n] ×M) with the weight of the edge from agent i to good g, wig
being

• n · vi(g) + vi(M \Hi) if p = −∞,

• log
(
n · vi(g) + vi(M \Hi)

)
if p = 0 and

•
(
n · vi(g) + vi(M \Hi)

)p
otherwise.

Depending on the value of p we choose an appropriate matching mechanism to determine
Y : Y is determined such that ∪i∈[n](i, Yi) is

• a maximum weight matching in G if p ≥ 0,

• a minimum weight perfect matching in G if p < 0 and p 6= −∞,

• a max-min matching14 in G if p = −∞.

13c serves as an indicator to whether the allocation is complete or not.
14This is a matching that maximizes the weight of the smallest edge in the matching.
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Let Y be the allocation outputed by the corresponding matching subroutine. Also let
Y = ∪i∈[n]Yi. We modify the allocation Y slightly such that ∪i∈[n](i, Yi) still remains the
optimum matching, but no agent will prefer a good outside Y to the good allocated to him in
Y (Yi), i.e., we wish to determine an allocation Y such that for all agent i ∈ [n] and all g /∈ Y
we have that rank i(Yi) < rank i(g). To achieve this, as long as there is an agent i ∈ [n] and
a good g /∈ Y such that rank i(g) < rank i(Yi) we set Yi ← {g}. Note that such an operation
does not decrease the optimum value of the matching: vi(g) ≥ vi(Yi) (as rank i(g) < rank i(Yi))
and hence wig ≥ wiYi for p = −∞ and p ∈ [0, 1], while wig ≤ wiYi for p < 0 and p 6= −∞.
This implies that the objective value of the matching does not decrease when p ∈ [0, 1] and
p = −∞ and the objective value of the matching does not increase when p < 0 and p 6= −∞.
Therefore, ∪i∈[n](i, Yi) still stays an optimum matching, but

∑
i∈[n] rank i(Yi) strictly decreases.

Since n ≤
∑

i∈[n] rank i(Yi) ≤ nm, after O(nm) iterations we will have an allocation Y such that
∪i∈[n](i, Yi) is still an optimum matching, but for all agents i ∈ [n] and for all goods g /∈ Y we
have rank i(Yi) < rank i(g).

The complete algorithm is outlined in Algorithm 1 (Selection of the allocation Y is captured
in steps 1 to 5).

Lemma 7. For all i ∈ [n] we have Yi ⊂ Hi. Furthermore, for all

• g /∈ Hi, and

• g /∈ Y,

we have vi(Yi) ≥ vi(g).

Proof. We first show that Yi ⊂ Hi. We prove the same by contradiction. Assume otherwise,
i.e., Yi 6⊂ Hi. In that case note that there is always a good g ∈ Hi \Y (as |Hi| = |Y| = n and
there is a good in Y (namely Yi) which is not in Hi). By the definition of Hi it is clear that
rank i(g) < rank i(g

′) for all g′ /∈ Hi. Thus we have rank i(g) < rank i(Yi) when g /∈ Y, which is
a contradiction. Therefore Yi ⊂ Hi. This also immediately shows that for all g /∈ Hi we have
vi(g) ≤ vi(Yi) (as Yi ⊂ Hi and any good in Hi is at least as valuable as any good outside Hi to
agent i).

The proof of the last statement of the lemma is immediate. We have that rank i(Yi) <
rank i(g) for all g /∈ Y, immediately implying that vi(Yi) ≥ vi(g).

Run (α, c)-EFX algorithm on the remaining goods: Once we determined the initial
allocation Y , we run an (α, c)-EFX algorithm on the remaining goods starting with Y as the
initial allocation (Y is a feasible initial allocation as it is trivially an α-EFX allocation as every
agent has exactly a single good). Let Z be the final (α, c)-EFX allocation. As mentioned earlier
in Section 1.1 the singleton sets allocated to the agents are the barriers to proving our desired
approximation for any (α, c)-EFX allocation. However since we started with a good initial
allocation (namely Y ), we first show that we have some nice properties about the singleton sets
in the final allocation Z.

Observation 8. If |Z`| = 1 for any ` ∈ [n], then we have Z` ⊂ Y.

Proof. Since Z is obtained by running an (α, c)-EFX algorithm starting with Y as the initial
allocation, we have for every agent i that vi(Zi) ≥ vi(Yi) (from the definition of (α, c)-EFX
algorithm). Note that if for any agent i we have Zi 6= Yi, and |Zi| = 1, then vi(Zi) > vi(Yi)
(from the definition of (α, c)-EFX algorithm). Now consider the agent ` such that |Z`| = 1. If
Z` = Y`, then we immediately have Z` ⊂ Y. So now consider the case when Z` 6= Y`. Then we
have v`(Z`) > v`(Y`). By Lemma 7 we know that no good outside Y can be more valuable to
agent ` than Y`. Therefore Z` ⊂ Y.

8



Now we show a lower bound on the final valuation of an agent in terms of the low valued
goods.

Observation 9. We have vi(Zi) ≥ αvi(M\Y)
2(n+1) for all i ∈ [n].

Proof. Fix an agent i. Now consider any agent j such that Zj is not a singleton. Since Z is an
α-EFX allocation, we have that vi(Zi) ≥ α · vi(Zj \ g) for all g ∈ Zj . Since |Zj | ≥ 2 we can say
that vi(Zi) ≥ α ·max (vi(Zj \ g), vi(g)). Therefore we have,

vi(Zi) ≥
α · (vi(Zj \ g) + vi(g))

2

≥ α · vi(Zj)
2

( by subadditivity)

Let S = ∪|Z`|=1Z`. By Observation 8 we know that S ⊆ Y. Note that even if Z is a partial
allocation (if c = 0 in the (α, c)-EFX allocation Z) and there exists a set of goods P unallocated,
we have vi(Zi) ≥ vi(P ) (since Z is an (α, c)-EFX allocation) . Therefore we have,

(n+ 1− |S|)vi(Zi) ≥ α
2

∑
|Zj |≥2

vi(Zj) + vi(P )

≥ α
2 vi

( ⋃
|Zj |≥2

Zj ∪ P
)

( by subadditivity)

= α
2 vi(M \ S)

≥ α
2 vi(M \ Y ) ( since S ⊆ Y)

Therefore we have vi(Zi) ≥ α
2(n+1−|S|)vi(M \Y) ≥ α

2(n+1)vi(M \Y).

Now we prove a lower bound on vi(Zi) in terms of the initial allocation Y and the set of low
valuable goods for agent i, i.e., M \Hi.

Lemma 10. For all i ∈ [n] we have vi(Zi) ≥ α
4(n+1) ·

(
n · vi(Yi) + vi

(
M \Hi

))
.

Proof. We have vi(Zi) ≥ vi(Yi) (since Z is an allocation determined by an (α, c)-EFX algorithm

with Y as the initial allocation) and from Observation 9 we have vi(Zi) ≥ αvi(M\Y)
2(n+1) . Therefore

for all i ∈ [n] we have

vi(Zi) ≥
1

2
·
(
vi(Yi) +

α

2(n+ 1)
· vi(M \Y)

)
=

1

2
·
(
vi(Yi) +

α

2(n+ 1)
· vi
((
M \ (Y ∩Hi)

)
\ (Y \Hi)

))
≥ 1

2
·
(
vi(Yi) +

α

2(n+ 1)
· vi
(
M \ (Y ∩Hi)

)
− α

2(n+ 1)
· vi
(
Y \Hi

))
(by subadditivity)

≥ 1

2
·
(
vi(Yi) +

α

2(n+ 1)
· vi
(
M \Hi

)
− α

2(n+ 1)
· vi
(
Y \Hi

))
(as Y ∩Hi ⊆ Hi)

(2)
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Algorithm 1 Determining an (α, c)-EFX allocation with O(n) approximation on optimum
p-mean.

1: Construct G = 〈[n] ∪M, [n]×M〉 with

wig =


n · vi(g) + vi(M \Hi) if p = −∞
log
(
n · vi(g) + vi(M \Hi)

)
if p = 0(

n · vi(g) + vi(M \Hi)
)p

otherwise

2: Set Y such that

∪i∈[n](i, Yi) =


Max-Min-Matching(G) if p = −∞
Min-Weight-Perfect-Matching(G) if p < 0 and p 6= −∞
Max-Weight-Matching(G) otherwise

3: while ∃i ∈ [n] and ∃g /∈ Y such that rank i(g) < rank i(Yi) do
4: Yi ← {g}.
5: end while
6: Set Z ← (α, c)-EFX

(
〈Y1, . . . , Yn〉,

(
M \ ∪i∈[n]Yi

))

By Lemma 7 we know that vi(Yi) ≥ vi(g) for all g /∈ Hi. In particular vi(Yi) ≥ vi(g) for all
g ∈ Y \Hi. Thus,

vi(Y \Hi) ≤
∑

i∈Y\Hi

vi(g) (by subadditivity)

≤
∑

i∈Y\Hi

vi(Yi)

= |Y \Hi| · vi(Yi)
≤ n · vi(Yi) (as |Y| = n)

≤ (n+ 1) · vi(Yi)

Substituting the upper bound for vi(Y \Hi) in (2) we have

vi(Zi) ≥
1

2
·
(

(1− α

2
) · vi(Yi) +

α

2(n+ 1)
· vi
(
M \Hi

))
≥ 1

2
·
(

1

2
· vi(Yi) +

α

2(n+ 1)
· vi
(
M \Hi

))
(as α ≤ 1)

=
α

4(n+ 1)
·
(

(n+ 1) · 1

α
· vi(Yi) + vi

(
M \Hi

))
≥ α

4(n+ 1)
·
(
n · vi(Yi) + vi

(
M \Hi

))
The final allocation is the set Z which is obtained by running an (α, c)-EFX allocation start-

ing with Y as the initial allocation. Therefore our final allocation is an (α, c)-EFX allocation.
We would now show the approximation guarantees that the algorithm achieves. The sections
that follow prove that the allocation Z has a p-welfare that is α

4(n+1) times p-mean welfare
achieved by the optimal allocation. Each section from here on presents the proof for particular
value or a range of values of p.
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3.1 Case p = −∞

This is the case where Mp(X) = mini∈[n]vi(Xi). Let X∗ be the allocation with the highest
p-mean value and let g∗i be agent i’s most valuable good in X∗i . We will show in this section
that Mp(Z) ≥ α

4(n+1) ·Mp(X
∗). First observe that by Lemma 10, we have that for all i ∈ [n],

vi(Zi) ≥ α
4(n+1) ·

(
n · vi(Yi) + vi

(
M \Hi

))
. Therefore,

mini∈[n]vi(Zi) ≥ mini∈[n]
α

4(n+ 1)
·
(
n · vi(Yi) + vi

(
M \Hi

))
Recall that Y was chosen such that (i, Yi) is a maximum weight matching in the bipartite

graph G = ([n] ∪ M, [n] × M) where the weight of an edge from agent i to good g, wig =
n · vi(g) + vi(M \Hi). Also note that ∪i∈[n](i, g∗i ) is a feasible matching in G. Thus we have

mini∈[n]

(
n · vi(Yi) + vi(M \Hi)

)
≥ mini∈[n]

(
n · vi(g∗i ) + vi(M \Hi)

)
Therefore we have,

mini∈[n]vi(Zi) ≥ mini∈[n]
α

4(n+ 1)
·
(
n · vi(Yi) + vi(M \Hi)

)
≥ α

4(n+ 1)
·mini∈[n]

(
n · vi(g∗i ) + vi(M \Hi)

)
≥ α

4(n+ 1)
·mini∈[n]

(
n · vi(g∗i ) + vi

(
X∗i ∩ (M \Hi)

))
≥ α

4(n+ 1)
·mini∈[n]

(
vi(X

∗
i ∩Hi) + vi

(
X∗i ∩ (M \Hi)

))
(as |Hi| = n)

≥ α

4(n+ 1)
·mini∈[n]vi(X

∗
i ) (by subadditivity)

This shows that Mp(Z) ≥ α
4(n+1) ·Mp(X

∗) when p = −∞.

3.2 Case p < 0 and p 6= −∞

The proof in this section is very similar to the proof when p = −∞. Still for completeness we
sketch the whole proof. Let X∗ be the allocation with the highest p-mean value and let g∗i be
agent i’s most valuable good in X∗i . Similar to the case p = −∞, will show in this section that
Mp(Z) ≥ α

4(n+1) ·Mp(X
∗). We now define

R(Z) =
∑
i∈[n]

vi(Zi)
p

Note that Mp(Z) =
(

1
n ·R(Z)

)1
p
. We now prove an upper bound on R(Z).

Lemma 11. We have R(Z) ≤ αp(
4(n+1)

)p · (∑i∈[n] vi(X
∗
i )p
)

.

By Lemma 10, we have that for all i ∈ [n], vi(Zi) ≥ α
4(n+1) ·

(
n · vi(Yi) + vi

(
M \ Hi

))
.

Therefore,
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R(Z) ≤
∑
i∈[n]

(
α

4(n+ 1)
·
(
n · vi(Yi) + vi(M \Hi)

))p
(as p is negative)

Recall that Y was chosen such that (i, Yi) is a minimum weight perfect matching in the
bipartite graph G = ([n] ∪M, [n] ×M) where the weight of an edge from agent i to good g,

wig =
(
n · vi(g) + vi(M \ Hi)

)p
. Note that ∪i∈[n](i, g∗i ) is a feasible matching in G. Thus we

have,

∑
i∈[n]

(
n · vi(Yi) + vi(M \Hi)

)p
≤
∑
i∈[n]

(
n · vi(g∗i ) + vi(M \Hi)

)p
Therefore we have15

R(Z) ≤
∑
i∈[n]

(
α

4(n+ 1)
·
(
n · vi(Yi) + vi(M \Hi)

))p
≤
∑
i∈[n]

(
α

4(n+ 1)
·
(
n · vi(g∗i ) + vi(M \Hi)

))p
=

αp(
4(n+ 1)

)p ·∑
i∈[n]

(
n · vi(g∗i ) + vi(M \Hi)

)p
≤ αp(

4(n+ 1)
)p ·∑

i∈[n]

(
n · vi(g∗i ) + vi

(
X∗i ∩ (M \Hi)

))p
≤ αp(

4(n+ 1)
)p ·∑

i∈[n]

(
vi(X

∗
i ∩Hi) + vi

(
X∗i ∩ (M \Hi)

))p
(as |Hi| = n)

≤ αp(
4(n+ 1)

)p ·∑
i∈[n]

vi(X
∗
i )p (by subadditivity)

Now we are ready to prove the guarantee on the p-mean welfare. We have,

Mp(Z) =
( 1

n
·R(Z)

)1
p

≥
(

1

n
· αp(

4(n+ 1)
)p · (∑

i∈[n]

vi(X
∗
i )p
))1

p
(by Lemma 11 and also p is negative)

≥ α

4(n+ 1)
·Mp(X

∗)

3.3 Case p = 0: Nash Welfare

This is the case where Mp(X) =
(∏

i∈[n] vi(Xi)
) 1
n

. Let X∗ be the allocation with the highest

p-mean value and let g∗i be agent i’s most valuable good in X∗i . Like in the earlier sections we
will show in this section that Mp(Z) ≥ α

4(n+1) ·Mp(X
∗). First observe that by Lemma 10, we

have that for all i ∈ [n], vi(Zi) ≥ α
4(n+1) ·

(
n · vi(Yi) + vi

(
M \Hi

))
. Therefore,

15For the set of inequalities that follow the reader is reminded that we are in the case where p < 0.
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( ∏
i∈[n]

vi(Zi)

) 1
n
≥
( ∏
i∈[n]

α

4(n+ 1)
·
(
n · vi(Yi) + vi

(
M \Hi

)) 1
n

=
α

4(n+ 1)
·
( ∏
i∈[n]

(
n · vi(Yi) + vi

(
M \Hi

)) 1
n

Recall that Y was chosen such that (i, Yi) is a maximum weight matching in the bipartite
graph G = ([n] ∪ M, [n] × M) where the weight of an edge from agent i to good g, wig =

log
(
n · vi(g) + vi(M \Hi)

)
. Note that ∪i∈[n](i, g∗i ) is a feasible matching in G. Thus we have

∑
i∈[n]

log
(
n · vi(Yi) + vi(M \Hi)

)
≥
∑
i∈[n]

log
(
n · vi(g∗i ) + vi(M \Hi)

)
=⇒

∏
i∈[n]

(
n · vi(Yi) + vi(M \Hi)

)
≥
∏
i∈[n]

(
n · vi(g∗i ) + vi(M \Hi)

)
Therefore we have,

( ∏
i∈[n]

vi(Zi)

) 1
n
≥ α

4(n+ 1)
·
( ∏
i∈[n]

(
n · vi(Yi) + vi(M \Hi)

)) 1
n

≥ α

4(n+ 1)
·
( ∏
i∈[n]

(
n · vi(g∗i ) + vi(M \Hi)

)) 1
n

≥ α

4(n+ 1)
·
( ∏
i∈[n]

(
n · vi(g∗i ) + vi

(
X∗i ∩ (M \Hi)

))) 1
n

≥ α

4(n+ 1)
·
( ∏
i∈[n]

(
vi(X

∗
i ∩Hi) + vi

(
X∗i ∩ (M \Hi)

))) 1
n

(as |Hi| = n)

≥ α

4(n+ 1)
·
( ∏
i∈[n]

vi(X
∗
i )
) 1
n

( by subadditivity)

This shows that Mp(Z) ≥ α
4(n+1) ·Mp(X

∗) when p = 0.

3.4 Case p ∈ (0, 1]

The proof of the approximation guarantee in this case follows almost the same proof in the
Section 3.2, with the only difference that since p is positive and we compute a Maximum weight
matching in the bipartite graph G = ([n] ∪ M, [n] × M) where the weight of an edge from

agent i to good g, wig =
(
n · vi(g) + vi(M \Hi)

)p
and we will have lower bounds on R(Z) and

consequently also lower bounds on Mp(Z).

Therefore our algorithm computes an (α, c)-EFX allocation which is also an 4(n+1)
α approx-

imation of the optimum p-mean welfare.

Theorem 12. Given any instance 〈[n],M,V〉, in polynomial time we can determine an alloca-
tion Z such that

13



• Z is either (1− ε, 0)-EFX allocation or (12 − ε, 1)-EFX allocation for any positive ε and

• Mp(Z) ≥ α
4(n+1)Mp(X

∗).

where X∗ is the allocation with maximum p-mean welfare.

Proof. We showed that the allocation Z computed by Algorithm 1 is an (α, c)-EFX allocation
and Mp(Z) ≥ α

4(n+1) ·Mp(X
∗). It suffices to show that Algorithm 1 runs in polynomial time.

Note that steps 1 of the algorithm can be implemented in poly(n,m) time. Step 2 can also be
realized in polynomial time as all the matching subroutines run in poly(n,m). The while loop
in step 3 runs for poly(n,m) iterations as with each iterations

∑
i∈[n] rank i(Yi) decreases by 1

and n <
∑

i∈[n] rank i(Yi) ≤ nm. In step 4, we run the (α, c)-EFX algorithm with Y as the
initial allocation. Plaut and Roughgarden [PR18] and Chaudhury et al. [CKMS20] show an
(12 − ε, 1)-EFX algorithm and (1 − ε, 0)-EFX algorithm respectively that runs in poly(n,m, 1ε )
time. Therefore we can obtain an allocation Z with the properties mentioned in theorem in
poly(n,m, 1ε ) time.

Remark: Theorem 12 also suggest that we can find a 4(n+1)
1−ε approximation to the p-mean

welfare in polynomial time. Also it can be verified that a minor variant of our approach (chang-
ing the weights of the edges of the complete bipartite graph G([n]∪B, [n]×B) appropriately -
step 1 of Algorithm 1) gives a O(n) approximation on weighted generalized p-mean, defined as

WMp(X) =
(∑

i∈[n] ηi · vi(Xi)
p
)1
p . In particular, we also get an O(n) approximation algorithm

for asymmetric Nash welfare when agents have submodular valuations (improving the current
best bound of O(n · log n) by Garg et al. [GKK20]).
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