
Approximating Maximin Share Allocations
Jugal Garg
University of Illinois at Urbana-Champaign
jugal@illionis.edu

Peter McGlaughlin
University of Illinois at Urbana-Champaign
mcglghl2@illionis.edu

Setareh Taki
University of Illinois at Urbana-Champaign
staki2@illionis.edu

Abstract
We study the problem of fair allocation ofM indivisible items among N agents using the popular
notion of maximin share as our measure of fairness. The maximin share of an agent is the largest
value she can guarantee herself if she is allowed to choose a partition of the items into N bundles
(one for each agent), on the condition that she receives her least preferred bundle. A maximin
share allocation provides each agent a bundle worth at least their maximin share. While it is
known that such an allocation need not exist [9, 7], a series of work [9, 8, 1, 2] provided 2/3
approximation algorithms in which each agent receives a bundle worth at least 2/3 times their
maximin share. Recently, [6] improved the approximation guarantee to 3/4. Prior works utilize
intricate algorithms, with an exception of [2] which is a simple greedy solution but relies on
sophisticated analysis techniques. In this paper, we propose an alternative 2/3 maximin share
approximation which offers both a simple algorithm and straightforward analysis. In contrast to
other algorithms, our approach allows for a simple and intuitive understanding of why it works.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Fair division, Maximin share, Approximation algorithm

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.20

Funding Work on this paper partly supported by NSF CRII Award 1755619.

1 Introduction

We study the problem of allocating M indivisible items among N agents with additive
valuations in a fair way, using the popular notion of maximin share [5] as our measure for
fairness. There is an extensive literature for fair allocation of divisible items, starting with
the cake cutting problem [10]. Standard notions of fairness include: envy-freeness where
every agent prefers their allocation over any other agents’ allocation, and proportionality
where every agent receives at least a 1/N share of all the items.

In the case of indivisible items, a simple counter example shows that no algorithm can
provide either envy-freeness or proportionality. Consider allocating a single item between
N > 1 agents. Clearly, N − 1 agents envy the one lucky agent that received the item and
there is no way to ensure all agents receive a bundle of items with value at least 1/N . This
motivates the need for an alternate concept of fairness. Recently, Budish [5] introduced an
intriguing option, a maximin share. The idea is a natural generalization of the well known
cut and choose protocol in the cake cutting problem. Suppose we allow agent i to choose a
partition of the items into N bundles (one for each agent), with the caveat that the other

© Jugal Garg, Peter McGlaughlin, and Setareh Taki;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 20; pp. 20:1–20:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/168410696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jugal@illionis.edu
mailto:mcglghl2@illionis.edu
mailto:staki2@illionis.edu
https://doi.org/10.4230/OASIcs.SOSA.2019.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

20:2 Approximating Maximin Share Allocations

N − 1 agents get to choose a bundle before her. In the worst case, she receives her least
preferred bundle. Clearly, in this situation i will choose a partition that maximizes the value
of her least preferred bundle. We call the value of this bundle i’s maximin share (MMS). Since
all other agents may have the same valuations as her, i’s MMS is the most she can guarantee
for herself in this scenario. In this paper, we focus on the case of additive valuations. Let us
note that, computing any agent’s MMS is NP-hard, but a PTAS exists [11].

A maximin share gives an intuitive local measure of fairness of an allocation, that is a
specific objective for each agent. This raises the natural question: Is there an allocation
where each agent receives a bundle worth at least their MMS? An allocation satisfying
this property is said to be maximin share allocation (MMS allocation), and if it exists, an
MMS allocation provides strong fairness guarantees to each individual agent. Bouveret and
Lemaître [3] show that an MMS allocation always exist in some special settings, e.g., when
there are only two agents or if agents’ valuations for items are 0 or 1, but leave the general
case as an open problem.

Procaccia and Wang [9] obtain the surprising result that MMS allocations might not
exist, by means of a clever counter example. However, they show that a 2/3 MMS allocation
always exists, that is an allocation where each agent receives a bundle worth at least 2/3
of their maximin share, and they provide a polynomial time algorithm to find a 2/3 MMS
allocation when the number of agents N is constant. In the special case where N ≤ 4, their
algorithm finds a 3/4 MMS allocation. Amanatidis et al. [1] improve this result by addressing
the requirement for a constant number of agents, obtaining a PTAS which finds a (2/3− ε)
MMS allocation for an arbitrary number of agents; see [8] for an alternate proof. [1] also
shows that a 7/8 MMS allocation always exists when there are three agents.

Barman and Murthy [2] take an alternate approach from [9, 1], utilizing key insights
from [3] to obtain a greedy algorithm to find a 2/3 MMS allocation. While the algorithm
itself is fairly simple, the proof is not.

The recent results of Ghodsi et al. [6] breaks new ground, establishing existence of 3/4
MMS allocation, and, building on the work of [9, 1], provides a PTAS to find a (3/4 − ε)
MMS allocation. They also show that when N = 4, an 4/5 MMS allocation exists and
proposed a algorithm to find it.

Our Contribution. We present an algorithm to find a 2/3 MMS allocation for agents with
additive valuations. Our approach combines the insights of [3, 2] with the concepts developed
in [6] to obtain an algorithm that is both simple to implement and analyze. Like [6], our
algorithm consists of two phases: matching and bag filling. However, unlike [6], our phases
are much simpler, and we do not need to compute agents’ MMS values. Bag filling is a
simple, greedy method to allocate ‘low’ valued items. We add one item at a time to a bag. If
the value of the bag is worth at least 2/3 of any agent’s MMS, then we assign the bag to that
agent, picking an arbitrary agent when there are more than one satisfying this condition.
It is easily shown, in Section 2.2, that bag filling provides a 2/3 MMS allocation as long
as no agent values any item more than 1/3. Thus, the real difficultly lies in distributing
‘high’ value items, i.e., items worth more than 1/3 to some agent. Drawing on the insights
of [3, 2], we show a combination of maximum matching and greedy assignment suffices for
this purpose. This gives our algorithm the basic structure: repeated maximum matching
and greedy assignment to remove high valued items, followed by bag filling to allocate low
valued items. Our approach allows for far simpler and more intuitive analysis than [1, 2, 6].

J. Garg, P. McGlaughlin, and S. Taki 20:3

2 Preliminaries

We consider the fair allocation of M = {1, . . . ,m} indivisible items among N = {1, . . . , n}
agents with additive valuations. That is, vij is agent i’s value for item j, and i’s valuation of
any bundle of items S ⊆M is: vi(S) =

∑
j∈S vij . For simplicity, we also use vi(j) instead

of vi({j}). Denote the set of valuation functions, vi : 2M → R+, as: V = {v1, . . . , vn}. An
allocation A = {A1, . . . , An} is a partition of the items into n bundles (one for each agent).
We define fair allocations in terms of maximin shares. Agent i’s maximin share (µi) is the
maximum value she can guarantee herself if she is allowed to choose the allocation A, on
the condition that she receives her least preferred bundle. Formally, let A be an allocation
and A =

{
A = {A1, . . . , An} : Ai ∩ Aj = ∅,∀i, j; ∪kAk = M

}
be the set of all feasible

allocations. Agent i’s maximin share is:

µi = max
A∈A

min
Ak∈A

vi(Ak). (1)

We say an allocation A is MMS if each agent i receives a bundle Ai worth at least her
maximin share: vi(Ai) ≥ µi. An allocation is α approximate MMS (or simplify α-MMS) if
each agent i receives a bundle Ai worth at least: vi(Ai) ≥ αµi, for some α ∈ (0, 1).

2.1 Properties of Maximin Share
Our approximation algorithm exploits a few key properties of maximin shares. We note that
these are standard results which appear in [1, 6]. We include proofs for sake of completeness.

I Proposition 1 (Scale Invariance). Let A = {A1, . . . , An} be an α-MMS allocation for the
problem instance I = (N,M, V) with additive valuations. For any agent i ∈ N and any
c ∈ R+, if we create an alternate instance I ′ = (N,M, V ′) where i’s valuations are scaled by
c, i.e., v′ij := cvij ,∀j ∈M , then A is still an α-MMS allocation for (N,M, V ′).

Proof. Let µi and µ′i be agent i’s MMS in instance I and I ′ respectively. For any bundle
S ⊆ M , we have v′i(S) = cvi(S). Therefore, µ′i = cµi. Let A = {A1, . . . , An} be the
allocation i selects to create her µi. Then, v′i(Ak) = cvi(Ak) ≥ cαµi = αµ′i,∀k. J

I Proposition 2 (Normalized Valuation). For problem instance I = (N,M, V), if agent i’s
valuation function satisfies:

vi(M) =
∑
j∈M

vij = |N |, (2)

then µi ≤ 1.

Proof. For contradiction, suppose vi(M) = |N | but µi > 1. Let A = {A1, . . . , An} be the
allocation i selects to create her µi. From the definition of µi (1), vi(Ak) ≥ µi ∀Ak ∈ A, so
|N | = vi(M) =

∑
k vi(Ak) ≥ |N |µi > |N |, a contradiction. J

We say agent i’s valuation is normalized for I = (N,M, V) when (2) holds, or simply nor-
malized when the underlying problem instance is clear. In view of Proposition 1, normalizing
agents’ valuations provides a convenient upper bound on µi’s without affecting performance
guarantees. In addition, this removes the problem of comparing the relative value of a bundle
of items between agents whose scale of valuations differs in orders of magnitude.

SOSA 2019

20:4 Approximating Maximin Share Allocations

2.2 What Makes Finding Approximate MMS Allocations Hard?
In this section, we build intuition for what exactly makes finding α approximate MMS
allocations difficult. We begin with a definition. Let I = (N,M, V) be a problem instance,
and L ⊂ N be subset of agents and S ⊂M be subset of items. We say

I ′ = (N ′,M ′, V ′) = (N \ L,M \ S, V), (3)

is a reduced instance of I. In words, we create a reduced instance by removing some subset
of agents, and some subset of items. We call the agents N ′ = N \ L the remaining agents of
the reduced instance I ′. The following simple observation plays an important role in finding
approximate MMS allocations.

I Proposition 3. Let I = (N,M, V) be a problem instance, and let µi be the MMS for agent
i ∈ N . If we remove one agent k ∈ N and one item j ∈M , then the MMS of all remaining
agents in the reduced instance I ′ = (N \ {k},M \ {j}, V), is at least as large as their MMS
in I, i.e., µ′i ≥ µi. In words, removing one agent and one item from a problem instance does
not reduce the MMS guarantees for any remaining agent in the reduced instance.

Proof. Suppose agent k ∈ N and item j ∈ M are removed from the instance, and let i
be any remaining agent. Consider the allocation A = {A1, . . . , An} she makes to calculate
her MMS in the original instance I, and note that Al ≥ µi for all Al ∈ A by the definition
of MMS. In the reduced instance I ′ = (N \ {k},M \ {j}, V), agent i needs to make one
less bundle but has one less item. Let Al ∈ A be the bundle containing the removed item
j. Suppose she simply takes the items of Al \ {j} and distributes them arbitrarily to the
other bundles of A to create a new allocation Â = {Â1, . . . , Ân−1}. Clearly, Â is a feasible
allocation, and Âl ≥ µi for all Âl ∈ Â. Therefore, µ′i ≥ µi. J

Proposition 3 shows that removing one agent and one item does not reduce MMS
guarantees for remaining agents in the reduced instance. It is straightforward to generalize
the above argument to show that removing k agents and k items does not decrease MMS
guarantees in the reduced instance.

I Corollary 4. Let L ⊂ N and S ⊂M , and µi be the MMS for each agent i in an instance
I = (N,M, V). If |L| = |S|, then the MMS µ′i of any remaining agent in the reduced instance
I ′ = (N \ L,M \ S, V) is at least as large as in the original instance, i.e., µ′i ≥ µi.

Combining Proposition 3 with the simple greedy allocation method bag filling, yields an
almost trivial 1/2-MMS allocation algorithm. Suppose we seek an α-MMS allocation. The
bag filling algorithm is as follows: We add one, arbitrary item at a time to a bag S until an
agent k values the bag at least αµk, i.e., vk(S) ≥ αµk. If another agent k′ values the bag at
least αµ′k, then pick one arbitrarily. We assign k the bag S, and remove agent k and the
items of S from the instance. We show that bag filling provides an efficient way to allocate
low value items. We note that a similar result also appears in [6].

I Proposition 5. Assume agents’ valuations are normalized as defined in (2), and that no
agent values any item more than 0 < δ < 1/2: vij ≤ δ for all j ∈ M , for all i ∈ N . Then,
the bag filling algorithm gives a (1− δ) MMS allocation.

Proof. By the definition of normalized valuations and Proposition 2, we have vi(M) = |N |
and µi ≤ 1 for all i ∈ N . Therefore, it is enough to show each agent receives a bag worth
at least 1− δ. Clearly, the agent that receives the bag in each iteration gets at least 1− δ,
so the claim amounts to showing remaining agents do not lose too much value when the

J. Garg, P. McGlaughlin, and S. Taki 20:5

bag is assigned. Let j be the last item added to the bag S. Note that before adding j, all
agents valued S less than 1− δ, i.e., vi(S \ j) < 1− δ for all i ∈ N . Now, since valuations
are additive and vij < δ for all agents i ∈ N , we have vi(S) ≤ 1. That is, no agent values
the bag S more than 1. This means after removing agent k and the items of S, all remaining
agents satisfy vi(M \ S) = vi(M)− vi(S) ≥ |N | − 1. Since this condition is an invariant of
bag filling algorithm, all agents get at least (1− δ) of their maximin share. J

Combining Propositions 2, 3, and 5 yields a simple greedy algorithm to compute a 1/2
MMS allocation. We start by normalizing valuations as defined in (2). By Proposition 2,
this ensures µi ≤ 1 for all agents i ∈ N . If some agent, say k, has valuation vkj ≥ 1/2 for
some item j, then we assign item j to agent k. If more than one agent satisfies this condition,
then pick one arbitrarily. By Proposition 3, the MMS µ′i of agents in the reduced instance
I ′ = (N \ k,M \ j, V) is at least as large as their MMS µi in the original instance. Next we
normalize valuations for the reduced instance I ′, and repeat the process, greedily assigning
one item at a time to any agent who values the item at least 1/2 and then normalizing
valuations, until either all agents are removed or vij < 1/2, ∀j ∈ M , ∀i ∈ N . In the later
case, Proposition 5 shows that the bag filling algorithm provides all remaining agents a
bundle worth at least 1/2 of their maximin share.

A natural approach to extending the above algorithm to give a 2/3 MMS allocation
requires splitting the items M into three sets based on their value: high valued items for
which vij ≥ 2/3 for some agent i ∈ N , low valued items for which vij < 1/3 for all agents
i ∈ N , and medium valued items for which vij ≥ 1/3 for at least one agent i ∈ N but
vij < 2/3 for all i ∈ N . Notice that, similar to the 1/2 MMS algorithm above, we may
greedily assign high valued items to give at least 2/3 MMS to the agent receiving the item
without decreasing the MMS of any remaining agent in the reduced instance. Also, if all
items are low valued vij < 1/3 ∀i ∈ N , then the bag filling algorithm easily yields a 2/3
MMS allocation. The real challenge lies in managing the medium valued items. These items
are not valuable enough individually to satisfy 2/3µi for an agent i, yet they are too valuable,
to some agent, to distribute haphazardly through bag filling. Thus, we seek a simple, efficient
means to allocate medium valued items.

2.3 Results of Bouveret and Lemaître, and Barman and Murthy

Our algorithm relies on some results of [4, 2] to obtain the means to properly manage ‘medium
valued’ items as defined at the end of the last section. We start with a definition. A problem
instance I = (N,M, V) is ordered if:

vi1 ≥ vi2 ≥ · · · ≥ vim, ∀i ∈ N. (4)

In words, in an ordered instance all agents have the same order of preference over items.
Roughly speaking, this maximizes the competition between agents, and, intuitively, should
make it more difficult to provide an MMS allocation. Indeed, Bouveret and Lemaître [4]
show ordered instances are worst case. Further, they provide a reduction from any arbitrary
instance I = (N,M, V) to an ordered instance I ′ = (N,M, V ′), and show that if A′ is an
MMS allocation for I ′, then one can find an MMS allocation A for I in polynomial time.
Barman and Murthy [2] generalize these results for α approximate MMS allocations.

I Proposition 6 (Section 2.1 of Barman and Murthy [2]). Given any instance I = (N,M, V),
one can find an ordered instance I ′ = (N,M, V ′) in polynomial time.

SOSA 2019

20:6 Approximating Maximin Share Allocations

Algorithm 1: Converting to an Ordered Instance.
Input :Original Instance (N,M, V)
Output :V ′: Valuations for Ordered Instance

1 for j = 1 to m do
2 for i = 1 to n do
3 j∗ = agent i’s jth most valuable item ;
4 v′ij ← vi(j∗) ;

Algorithm 2: α-MMS Allocation for Unordered Instance.
Input :Allocation A′ = (A′1, . . . , A′n) for Ordered Normalized Instance

I ′ = (N,M, V ′) such that v′i(A′i) ≥ α for all i ∈ N .
Output : Allocation A = (A1, . . . , An) for Original Normalized Instance

I = (N,M, V) such that vi(Ai) ≥ α for all i ∈ N .

1 A = (∅, . . . , ∅) and R←M ;
2 for j = 1 to m do
3 a← i : j ∈ A′i (pick the agent assigned item j in A′) ;
4 g ← arg maxk∈R vak;
5 Ai ← Ai ∪ {g} and R←M \ {g};

Algorithm 1 gives explicit details for the process of converting any instance I into an
ordered instance I ′. We call I ′ constructed this way the ordered instance of I.

I Theorem 7 (Theorem 2 and Corollary 1 of Barman and Murthy [2]). For any instance I, let
I ′ be its ordered instance. If A′ is an α approximate MMS allocation for I ′, then using A′ we
can find allocation A which is an α approximate MMS allocation for I in polynomial time.

Algorithm 2 shows how to obtain an α approximate MMS allocation A for the original
instance I given an α approximate MMS allocation for the ordered instance I ′. For the sake
of completeness, we provide a brief proof of Theorem 7.

Proof. (Theorem 7) Clearly, both Algorithms 1 and 2 run in polynomial time. Notice that
Algorithm 2 allocates each item j ∈ M to at most one agent i ∈ N and that one item is
allocated in each iteration. Let kj be the item allocated in the jth iteration of Algorithm
2, lines 2 through 5. Consider the agent i assigned j ∈ A′i, meaning that kj ∈ Ai. At the
beginning of the jth iteration, exactly j − 1 items have been allocated. Therefore, kj is
among the top j most valuable items for agent i. From the construction of the ordered
instance I ′, it follows that for all j ∈ A′i, vi(kj) ≥ v′i(j). Therefore, vi(Ai) =

∑
j∈A′

i
vi(kj) ≥∑

j∈A′
i
v′i(j) = v′i(A′i) ≥ α. J

Proposition 6 and Theorem 7 show that it suffices to consider ordered instances. A total
ordering over the set of items M provides precious information to us as algorithm designers
since we know precisely which items are best (favored by all agents). In other words, the
ordering over M essentially means all items fall into three categories: low, medium, and high
valued, corresponding to low, medium, and high in the ordering respectively. In Section 3,
we show that a total ordering over the items M allows for a simple generalization of the 1/2
MMS allocation algorithm described in Section 2.2 to give 2/3 MMS allocations.

J. Garg, P. McGlaughlin, and S. Taki 20:7

3 A 2/3 MMS Approximation

In this section we present an algorithm to find 2/3 approximate MMS allocations. Our
method involves a preprocessing step with Proposition 6 to ensure the instance is ordered.
We show how to obtain a 2/3 MMS allocation for the ordered instance, then use a post
processing step with Theorem 7 to obtain a 2/3 MMS allocation for the original instance.
From this point on, we assume the instance is ordered as defined in (4).

The algorithm builds one bundle of items at a time, assigns it to some agent i who values
it at least 2/3µi, and then removes that agent and the bundle from the instance. The basic
structure of the algorithm closely resembles the simple 1/2 MMS algorithm discussed in
Section 2.2. In fact, the same simple strategies guide the algorithm’s design.

Assuming valuations are normalized as defined in (2), our algorithm handles allocation of
items based on their value: low, medium or high. For this we use the clustering approach of
[6], and define the following sets of items:

SH = {j ∈M : ∃i ∈ N s.t. vij ≥ 2/3}
SM = {j ∈M : ∃i ∈ N s.t. 1/3 ≤ vij , vij < 2/3, ∀i ∈ N}
SL = {j ∈M : vij < 1/3, ∀i ∈ N},

(5)

which correspond to high, medium, and low valued items respectively. Second, for any bundle
S ⊆M , we define the set N(S) as the agent’s with value at least 2/3 for S:

N(S) = {i : i ∈ N, vi(S) ≥ 2/3}. (6)

By using the preprocessing step of Proposition 6, we ensure a total ordering on the items
(4). Thus, for any agent i if vik > 1/3 for some item k, then vij > 1/3 for all j ≤ k. Similarly,
if vik < 2/3, then vij < 2/3 for all j ≥ k.

3.1 2/3 MMS Algorithm
At a high level, our algorithm mirrors the simple 1/2 MMS algorithm, consisting of two
phases: matching and bag filling. Like the 1/2 MMS algorithm, we allocate high value items
SH through a maximum matching, and assign all low value items SL through bag filling.
For medium valued items SM , the total ordering on the items simplifies allocation decisions
based on |SM |. If |SM | is sufficiently large, we greedily assign a bundle containing the two
’least valuable’ items of |SM | to any agent that values it at least 2/3, using a generalization
of Proposition 3. Otherwise, we use a modified version of the bag filling algorithm. We make
the treatment of medium valued items more precise shortly, but note that, the total ordering
of items allows for small adjustments to the matching and bag filling stages of the 1/2 MMS
algorithm to improve the approximation guarantees to 2/3 MMS. Further, our approach
makes the analysis of each stage nearly as simple as in the 1/2 MMS algorithm. We now
explain the algorithm in more detail, see Algorithm 3 for a formal description.

Matching Procedure. The initial phase of the algorithm allocates high value items SH

through a maximum matching we call the Matching Procedure. First, we normalize valuations
which ensures µi ≤ 1 for all agents by Proposition 2. Next, we form a bipartite graph with
agents of on the left hand side and items of SH on the right. We create an edge between
agent i and item j, if vij ≥ 2/3. In words, the graph’s edges connect agents with items they
value at least 2/3. Next, we solve a maximum matching T , and assign i bundle Ai = j, if
(i, j) ∈ T . All matched items and agents are removed from the instance and we normalize
valuations for the remaining agents. This process repeats until |SH | = 0, i.e., there are no
more high valued items.

SOSA 2019

20:8 Approximating Maximin Share Allocations

Greedy Assignment from SM . After completing the first phase, all high value items
are allocated. Next, we determine how to distribute medium and low value items among
the remaining agents. Our preprocessing step with Proposition 6 ensures the instance
is ordered (4), meaning there is a least preferred item in any set of items (5). More
precisely, j∗ = arg maxj∈SM

j is the least preferred item of SM (medium value items). When
|SM | > |N |, each agent must create at least one bundle containing two or more items of SM

when calculating their µi, by pigeon hole principle. Similar to the matching stage of the 1/2
MMS algorithm, we greedily assign the two least preferred items of SM , S = {j∗ − 1, j∗}, to
an arbitrary agent i with valuation vi(S) ≥ 2/3. This ensures the i receiving S gets at least
2/3µi, and the MMS of all remaining agents k in the reduced instance I ′ = (N \ i,M \ S, V)
satisfy: µ′k ≥ µk. Agent’s valuations are then normalized, and process repeats.

Modified Bag Filling. After allocating the bulk of medium value items |SM | ≤ |N |, we
create bundles for the remaining agents through a slightly modified version of bag filling.
Here, we simply initialize the bag S using one, arbitrary item from SM , and then fill the
bag with items from SL (low valued items) until some agent i values S at least vi(S) ≥ 2/3 .
Once |SM | = 0, we use the standard bag filling algorithm.

Recall that the challenge of improving the approximation guarantees of the 1/2 MMS
algorithm requires proper management of the medium valued items SM . Our approach,
using Proposition 6 and Theorem 7 to ensure the instance is ordered, enables a simple and
natural extension of the straight-forward 1/2 MMS algorithm to provide improved 2/3 MMS
guarantees.

The algorithm consists of two phases, matching and bag filling. The phases use different
allocation procedures based on |SH | and |SM | respectively. We consider these procedures
separately, starting with the matching procedure.

I Lemma 8. Let I = (N,M, V) be a problem instance where agents’ valuations are normalized
as defined in (2), and let µi be agent i’s MMS. Suppose |SH | > 0, as defined in (5), and that
the Matching Procedure is used to create a maximum matching T . Let L be the agents of T
and S be the items of T . Then,
(i) |L| = |S| > 0.
(ii) All removed agents i receive at least 2/3µi.
(iii) Let µ′i be the MMS of remaining agent i in the reduced instance I ′ = (N \L,M \ S, V).

Then, µ′i ≥ µi.

Proof. Recall the Matching Procedure creates a bipartite graph G = (V,E) where the
vertices V consist of agents on the left side and items on the right. An edge e ∈ E is created
between agent i and item j if vij ≥ 2/3. Finally, a maximum matching T is determined. By
definition of SH and the fact |SH | > 0, the set of edges E of G is non-empty. Since T is a
maximum matching, part i) is obvious. Next, recall that Proposition 2 shows that µi ≤ 1
for all i ∈ N since valuations are normalized. Part ii) then follows by the construction of G.
Finally, since |L| = |S|, Corollary 4 guarantees µ′i ≥ µi for all remaining agents i. J

We now consider the second procedure of the algorithm’s matching phase.

I Lemma 9. Let I = (N,M, V) be an ordered problem instance with normalized valu-
ations, and let µi be agent i’s MMS. Suppose that |SH | = 0 and |SM | > |N |. Define
j∗ = arg maxj∈SM

j, and let S = {j∗, j∗− 1} be the two least preferred items of SM . Suppose
bundle S is assigned an arbitrary agent k satisfying vk(S) ≥ 2/3. Then,
(i) vk(S) ≥ 2/3µk.
(ii) Let µ′i be the MMS of any remaining agent i in the reduced instance I ′ = (N\k,M\S, V).

Then, µ′i ≥ µi.

J. Garg, P. McGlaughlin, and S. Taki 20:9

Algorithm 3: 2/3-MMS Allocation.
Input :Ordered Instance 〈N,M, V 〉
Output : 2/3 Approximate Maximin Share Allocation

1 while |N | > 0 do
2 Normalize Valuations ;
3 if |SH | > 0 then
4 Matching Procedure ;
5 else if |SM | > |N | then
6 j∗ ← maxj∈SM

j; // lowest value item of SM

7 N(j∗)← {i : i ∈ N, vi(j∗, j∗ − 1) ≥ 2/3} ;
8 i ∈ N(j∗); Ai ← {j∗, j∗ − 1}; // assign i the bundle {j∗, j∗ − 1}
9 N ← N \ i; M ←M \ {j∗, j∗ − 1} ;

10 else
11 while |N | ≥ |SM | do
12 if |SM | > 0 then
13 S ← j ∈ SM ; // create a bag with arbitrary item of SM

14 else
15 S ← j ∈ SL; // create a bag with arbitrary item of SL

16 N(S) = {i : i ∈ N, vi(S) ≥ 2/3}; // N(S) changes with S

17 while |N(S)| = 0 do
18 j ∈ SL; S ← S ∪ j; // add arbitrary low value item to the bag

19 i ∈ N(S); Ai ← S ; // assign i the bundle S

20 N ← N \ i; M ←M \ S ;

Proof. The argument is a simple generalization of Proposition 3. From normalized valuations
and Proposition 2, µi ≤ 1 for all i ∈ N . By definition of the set SM , for all items j ∈ SM

there exists an agent k ∈ N so that vkj ≥ 1/3. Since the instance is ordered, if vkj ≥ 1/3,
then vkj′ ≥ 1/3 for all j′ ≤ j. Since |SM | > |N | > 0 and j∗ ∈ SM , there exists at least one
agent k ∈ N so that vk(S) ≥ 2/3µk, showing part i).

We now show part ii). For any remaining agent i in the reduced instance I ′, consider
the bundles A = {A1, . . . , An} she makes while computing her µi in the original instance I.
Note that vi(Aj) ≥ µi for all Aj ∈ A. In the reduced instance I ′, agent i must create one
less bundle, but has two fewer items, specifically j∗ and j∗ − 1. We show how to construct
a feasible allocation A′ = {A′1, . . . , A′n−1} so that vi(A′j) ≥ µi for all A′j ∈ A′. Notice that
the condition |SM | > |N | guarantees that at least one bundle, say Ak, must contain at least
two items, say u, v ∈ SM , by the pigeon hole principle. Wlog we may assume vi(u) ≤ vi(v).
Since we take the two lowest valued items of SM , S = {j∗, j∗ − 1}, then vi(j∗) ≤ vi(u) and
vi(j∗ − 1) ≤ vi(v). Let Aj∗ and Aj∗−1 be the bundles of A containing items j∗ and j∗ − 1
respectively. Suppose agent i swaps item u ∈ Ak with item j∗ ∈ Aj∗ and swaps item v ∈ Ak

with item j∗ − 1 ∈ Aj∗−1 to create A′k, A′j∗ , and A′j∗−1. Finally, i distributes the items of
A′k \ S to other bundles arbitrarily to create a new set of bundles A′ = {A′1, . . . , A′n−1}. It is
clear that A′ is a feasible allocation and that vi(A′j) ≥ µi. Therefore, agent i’s MMS µ′i in
the reduced instance I ′ satisfies µ′i ≥ µi. J

We now consider the algorithm’s second phase, bag filling.

SOSA 2019

20:10 Approximating Maximin Share Allocations

I Lemma 10. Let I = (N,M, V) be an ordered problem instance with normalized valuations.
Suppose that |SH | = 0 and 0 < |SM | ≤ |N |. Then, the modified bag filling algorithm ensures
all agents receive a bundle worth at least 2/3 of their maximin share.

Proof. This argument is a simple generalization of Proposition 5. In modified bag filling,
we simply initialize the bag S to an arbitrary item j ∈ SM . Notice that, this initialization
ensures the condition |SM | ≤ |N | holds in each iteration since we always remove one agent
and one item of SM . As valuations are normalized, it is enough to show all agents receive a
bundle worth at least 2/3.

First, note that |SL| > 0, since from normalized valuations and the fact that vij < 2/3
∀j ∈ SM , we see that ∀i ∈ N : vi(SL) = vi(M)− vi(SM) ≥ |N | − 2/3|SM | ≥ |N |/3 > 0. We
now show that some agent i eventually values the bag vi(S) ≥ 2/3. Let j ∈ SM be the initial
item of the bag. If there exists an agent i ∈ N such that vik < 1/3 for all k ∈ M , then,
clearly there exists some S′ ⊂ SL so that vi(j ∪S′) ≥ 2/3. Suppose that no such agent exists.
Note that from the definition of SM , there exists some agent i such that vij ≥ 1/3. Given
that vi(SL) ≥ |N |/3, we see that vi(j ∪ SL) ≥ 1/3 + |N |/3 ≥ 2/3 for |N | ≥ 1. Therefore,
there exists S′ ⊂ SL so that vi(j ∪ S′) ≥ 2/3. This establishes the bag is eventually assigned
to an agent who values it at least 2/3.

Let k be the agent assigned the bag S. Now, we show that vi(S) ≤ 1 for all other agents
i ∈ N \ k. Before adding the final item of the bag j′ ∈ S, vi(S \ j′) < 2/3 for all i ∈ N .
The final item added to the bag comes from SL so vi(j′) < 1/3 for all i ∈ N . Therefore,
vi(S) < 1 for all i ∈ N . This means that for each agent i, vi(M) ≥ |N | and vi(SL) ≥ |N |/3
are invariants of the algorithm. Then, it is easy to see all agents receive a bundle worth 2/3.
Finally, when |SM | = 0, all agents receive a bundle worth at least 2/3 by Proposition 5. J

From Lemmas 8, 9, and 10, we get the following theorem.

I Theorem 11. Algorithm 3 provides a 2/3 approximate MMS allocation.

I Remark. Lemmas 9 and 10 are really just simple generalizations of Propositions 3 and 5
(respectively) designed to manage medium valued items SM . In this sense, our algorithm
is natural generalization of the simple 1/2 MMS algorithm of Section 2.2 which improves
performance guarantees to 2/3 MMS.

4 Discussion

In this paper we investigate fair division of indivisible items using maximin share as our
measure of fairness of an allocation. We propose a simple greedy approximation algorithm to
obtain a 2/3 MMS allocation. Further, we show that our algorithm can be seen as a natural
extension of the 1/2 MMS algorithm discussed in Section 2.2. This allows for a far simpler,
and more intuitive analysis as compared to other existing 2/3 MMS approximations.

Our approach does not seem to generalize to provide better performance guarantees.
Consider designing an algorithm to give a 3/4 MMS allocation. Suppose we naively create
three clusters of items: high vij ≥ 3/4 for at least one agent i, medium vij ≥ 1/4 for at
least one agent but vij < 3/4 for all agents, and low vij < 1/4 for all agents. Similar to the
2/3 case, we allocate high valued items through maximum matching, and if all items are
low valued, then bag filling suffices to distribute all remaining items. Notice that, we must
assign two or three medium valued items to ensure an agent receives at bundle worth at
least 3/4. If |SM | > 2|N |, then we can guarantee each agent must create at least one bundle
containing three items from SM when computing their MMS, and therefore, may justify

J. Garg, P. McGlaughlin, and S. Taki 20:11

greedily assigning a bundle containing the three lowest valued items of SM to any agent who
values it at least 3/4. When 2|N | ≥ |SM | > |N |, the situation is less clear. We know each
agent creates at least one bundle containing two items from SM when computing their MMS,
but we can’t guarantee that some agent will value a bundle containing only the two lowest
valued items of SM at least 3/4. Further, we can’t guarantee that we may start bag filling
where we initialize the bag to the two least valuable items of SM since some agent might
value some set of two ‘better’ (more valuable) items of SM more than 1. If we initialize
the bag to only the lowest valued item of SM , then we might ‘run’ out of low valued items,
leaving only medium valued items and no way to ensure each remaining agent receives at
least 3/4.

Attempting a finer partitioning of SM significantly complicates analysis as it creates
numerous special cases based on the number of items within each sub-cluster of medium
valued items. Further, it is not clear that a simple allocation decision exists for all possible
special cases. For these reasons, it seems the approach presented in this paper is only capable
of producing a 2/3 MMS allocation. However, as our algorithm is closely related to the
simple 1/2 MMS approximation, we find our approach more intuitive than other existing 2/3
MMS algorithms.

References
1 Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. Approxima-

tion algorithms for computing maximin share allocations. ACM Transactions on Algorithms
(TALG), 13(4):52, 2017.

2 Siddharth Barman and Sanath Kumar Krishna Murthy. Approximation algorithms for
maximin fair division. In Proceedings of the 2017 ACM Conference on Economics and
Computation, pages 647–664. ACM, 2017.

3 Sylvain Bouveret and Michel Lemaître. Characterizing conflicts in fair division of indivisible
goods using a scale of criteria. Autonomous Agents and Multi-Agent Systems, 30(2):259–290,
2016.

4 Sylvain Bouveret and Michel Lemaître. Efficiency and sequenceability in fair division of
indivisible goods with additive preferences. arXiv preprint arXiv:1604.01734, 2016.

5 Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium
from equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.

6 Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin,
and Hadi Yami. Fair allocation of indivisible goods: Improvement and generalization. In
EC, 2018.

7 David Kurokawa, Ariel D Procaccia, and Junxing Wang. When can the maximin share
guarantee be guaranteed? In AAAI, volume 16, pages 523–529, 2016.

8 David Kurokawa, Ariel D. Procaccia, and Junxing Wang. Fair Enough: Guaranteeing
Approximate Maximin Shares. J. ACM, 65(2):8:1–8:27, 2018.

9 Ariel D Procaccia and Junxing Wang. Fair enough: Guaranteeing approximate maximin
shares. In Proceedings of the fifteenth ACM conference on Economics and computation,
pages 675–692. ACM, 2014.

10 Hugo Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.
11 Gerhard J Woeginger. A polynomial-time approximation scheme for maximizing the min-

imum machine completion time. Operations Research Letters, 20(4):149–154, 1997.

SOSA 2019

	Introduction
	Preliminaries
	Properties of Maximin Share
	What Makes Finding Approximate MMS Allocations Hard?
	Results of Bouveret and Lemaître, and Barman and Murthy

	A 2/3 MMS Approximation
	2/3 MMS Algorithm

	Discussion

