1,474 research outputs found

    Lazy Abstraction-Based Controller Synthesis

    Full text link
    We present lazy abstraction-based controller synthesis (ABCS) for continuous-time nonlinear dynamical systems against reach-avoid and safety specifications. State-of-the-art multi-layered ABCS pre-computes multiple finite-state abstractions of varying granularity and applies reactive synthesis to the coarsest abstraction whenever feasible, but adaptively considers finer abstractions when necessary. Lazy ABCS improves this technique by constructing abstractions on demand. Our insight is that the abstract transition relation only needs to be locally computed for a small set of frontier states at the precision currently required by the synthesis algorithm. We show that lazy ABCS can significantly outperform previous multi-layered ABCS algorithms: on standard benchmarks, lazy ABCS is more than 4 times faster

    Abstracting the Traffic of Nonlinear Event-Triggered Control Systems

    Full text link
    Scheduling communication traffic in networks of event-triggered control (ETC) systems is challenging, as their sampling times are unknown, hindering application of ETC in networks. In previous work, finite-state abstractions were created, capturing the sampling behaviour of LTI ETC systems with quadratic triggering functions. Offering an infinite-horizon look to all sampling patterns of an ETC system, such abstractions can be used for scheduling of ETC traffic. Here we significantly extend this framework, by abstracting perturbed uncertain nonlinear ETC systems with general triggering functions. To construct an ETC system's abstraction: a) the state space is partitioned into regions, b) for each region an interval is determined, containing all intersampling times of points in the region, and c) the abstraction's transitions are determined through reachability analysis. To determine intervals and transitions, we devise algorithms based on reachability analysis. For partitioning, we propose an approach based on isochronous manifolds, resulting into tighter intervals and providing control over them, thus containing the abstraction's non-determinism. Simulations showcase our developments

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    verifying a behavioural logic for graph transformation systems

    Get PDF
    We propose a framework for the verication of behavioural properties of systems modelled as graph transformation systems. The properties can be expressed in a temporal logic which is basically a -calculus where the state predicates are formulae of a monadic second order logic, describing graph properties. The verication technique relies on an algorithm for the construction of nite over-approximations of the unfolding of a graph transformation system

    Program Model Checking: A Practitioner's Guide

    Get PDF
    Program model checking is a verification technology that uses state-space exploration to evaluate large numbers of potential program executions. Program model checking provides improved coverage over testing by systematically evaluating all possible test inputs and all possible interleavings of threads in a multithreaded system. Model-checking algorithms use several classes of optimizations to reduce the time and memory requirements for analysis, as well as heuristics for meaningful analysis of partial areas of the state space Our goal in this guidebook is to assemble, distill, and demonstrate emerging best practices for applying program model checking. We offer it as a starting point and introduction for those who want to apply model checking to software verification and validation. The guidebook will not discuss any specific tool in great detail, but we provide references for specific tools

    Approximately bisimilar symbolic models for nonlinear control systems

    Full text link
    Control systems are usually modeled by differential equations describing how physical phenomena can be influenced by certain control parameters or inputs. Although these models are very powerful when dealing with physical phenomena, they are less suitable to describe software and hardware interfacing the physical world. For this reason there is a growing interest in describing control systems through symbolic models that are abstract descriptions of the continuous dynamics, where each "symbol" corresponds to an "aggregate" of states in the continuous model. Since these symbolic models are of the same nature of the models used in computer science to describe software and hardware, they provide a unified language to study problems of control in which software and hardware interact with the physical world. Furthermore the use of symbolic models enables one to leverage techniques from supervisory control and algorithms from game theory for controller synthesis purposes. In this paper we show that every incrementally globally asymptotically stable nonlinear control system is approximately equivalent (bisimilar) to a symbolic model. The approximation error is a design parameter in the construction of the symbolic model and can be rendered as small as desired. Furthermore if the state space of the control system is bounded the obtained symbolic model is finite. For digital control systems, and under the stronger assumption of incremental input-to-state stability, symbolic models can be constructed through a suitable quantization of the inputs.Comment: Corrected typo

    Discrete Semantics for Hybrid Automata

    Get PDF
    Many natural systems exhibit a hybrid behavior characterized by a set of continuous laws which are switched by discrete events. Such behaviors can be described in a very natural way by a class of automata called hybrid automata. Their evolution are represented by both dynamical systems on dense domains and discrete transitions. Once a real system is modeled in a such framework, one may want to analyze it by applying automatic techniques, such as Model Checking or Abstract Interpretation. Unfortunately, the discrete/continuous evolutions not only provide hybrid automata of great flexibility, but they are also at the root of many undecidability phenomena. This paper addresses issues regarding the decidability of the reachability problem for hybrid automata (i.e., "can the system reach a state a from a state b?") by proposing an "inaccurate" semantics. In particular, after observing that dense sets are often abstractions of real world domains, we suggest, especially in the context of biological simulation, to avoid the ability of distinguishing between values whose distance is less than a fixed \u3b5. On the ground of the above considerations, we propose a new semantics for first-order formul\ue6 which guarantees the decidability of reachability. We conclude providing a paradigmatic biological example showing that the new semantics mimics the real world behavior better than the precise one
    • …
    corecore