195 research outputs found

    Planning and Management of a solar power-based distribution system

    Full text link
    This thesis is aimed at the response of the power system network to the integration of solar photovoltaic (PV) generation and battery energy storage systems (BESS). Any solar power–based system integrated into a grid has voltage fluctuations that must be controlled through adaptive and robust control algorithms. The siting of battery in a distribution system affects system performance, including voltage regulation, system losses and cost minimization. In particular, here the aim is to analyse how the present-day schemes and technologies affect voltages, and their control, in the network. Another focus is on the optimal placement of BESS to facilitate system loss minimisation and cost reduction in the system. The battery placement optimisation is achieved through the minimisation of the losses in, and the cost of, the system. The voltage regulation is achieved through two control algorithms: Synchronous Reference Frame theory (SRFT) and adaptive linear neural network (ADALINE), which are subsequently modified by incorporation of fuzzy logic into the control system. Both battery placement optimisation and improvements to voltage regulation are shown to improve performance of the system. A further aim of this work is to improve cooperation between present day grid regulation equipment and schemes and the conventional methods through advancements in the control techniques. The aims of this thesis are as follows: 1. It is essential to place BESSs optimally. The aim of the thesis is to study and enhance the method of the optimal siting of battery energy storage in the presence of renewable energy–based power generating sources (RES)– such as solar PV – in a low-voltage power system network. A model for optimisation is developed to potentially find the battery site that enhances the hosting capability of the RES of the power system network. Among the essential points of this technique are its accuracy and robust nature. The fitness function includes the minimisation of the cost of operation and of system losses. 2. The second research objective is to examine the power control techniques of the inverter that might be leading to the voltage quality issues during unbalanced voltage scenarios, especially with solar PV–based generation in the power system. As such, after the implementation of the suggested coordination of the control mechanism into the grid under study, the variations in the voltage due to the solar PV variability dynamics are regulated more quickly and more precisely compared with the control schemes employed in the past. This substantially minimises the voltage fluctuations in time and amplitude, helps in mitigating hunting phenomena in voltage and provides alternative to the unnecessary control operations existing in the system

    Power Quality

    Get PDF
    Electrical power is becoming one of the most dominant factors in our society. Power generation, transmission, distribution and usage are undergoing signifi cant changes that will aff ect the electrical quality and performance needs of our 21st century industry. One major aspect of electrical power is its quality and stability – or so called Power Quality. The view on Power Quality did change over the past few years. It seems that Power Quality is becoming a more important term in the academic world dealing with electrical power, and it is becoming more visible in all areas of commerce and industry, because of the ever increasing industry automation using sensitive electrical equipment on one hand and due to the dramatic change of our global electrical infrastructure on the other. For the past century, grid stability was maintained with a limited amount of major generators that have a large amount of rotational inertia. And the rate of change of phase angle is slow. Unfortunately, this does not work anymore with renewable energy sources adding their share to the grid like wind turbines or PV modules. Although the basic idea to use renewable energies is great and will be our path into the next century, it comes with a curse for the power grid as power fl ow stability will suff er. It is not only the source side that is about to change. We have also seen signifi cant changes on the load side as well. Industry is using machines and electrical products such as AC drives or PLCs that are sensitive to the slightest change of power quality, and we at home use more and more electrical products with switching power supplies or starting to plug in our electric cars to charge batt eries. In addition, many of us have begun installing our own distributed generation systems on our rooft ops using the latest solar panels. So we did look for a way to address this severe impact on our distribution network. To match supply and demand, we are about to create a new, intelligent and self-healing electric power infrastructure. The Smart Grid. The basic idea is to maintain the necessary balance between generators and loads on a grid. In other words, to make sure we have a good grid balance at all times. But the key question that you should ask yourself is: Does it also improve Power Quality? Probably not! Further on, the way how Power Quality is measured is going to be changed. Traditionally, each country had its own Power Quality standards and defi ned its own power quality instrument requirements. But more and more international harmonization efforts can be seen. Such as IEC 61000-4-30, which is an excellent standard that ensures that all compliant power quality instruments, regardless of manufacturer, will produce of measurement instruments so that they can also be used in volume applications and even directly embedded into sensitive loads. But work still has to be done. We still use Power Quality standards that have been writt en decades ago and don’t match today’s technology any more, such as fl icker standards that use parameters that have been defi ned by the behavior of 60-watt incandescent light bulbs, which are becoming extinct. Almost all experts are in agreement - although we will see an improvement in metering and control of the power fl ow, Power Quality will suff er. This book will give an overview of how power quality might impact our lives today and tomorrow, introduce new ways to monitor power quality and inform us about interesting possibilities to mitigate power quality problems. Regardless of any enhancements of the power grid, “Power Quality is just compatibility” like my good old friend and teacher Alex McEachern used to say. Power Quality will always remain an economic compromise between supply and load. The power available on the grid must be suffi ciently clean for the loads to operate correctly, and the loads must be suffi ciently strong to tolerate normal disturbances on the grid

    An Update on Power Quality

    Get PDF
    Power quality is an important measure of fitness of electricity networks. With increasing renewable energy generations and usage of power electronics converters, it is important to investigate how these developments will have an impact to existing and future electricity networks. This book hence provides readers with an update of power quality issues in all sections of the network, namely, generation, transmission, distribution and end user, and discusses some practical solutions

    Protection of sensitive loads using sliding mode controlled three-phase DVR with adaptive notch filter

    Get PDF
    This paper introduces a sliding mode control (SMC) strategy for three-phase dynamic voltage restorers (DVRs) with a 12-switch voltage source inverter. The compensating voltage references needed in the SMC strategy are generated by an adaptive notch filter (ANF), which exhibits excellent performance under grid voltage anomalies such as voltage sags, swells, and unbalanced and distorted grid voltage conditions. The consequence of using the ANF eliminates the use of phase-lock loop or frequency-lock loop and low-pass filter, which makes it distinguishable from the existing reference signal generation solutions. In addition, the use of the SMC strategy with its attractive properties makes the control implementation simple. Theoretical results are supported by simulation results as well as realtime laboratory results over a range of grid voltage anomalies. These results show that the proposed control strategy not only offers an excellent dynamic response independent from the parameter variations and disturbances but also compensates the voltage sags, swells, and harmonics on the load terminals under the defined limits of the IEEE-519 standard

    Review of fundamental active current extraction techniques for SAPF

    Get PDF
    The field of advanced digital signal processing methods is one of the fastest developing scientific and technical disciplines, and is important in the field of Shunt Active Power Filter control methods. Shunt active power filters are highly desirable to minimize losses due to the increase in the number of nonlinear loads (deformed power). Currently, there is rapid development in new adaptive, non-adaptive, and especially hybrid methods of digital signal processing. Nowadays, modern methods of digital signal processing maintain a key role in research and industrial applications. Many of the best practices that have been used to control shunt active power in industrial practice for decades are now being surpassed in favor of new progressive approaches. This systematic research review classifies the importance of using advanced signal processing methods in the field of shunt active power filter control methods and summarizes the extant harmonic extraction methods, from the conventional approach to new progressive methods using genetic algorithms, artificial intelligence, and machine learning. Synchronization techniques are described and compared as well.Web of Science2220art. no. 798
    corecore