5 research outputs found

    Approximate Ambient Occlusion For Trees

    Get PDF
    International audienceNatural scenes contain large amounts of geometry, such as hundreds of thousands or even millions of tree leaves and grass blades. Subtle lighting effects present in such environments usually include a significant amount of occlusion effects and lighting variation. These effects are important for realistic renderings of such natural environments; however, plausible lighting and full global illumination computation come at prohibitive costs especially for interactive viewing. As a solution to this problem, we present a simple approximation to integrated visibility over a hemisphere (ambient occlusion) that allows interactive rendering of complex and dynamic scenes. Based on a set of simple assumptions, we show that our method allows the rendering of plausible variation in lighting at modest additional computation and little or no precomputation, for complex and dynamic scenes

    Fast photorealistic techniques to simulate global illumination in videogames and virtual environments

    Get PDF
    Per al càlcul de la il·luminació global per a la síntesi d'imatges d'escenaris virtuals s'usen mètodes físicament acurats com a radiositat o el ray-tracing. Aquests mètodes són molt potents i capaços de generar imatges de gran realisme, però són molt costosos. A aquesta tesi presenta algunes tècniques per simular i/o accelerar el càlcul de la il·luminació global. La tècnica de les obscurances es basa en la suposició que com més amagat és un punt a l'escena, més fosc s'ha de veure. Es calcula analitzant l'entorn geomètric del punt i ens dóna un valor per a la seva il·luminació indirecta, que no és físicament acurat, però sí aparentment realista.Aquesta tècnica es millora per a entorns en temps real com els videojocs. S'aplica també a entorns de ray-tracing per a la generació d'imatges realistes. En aquest context, el càlcul de seqüències de frames per a l'animació de llums i càmeres s'accelera enormement reusant informació entre frames.Les obscurances serveixen per a simular la il·luminació indirecta d'una escena. La llum directa es calcula apart i de manera independent. El desacoblament de la llum directa i la indirecta és una gran avantatge, i en treurem profit. Podem afegir fàcilment l'efecte de coloració entre objectes sense afegir temps de càlcul. Una altra avantatge és que per calcular les obscurances només hem d'analitzar un entorn limitat al voltant del punt.Per escenes virtuals difuses, la radiositat es pot precalcular i l'escena es pot navegar amb apariència realista, però si un objecte de l'escena es mou en un entorn dinàmic en temps real, com un videojoc, el recàlcul de la il·luminació global de l'escena és prohibitiu. Com les obscurances es calculen en un entorn limitat, es poden recalcular en temps real per a l'entorn de l'objecte que es mou a cada frame i encara aconseguir temps real.A més, podem fer servir les obscurances per a calcular imatges de gran qualitat, o per seqüències d'imatges per una animació, com en el ray-tracing. Això ens permet tractar materials no difusos i investigar l'ús de tècniques normalment difuses com les obscurances en entorns generals. Quan la càmera està estàtica, l'ús d'animació de llum només afecta la il·luminació directa, i si usem obscurances per a la llum indirecta, gràcies al seu desacoblament, el càlcul de sèries de frames per a una animació és molt ràpid. El següent pas és afegir animació de càmera, reusant els valors de les obscurances entre frames. Aquesta última tècnica de reús d'informació de la il·luminació del punt d'impacte entre frames la podem usar per a tècniques acurades d'il·luminació global com el path-tracing, i nosaltres estudiem com reusar aquesta informació de manera no esbiaixada. A més, estudiem diferents tècniques de mostreig per a la semi-esfera, i les obscurances es calculen amb una nova tècnica, aplicant depth peeling amb GPU.To compute global illumination solutions for rendering virtual scenes, physically accurate methods based on radiosity or ray-tracing are usually employed. These methods, though powerful and capable of generating images with high realism, are very costly. In this thesis, some techniques to simulate and/or accelerate the computation of global illumination are studied. The obscurances technique is based on the supposition that the more occluded is a point in the scene, the darker it will appear. It is computed by analyzing the geometric environment of the point and gives a value for the indirect illumination for the point that is, though not physically accurate, visually realistic. This technique is enhanced and improved in real-time environments as videogames. It is also applied to ray-tracing frameworks to generate realistic images. In this last context, sequences of frames for animation of lights and cameras are dramatically accelerated by reusing information between frames.The obscurances are computed to simulate the indirect illumination of a scene. The direct lighting is computed apart and in an independent way. The decoupling of direct and indirect lighting is a big advantage, and we will take profit from this. We can easily add color bleeding effects without adding computation time. Another advantage is that to compute the obscurances we only need to analyze a limited environment around the point. For diffuse virtual scenes, the radiosity can be precomputed and we can navigate the scene with a realistic appearance. But when a small object moves in a dynamic real-time virtual environment, as a videogame, the recomputation of the global illumination of the scene is prohibitive. Thanks to the limited reach of the obscurance computation, we can recompute the obscurances only for the limited environment of the moving object for every frame and still have real-time frame rates. Obscurances can also be used to compute high quality images, or sequences of images for an animation, in a ray-tracing-like. This allows us to deal with non-diffuse materials and to research the use of a commonly diffuse technique as obscurances in general environments. For static cameras, using light animation only affects to direct lighting, and if we use obscurances for the indirect lighting, thanks to the decoupling of direct and indirect illumination, the computation of a series of frames for the animation is very fast. The next step is to add camera animation, reusing the obscurances results between frames. Using this last technique of reusing the illumination of the hit points between frames for a true global illumination technique as path tracing, we study how we can reuse this information in an unbiased way. Besides, a study of different sampling techniques for the hemisphere is made, obscurances are computed with the depth-peeling technique and using GPU

    Perceptually-motivated, interactive rendering and editing of global illumination

    Get PDF
    This thesis proposes several new perceptually-motivated techniques to synthesize, edit and enhance depiction of three-dimensional virtual scenes. Finding algorithms that fit the perceptually economic middle ground between artistic depiction and full physical simulation is the challenge taken in this work. First, we will present three interactive global illumination rendering approaches that are inspired by perception to efficiently depict important light transport. Those methods have in common to compute global illumination in large and fully dynamic scenes allowing for light, geometry, and material changes at interactive or real-time rates. Further, this thesis proposes a tool to edit reflections, that allows to bend physical laws to match artistic goals by exploiting perception. Finally, this work contributes a post-processing operator that depicts high contrast scenes in the same way as artists do, by simulating it "seen'; through a dynamic virtual human eye in real-time.Diese Arbeit stellt eine Anzahl von Algorithmen zur Synthese, Bearbeitung und verbesserten Darstellung von virtuellen drei-dimensionalen Szenen vor. Die Herausforderung liegt dabei in der Suche nach Ausgewogenheit zwischen korrekter physikalischer Berechnung und der künstlerischen, durch die Gesetze der menschlichen Wahrnehmung motivierten Praxis. Zunächst werden drei Verfahren zur Bild-Synthese mit globaler Beleuchtung vorgestellt, deren Gemeinsamkeit in der effizienten Handhabung großer und dynamischer virtueller Szenen liegt, in denen sich Geometrie, Materialen und Licht frei verändern lassen. Darauffolgend wird ein Werkzeug zum Editieren von Reflektionen in virtuellen Szenen das die menschliche Wahrnehmung ausnutzt um künstlerische Vorgaben umzusetzen, vorgestellt. Die Arbeit schließt mit einem Filter am Ende der Verarbeitungskette, der den wahrgenommen Kontrast in einem Bild erhöht, indem er die Entstehung von Glanzeffekten im menschlichen Auge nachbildet

    Abstract Approximate Ambient Occlusion For Trees

    No full text
    Natural scenes contain large amounts of geometry, such as hundreds of thousands or even millions of tree leaves and grass blades. Subtle lighting effects present in such environments usually include a significant amount of occlusion effects and lighting variation. These effects are important for realistic renderings of such natural environments; however, plausible lighting and full global illumination computation come at prohibitive costs especially for interactive viewing. As a solution to this problem, we present a simple approximation to integrated visibility over a hemisphere (ambient occlusion) that allows interactive rendering of complex and dynamic scenes. Based on a set of simple assumptions, we show that our method allows the rendering of plausible variation in lighting at modest additional computation and little or no precomputation, for complex and dynamic scenes.
    corecore