4,229 research outputs found

    Approximate projectors in singular spectrum analysis

    Get PDF
    Singular spectrum analysis (SSA) is a method of time-series analysis based on the singular value decomposition of an associated Hankel matrix. We present an approach to SSA using an effective and numerically stable high-degree polynomial approximation of a spectral projector, which also provides a means of time-series forecasting. Several numerical examples illustrating the algorithm are given

    Fast computation of spectral projectors of banded matrices

    Full text link
    We consider the approximate computation of spectral projectors for symmetric banded matrices. While this problem has received considerable attention, especially in the context of linear scaling electronic structure methods, the presence of small relative spectral gaps challenges existing methods based on approximate sparsity. In this work, we show how a data-sparse approximation based on hierarchical matrices can be used to overcome this problem. We prove a priori bounds on the approximation error and propose a fast algo- rithm based on the QDWH algorithm, along the works by Nakatsukasa et al. Numerical experiments demonstrate that the performance of our algorithm is robust with respect to the spectral gap. A preliminary Matlab implementation becomes faster than eig already for matrix sizes of a few thousand.Comment: 27 pages, 10 figure

    Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics

    Get PDF
    Quantum computing is powerful because unitary operators describing the time-evolution of a quantum system have exponential size in terms of the number of qubits present in the system. We develop a new "Singular value transformation" algorithm capable of harnessing this exponential advantage, that can apply polynomial transformations to the singular values of a block of a unitary, generalizing the optimal Hamiltonian simulation results of Low and Chuang. The proposed quantum circuits have a very simple structure, often give rise to optimal algorithms and have appealing constant factors, while usually only use a constant number of ancilla qubits. We show that singular value transformation leads to novel algorithms. We give an efficient solution to a certain "non-commutative" measurement problem and propose a new method for singular value estimation. We also show how to exponentially improve the complexity of implementing fractional queries to unitaries with a gapped spectrum. Finally, as a quantum machine learning application we show how to efficiently implement principal component regression. "Singular value transformation" is conceptually simple and efficient, and leads to a unified framework of quantum algorithms incorporating a variety of quantum speed-ups. We illustrate this by showing how it generalizes a number of prominent quantum algorithms, including: optimal Hamiltonian simulation, implementing the Moore-Penrose pseudoinverse with exponential precision, fixed-point amplitude amplification, robust oblivious amplitude amplification, fast QMA amplification, fast quantum OR lemma, certain quantum walk results and several quantum machine learning algorithms. In order to exploit the strengths of the presented method it is useful to know its limitations too, therefore we also prove a lower bound on the efficiency of singular value transformation, which often gives optimal bounds.Comment: 67 pages, 1 figur

    Computing covariant vectors, Lyapunov vectors, Oseledets vectors, and dichotomy projectors: a comparative numerical study

    Full text link
    Covariant vectors, Lyapunov vectors, or Oseledets vectors are increasingly being used for a variety of model analyses in areas such as partial differential equations, nonautonomous differentiable dynamical systems, and random dynamical systems. These vectors identify spatially varying directions of specific asymptotic growth rates and obey equivariance principles. In recent years new computational methods for approximating Oseledets vectors have been developed, motivated by increasing model complexity and greater demands for accuracy. In this numerical study we introduce two new approaches based on singular value decomposition and exponential dichotomies and comparatively review and improve two recent popular approaches of Ginelli et al. (2007) and Wolfe and Samelson (2007). We compare the performance of the four approaches via three case studies with very different dynamics in terms of symmetry, spectral separation, and dimension. We also investigate which methods perform well with limited data

    Rayleigh-Ritz majorization error bounds of the mixed type

    Full text link
    The absolute change in the Rayleigh quotient (RQ) for a Hermitian matrix with respect to vectors is bounded in terms of the norms of the residual vectors and the angle between vectors in [\doi{10.1137/120884468}]. We substitute multidimensional subspaces for the vectors and derive new bounds of absolute changes of eigenvalues of the matrix RQ in terms of singular values of residual matrices and principal angles between subspaces, using majorization. We show how our results relate to bounds for eigenvalues after discarding off-diagonal blocks or additive perturbations.Comment: 20 pages, 1 figure. Accepted to SIAM Journal on Matrix Analysis and Application

    Stabilization of Unstable Procedures: The Recursive Projection Method

    Get PDF
    Fixed-point iterative procedures for solving nonlinear parameter dependent problems can converge for some interval of parameter values and diverge as the parameter changes. The Recursive Projection Method (RPM), which stabilizes such procedures by computing a projection onto the unstable subspace is presented. On this subspace a Newton or special Newton iteration is performed, and the fixed-point iteration is used on the complement. As continuation in the parameter proceeds, the projection is efficiently updated, possibly increasing or decreasing the dimension of the unstable subspace. The method is extremely effective when the dimension of the unstable subspace is small compared to the dimension of the system. Convergence proofs are given and pseudo-arclength continuation on the unstable subspace is introduced to allow continuation past folds. Examples are presented for an important application of the RPM in which a “black-box” time integration scheme is stabilized, enabling it to compute unstable steady states. The RPM can also be used to accelerate iterative procedures when slow convergence is due to a few slowly decaying modes

    General Adiabatic Evolution with a Gap Condition

    Full text link
    We consider the adiabatic regime of two parameters evolution semigroups generated by linear operators that are analytic in time and satisfy the following gap condition for all times: the spectrum of the generator consists in finitely many isolated eigenvalues of finite algebraic multiplicity, away from the rest of the spectrum. The restriction of the generator to the spectral subspace corresponding to the distinguished eigenvalues is not assumed to be diagonalizable. The presence of eigenilpotents in the spectral decomposition of the generator forbids the evolution to follow the instantaneous eigenprojectors of the generator in the adiabatic limit. Making use of superadiabatic renormalization, we construct a different set of time-dependent projectors, close to the instantaneous eigeprojectors of the generator in the adiabatic limit, and an approximation of the evolution semigroup which intertwines exactly between the values of these projectors at the initial and final times. Hence, the evolution semigroup follows the constructed set of projectors in the adiabatic regime, modulo error terms we control
    • …
    corecore