117 research outputs found

    Discrete Optimization Methods for Segmentation and Matching

    Get PDF
    This dissertation studies discrete optimization methods for several computer vision problems. In the first part, a new objective function for superpixel segmentation is proposed. This objective function consists of two components: entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes. I present a new graph construction for images and show that this construction induces a matroid. The segmentation is then given by the graph topology which maximizes the objective function under the matroid constraint. By exploiting submodular and monotonic properties of the objective function, I develop an efficient algorithm with a worst-case performance bound of 12\frac{1}{2} for the superpixel segmentation problem. Extensive experiments on the Berkeley segmentation benchmark show the proposed algorithm outperforms the state of the art in all the standard evaluation metrics. Next, I propose a video segmentation algorithm by maximizing a submodular objective function subject to a matroid constraint. This function is similar to the standard energy function in computer vision with unary terms, pairwise terms from the Potts model, and a novel higher-order term based on appearance histograms. I show that the standard Potts model prior, which becomes non-submodular for multi-label problems, still induces a submodular function in a maximization framework. A new higher-order prior further enforces consistency in the appearance histograms both spatially and temporally across the video. The matroid constraint leads to a simple algorithm with a performance bound of 12\frac{1}{2}. A branch and bound procedure is also presented to improve the solution computed by the algorithm. The last part of the dissertation studies the object localization problem in images given a single hand-drawn example or a gallery of shapes as the object model. Although many shape matching algorithms have been proposed for the problem, chamfer matching remains to be the preferred method when speed and robustness are considered. In this dissertation, I significantly improve the accuracy of chamfer matching while reducing the computational time from linear to sublinear (shown empirically). It is achieved by incorporating edge orientation information in the matching algorithm so the resulting cost function is piecewise smooth and the cost variation is tightly bounded. Moreover, I present a sublinear time algorithm for exact computation of the directional chamfer matching score using techniques from 3D distance transforms and directional integral images. In addition, the smooth cost function allows one to bound the cost distribution of large neighborhoods and skip the bad hypotheses. Experiments show that the proposed approach improves the speed of the original chamfer matching up to an order of 45 times, and it is much faster than many state of art techniques while the accuracy is comparable. I further demonstrate the application of the proposed algorithm in providing seamless operation for a robotic bin picking system

    Approximation Algorithms for Traveling Salesman Problems

    Get PDF
    The traveling salesman problem is the probably most famous problem in combinatorial optimization. Given a graph G and nonnegative edge costs, we want to find a closed walk in G that visits every vertex at least once and has minimum cost. We consider both the symmetric traveling salesman problem (TSP) where G is an undirected graph and the asymmetric traveling salesman problem (ATSP) where G is a directed graph. We also investigate the unit-weight special cases and the more general path versions, where we do not require the walk to be closed, but to start and end in prescribed vertices s and t. In this thesis we give improved approximation algorithms and better upper bounds on the integrality ratio of the classical linear programming relaxations for several of these traveling salesman problems. For this we use techniques arising from various parts of combinatorial optimization such as linear programming, network flows, ear-decompositions, matroids, and T-joins. Our results include a (22 + &epsilon)-approximation algorithm for ATSP (for any &epsilon > 0), the first constant upper bound on the integrality ratio for s-t-path ATSP, a new upper bound on the integrality ratio for s-t-path TSP, and a black-box reduction from s-t-path TSP to TSP

    Two Studies in Representation of Signals

    Get PDF
    The thesis consists of two parts. In the first part deals with a multi-scale approach to vector quantization. An algorithm, dubbed reconstruction trees, is proposed and analyzed. Here the goal is parsimonious reconstruction of unsupervised data; the algorithm leverages a family of given partitions, to quickly explore the data in a coarse-to-fine multi-scale fashion. The main technical contribution is an analysis of the expected distortion achieved by the proposed algorithm, when the data are assumed to be sampled from a fixed unknown probability measure. Both asymptotic and finite sample results are provided, under suitable regularity assumptions on the probability measure. Special attention is devoted to the case in which the probability measure is supported on a smooth sub-manifold of the ambient space, and is absolutely continuous with respect to the Riemannian measure of it; in this case asymptotic optimal quantization is well understood and a benchmark for understanding the results is offered. The second part of the thesis deals with a novel approach to Graph Signal Processing which is based on Matroid Theory. Graph Signal Processing is the study of complex functions of the vertex set of a graph, based on the combinatorial Graph Laplacian operator of the underlying graph. This naturally gives raise to a linear operator, that to many regards resembles a Fourier transform, mirroring the graph domain into a frequency domain. On the one hand this structure asymptotically tends to mimic analysis on locally compact groups or manifolds, but on the other hand its discrete nature triggers a whole new scenario of algebraic phenomena. Hints towards making sense of this scenario are objects that already embody a discrete nature in continuous setting, such as measures with discrete support in time and frequency, also called Dirac combs. While these measures are key towards formulating sampling theorems and constructing wavelet frames in time-frequency Analysis, in the graph-frequency setting these boil down to distinguished combinatorial objects, the so called Circuits of a matroid, corresponding to the Fourier transform operator. In a particularly symmetric case, corresponding to Cayley graphs of finite abelian groups, the Dirac combs are proven to completely describe the so called lattice of cyclic flats, exhibiting the property of being atomistic, among other properties. This is a strikingly concise description of the matroid, that opens many questions concerning how this highly regular structure relaxes into more general instances. Lastly, a related problem concerning the combinatorial interplay between Fourier operator and its Spectrum is described, provided with some ideas towards its future development

    Some Applications of the Weighted Combinatorial Laplacian

    Get PDF
    The weighted combinatorial Laplacian of a graph is a symmetric matrix which is the discrete analogue of the Laplacian operator. In this thesis, we will study a new application of this matrix to matching theory yielding a new characterization of factor-criticality in graphs and matroids. Other applications are from the area of the physical design of very large scale integrated circuits. The placement of the gates includes the minimization of a quadratic form given by a weighted Laplacian. A method based on the dual constrained subgradient method is proposed to solve the simultaneous placement and gate-sizing problem. A crucial step of this method is the projection to the flow space of an associated graph, which can be performed by minimizing a quadratic form given by the unweighted combinatorial Laplacian.Andwendungen der gewichteten kombinatorischen Laplace-Matrix Die gewichtete kombinatorische Laplace-Matrix ist das diskrete Analogon des Laplace-Operators. In dieser Arbeit stellen wir eine neuartige Charakterisierung von Faktor-Kritikalität von Graphen und Matroiden mit Hilfe dieser Matrix vor. Wir untersuchen andere Anwendungen im Bereich des Entwurfs von höchstintegrierten Schaltkreisen. Die Platzierung basiert auf der Minimierung einer quadratischen Form, die durch eine gewichtete kombinatorische Laplace-Matrix gegeben ist. Wir präsentieren einen Algorithmus für das allgemeine simultane Platzierungs- und Gattergrößen-Optimierungsproblem, der auf der dualen Subgradientenmethode basiert. Ein wichtiger Bestandteil dieses Verfahrens ist eine Projektion auf den Flussraum eines assoziierten Graphen, die als die Minimierung einer durch die Laplace-Matrix gegebenen quadratischen Form aufgefasst werden kann

    Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

    Get PDF
    We consider the minimum-norm load-balancing (MinNormLB) problem, wherein there are n jobs, each of which needs to be assigned to one of m machines, and we are given the processing times {p_{ij}} of the jobs on the machines. We also have a monotone, symmetric norm f:?^m ? ?_{? 0}. We seek an assignment ? of jobs to machines that minimizes the f-norm of the induced load vector load->_? ? ?_{? 0}^m, where load_?(i) = ?_{j:?(j) = i}p_{ij}. This problem was introduced by [Deeparnab Chakrabarty and Chaitanya Swamy, 2019], and the current-best result for MinNormLB is a (4+?)-approximation [Deeparnab Chakrabarty and Chaitanya Swamy, 2019]. In the stochastic version of MinNormLB, the job processing times are given by nonnegative random variables X_{ij}, and jobs are independent; the goal is to find an assignment ? that minimizes the expected f-norm of the induced random load vector. We obtain results that (essentially) match the best-known guarantees for deterministic makespan minimization (MinNormLB with ?_? norm). For MinNormLB, we obtain a (2+?)-approximation for unrelated machines, and a PTAS for identical machines. For stochastic MinNormLB, we consider the setting where the X_{ij}s are Poisson random variables, denoted PoisNormLB. Our main result here is a novel and powerful reduction showing that, for any machine environment (e.g., unrelated/identical machines), any ?-approximation algorithm for MinNormLB in that machine environment yields a randomized ?(1+?)-approximation for PoisNormLB in that machine environment. Combining this with our results for MinNormLB, we immediately obtain a (2+?)-approximation for PoisNormLB on unrelated machines, and a PTAS for PoisNormLB on identical machines. The latter result substantially generalizes a PTAS for makespan minimization with Poisson jobs obtained recently by [Anindya De et al., 2020]

    Parameterized Complexity Analysis of Randomized Search Heuristics

    Full text link
    This chapter compiles a number of results that apply the theory of parameterized algorithmics to the running-time analysis of randomized search heuristics such as evolutionary algorithms. The parameterized approach articulates the running time of algorithms solving combinatorial problems in finer detail than traditional approaches from classical complexity theory. We outline the main results and proof techniques for a collection of randomized search heuristics tasked to solve NP-hard combinatorial optimization problems such as finding a minimum vertex cover in a graph, finding a maximum leaf spanning tree in a graph, and the traveling salesperson problem.Comment: This is a preliminary version of a chapter in the book "Theory of Evolutionary Computation: Recent Developments in Discrete Optimization", edited by Benjamin Doerr and Frank Neumann, published by Springe

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Flat Embeddings of Genetic and Distance Data

    Get PDF
    The idea of displaying data in the plane is very attractive in many different fields of research. This thesis will focus on distance-based phylogenetics and multidimensional scaling (MDS). Both types of method can be viewed as a high-dimensional data reduction to pairwise distances and visualization of the data based on these distances. The difference between phylogenetics and multidimensional scaling is that the first one aims at finding a network or a tree structure that fits the distances, whereas MDS does not fix any structure and objects are simply placed in a low-dimensional space so that distances in the solution fit distances in the input as good as possible. Chapter 1 provides an introduction to the phylogenetics and multidimensional scaling. Chapter 2 focuses on the theoretical background of flat split systems (planar split networks). We prove equivalences between flat split systems, planar split networks and loop-free acyclic oriented matroids of rank three. The latter is a convenient mathematical structure that we used to design the algorithm for computing planar split networks that is described in Chapter 3. We base our approach on the well established agglomerative algorithms Neighbor-Joining and Neighbor-Net. In Chapter 4 we introduce multidimensional scaling and propose a new method for computing MDS plots that is based on the agglomerative approach and spring embeddings. Chapter 5 presents several case studies that we use to compare both of our methods and some classical agglomerative approaches in the distance-based phylogenetics
    • …
    corecore