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Abstract

The idea of displaying data in the plane is very attractive in many different fields of

research. This thesis will focus on distance-based phylogenetics and multidimensional

scaling (MDS). Both types of method can be viewed as a high-dimensional data

reduction to pairwise distances and visualization of the data based on these distances.

The difference between phylogenetics and multidimensional scaling is that the first one

aims at finding a network or a tree structure that fits the distances, whereas MDS does

not fix any structure and objects are simply placed in a low-dimensional space so that

distances in the solution fit distances in the input as good as possible.

Chapter 1 provides an introduction to the phylogenetics and multidimensional

scaling. Chapter 2 focuses on the theoretical background of flat split systems (planar

split networks). We prove equivalences between flat split systems, planar split networks

and loop-free acyclic oriented matroids of rank three. The latter is a convenient

mathematical structure that we used to design the algorithm for computing planar

split networks that is described in Chapter 3. We base our approach on the well

established agglomerative algorithms Neighbor-Joining and Neighbor-Net. In Chapter 4

we introduce multidimensional scaling and propose a new method for computing MDS

plots that is based on the agglomerative approach and spring embeddings. Chapter 5

presents several case studies that we use to compare both of our methods and some

classical agglomerative approaches in the distance-based phylogenetics.
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Chapter 1

Introduction

Humans are visual creatures: Evolution has shaped our brains to“absorb, manipulate,

and react to visual information in an increasingly effective way” (Balaram and Kaas,

2014). Naturally, visualization should be just as important in science as it is in every

day life. Whenever someone asks me “So, what are you working on?”, initially I try to

come up with some easy definition, but only when I draw a picture of a phylogenetic

tree or a network, I see that they get a rough idea. This is nicely summarized by Ottino

(2003):“Seeing and representing are inextricably linked to understanding”.

Advances in computer graphics in the past couple of decades have made the visual-

ization of data easily accessible and more appealing. Emergence of so-called ‘big data’

made it even more important. A good visualization helps to see trends and patterns in

the huge amounts of complex data. It should be clean, clear and intuitive. Unarguably

visualization is also an art, but there is a lot of technical merit to it.

In this thesis we focus on two data visualization techniques that have a lot more in

common than one might think. We started out with planar split networks, i.e. data-

display networks for visualizing evolutionary relationships between sets of biological

sequences. For the first two years of my PhD I worked together with Andreas Spillner

in cooperation with Prof. Vincent Moulton from the University of East Anglia on a

method for computing planar split networks (FlatNJ). The other two years I spent at

the University of Otago working together with Prof. David Bryant. First we worked

out theoretical aspects of planar split systems. Afterwards we decided to see whether a

technique that has been widely used in phylogenetics would fit a somewhat different

problem of a multidimensional scaling.
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Figure 1.1: The first phylogenetic tree by Charles Darwin.

1.1 Phylogenetics

The origin of phylogenetics dates back to 1837 when Charles Darwin drew a sketch

of a first phylogenetic tree (see Figure 1.1) in his First notebook on transmutation of

species. However it was not until methods for sequencing genes and proteins became

available that phylogenetics really started to take off and gain attention of the scientific

community. Over the last few decades phylogenetics has become an integral part of

evolutionary biology. More than half of the papers published in the latest issues of

Molecular Biology and Evolution and Systematic Biology journals contain phylogenetic

trees.

Biological sequences are comprised of bases or amino acids which from a mathematical

point of view, are two different alphabets. DNA is coded by four bases: A, C, G and

T whereas proteins are composed of twenty different amino acids. Phylogenies are

mostly computed for the sequences of the same gene or corresponding DNA regions.

To estimate a phylogeny from a set of sequences they must first be aligned so that

homologous (evolutionary related) “letters” are placed in same columns. See Figure 1.2

for an example of a multiple sequence alignment and a phylogenetic tree computed

from it. Differences between sequences arise due to the evolutionary processes shaping

DNA sequences which then result in the changes in protein sequences too. These events

include, for example, base substitutions when a single base is replaced by another base.

Deletions and insertions are another class of events that change sequences even more

drastically as they correspond to a few consecutive bases being deleted from or inserted

to an existing sequence (Clark and Pazdernik, 2013).
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(a)

s1 ATTTATAA--CTCGGTA--ACTGC
s2 ATAAATAA--CTC-----AACTGC
s3 ATTTA--AAACTCGCTA--ACTGA
s4 AATTATAA--GGCGGTATAACTGC
s5 ATTTATTC--CTCGGA--AACAGC
s6 A-T-AAAAAACTCGGTT--TC--T
s7 AATTATAAGGCTCGGTT--TC--T

(b)

s1

s4

s6

s7

s5

s2

s3

Figure 1.2: (a) A multiple sequence alignment of five DNA sequence

fragments and (b) a corresponding phylogenetic tree. Gaps in the

alignment do not belong to the DNA alphabet; they are inserted into

sequences so that homologous bases could be placed in same columns.

Gaps correspond to the deletion and insertion events as mentioned in

the text.

One can easily see how these three events would result in a tree-like evolution.

However, these are only a few possibilities. More complicated mutations can result in

histories that can no longer be explained by trees. For example events such as horizontal

gene transfer, i.e., DNA transfer from one existing species into another or recombination,

i.e., exchange of parts of DNA between two organisms (Clark and Pazdernik, 2013)

result in a reticulate evolution which can only be visualized with phylogenetic networks

(Huson et al., 2010). As trees are just a special case of networks, from now on whenever

we talk about networks, we also mean trees unless stated otherwise.

Events shaping evolutionary histories do not happen completely at random as certain

genes or even parts of individual genes are more susceptible to mutations than others.

Hence, it is a common practice in phylogenetics to assume some model of evolution

and then compute networks under the assumptions of the model. As a result, model

based networks explicitly emphasize features of the model. For a good overview on

phylogenetic networks please refer to Huson et al. (2010).

We focus on the methods for networks that do not assume any model and belong to

a class of methods known as distance-based phylogenetics. Networks that we discuss in

the following chapters are called data-display networks; they do not imply any specific

scenario of evolution and instead display conflicting signals in data which can then be

interpreted according to whichever hypothesis one has.

1.1.1 Trees and split networks

In distance-based phylogenetics, sequence alignments are reduced to pairwise distance

matrices, where the distance between any two taxa is computed as, for example, the
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Hamming distance between the two corresponding sequences. Following this approach,

the problem of computing a phylogenetic tree for a set of sequences boils down to a very

nice mathematical problem of reconstructing a tree from pairwise distances between its

leaves.

Let X be a set of taxa, that is, a set of organisms (species) that we are interested in.

A phylogenetic tree on X is a graph T = (Vin ∪ Vex, E) with a set of external vertices

Vex labeled with elements in X and a set of internal vertices Vin that correspond to

hypothetical ancestors and a set of edges E. The distance between two external nodes

is proportional to the similarity between the corresponding sequences. The closer two

taxa are on a tree, the more evolutionary related they are.

Removing some edge e ∈ E from a tree results in splitting T into two connected

components with non-overlapping sets of taxa A ⊂ X and B ⊂ X such that A∪B = X
and A ∩ B = ∅. We call the bipartition of X induced by a branch e a split of X and

denote it by A|B. A set of splits induced by the edges e ∈ T gives a split system S(T )

(Semple and Steel, 2003, p. 43).

Split networks are a generalization of phylogenetic trees, as they also display splits.

Historically, split networks originated from a generalization of Buneman’s construction

of trees to splits (media) graphs by Barthelemy (1989). The theory on media graphs

has been developed independently of split networks, see e.g., Eppstein et al. (2008).

A split network N = (Vl∪Vun, {Ei}) consists of a set of classes Ei of edges associated

with some split i, a set Vl of labeled vertices corresponding to a set of taxa and a set

Vun of unlabeled vertices that do not play a significant role in the split networks. Split

networks are drawn in such a way that edges that belong to the same split class are

always parallel and of the same length. Boxes or convex 2n-gons (n ∈ N) represent sets

of conflicting splits that cannot be visualized by a single phylogenetic tree. The distance

between a pair of taxa a, b ∈ X in a split network equals the length of a shortest path

between a and b. Note that all shortest paths between some two nodes cross edges that

belong to the same set of splits (Bryant and Moulton, 2004).

Within the class of split networks there are a few different types, see Figure 1.3.

The first and most common type is phylogenetic trees. Circular or outer-planar split

networks are closest to the trees in a sense that all labeled vertices are on the outside

of the network. A more general case is planar split networks which allow for labeling of

the internal vertices as well, but require for the network to be drawn in the plane. Note

that all these types are “nested”, that is {phylogenetic trees} ⊂ {circular networks} ⊂
{planar networks} ⊂ {split networks}.

See Huson and Bryant (2006) and Huson et al. (2010) for more details on split

networks, their construction and interpretation.
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Phylogenetic tree Circular split network

a

b

c
d

e

f b
a

c

d
e

f

{e, f}|{a, b, c, d}

Planar split network Non-planar split network

f

a

b c

d

e

a

b

c

d

e

f

Figure 1.3: Different types of split networks. The class of bold edges

in the circular network induces the split {e, f}|{a, b, c, d}.

1.1.2 Split systems

Let N be a split network on a set of taxa X and let S(N ) be the set of splits on X
visualized by N . The set S(N ) is a split system. Different types of networks induce

different types of split systems with their specific characteristics. Below we review

different kinds of split systems and their corresponding types of split networks.

By definition a split is a bipartition of a set of taxa X , hence if we map X to a

set of points in the plane, then we can draw splits as separating curves. To introduce

different types of split systems, we use this kind of representation. In Chapter 2 we

prove the equivalence of both representations.

Compatible splits

Probably the most common type of split systems are compatible split system. Let

S = A|B and S ′ = A′|B′ be two splits on X . We say that S and S ′ are compatible if

at least one of the four intersections A ∩ A′, A ∩B′, B ∩ A′ B ∩B′ is empty (Semple

and Steel, 2003, Def. 3.1.3), see Figure 1.4. A split system S is compatible if all pairs

of splits S, S ′ ∈ S are pairwise compatible. Such split systems can be visualized as

phylogenetic trees (Buneman, 1971; Semple and Steel, 2003, Theorem 3.1.4).
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A1

B1

A2 B2

Figure 1.4: A set of points that correspond to elements in X and two

lines inducing to two compatible splits A1|B1 and A2|B2 (intersection

A1 ∩B2 = ∅).

Weakly compatible splits

Weakly compatible split systems were introduced by Bandelt and Dress (1992a) and have

the following simple characterization due to Bandelt and Dress (1993). A split system

S is weakly compatible if for any three splits S1 = A1|B1, S2 = A2|B2 and S3 = A3|B3

in S at least one of the four intersections A1 ∩ A2 ∩ A3, B1 ∩ A2 ∩ B3, B1 ∩ B2 ∩ A3

and A1 ∩B2 ∩B3 is empty, see Figure 1.5. Note that these splits may be incompatible

(Huson, 1998, p. 69).

A1

B1

A2 B2

A3

B3

Figure 1.5: Three splits A1|B1, A2|B2 and A3|B3 that are weakly

compatible as intersection A1 ∩B2 ∩B3 is empty.

There are weakly compatible split systems which cannot be displayed in a planar

split network (Bandelt and Dress, 1992a).

Circular split systems

Circular split systems are a special case of weakly compatible split systems (Huson, 1998,

p. 69) that can be represented by planar outer labeled split networks, see Figure 1.6.
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A1

B1

A2
B2

A3
B3

Figure 1.6: A circular split system. Three splits A1|B1, A2|B2 and

A3|B3 are weakly compatible because for example B1 ∩ B2 ∩ A3 is

empty.

Planar splits

Bryant and Dress (2007) and Spillner et al. (2012) introduced flat split systems that

are not constrained to be compatible or weakly compatible. Hence they constitute the

most general type of split systems that can be visualized by a planar split network.

Flat splits can be visualized as arrangements of curves in the plane such that any pair

of curves intersect at most once, see Figure 1.7. See Section 2.1 for more details.

A1

B1

A2

B2

A3
B3

Figure 1.7: Flat split system. Splits are induced by an arrangement

of curves such that any pair of curves intersect no more than once.

Affine splits

Affine splits are a special case of planar splits with splits induced by arrangements of

lines instead of curves. For example, circular split systems are also affine (Bryant and

Dress, 2007).

A Venn diagram summarizing relations between different kinds of split system is

given in Figure 1.8.
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Compatible
Circular

Affine
Flat

Weakly
compatible

Figure 1.8: Relations between different types of split systems.

1.1.3 Methods for computing split networks from data

Here we review some of the key methods in distance-based phylogenetics for computing

split networks.

Neighbor-Joining

Neighbor-Joining (NJ), by Saitou and Nei (1987), is the most frequently used tree

reconstruction method in distance-based phylogenetics (Gascuel, 1997). To date it has

been cited more than 31,500 times (Web of Science, June 2015). The NJ algorithm is

simple to implement and a number of independent studies have proven its efficiency in

recovering correct tree topologies from sequence data (Saitou and Nei, 1987; Nei, 1991;

Charleston et al., 1994; Kuhner and Felsenstein, 1994). As an agglomerative method for

tree reconstruction, NJ falls into the same class of agglomerative algorithms as single

linkage (Florek et al., 1951; McQuitty, 1957; Sneath, 1957), average linkage or UPGMA

(Sokal and Michener, 1958), and complete linkage (Sørensen, 1948), all of which are

very well known methods for hierarchical clustering.

The basic idea behind agglomerative approaches is quite simple. Take a set of

objects and a matrix of their pairwise distances. Assign all objects into individual

clusters. Select two of the clusters and join them into one, reduce the distance matrix

by replacing the selected two clusters with one that contains both. Recursively repeat

the steps.
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Neighbor-Joining is characterized by three formulas (Saitou and Nei, 1987):

1. The neighbor selection criterion,

2. The distance matrix reduction formula, and

3. The branch length computation formula.

The characterization of neighbors comes from the structure of a binary tree. Let X
be a set of taxa and T (X ) an unrooted bifurcating tree such that all external vertices

(leaves) of T (X ) are labeled with elements in X . Then neighbors are defined as follows.

Definition 1.1.1. (Saitou and Nei, 1987) Two taxa x′, x′′ ∈ X are neighbors in T (X )

if they are connected through a single interior node.

Any bifurcating tree always has at least two pairs of neighbors (Saitou and Nei,

1987, p. 407). For example, tree (a) in Figure 1.9 has three pairs of neighbors: (x1, x2),

(x4, x5) and (x7, x8). If we pick one pair, say (x1, x2), and join them together, we get

a reduced tree T ′ as in Figure 1.9b. After agglomeration, the pair (x1, x2) in T ′ can

be treated as a single element. Note that the topology of the tree is then defined by a

series of agglomerations (Saitou and Nei, 1987).

x1

x2

x3

x4

x5
x6

x7

x8

i1

i2

i3 i4 i5 i6

x3

x4

x5
x6

x7

x8 i2

i3 i4 i5 i6

x′
1

⇒

(a) (b)

Figure 1.9: (a) A bifurcating tree with three pairs of neighbors:

(x1, x2) joined via internal vertex i1, (x4, x5) via i6 and (x7, x8) via i2.

(b) A pair of neighbors (x1, x2) is agglomerated into one taxon x′1.

The selection criterion is designed to identify neighbors from pairwise distances,

namely the pair x′ and x′′ minimizing

σnj(x
′, x′′) = (n− 2)δx′x′′ −

∑
y

δx′y −
∑
y

δx′′y, (1.1)

is identified as neighbors (Studier and Kepler, 1988). The Neighbor-Joining algorithm

has been studied many times. Kumar and Gadagkar (2000); Eickmeyer et al. (2008)

and Haws et al. (2011) examined its efficiency and optimality; Vach and Degens (1991);

Charleston et al. (1993) and Bryant (2005b) showed the selection criterion used by NJ

is in fact unique, DeBry (1992) showed that NJ is consistent, i.e., if the distance matrix

comes from a tree, then the algorithm returns exactly the same tree.
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Neighbor-Net

Neighbor-Net is a method by Bryant and Moulton (2004) for estimating phylogenetic

networks as circular split systems. It is designed as a generalization of Neighbor-Joining

from trees to planar outer-labeled split networks. Among all currently available tools

for estimating phylogenetic networks Neighbor-Net is probably the most popular.

The definition of neighbors for a circular split network used by Neighbor-Net is

a more general version of Definition 1.1.1. Let NC be a circular split network with a

circular ordering of taxa C which indicates the order in which taxa appear around the

network NC. Neighbors are defined as follows:

Definition 1.1.2. Two taxa x′, x′′ ∈ X are neighbors in NC if x′ and x′′ are next to

each other in the circular ordering C.

For example pairs of neighbors in the circular split network in Figure 1.3 are (a, b),

(b, c), (c, d), (d, e), (e, f) and (f, a).

Neighbor-Net constructs a circular ordering of taxa in a series of iterative neighbor

identification and agglomeration procedures. At first each taxon xi is assigned to its

own cluster Ci as shown in Figure 1.10a. Then using the NJ selection Formula (1.1)

applied to the average distances between clusters, two taxa are identified as neighbors

and linked together (Figure 1.10b). Proximity between two clusters i and j equals

δ(Ci, Cj) =
1

|Ci||Cj|
∑
x∈Ci

∑
y∈Cj

δxy

Then as each cluster may contain two taxa, we must decide which elements from within

the clusters must be joined. We do this by selecting xi ∈ Ci and xj ∈ Cj, i 6= j which

minimize the following criterion:

σnnet(xi, xj) = (m̂− 2)δxixj −
m̂∑

k=1,k 6=i

δ(xi, Ck)−
m̂∑

k=1,k 6=j

δ(xj, Ck)

Here m̂ = m+ |Ci|+ |Cj|−2 and m is the current number of clusters. Agglomeration

is delayed until more than two taxa are linked in a chain. Once some chain contains

more than two, we agglomerate three or four taxa into two (Figure 1.10c). The ordering

of the taxa that we get by joining Ci and Cj gives an ordering of the taxa contained in

Ci∪Cj in the final ordering. The distance matrix is updated on the agglomeration. The

procedure is repeated until there are only two (or three) clusters left as there is unique

cyclic ordering of two (or three) elements. Agglomeration is then reversed and a circular

ordering is obtained by expanding clusters in the reverse order as shown in Figure 1.11.

Figure 2.6 on page 22 shows how splits are derived from a circular ordering.



1.1. Phylogenetics 11

x1
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8
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2
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a4
a7
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x1

x′
2x′

3

x′
7

x′
8

Figure 1.10: Agglomeration in Neighbor-Net. (a) A set of taxa

{x1, x2, . . . , x8}. (b) Three pairs of taxa (x2, x4), (x6, x7) and (x5, x8)

are joined (solid line segments), but not yet agglomerated. Joining

(x4, x6) and (x3, x5) (dashed) forms chains of more than two taxa thus

(c) it is followed by an agglomeration. (d),(e) Continuing agglomera-

tion until two taxa are left.
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2
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Figure 1.11: Reversing the agglomeration in Neighbor-Net. (a) Two

taxa that were left after the last agglomeration in Figure 1.10 are

placed on a circle. (b) – (d) Reversing agglomerations. (e) A circular

ordering.
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Bryant et al. (2007) proved that Neighbor-Net is consistent on circular distances,

that is, if distances come from a circular split system, then the method returns exactly

the same circular split system with phylogenetic trees being a special case of circular

split systems.

Quartet-Net

Quartet-Net (QNet) by Grünewald et al. (2007) is another method that produces circular

split networks. Like Neighbor-Net it is also based on an agglomerative approach, but

instead of working on distances it takes quartets as input. A quartet is a split on a

set of four taxa such that both sides of the split contain exactly two taxa. For any

set of four taxa there are exactly three possible quartets. For example, if we have a

set of four taxa Y = {a, b, c, d}, then the three possible quartets on Y are {a, b}|{c, d},
{a, c}|{b, d} and {a, d}|{b, c}. If quartets are assigned non-negative weights they are

called weighted. QNet uses weighted quartets to determine the agglomeration order

(Grünewald et al., 2007). Instead of using clusters, QNet assigns each taxon xi to a

path Pi and then joins paths to obtain the circular ordering. Unlike Neighbor-Net, it

does not remove elements on agglomeration. QNet constructs the circular ordering

by preserving as much of the initial quartet weight as possible. It uses the following

criterion to decide which paths should be joined at each step:

σqnet(Pi, Pj) =
∑

Pk 6=Pi,Pj

Pl 6=Pi,Pj

∑
xi∈Pi,xj∈Pj

xk∈Pk,xl∈Pl

w({xi, xj}|{xk, xl})
|Pi||Pj||Pk||Pl|

here w({xi, xj}|{xk, xl}) is the weight of a quartet {xi, xj}|{xk, xl} and |Py| is a number

of elements in the path Py. Paths Pi and Pj are joined together by connecting their ends

in a way that maximizes the represented quartet weight. Like Neighbor-Net, QNet is

consistent on circular distances, more specifically, if quartets come from a circular split

network or a tree, then QNet returns exactly the same network or a tree (Grünewald

et al., 2009).

Split Decomposition

Split Decomposition by Bandelt and Dress (1992b) was the first method for estimating

split systems that do not have to be compatible. It estimates splits directly from the

distance matrix D = {dij}. For any split S = A|B they define the isolation index

ιA|B =
1

2
min

a′,a′′∈A
b′,b′′∈B

(max{da′a′′ + db′b′′ , da′b′ + da′′b′′ , da′b′′ + da′′b′} − da′a′′ − db′b′′).

They showed that the set {S : ιS ≥ 0} contains at most
(
n
2

)
splits and could be computed

in polynomial time. The algorithm is consistent on phylogenetic trees as the isolation
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index for some split S = A|B given a tree-like distance matrix D equals the length of

the branch that corresponds to S (Bandelt and Dress, 1992a).

1.2 Multidimensional scaling

Phylogenetic trees and networks may be the most popular way to visualize similarities

between biological sequences, but they most surely are not the only ones. Multidimen-

sional scaling has been used for visualizing data where spatial structure is of interest,

especially in ecology. Figure 1.12b shows an MDS plot for a set of seven taxa based on

the pairwise distances between sequences in the alignment (Figure 1.12a). Sequences

‘s2’–‘s7’ were generated as variations of ‘s1’, thus no surprise that as an “ancestral”

sequence, ‘s1’ is placed in the middle of the plot.

(a)

s1 ATTTATAA--CTCGGTA--ACTGC
s2 ATAAATAA--CTC-----AACTGC
s3 ATTTA--AAACTCGCTA--ACTGA
s4 AATTATAA--GGCGGTATAACTGC
s5 ATTTATTC--CTCGGA--AACAGC
s6 A-T-AAAAAACTCGGTT--TC--T
s7 AATTATAAGGCTCGGTT--TC--T

(b)

s1

s2s3

s4

s5

s6

s7

Figure 1.12: (a) A multiple sequence alignment as in Figure 1.2 and

(b) its corresponding multidimensional scaling plot.

Multidimensional scaling is a technique that has been well established and has a

much wider scope of applications than phylogenetic networks. In multidimensional

scaling plots, data is displayed as points in the plane and their similarity is reflected by

the Euclidean distances between the points.

There exist various methods for computing MDS plots from distance or vector data.

Methods are often designed to emphasize certain features of the data, for example,

neighborhoods and small distances or overall structure and large distances. They also

differ by the methodology used. For example, classical scaling by Torgerson (1958)

finds embeddings analytically, whereas force directed algorithms such as spring system

embeddings (Chalmers, 1996; Morrison et al., 2003) compute MDS plots iteratively.

We provide a more detailed overview on multidimensional scaling and algorithms in

Chapter 4. For a good review on MDS please refer to France and Carroll (2011).

Despite different backgrounds, distance-based phylogenetics and multidimensional

scaling are very similar problems as both work with visualizing distance data. Since we

focus on planar split networks, we will also mainly discuss MDS applications for scaling

data onto two dimensions.
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Trees (networks) and multidimensional scaling

When comparing split networks and MDS plots for biological data sets (Chapter 5) we

noticed an interesting trend. Some data sets that fit very well on trees and networks

were not so well visualized by MDS and vice versa. After looking into the literature we

found that is not a new observation: Trees have been proposed as a multidimensional

scaling tool before.

Gower (1967b) discussed representations of high-dimensional data using hierarchical

trees. Cuadros et al. (2007) applied the Neighbor-Joining method to compute trees for

documents based on their pairwise content similarity. They found that trees can reflect

similarity relationships more accurately than multidimensional scaling plots. Later Paiva

et al. (2011) used Neighbor-Joining trees for image data. Engel et al. (2011) designed

a method for high-dimensional data visualization with structural decomposition trees.

Gupta (2000) showed that trees with n leaves can be embedded into a d-dimensional

spaces with O(n1/(d−1)) distortion. Hence the higher the dimension the better the

embedding of a tree.

We illustrate this with an example. Consider a so-called worst case scenario data

for multidimensional scaling, that is vertices of an n-simplex with pairwise distances all

equal. It is obvious that unless n = 3 is it not possible to find an exact embedding into

two dimensions. Applying greedy force based algorithm as in Eades (1984) for a simplex

with 20 vertices, we get a plot as shown in Figure 1.13a. We estimate the least squares

fit as in SplitsTree (Formula 9 in Winkworth et al. (2005)) and got 85.794% which does

not imply a good fit. Processing the same data set with the Neighbor-Joining algorithm

we got a perfect 100% fit, see Figure 1.13b

(a) (b)

MDS plot Neighbor-Joining tree
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Figure 1.13: A multidimensional scaling plot and a Neighbor-Joining

tree for the 20-simplex. LS fit corresponds to the least squares fit.
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Chapter 2

Flat splits and related structures

In this chapter we discuss planar split networks (introduced in Section 2.2) and oriented

matroids (Section 2.3) as two different representations of flat split systems (Section 2.1)

and prove their equivalence. Intuitively, a split system is flat if we can map its elements

to a set of points in the plane and the splits to an arrangement of curves splitting the

points as shown in Figure 2.1a, see Definition 2.1.2. We show that exactly these split

systems can be visualized as planar split networks (Figure 2.1c), and correspond to

topes of loop-free, acyclic, rank three oriented matroids (Figure 2.1b).

Oriented
matroid splits

Flat split
system

Planar split
network

a

b
c

d

`∞

b

d c

a

d

b

c

a

(a)

(b) (c)

Figure 2.1: (a) A flat split system on four taxa {a, b, c, d} and its

representation as (b) an oriented matroid and, (c) a planar split

network.
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2.1 Flat splits

Let A be a collection of lines in the plane, and let X be a set of points in the plane

not lying on any of these lines (Figure 2.2a). Each line ` ∈ A partitions the plane,

and therefore X, into at most two parts. The collection of splits (bipartitions) of X

determined by the lines A clearly has a great deal of structure, and it is this structure

which is of interest.

Actually we consider a slightly more general situation by allowing wobbly lines. A

pseudoline is the image of a line under a homeomorphism of a plane, i.e., it is a simple

curve in the plane that extends to infinity in both directions (Shor, 1991). A pseudoline

arrangement is a finite collection of pseudolines with the property that each pair of

pseudolines intersect in exactly one point, and when they do intersect, they cross. A

weak arrangement of pseudolines is defined in the same way, except not every pair of

pseudolines needs to intersect. Let X be a set of points in the plane not lying on any

pseudoline in A (Figure 2.2b). Each pseudoline ` ∈ A partitions X into at most two

parts and, as in the straight line case, induces a split of X.

Definition 2.1.1. A split A|B is a bipartition of X and a split system is a collection

of splits of the same set. A split A|B is proper if both A and B are non-empty.

Definition 2.1.2. (Bryant and Dress, 2007; Spillner et al., 2012) A split system S is

flat if it is induced by an arrangement of pseudolines in the plane. We say that S is

affine if it is induced by a collection of straight lines.

Configurations of lines, pseudolines, and points arise in a wide variety of contexts,

particularly in classification (Hastie et al., 2009), oriented matroids (Björner et al.,

1999) and statistical learning theory (Hastie et al., 2009). Our original interest in

these structures followed from applications in evolutionary biology, as discussed in the

following chapter.

(a) (b)

Figure 2.2: A set of points X and an arrangement of (a) lines and

(b) pseudolines A. None of the points in X appear on any of the

(pseudo-)lines in A. Each ` ∈ A divides X into at most two parts

inducing a split on X.
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2.2 Network splits

Let T be phylogenetic tree, that is a labeled tree representing the evolutionary histories

for a set X of species or individuals. Let ϕ be a map from taxa in X to vertices of the

tree T , and let e be an edge of the tree. Then T \e consists of two connected components

with corresponding vertex sets V1 and V2. Let A = ϕ−1(V1) and B = ϕ−1(V2), then we

say that A|B is a split that corresponds to the edge e in the tree T . The collection of

splits associated with all edges from the tree T gives a split system S(T ).

For many kinds of data, the signal in the data is more complex than can be

faithfully represented by a single tree, so there has been much interest in phylogenies

built using more general graphs, namely phylogenetic networks (Huson et al., 2010).

Explicit phylogenetic networks resemble trees with some additional edges indicating

such evolutionary events as recombination or hybridization. Implicit networks, on the

other hand are designed to show conflict in the data rather than make assumptions

about the evolutionary history of the sequences in question (Huson and Bryant, 2006).

One of the more popular types of implicit phylogenetic networks are split networks

(Huson and Bryant, 2006; Huson, 1998).

Definition 2.2.1 (Huson and Bryant, 2006). Let S be a set of splits over a set of taxa

X . A split network N is a connected graph in which some of the nodes are labeled by

X and all edges are labeled by S, such that

(N1) Removing all edges associated with a given split S ∈ S divides N into two

connected components, one part containing all taxa on one side of S and the

other part containing all taxa on the other side.

(N2) The edges along any shortest path in N are all associated with different splits.

The underlying graph of a split network is a partial cube (Bryant, 2005a) as described

by Wetzel (1995).

Figure 2.3a shows two trees that contain pairwise incompatible splits, i.e., {a, d}|{b, c}
and {a, b}|{c, d}, that cannot be shown on a single tree yet may be displayed by a single

a b

cd

a b

cd

a b

cd

+ =

(a) (b)

Figure 2.3: A pair of splits {a, d}|{b, c} and {a, b}|{c, d} that can (a)

be displayed by at least two different phylogenetic trees but (b) may

be contained in a single network.
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split network (Figure 2.3b). For these networks, the underlying graph is a partial cube,

that is, an isometric subgraph of a hypercube (Djoković, 1973), with some vertices

labeled by elements in X . Partial cubes have a rich mathematical structure. It can be

shown that the edge set of a partial cube can be partitioned into classes such that (a)

any shortest path contains at most one edge from each class, and (b) if a shortest path

between two points contains an edge in some class then so does every path between

those points. Removing all edges in a single class breaks the graph into two connected

components (see Figure 2.4b). Each edge class εi ∈ Σ induces a split Si ∈ S of the

label set X . Splits arising in this way are said to be induced splits of the network N .

A drawing of a split network is a straight line embedding of the graph into the plane

so that edges in the same class are parallel and have the same length. A split network

is planar if it has a drawing such that edges only intersect at their endpoints, each

internal cell is strictly convex, and the external face contains at least one edge from

each class (Figure 2.4a).

Definition 2.2.2. A collection of splits S has a planar split network representation if

there exists a planar split network, partially labeled by X, which induces all the splits

in S.

(a) (b)
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Figure 2.4: (a) An example of a planar split network. (b) If we remove

edges of the split number five ac|bd, we get two connected components:

one contains vertices labeled with {a, c} and the other with {b, d}.

2.3 Oriented matroid splits

The third type of split collection we consider arises from oriented matroid theory. An

oriented matroid is an abstract structure which mathematically can be used to represent

point configurations over the reals, real hyperplane arrangements, convex polytopes

and directed graphs (Björner et al., 1999). Oriented matroids, like standard matroids,

have a wide variety of different formulations and characterizations in various axiom
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systems. Excellent introductions to oriented matroids are found in Björner et al. (1999)

and Richter-Gebert and Ziegler (2004).

Let E be a finite set. A signed vector Y is a map from E to {+,−, 0}. Let Y +, Y 0

and Y − denote the positive, zero, and negative indices of the sign vector Y . Let Y+

denote the vector with Y + = E and Y− the vector with Y − = E.

For any two signed vectors V, U we define their composition V ◦ U by

V ◦ U(x) =

V (x) if V (x) 6= 0

U(x) otherwise.
.

We say that V is a restriction of U if V (x) 6= 0 implies V (x) = U(x). The support of U

is a set U = {x ∈ X |U(x) 6= 0}.

Definition 2.3.1. A collection T of sign vectors constitute the set of topes of an

oriented matroid if it satisfies the following tope axioms (Handa, 1990) :

(T0) T 6= ∅
(T1) T ∈ T ⇒ −T ∈ T

(T2) If V is a restriction of some T ∈ T then either there is a T ′ ∈ T with V ◦T ′ ∈ T

and V ◦ (−T ′) 6∈ T , or V ◦ T ′ ∈ T for every T ′ ∈ T .

Starting with the topes we can obtain other formulations of an oriented matroid.

The maps Y such that Y ◦ T ′ ∈ T for every T ′ ∈ T are called the cocircuits of the

oriented matroid. An oriented matroid M can be defined by a set of elements E and a

set of cocircuits that are sign vectors C∗ satisfying cocircuit axioms given below.

Theorem 2.3.1. (Richter-Gebert and Ziegler, 2004, Theorem 6.2.1) A collection C∗ of

sign vectors is the set of cocircuits of an oriented matroid M if and only if it satisfies:

(C0) 0 /∈ C∗,
(C1) Y ∈ C∗ ⇒ −Y ∈ C∗
(C2) For all C,D ∈ C∗ we have: C ⊆ D ⇒ C = D or C = −D
(C3) C,D ∈ C∗, C 6= −D, and e ∈ S(C,D) ⇒ there is a Z ∈ C∗ with Z+ ⊂

(C+ ∪D+) \ {e} and Z− ⊂ (C− ∪D−) \ {e}.

Here S(C,D) is a separation set of the two sign vectors C and D :

S(C,D) = {e ∈ E : C(e) = −D(e) 6= 0}.

The set of cocircuits and topes is contained within a set of covectors of an oriented

matroid. Formally, any composition of cocircuits forms a covector (Björner et al., 1999,

Definition 3.7.1).
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(a) (b)
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d

+ + +−

+ + ++

+ + −+

− + +−

+ − +− + − ++ + − −+

− − ++

− − −+

− − +−

− − −−

`∞

Y1

Y2

Y3

Y4

Y5

Y6

⇒

Topes Splits

(a b c d)

−−−− ⇒ |abcd
−−−+ ⇒ d|abc
−−+− ⇒ c|abd
−−++ ⇒ cd|ab
+−+− ⇒ ac|bd
+−++ ⇒ acd|b
+−−+ ⇒ ad|bc

Figure 2.5: (a) Oriented matroidM as an arrangement of pseudo-lines

in the projective plane with a bounding line at infinity; (b) A set of

topes (negatives excluded) of M and its mapping to a split system

S. Tope ‘−−−−’ corresponds to a split that is not proper therefore

|abcd is not included in S.

Theorem 2.3.2. (Richter-Gebert and Ziegler, 2004, 6.2.1) A set L of sign vectors is

a set of covectors of an oriented matroid if and only if it satisfies the covector axioms

listed below :

(CV0) 0 ∈ L,

(CV1) C ∈ L ⇒ −C ∈ L,

(CV2) C,D ∈ L ⇒ C ◦D ∈ L, and

(CV3) C,D ∈ L, e ∈ S(C,D)⇒ there is a Z ∈ L with Ze = 0 and with Zf = (C ◦D)f

for f ∈ E \ S(C,D).

The rank r of the oriented matroid is the cardinality of the smallest subset A ⊆ X

which intersects the support of every cocircuit. An oriented matroid is uniform if all of

its cocircuits have exactly r − 1 zero elements, i.e., |Y 0| = r − 1 for all Y ∈ C∗ (Björner

et al., 1999).

As an example, letM be an oriented matroid of rank three on a set of elements E =

{a, b, c, d} with a set of cocircuits C∗ = {Y1, Y2, Y3, Y4, Y5, Y6,−Y1,−Y2,−Y3,−Y4,−Y5,−Y6}
where Y1 = 00+−, Y2 = 0−+0, Y3 = +0+0, Y4 = −−00, Y5 = 0−0+ and Y6 = +00+.

A visualization of M as an arrangement of pseudolines A in the projective plane with

a bounding line at infinity is given in Figure 2.5a. Each open cell of A corresponds to

a tope of M. Signs in both cocircuits and topes are defined by the orientation of the

elements in E.

Oriented matroids that arise from geometric situations are acyclic, that is they

contain positive topes T+ ∈ T (Björner et al., 1999, Def. 3.4.7). In the following we
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will focus on acyclic oriented matroids that are also loop free, that is T 0 = ∅ for all

T ∈ T .

Definition 2.3.2. A set of splits S is encoded by an oriented matroid of rank 3 if there

exists a set of topes T on X of a loop-free, acyclic, rank three oriented matroid such

that for all A|B ∈ S there is T ∈ T such that A = T+ and B = T−.

Signs for the elements of each tope are assigned depending on the orientation of the

corresponding lines, see Figure 2.5a. Topes (without their negatives) of the oriented

matroid in Figure 2.5a are listed in Figure 2.5b.

Bryant and Dress (2007) have already briefly discussed collections of splits satisfying

Definition 2.3.2, calling them pseudo-affine. Later Spillner et al. (2012) introduced the

term flat split systems and defined them in terms of sequences of permutations.

Another structure that would be interesting to work with for exploring theory of

oriented matroid splits is the Vapnik-Chervonenkis (VC) dimension which has been

connected with oriented matroids by Gärtner and Welzl (1997).

2.4 Main theorem

Our main result is the equivalences summarized in Figure 2.1 on page 15.

Theorem 2.4.1. Let S be a collection of splits of a finite set X. The following are

equivalent:

(i) S is flat, that is, S can be represented by an arrangement of pseudolines in the

plane;

(ii) S has a planar split network representation;

(iii) S is encoded by a loop-free, acyclic oriented matroid of rank three.

The correspondence between flat split collections and collections from oriented

matroids might appear to be a straight-forward application of the celebrated Topological

Representation Theorem of Folkman and Lawrence (1978). However the representation

we give is slightly different. Traditionally, the pseudolines in an arrangement correspond

to the elements and the cells correspond to topes. The representation we describe

has pseudolines corresponding to topes and points, lying in the cells, corresponding to

elements.

Split networks have been studied less than oriented matroids, though methods for

constructing split networks have been cited thousands of times. A connection between

some classes of planar split networks and line arrangements was established by Wetzel

(1995). He considered affine collections of splits where the set X of points formed

the vertices of a convex polygon. These collections are called circular, and can be
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Figure 2.6: (a) An affine split system S on points {a, b, c, d, e} which

form a set of vertices of the convex pentagon (gray). (b) A planar

outer labeled (circular) split network on S.

characterized by the existence of an ordering x1, x2, ..., xn of X with the property that

every split in S has the form

{xi, ....xj−1}|X − {xi, ..., xj−1}

for some i < j, see Figure 2.6a and Section 1.1.2. Later, Dress and Huson (2004) used

De-Bruijn duality to prove that a collection of splits is circular if and only if it has a

planar split network representation where the vertices labeled by X all lie on the external

face (they are planar outer labeled), as shown in Figure 2.6. Neighbor-Net (Bryant

and Moulton, 2004) uses this fact to produce planar split network representations of

distance data.

There are many applications where it makes sense to construct split networks where

some of the internal vertices are also allowed to be labeled. These vertices might

represent ancestral species, or spatially distributed samples. Therefore it is natural

to characterize which collections of splits may be represented in this way, circular

collections being a special case.

Spillner et al. (2012) made significant progress in that direction. They started with

the concept of (simple) allowable sequences of permutations, as introduced by Goodman

and Pollack (1980, 1982), and showed that collections of splits generated from these

sequences could be represented using a planar split network. The authors stated that

these split collections were equivalent to those derived from pseudoline arrangements or

oriented matroids, but did not provide a proof.
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2.5 Proof of the main theorem

The first step is to prove the equivalence of flat split systems and split systems from

oriented matroids.

Lemma 2.5.1. Let S be a split system encoded by a loop-free, acyclic, rank three

oriented matroid with element set X . Then S is a flat split system on X .

Before providing a proof for Lemma 2.5.1, we introduce two different graphical

representations which exist for all rank three oriented matroids (Björner et al., 1999,

def. 5.3.4):

Type I Arrangement of pseudolines in a projective plane.

Type II Pseudoconfiguration of points.

See Figure 2.7 for a type I and a type II representation of an oriented matroid M.

Pseudolines in the type I representation correspond to the elements in E with arrows

indicating orientation of each element in M. The sign vector of a cell in the type I

representation is determined by the orientation of the pseudolines (elements). That is,

if some pseudoline is oriented towards some cell, then the corresponding sign in the

covector for that cell is ‘+’ and ‘−’ otherwise; in case a pseudoline passes through a

point that corresponds to a covector Y , the respective sign of the covector is ‘0’.

Open cells of the arrangement give topes and line intersections (numbered) give

cocircuits. For each tope T ∈ T at least one of T and −T corresponds to a cell in the

type I representation. Note that only topes that correspond to open cells bounding the

line at infinity `∞ have their negatives present in the type I representation. A similar

condition is valid for the cocircuits, that is, for each cocircuit Y ∈ C∗ either Y or −Y is

present in the type I representation.

In the type II representation ofM the role of elements and cocircuits is reversed, i.e.,

cocircuits form an arrangement of pseudolines and elements correspond to the labeled

points of intersection. In the type II representation each of the cocircuits is assigned

an orientation. As with the type I representation, for each cocircuit either Y or −Y
is present in the type II representation. Signs of each cocircuit Y that is present in

the type II representation are then determined by the relative position of each element

ei ∈ E:

• Yi = + if the point corresponding to the element ei is on the positive side of the

pseudoline Y ,

• Yi = − if the same point is on the negative side, and

• Yi = 0 if the point is on the pseudoline Y .
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Figure 2.7: Type I and type II representations of an oriented matroid

M with element set E = {a, b, c, d} and cocircuits C∗ = {1, 2, 3, 4, 5, 6}.

The existence of a type I representation is a direct result of the Folkman and

Lawrence (1978) topological representation theorem reformulated for the oriented

matroids of rank three (Björner et al., 1999, Thm. 6.2.3). The existence of the type

II representation for the rank three follows from the existence of the oriented adjoint

(Goodman, 1980; Björner et al., 1999, Theorem 5.3.6). The map from the type I to

the type II representation converts elements of M as pseudolines to elements as points

and cocircuits as points to cocircuits as pseudolines. The map gives no representation

for the topes of the original oriented matroid M. Hence, to prove Lemma 2.5.1 we

augment the oriented matroid M to a loop-free, acyclic, rank three oriented matroid

MT such that topes of M are mapped to cocircuits of MT .

Proof of Lemma 2.5.1. Let S be a split system encoded by a loop-free, acyclic, rank

three oriented matroidM on E = X with tope set T . Construct a type I representation

A of M and without loss of generality assume that T+ corresponds to a cell of A
(Figure 2.8a). Let T ′ = {TS : S ∈ S} be a subset of topes T of M such that for each

proper split S = A|B there is exactly one tope TS ∈ T ′ that induces S and corresponds

to a cell in A. In case there is a choice between two cells giving topes that induce the

same split S, we choose one at random.

Let PT = {pS : S ∈ S} be a set of points such that pS ∈ PT is any point in the

interior of the cell corresponding to TS. Let p+ be some point in the cell associated

with T+. Add a set of oriented pseudolines {`P} to A so that at least two of them pass

through each point p ∈ PT and all pseudolines are oriented towards p+, so that the

oriented matroid remains acyclic (Figure 2.8b). Let MT denote the extended oriented

matroid which has this type I representation. As any intersection of two or more

pseudolines corresponds to a cocircuit of MT we get a bijection from PT to a subset
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Figure 2.8: (a) An oriented matroid M on a set of elements E =

{a, b, c} with cocircuits C∗ = {Y1, Y2, Y3} inducing a split system S =

{a|bc, b|ac, c|ab}, then T ′ = {T1, T2, T3}. (b) An extended oriented

matroid MT on ET = E ∪ {`1, `2, `3} with C∗T = C∗ ∪ {Y 4, Y 5} ∪ C∗P
where T ′ → C∗P . (c) An adjoint Mad

T of MT . (d) Mad
T restricted to

C∗P and with points that are labeled with elements in E, i.e. a flat

split system induced by the splits of the oriented matroid M.

C∗P ⊆ C∗T of cocircuits of MT .

Consequently we get a bijective map φ from topes in T ′ to cocircuits C∗P and each

tope T ∈ T ′ is the restriction of φ(T ) ∈ C∗P to X .

Take a type II representation of MT (Figure 2.8c). Remove all pseudolines that

correspond to C∗T \C∗P . This way we eliminate all pseudolines that correspond to covectors

that are not topes ofM. Points that correspond to elements in X lay on the intersections

of pseudolines that we delete, hence to keep elements in our representation, we leave

them as simple points in the plane. The remaining arrangement of pseudolines C∗P
(topes of M) together with X , then induce S, which is therefore flat (Figure 2.8d).
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Lemma 2.5.2. Let S be a flat split system on X . Then S is encoded by a loop-free,

acyclic, rank three oriented matroid with element set X .

Proof. Suppose that S is a flat split system, induced by a set of pseudolines A separating

points labeled by X in the plane. By embedding the arrangement in the projective

plane we can repeatedly apply Levi’s enlargement lemma (Levi, 1926; Björner et al.,

1999, Prop. 6.3.4) until every point labeled by X lies on at least two pseudolines. Orient

these lines arbitrarily, making sure that all of them point towards one open cell and let

M be the corresponding loop-free, acyclic, rank three oriented matroid. Let Mad be

an adjoint of M.

Every x ∈ X corresponds to a cocircuit of M and therefore an element ex of Mad.

Furthermore, for every signed pseudoline ` ∈ A there is a cocircuit Y ad
` of Mad such

that

Y ad
` (ex) = `(x).

We now restrict Mad to elements {ex : x ∈ X}, i.e., we keep all elements labeled with

X and remove others. Pseudolines in A that correspond to splits in S do not intersect

any of the points labeled with X . Thus in Mad all ` ∈ A become points that are

not intersected by pseudolines in {ex : x ∈ X}, hence they correspond to points in

open cells, that correspond to topes of Mad. Therefore we get that for each ` ∈ A the

cocircuit Y ad
` restricts to a tope T which induces the same split of {ex : x ∈ X} as `

does of the points labeled by X .

We now prove the equivalence between flat splits and collections which can be

represented using a planar split network. Going from flat splits to partial cubes is

straight-forward: the dual of a pseudoline arrangement is a partial cube. What is

more difficult is demonstrating that this graph has a straight-line embedding in the

plane where edges in the same class have the same length and are parallel. For this we

apply the celebrated Bohne-Dress theorem (Bohne, 1992), which links zonotopal tilings

and oriented matroids. Our presentation draws heavily on Richter-Gebert and Ziegler

(1994).

Lemma 2.5.3. Let A be an arrangement of pseudolines and X a set of points in the

plane. Then A can be extended by a line g such that all points in A ∪X are on the

same side of g.

Proof. Suppose that X is a set of points in the plane, let A be an arrangement of

pseudolines and let A be a set of points induced by A. As a direct result of the

sweeping lemma (Felsner and Weil (2001), Lemma 1; Snoeyink and Hershberger (1989),

Theorem 3.1) we can add a pseudoline g such that all points in A are on the one side

of g, see Figure 2.9a. What we still need to show is that g can be modified so that all
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Figure 2.9: (a) Extending an arrangement of pseudolines A =

{`1, `2, `3, `4} with a pseudoline g such that all points in A are on the

one side of g. Point x1 that does not belong to A is on the opposite

side of g. (b) Modifying g so that all points in X = {x1, x2, x3, x4}
are on the same side of g as points in A.

points in X are on the same side as points in A. Let x be some point in X that is on

the opposite side of g and is closer to g than any other such point. As all points in A

are on the same side of g, we get that g can pass through unbounded cells of A only.

Hence x must be contained in an unbounded cell; additionally it must be one of the

cells that g passes through. Then we can locally perturb g to go over the point x, see

Figure 2.9b.

Lemma 2.5.4. Let S be a split system on X. If S is flat then S can be represented

using a planar split network.

Proof. Suppose that X is a set of points in the plane and let A be an arrangement of

pseudolines which induces the collection of splits S. Let g be an auxiliary pseudoline

that we add to A using Lemma 2.5.3. Orient g towards the points in A∪X. Let p+ be

some point in the open cell of A where g goes to infinity and orient all pseudolines in A
towards p+. We obtain a loop-free, acyclic, rank three oriented matroidM =M(A∪ g)

with the type I representation as described in the beginning of this chapter (see p. 23).

Elements ofM correspond to the splits in S with g representing an improper split. Let

L̂ be the set of covectors of the resulting oriented matroid.

Let `1, . . . , `n be an ordering of the lines in A given by their points of intersection

with g, ties broken arbitrarily. Select n vectors v1,v2, . . . ,vn in <2 with increasing

slopes as shown in Figure 2.10b. These constitute a realization of the contraction

L̂/g =
{
Y ∈ {0,+,−}X : (Y, 0) ∈ L̂

}
.
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A zonotope is a polytope which is also a projection of a regular cube (Björner et al.,

1999, p. 51). The zonotope Z(M) of an oriented matroid M = (E, C∗) is a Minkowski

sum of vectors v ∈ R2 associated with elements in E (Richter-Gebert and Ziegler, 1994,

def. 1.1):

Z(M) =
n∑
i=1

[−vi,+vi].

Zonotopes are associated with sign vectors Y ∈ L by

ZY =
∑
i∈Y 0

[−vi,+vi] +
∑
i∈Y +

vi −
∑
i∈Y −

vi,

see Richter-Gebert and Ziegler (1994).

Let L = L̂ \ g be the set of covectors after the deletion of g. The split network for

L is now constructed as follows (see Figure 2.10c):

• The vertices correspond to topes Y of L such that (Y,+) ∈ L̂, with coordinates

ZY =
∑
i∈Y +

vi −
∑
i∈Y −

vi.

Each point in X is mapped to the vertex corresponding to the tope of the

arrangement it is contained in.

• The edges correspond to covectors Y of L such that (Y,+) ∈ L̂ and Y 0 contains a

single element. These correspond to the line segment given by the Minkowski sum

ZY =
∑
i∈Y +

vi −
∑
i∈Y −

vi +
∑
i∈Y 0

[−vi,vi].

The zero element of these vectors Y corresponds to a pseudoline of A, and hence

a split of S. Edges corresponding to the same split induced by the pseudoline `i

have the same direction and length as they are assigned the same vector vi.

• The cells correspond to cocircuits Y of L such that (Y,+) ∈ L̂ and |Y 0| > 1. The

position of each cell is given by the same Minkowski sum

ZY =
∑
i∈Y +

vi −
∑
i∈Y −

vi +
∑
i∈Y 0

[−vi,vi].

This graph is the affine projection of a partial cube Fukuda and Handa (1993). It

forms a tiling, and hence planar embedding by Theorem 4.2 of Bohne (1992) (see also

Theorem 2.1 of Richter-Gebert and Ziegler (1994)).

Eppstein (2005) provides a different presentation of similar ideas when proving

that the region graph of an arrangement of pseudolines has a face-symmetric planar

drawing, though key steps of the proof were omitted. A relationship between marked
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Figure 2.10: (a) An arrangement of pseudolines A = {`1, `2, `3, `4}
and a set of points {a, b, c, d}. Pseudoline g (dashed) is added to the

A using Lemma 2.5.3 and oriented so that all points in A and X are

on the positive side of g. Pseudolines in A are oriented towards the

dummy point p+ and indexed in the order in which they intersect g.

(b) Elements in A are assigned vectors {v1, v2, v3, v4} with increasing

slopes. (c) A zonotope of A as described above. Cross indicates the

origin.
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Figure 2.11: (a) A planar split network N on a set of taxa {a, b, c, d}
and a set of splits S = {1, 2, 3, 4, 5, 6}, (b) a set of G graphs of N , and

(c) splits of N in the plane.

arrangements of pseudolines and marked zonotopal tilings was also proven by Felsner and

Weil (2001). They proved this connection via a bijection between marked arrangements

of pseudolines and allowable sequences and a bijection between allowable sequences and

marked zonotopal tilings.

Lemma 2.5.5. If S has a planar split network representation then S is flat.

Proof. The first step of the proof is to show that if an internal face has edge e on its

boundary then it has exactly one more boundary edge in the same class. Let C be the

boundary of the internal face and let e ∈ C. From Lemma 2.3 of Klavzar and Mulder

(2002), C contains at least one other edge in the same edge class as e, and since all

the edges in this class are parallel and non-adjacent there can be at most two on the

boundary of any convex region. Hence C contains zero or two edges from each edge

class and any two edges from the same class will be on opposite sides of the cycle.

The second step is to use this observation to construct a collection of pseudolines

from the network. For each edge class Ei, construct a graph Gi consisting of the

midpoints {ve : e ∈ Ei} with edges between midpoints which lie on the same internal

face (Figure 2.11b). There are at most two vertices in this graph with degree less than

two; these correspond to the two edges in Ei lying on the external face. Furthermore Gi

is connected, since otherwise removing the edges in Ei from the network would partition

it into more than two components. It follows that Gi is a single path, terminating in

midpoints on the external face of the network.

We construct a pseudoline `i by taking the path determined by Gi and extending

the line to infinity in both directions in such a way that there are no new intersection

points within the external face of the network. By construction, the lines that we get

in this way induce exactly those splits represented by the network, see Figure 2.11c.

The third step of the proof is to show that any two pseudolines in this collection

intersect at most once.
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Let Ei and Ej be two edge classes associated with splits Si and Sj respectively. Recall

from Definition 2.2.1 that removing edges associated with one split divides the split

network N into two connected components which themselves are split networks. Hence,

removing edges associated with two splits, i.e., all edges e ∈ Ei ∪ Ei partitions N into

at most four connected components. Respectively, pseudolines `i and `j (constructed

as described above) partition the plane into at most four cells. In the following we

show that this holds if and only if `i and `j intersect at no more than one point, and

respectively that there may be no more than one cell with edges from both classes Ei
and Ej.

Let `1 and `2 be two pseudolines in the plane that intersect at k points. We show

that the number of cells induced by `1 and `2 equals k+ 3. Let p∞ be a point at infinity

and let Pint be a set of intersection points between `1 and `2. Define a graph H = (V,E)

with a vertex set V = Pint ∪ p∞ and edge set E composed of pseudoline segments as

induced by Pint ∪ p∞. Note that H constructed in this way is planar. We get that

|V | = k + 1 and |E| = 2|V | = 2k + 2 (each vertex has four adjacent edges). From

Euler’s formula we get that the number of faces in H (including the outer face) equals

|E| − |V |+ 2 = 2k + 2− k − 1 + 2 = k + 3. By construction, we have that each face in

H corresponds to an open cell in the arrangement. Hence, number of cells induced by

the arrangement of two pseudolines equals k + 3 where k is the number of intersection

points.

Going back to the split networks, recall that by construction, `i and `j intersect

only in faces that contain edges from both classes Ei and Ej. Assume that there are at

least two such faces. We get that `i and `j have at least two intersection points and

induce at least 2 + 3 = 5 cells. A contradiction, we previously showed that `i and `j

partition the plane into at most four cells. Hence any two pseudolines intersect in at

most one point.

The final step of the proof is to show that we can modify the given collection to an

arrangement of pseudolines where every pair intersects exactly once. We claim that if

there is at least one pair of pseudolines in the collection which do not intersect then

we can find a non-intersecting pair which can be modified to intersect in a way which

affects no other pseudolines.

Let C be a simple closed curve which contains all intersection points from the

collection within its interior. Let `i and `j be two pseudolines which do not intersect,

and let vi, v
′
i, vj, v

′
j be points of intersection between `i, `j and C, labeled so that they

appeared in the order vi, vj, v
′
j, v
′
i around the curve, see Figure 2.12a.

If vi and vj are adjacent intersection points on the curve, then we can modify both

`i and `j to add a point of intersection without affecting any other pseudolines in the

collection, as in Figure 2.12b. Otherwise, there is a line `k which intersects C at some
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Figure 2.12: A weak arrangement of pseudolines A with a closed curve

C bounding all intersection points. (a) Two pseudolines `i and `j do

not intersect. (b) A can be modified so that `i and `j intersect without

affecting any of the other pseudolines in A \ {`i, `j}. (c) Pseudoline

`k intersects both `i and `j, thus it intersects C on the different sides

of `i and `j. (d) `k intersects C in between `i and `j, thus it cannot

intersect both `i and `j.

point vk between vi and vj. If `k intersected both `i and `j then it would intersect C

between vi and v′i and between vj and v′j, see Figure 2.12c, a contradiction. Without

loss of generality, suppose that `k does not intersect `i as shown in Figure 2.12d. We

can then repeat the argument with `i and `k, noting that the number of intersection

points on the curve between vi and vk is strictly less than that between vi and vj. In

this way we eventually obtain two non-intersecting lines with adjacent intersection

points on C.
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2.6 Maximal split systems

We say that a flat split system S is maximal if it is not strictly contained within any

other flat split system. In this section we explore properties of maximal flat split systems.

In particular we show that a flat split system is maximal exactly when it contains
(
n
2

)
splits, and also that these maximal split systems have an elegant characterization as

uniform, loop-free, acyclic oriented matroids of rank three

Lemma 2.6.1 (Zaslavsky, 1975; Björner et al., 1999). A rank three oriented matroid

on n elements has at most

2
2∑
i=0

(
n− 1

i

)
topes. This bound is realized exactly when the oriented matroid is uniform.

One can easily see that given bound is equal to 2 + 2
(
n
2

)
.

We now prove some equivalences for the oriented matroids. These equivalences are

used later on for exploring some properties of maximal flat split systems.

Lemma 2.6.2. LetM be a loop-free, acyclic, rank three oriented matroid on n elements

with tope set T . The following are equivalent

1. M is uniform

2. |T | = 2
(
n
2

)
+ 2

3. M is the only loop-free, acyclic, rank three oriented matroid with tope set which

contains T .

4. Every type I representation of M is a simple arrangement (at most two lines

intersect at any one point)

Proof. 1 ⇒ 2. Is a direct result of Lemma 2.6.1.

2 ⇒ 3. Let M be a loop-free, acyclic, rank three oriented matroid on n elements

with a set of topes of size |T | = 2
(
n
2

)
+ 2. Assume there is another loop-free, acyclic,

rank three oriented matroid M′ on the same set of elements with a tope set T ′ such

that T ⊆ T ′, from this follows that |T | ≤ |T ′|. From Lemma 2.6.1 we have that

|T ′| ≤ n2 − n+ 2 = 2
(
n
2

)
+ 2, thus |T | = |T ′|, respectively T = T ′ and consequently

M =M′. Hence there is only one loop-free, acyclic, rank three oriented matroid with

tope set which contains T .

3 ⇒ 4. Let M be the only loop-free, acyclic oriented matroid of rank three with

an element set X and a tope set that contains T . Suppose that there is a type I

representation of M such that three pseudolines for elements a, b, c ∈ X all meet at a

single point v. Pushing one of the pseudolines off from v creates a new bounded cell as

shown in Figure 2.13 that corresponds to a new tope T ′. We get a type I representation

of a matroid with a tope set T ∪ T ′, a contradiction.
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Figure 2.13: (a) A part of an arrangement of pseudolines with three

pseudolines `a, `b and `c passing through a vertex v; there are six

faces around v. (b),(c) Two ways resolving v into a vertex with two

pseudolines passing through. Both perturbations increase the number

of cells by one and do not affect the rest of the arrangement.

4 ⇒ 1. In the type I representation of M, cocircuits correspond to points of

intersection. Each such point lies on two lines, so there are only two elements in the

corresponding zero set for each cocircuit. Recall that an oriented matroid is uniform if

all of its cocircuits have exactly r− 1 zero elements, where r is a rank ofM. HenceM
is uniform.

Next, we show that uniform, loop-free, acyclic oriented matroids of rank three

correspond to flat split systems of maximal cardinality.

Theorem 2.6.3. Let S be a flat split system on X , and let n = |X |. Then |S| ≤
(
n
2

)
.

Furthermore, the following are equivalent

1. S is the set of all splits induced by a loop-free, acyclic, uniform oriented matroid

of rank three.

2. |S| =
(
n
2

)
3. There is no other flat split system on X which contains all of the splits in S.

In particular, all maximal flat split systems have cardinality
(
n
2

)
.

Proof. Let S be a flat split system. By Theorem 2.4.1 we have that there is an acyclic,

loop-free, rank three oriented matroid with a set of topes T such that S = {S(T ) :

T ∈ T }. Hence T+, T− ∈ T and |T | = 2|S| + 2. Therefore we have that |S| ≤
(
n
2

)
.

By Lemma 2.6.1 we get that maximal flat split systems are equivalent to uniform,

acyclic, loop-free, rank three oriented matroids, thus, 1, 2 and 3 are equivalent by

Lemma 2.6.2.
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2.7 Identifying flat split systems from partial sets

of splits

We finish this chapter with an open problem: given any set of splits S on X with

|X | = n, can we tell if it is flat?

To answer this question we consider oriented matroids. One can easily translate a

set of splits into a set of topes T ′. Now the question is, can we find a loop-free, acyclic

oriented matroid of rank three with set of topes T such that T ′ ⊂ T . We can tell in

polynomial time whether T ′ ∪ {T+, T−} equals a set of topes of an oriented matroid by

checking the tope axioms (Definition 2.3.1). However this does not provide a test for

whether T ′ is contained in a set of topes of a rank three oriented matroid.

We do not have an answer for the general case as the problem is very likely to be

NP-complete.

Conjecture 2.7.1. (Spillner et al. (2012)) It is a NP-complete problem to decide

whether a set of splits is flat.

This assumption is based on a similar problem of extending partial chirotopes which

was proved to be NP-complete (Tschirschnitz, 2001). From the set of topes T ′ we can

determine the chirotope and then apply Corollary 3.6.4 of Björner et al. (1999) to check

whether the chirotope comes from an oriented matroid of rank three.
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Chapter 3

Computing flat split systems

In this chapter we present a new method, FlatNJ, for inferring flat split systems from

data. FlatNJ is based on oriented matroids and employs an agglomerative approach

similar to that of Neighbor-Joining (Saitou and Nei, 1987) and Neighbor-Net (Bryant

and Moulton, 2004). We look at the definitions of neighbors used by the Neighbor-

Joining and Neighbor-Net and use them to define neighbors in flat split systems. This

method has been published in:

Balvočiūtė, M., Spillner, A., and Moulton, V. (2014). FlatNJ: A novel

network-based approach to visualize evolutionary and biogeographical rela-

tionships. Systematic Biology, 63 (3), 383–396.

The first part of the chapter will follow the article fairly closely.

3.1 Motivation

Split networks have been used in various applications including the evolutionary analysis

of viruses (Tugume et al., 2010), plants (Goremykin et al., 2013), microbes (Octavia

and Lan, 2006), animals (The STAR Consortium, 2008), and even languages (Dunn

et al., 2005). To illustrate, consider the split networks in Figure 3.1, which we generated

from subcollections of a Simian immunodeficiency virus (SIV) data set published by

Pelletier et al. (1995) and analyzed by Wain-Hobson et al. (2003) using methods for

split networks available in version 3 of the SplitsTree program (Huson, 1998). Each

network in this figure represents a collection of splits or bipartitions of the taxa that

label the network. In particular, each split is represented by a band of parallel edges

that all have the same length: the band of bold edges in network N1 represents the split

that groups taxa 104 and 119 together versus the remaining taxa. This generalizes the

relationship between edges of an unrooted phylogenetic tree and a splits of its leaf set.
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Figure 3.1: Split networks for SIV sequences (Pelletier et al., 1995).

Sequence labels are the same as those used in Wain-Hobson et al.

(2003). Networks in a row are generated with the method specified in

front of the row.
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The boxes that appear in many of the networks in Figure 3.1 indicate pairs of

splits that are incompatible, that is, pairs of groupings that cannot be represented

simultaneously in a single phylogenetic tree. Such boxes suggest that the data are not

treelike. In this particular example, some of the boxes probably result from intra-locus

recombination. The box in network N1 with one vertex labeled 119 indicates that taxon

119 shares similarities with both taxon 203 and taxon 104. This suggests that taxon 119

could be a recombinant, although a more detailed analysis would have to be performed

to verify this.

The two best known methods for generating split networks are split decomposition

(Bandelt and Dress, 1992b) and Neighbor-Net (Bryant and Moulton, 2004). Both are

implemented in the SplitsTree4 package (Huson and Bryant, 2006), and the networks

generated by them for the SIV data set are depicted in the top two rows of networks in

Figure 3.1. Split decomposition is useful for analysis of small data sets, but have two

disadvantages in general. First, for large data sets, the resulting networks tend to be

highly unresolved (network N3 in Figure 3.1, see also Winkworth et al. 2005). Second,

split decomposition may yield networks which cannot be drawn without crossing edges

(network N2 in Figure 3.1), which can make it difficult to produce a layout for these

networks that can easily be interpreted. Neighbor-Net overcomes both of these issues as

it can generate quite resolved networks even for much larger data sets (see, e.g., Beiko

2011), and it is guaranteed to produce a network that is planar, that is, that can be

drawn without crossing edges. Even so, Neighbor-Net networks are constrained to be

outer-labeled, that is, all labels must lie on the outside of the network. This may lead to

situations where potentially useful information can be lost (the split represented by the

bold edges in network N1 in Figure 3.1, for example, is not displayed by network N4).

In this chapter we propose a new algorithm for computing planar split networks.

Our new method FlatNJ helps to rectify the difficulties with split decomposition and

Neighbor-Net as it

a) does not force labels to the outside of the network (network N7 in Figure 3.1),

b) avoids crossings between edges as much as possible (network N8 in Figure 3.1)

and

c) can yield informative splits even when the number of taxa increases (network N9

in Figure 3.1).

As with QNet (Grünewald et al., 2007) for generating outer-labeled planar split networks,

FlatNJ takes quartet-like data, namely, systems of 4-splits as an input. To construct

networks FlatNJ employs an agglomerative approach similar to that used in Neighbor-

Joining (Saitou and Nei, 1987) and Neighbor-Net (Bryant and Moulton, 2004). In the

first stage of FlatNJ, the system of 4-splits is iteratively reduced by joining pairs of

elements identified as neighbors until 4-splits for only 4 elements remain. Next step is
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expansion. First, we convert the remaining system of 4-splits into a flat system and

then iteratively add more flat splits by reversing the agglomeration. For a high-level

overview of FlatNJ see Algorithm 3.1. Once the flat split system is computed we draw

it using the algorithm by Spillner et al. (2012).

Algorithm 3.1 FlatNJ

procedure FlatNJ

if n = 4 then

return InitFlatSplits

end if

{a, b} ← FindNeighbors

c← Agglomerate(a, b)

FlatNJ

S ← Expand(S, c, a, b) . expand c into a and b

return S
end procedure

3.2 Systems of 4-splits

When we developed FlatNJ, we at first considered taking a matrix of pairwise distances

as input, as with the Neighbor-Net method. However, this has the disadvantage that

there can be more than one flat split system representing such a matrix (see, e.g.,

Figure 3.2 a-c). Intuitively, the problem is that pairwise distances cannot distinguish

between the two fundamentally different split networks on a set of four taxa (figure 3.2b

and 3.2c): Either none of the points is inside the triangle formed by the other three, or

precisely one of the points is inside the triangle formed by the other three. Moreover

pairwise distances do not contain much of the structural information. That is if we

look at subsets of taxa of size two we can get trees composed of two leaves only, but no

networks, see Figure 3.3a. If we increase this number by one and take triplets instead,

as in Figure 3.3b, then we still get trees that tell nothing about a possible topology

of a network. However as soon as we increase the number to four we are able to get

small split networks that can have two different topologies, see Figure 3.3c. Therefore

to discriminate between the two possible configurations as in Figure 3.2b-c we consider

quartet-like input data like that used for the QNet method Grünewald et al. (2007).

We now present some definitions that are necessary for us to describe our method. For

any four distinct elements a, b, c and d in X , a 4-split is either of the form {a, b}|{c, d}
or of the form {a}|{b, c, d}. As with splits of the whole taxon set, {a, b}|{c, d} and

{c, d}|{a, b} (and, similarly, {a}|{b, c, d} and {b, c, d}|{a}) denote the same 4-split. Note
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Figure 3.2: (a) A matrix of pairwise distances on the set of taxa

X = {a, b, c, d}. (b), (c) Two split networks representing weighted flat

split systems in which the shortest path distance perfectly matches

the distances given in subfigure a. For clarity, the lengths of the edges

are also given as the number next to each edge. (d) A configuration of

four points in the plane that corresponds to the structure of the flat

split system represented in subfigure b: No taxon is inside relative to

the other three. (e) A configuration of four points in the plane that

corresponds to the structure of the flat split system represented in

subfigure c: Taxon d is inside relative to the other three.
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Figure 3.3: Possible split network topologies on a small number of

taxa. (a) Two taxa and (b) three taxa networks are always trees

whereas (c),(d) four taxa networks may admit topologies that are not

tree like.
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that 4-splits that group two taxa versus two other taxa are usually referred to as quartets.

Thus, 4-splits can be viewed as a straight-forward generalization of quartets where also

groupings of one taxon versus three other taxa are considered. Also note that there are

precisely seven distinct 4-splits for any set of four taxa. In the following, we denote the

collection of all possible 4-splits that can be formed from the taxa in X by F = F(X )

and we will usually also consider a weighting λ that assigns to every 4-split in F a

non-negative real number. The pair (F , λ) will then be referred to as a weighted system

of 4-splits and our method takes such a system as its input.

However, note that, unlike the QNet method, FlatNJ also assigns weights to the

trivial splits (i.e., splits that separate one taxon from all of the rest) in the resulting

flat split system. These splits correspond to “pendant” edges in the final split network.

In our first experiments we found that the split systems we generated from systems of

4-splits tended to be almost circular. On investigating this phenomenon, we realized

that this was probably due to the fact that any flat split system that contains all of the

possible trivial splits must in fact be circular. Moreover, the presence of many 4-splits

of the form {x}|{a, b, c} with large weights in the input will naturally lead to flat split

systems that contain the trivial split {x}|X − {x}, thus blocking the option of x being

placed inside the resulting split network. For this reason, given a system of 4-splits

(F , λ), we first compute the quantity

β(x) = min
{x}|{a,b,c}∈F

λ({x}|{a, b, c}) (3.1)

for every x ∈ X , that is, the smallest weight over all 4-splits of the form {x}|{a, b, c}
in F . Then we adjust λ by subtracting β(x) from the weight of every 4-split of this

form because this amount of weight will definitely be represented in the resulting split

network independently of whether x is placed inside the network or not. This is achieved

in the final step of the algorithm by adding back β(x) quantities to the weights of the

respective trivial splits. A more detailed explanation of this procedure is given later

when the drawing is discussed.

3.2.1 Generating systems of 4-splits

We consider two possible methods to generate systems of 4-splits: the first produces

them from multiple sequence alignments using statistical geometry Eigen et al. (1988),

and the second directly from distances between points in the plane.

For the first method, let A be a sequence alphabet, and let D denote a measure of

pairwise distance between the letters in A. Here we use D(L,L) = 0 and D(L,L′) = 1

for any two distinct letters L and L′ in A (see, e.g., Nieselt-Struwe and von Haeseler

2001). Then, for a multiple sequence alignment with ` columns c1, c2, . . . , c`, each
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column ci, 1 ≤ i ≤ `, yields a distance matrix Di on X by putting Di(x, x
′) = D(L,L′),

where L and L′ are the letters in column ci in the sequence corresponding to taxon x

and taxon x′, respectively. To obtain a weight for each 4-split in F , we put

λ({a, b}|{c, d}) =
1

`

∑
16i6`

1

2

(
max

{
Di(a,c)+Di(b,d)
Di(a,d)+Di(b,c)
Di(a,b)+Di(c,d)

}
−Di(a, b)−Di(c, d)

)
and

λ({a}|{b, c, d}) =
1

`

∑
16i6`

1

2
min

{
max{Di(a,b)+Di(a,c)−Di(b,c),0}
max{Di(a,c)+Di(a,d)−Di(c,d),0}
max{Di(a,b)+Di(a,d)−Di(b,d),0}

}
for any four distinct taxa a, b, c and d in X . Note that the i-th summand in both

formulae corresponds to the so-called isolation index (Bandelt and Dress, 1992a) of the

4-split with respect to the distance matrix Di.

We also developed a second method for generating systems of 4-splits from distances

between points in the plane (coming from, e.g., geographical coordinates for sampling

locations of taxa) since we are also interested in the possibility of incorporating such

information into our analyses. Recall that, for any four distinct taxa a, b, c and d,

there are essentially two different ways in which the corresponding taxa locations can

be arranged (Figure 3.2d and 3.2e). In each case, only six 4-splits (out of the seven

possible 4-splits) are suggested by the relative position of the locations and these are

exactly those 4-splits represented in the corresponding split network in Figure 3.2b and

3.2c, respectively.

To assign weights to the 4-splits, we apply the formula in Moulton and Spillner

(2012, Thm. 3) to the Euclidean distances DE between the locations. This formula

will yield the unique weights for the 4-splits such that the shortest path lengths in the

corresponding split network equal the given Euclidean distances. In particular, if the

four taxa are arranged as in Figure 3.2d this is equivalent to weighting each 4-split

by its isolation index with respect to DE as given above (which immediately implies

λ({a, c}|{b, d}) = 0). Otherwise, if the four taxa are arranged as in Figure 3.2e, we put

λ({d}|{a, b, c}) = 0 and set

λ({a}|{b, c, d}) =
1

2
(DE(a, b) +DE(a, c)−DE(b, d)−DE(c, d)),

λ({b}|{a, c, d}) =
1

2
(DE(a, b) +DE(b, c)−DE(a, d)−DE(c, d)),

λ({c}|{a, b, d}) =
1

2
(DE(a, c) +DE(c, b)−DE(a, d)−DE(b, d)),

λ({a, b}|{c, d}) =
1

2
(DE(a, d) +DE(b, d)−DE(a, b)),

λ({a, c}|{b, d}) =
1

2
(DE(a, d) +DE(c, d)−DE(a, c)), and

λ({a, d}|{b, c}) =
1

2
(DE(b, d) +DE(c, d)−DE(b, c)).

It is easy to verify that these weights will always be non-negative.
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3.3 Neighbors in flat split systems

FlatNJ constructs a flat split system from a system of 4-splits using an agglomerative

approach similar to the ones used in Neighbor-Joining (Saitou and Nei, 1987) and

Neighbor-Net (Bryant and Moulton, 2004). One of the key steps in both of these

previous approaches is the selection of “neighbors”. The exact definition of the neighbors

in a split system depends on the representation used. We give definitions in terms of

planar split networks and flat split systems (i.e., point configurations).

3.3.1 Split networks

First recall how we defined neighbors in the trees and circular networks:

• In a Neighbor-Joining tree neighbors are any two taxa that form a cherry (Defini-

tion 1.1.1), see Figure 3.4a.

• In a Neighbor-Net network neighbors are two taxa that appear next to each

other in a circular ordering of labeled vertices (Definitions 1.1.2) as shown in

Figure 3.4b.

We generalize definitions 1.1.1 and 1.1.2 to planar split networks. Two taxa a, b ∈ X
are neighbors in a planar split network N (X ) if their corresponding vertices appear in

the same relative position with respect to all vertices labeled with X \ {a, b}.

Definition 3.3.1. Let Na be a network obtained from N (X ) by removing label a and

let Nb be a network obtained in the same way by removing b. Let N b→a
a be the network

Na with b replaced with a. We say that a and b are neighbors in N (X ) if N b→a
a and

Nb induce the same split system.

For example, taxa x and y are neighbors in a planar split network shown in

Figure 3.4c.

Neighbors are easier to identify in terms of 4-taxa networks. Let Y ⊆ X be a subset

of X of size |Y | = 4 and let N be an planar split network on X . Then a 4-taxa network

N 4 on Y is a network obtained from N by removing all labels in X \ Y and afterwards

deleting edges that induce redundant splits. Let N4 be a set of all 4-taxa networks

extracted from N on all possible Y ⊆ X . Then two taxa {x, y} ∈ X are neighbors if

and only if they are in a neighborly position. We say that x and y are in a neighborly

position with respect to N4 if in all 4-taxa networks on Y = {a, b, c, z} where z ∈ {x, y}
and {a, b, c} ⊆ X \ {x, y}, x and y appear in the same position with respect to a, b and

c and in the networks on Y = {a, b, x, y} where {a, b} ⊆ X \ {x, y} we have that x and

y are either next to each other in a circular ordering (if all four taxa are placed on the

edge of the 4-taxa network), or either x is inside and y is on the outside of the network

or vice versa (if one of the four taxa appears inside of the 4-taxa network).
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Figure 3.4: Two taxa x and y are neighbors all three planar split

networks. a) A Neighbor-Joining tree where vertices labeled with

x and y form cherry indicating that x and y are neighbors. b) A

Neighbor-Net network with vertices x and y appearing next to each

other in the circular ordering of the taxa. c) A FlatNJ network with

x and y appearing in the same relative position with respect to the

other labeled vertices.

For example e and f in Figure 3.5a are neighbors whereas b and f in 3.5b are not

neighbors.

3.3.2 Flat splits

For flat split systems with taxa represented as a configuration of points in 2D and splits

as an arrangement of pseudolines we use a slightly different definition of neighbors.

As mentioned in the introduction, the splits displayed in the networks produced by

Neighbor-Net can be represented by arranging points on a circle (Figure 3.6) and

drawing splits as an arrangement of straight lines. Then two distinct taxa x and x′ are

considered to be neighbors if they correspond to consecutive points along the circle for

some such ordering (e.g., b and c are neighbors in Figure 3.6a). Note, however, that

this is equivalent to the following condition (shown in Figure 3.6a and Figure 3.6b):

(Nb) The straight line segment with end points x and x′ does not intersect any of the

straight lines through any pair of distinct elements in X \ {x, x′}.
The advantage of condition (Nb) is that it can readily be applied to any set of points

in the plane not necessarily arranged around a circle (Figure 3.6c and Figure 3.6d).

More precisely, given a flat split system S, two taxa x and x′ in X are neighbors relative

to S if there exists some arrangement of X in the plane so that every split in S can be

represented by a straight line and also x and x′ satisfy condition (Nb). Note that there

exist flat split systems for which no pair of taxa form neighbors (Figure 3.6e). Such

split systems will not be generated by FlatNJ.
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also they are in the neighborly positions in the 4-taxa networks that

contain both of them, thus e and f are identified as neighbors. (b)

Taxa b and f appear in the same relative position with respect to

the triplets {a, d, e} and {c, d, e}, but are in different position with

respect to {a, c, d} and {a, c, e}, also they are not in the neighborly

position in the 4-taxa network for taxa {a, b, c, f}, thus b and f are

not neighbors.
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Figure 3.6: (a) Any two consecutive elements along the circle are

considered to be neighbors. None of the bold gray straight lines

intersects the dotted straight line segment whose end points are the

neighbors b and c. (b) The bold gray straight line through b and

e intersects the dotted straight line segment with end points a and

c, indicating that a and c are not neighbors. (c) Taxa c and d are

neighbors because none of the bold gray straight lines intersects the

dotted straight line segment with end points c and d. (d) Taxa c and

e are not neighbors because the bold gray straight line through a and

d intersects the dotted straight line segment with end points c and

e. (e) An arrangement of the taxa X = {a, b, . . . , f} in the plane for

which there is no pair of neighbors relative to the corresponding full

flat split system.
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3.4 FlatNJ algorithm

Given a weighted system of 4-splits (F , λ), FlatNJ essentially works in the following

stages, in a similar way to the Neighbor-Net method:

1. A pair of neighbors x′ and x′′ in X is selected using the system of 4-splits.

2. The neighbors x′ and x′′ are removed from X and replaced by a new element x

representing both x′ and x′′ (i.e., x′ and x′′ are agglomerated into a new element

x). The system of 4-splits (F , λ) is then updated to give a new system on

X ′ = (X \{x′, x′′})∪{x}. This selection and agglomeration procedure is repeated

until only four elements remain.

3. The optimal flat split system is chosen for the remaining four taxa.

4. The whole agglomeration process is reversed to create a full flat split system S.

5. The split weights are estimated for S relative to (F , λ), and a corresponding

planar split network is then drawn.

Each of the steps is described in more detail in the following sections.

3.4.1 Choosing neighbors

As in Neighbor-Joining and Neighbor-Net algorithms, we choose neighbors by assigning

scores to pairs of elements in X . In particular, we use two scoring functions that have

been chosen to ensure that the algorithm is “consistent” as explained later.

Min score

The first function is based on the following observation. Let (S, ω) be a weighted flat

split system and x′ and x′′ be two taxa that are neighbors in S. Then, for any two

distinct taxa y and y′ in X \ {x′, x′′}, at least one of the 4-splits:

• {x′}|{x′′, y, y′},
• {x′, y}|{x′′, y′},
• {x′, y′}|{x′′, y} and

• {x′, y, y′}|{x′′}
separating x′ and x′′ has the weight 0 (see Figure 3.7).

Furthermore, the sum of the weights of all the splits in S that extend the 4-split with

weight 0 is equal to 0 (if some 4-split has weight 0, then there are no splits that would

extend it). For example, for the full flat split system S on the set X = {a, b, c, d, e}
represented by the arrangement in Figure 3.6c, the taxa c and d are neighbors and

there is no split in S that extends the 4-split {c}|{a, b, d}.
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a

x′

b

x′′

c

x′

d

x′′

(a) (b)

Figure 3.7: (a) Split {x′, b}|{x′′, a} is not present in the 4-taxa

network (therefore it has weight zero) indicating that x′ and x′′ are

neighbors. Other pairs of neighbors are {x′, a}, {a, b} and {b, x′′}.
However {x′, b} and {x′′, a} are not neighbors because all 4-splits

separating x′ from b and x′′ from a are present in this 4-taxa network.

(b) Split {x′′}|{x′, c, d} is not present in the 4-taxa network indicating

that x′′ is a neighbor with x′ as well as with c and d. Because all

other 4-splits are present other pairs {x′, c}, {c, d} and {d, x′} are not

neighbors.

This suggests defining the following score for any pair x′ and x′′ of taxa in X :

σmin(x′, x′′) =
∑

y,y′∈X\{x′,x′′}
y 6=y′

min

{
λ({x′}|{x′′,y,y′})
λ({x′′}|{x′,y,y′})
λ({x′,y}|{x′′,y′})
λ({x′,y′}|{x′′,y})

}
.

Intuitively, the score σmin(x′, x′′) captures the total amount of 4-split weight, over

all 4-splits in F , that will definitely not be represented (recovered) in the resulting flat

split system if we make x′ and x′′ neighbors. Hence, good candidates for neighbors are

taxa x′ and x′′ for which σmin(x′, x′′) is minimized.

Max score

Once we have found the pairs that minimize the score σmin(x′, x′′), we employ a second

scoring function that aims to capture the total amount of 4-split weight, over all 4-splits

in F of the form {x′, x′′}|{y, y′}, that will be represented in the resulting flat split

system if we make x′ and x′′ neighbors. More formally:

σmax(x
′, x′′) =

∑
y,y′∈X\{x′,x′′}

y 6=y′

λ({x′, x′′}|{y, y′}).

This function is also used in the selection of neighbors in the QNet algorithm (Grünewald

et al., 2007).
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Hence, in summary, we choose neighbors by first computing all pairs {x′, x′′} that

minimize σmin and then, out of these pairs, selecting a pair {x′, x′′} that maximizes

σmax.

Properties of the scoring functions

We first give an example of a circular split system Σ and a pair of taxa which minimize

the scoring function σmin but are not neighbors in Σ. Let Σ be the circular split system

on X = {x1, x2, . . . , x5} containing the splits {xi, xi+1}|X \ {xi, xi+1}, 1 ≤ i ≤ 4, and

the split {x1, x5}|X \ {x1, x5}. Then the ordering θ given by x1, x2, x3, x4, x5 of X is,

up to reversal and index shifting, the unique ordering of the taxa in X such that, for

every split S = A|B in the split system, there are indices 1 ≤ i ≤ j < n so that either

A = {xi, xi+1, . . . , xj} or B = {xi, xi+1, . . . , xj}. Assigning weight ω(S) = 1 to each

split S ∈ Σ, put F = F(Σ,ω). Now, using F as the input quadruple system, we obtain

σmin(x1, x3) = 0. But x1 and x3 are not neighbors in Σ, that is, they are not consecutive

in the ordering θ.

We now consider the scoring function σmax. It immediately follows by the consistency

result presented in Grünewald et al. (2009) that, if (Σ, ω) is a weighted circular split

system and F = F(Σ,ω) is the associated quadruple system, then any pair of taxa that

maximize σmax are neighbors in S. However, for more general flat split systems, σmax

does not necessarily select neighbors in this way. For example, consider the flat split

system Σ depicted in Figure 3.8a. We assign weight ω(S) = 1 to each split S ∈ Σ,

except for split S5 to which we assign weight 3. Then, using F = F(Σ,ω) as the input

quadruple system, σmax(a, b) = 11 is the unique maximum score over all pairs (see

Figure 3.8c), but a and b are not neighbors in Σ (see Figure 3.8d). If we restrict the

score σmax to those pairs with minimum score σmin, however, we then select d and e, a

pair of elements that are indeed neighbors in Σ (see Figure 3.8e).

3.4.2 Agglomeration

Once a pair of neighbors x′ and x′′ is selected we move to the agglomeration step.

When x′ and x′′ are joined into x we need to update the system of 4-splits (F , λ) on X
to form one on the set X ′ = (X \ {x′, x′′}) ∪ {x}. First, all the 4-splits that contain

neither x′ nor x′′ remain the same in the updated system of 4-splits on X ′. Otherwise,

let a, b, c be any three distinct elements in X \ {x′, x′′} and put Yx′ = {x′, a, b, c} and

Yx′′ = {x′′, a, b, c}. Then the 4-splits involving precisely the four taxa in {x, a, b, c} are

assigned the average of the weights of the corresponding 4-splits of Yx′ and Yx′′ , that is,
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(a) (b)

S0 = {a, c, d}|{b, e}
S1 = {a, c}|{b, d, e}
S2 = {a, b, c}|{d, e}
S3 = {a, b, c, d}|{e}
S4 = {a}|{b, c, d, e}
S5 = {a, b}|{c, d, e}
S6 = {a, b, d}|{c, e}
S7 = {b, d}|{a, c, e}
S8 = {b}|{a, c, d, e}
S9 = {a, b, d, e}|{c}

a
b

c

d

e

(c)

Pair σmax σmin

(a, b) 11 1
(a, c) 6 0
(a, d) 2 1
(a, e) 1 3
(b, c) 1 3
(b, d) 5 0
(b, e) 4 2
(c, d) 4 1
(c, e) 7 1
(d, e) 7 0

(d)

a
b

(e)

d

e
c

e

d

c

a
b

S5

Figure 3.8: (a) A full flat split system S on the set X = {a, b, c, d, e}.
All splits are drawn as straight lines. The bold line represents the split

S5 that is assigned weight 3. All other splits are assigned weight 1.

(b) The list of splits in S. (c) The scores σmax and σmin for each pair

of elements in X relative to the weighting of S given in subfigure a.

(d) The elements a and b maximizing σmax are not neighbors. (e)

The neighbors d and e that maximize σmax among all those pairs that

minimizes σmin.
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we put:

λ({x}|{a, b, c}) =
1

2

(
λ({x′}|{a, b, c}) + λ({x′′}|{a, b, c})

)
,

λ({a}|{x, b, c}) =
1

2
(λ({a}|{x′, b, c}) + λ({a}|{x′′, b, c})),

λ({b}|{x, a, c}) =
1

2
(λ({b}|{x′, a, c}) + λ({b}|{x′′, a, c})),

λ({c}|{x, a, b}) =
1

2
(λ({c}|{x′, a, b}) + λ({c}|{x′′, a, b})),

λ({x, a}|{b, c}) =
1

2
(λ({x′, a}|{b, c}) + λ({x′′, a}|{b, c})),

λ({x, b}|{a, c}) =
1

2
(λ({x′, b}|{a, c}) + λ({x′′, b}|{a, c})), and

λ({x, c}|{a, b}) =
1

2
(λ({x′, c}|{a, b}) + λ({x′′, c}|{a, b})).

A visual example of the agglomeration procedure on 4-taxa networks is given in

Figure 3.9.

3.4.3 Initializing a flat split system

Once all possible agglomerations have been performed, we are left with a set of 4 taxa

X4 and a system of 4-splits (F4, λ4) on X4. Since X4 contains precisely four taxa, every

split of X4 can be viewed as a 4-split therefore we have that

S(X4) = F4. (3.2)

Moreover S(X4) may not be flat split system since it may (and usually does) contain

seven splits. Therefore, to obtain a full flat split system on X4 (which must contain

precisely
(

4
2

)
= 6 splits), we need to select one split in F4 that will be removed.

Following again the idea that we want to minimize the amount of 4-split weight that is

not represented in the output, we choose a split Smin ∈ F4 with the minimum weight.

Then we set S4 = S(X4) \ {Smin}. In addition, we construct a configuration of points in

X4 in the plane such that all the splits in S4 are represented by straight lines through

this configuration. Figure 3.10a shows initial configuration of points for a split system

on four taxa with one of the trivial splits having weight 0, Figure 3.10b shows a different

initial configuration for a flat split system on X4 without one of the non-trivial splits,

namely {x1, x3}|{x2, x4}.

3.4.4 Reversing the agglomeration

Next, starting with X4 we reverse the agglomerations one by one. For simplicity we

only describe how this is done for the last reversal that replaces x in X ′ by x′ and x′′ to
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Figure 3.9: (a) Taxa e and f are identified as neighbors and joined

into one. 4-taxa networks that contain either e or f are agglomerated

whereas those that contain neither of the two remain untouched. 4-

taxa networks and their corresponding 4-splits that contain both of

the neighbors are deleted on agglomeration. (b) The last step of

the agglomeration procedure. The last pair of neighbors is identified

and the two 4-taxa networks that contain either of the neighbors are

agglomerated into one network. The rest of the 4-taxa networks are

eliminated leaving a set of taxa of size 4
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(a)
x1

x2

x3 x4

(b)

x1 x2

x3x4

Figure 3.10: Two candidate initial flat split system on four taxa. (a) A

flat split system without the split {x2}|{x1, x3, x4}. (b) An alternative

flat split system without the split {x1, x3}|{x2, x4}.

obtain the set X since the other reversals are performed in a completely analogous way.

To this end, assume that we have a full flat split system Σ′ on X ′ arranged in the plane.

From this we want to find a suitable arrangement of X in the plane that corresponds

to a full flat split system S on X (see Figure 3.11a). In particular, the arrangement of

X is obtained by replacing the point representing x in X ′ by two points representing x′

and x′′, respectively (cf. Figure 3.11b). These two points are placed in such a way that,

for each split S = A|B ∈ S4 with x ∈ A, we have the split (A \ {x}) ∪ {x′, x′′}|B ∈ S.

This is achieved by placing x′ and x′′ close enough to the original position of x. In the

situation depicted in Figure 3.11b it suffices, for example, to place x′ and x′′ inside the

shaded region.

In addition to those splits that arise from the splits in S ′, the split system S also

contains n− 1 splits that separate x′ and x′′. The splits of this type that are contained

in S depend on the position of x′′ relative to x′. Note that there is some freedom in

choosing the precise coordinates of x′ and x′′. Topologically, there are, however, only

2(n− 2) different configurations that can be described as follows. We place a suitably

small disk centered at the original position of x (cf. Figure 3.11c). At the center of this

disk we place x′. Then we partition the disk into 2(n− 2) sectors by drawing straight

lines that contain x′ and any of the points in X ′ \{x}. For each of these sectors, placing

x′′ anywhere within that sector yields the same flat split system on X , and placing x′

in a different sector yields a different flat split system (cf. Figure 3.11d and e). Let C
denote the resulting collection of 2(n− 2) different full flat split systems.

We now use the input system of 4-splits (F , λ) again to select one of the flat split

systems in C. More specifically, we select some S in C for which∑
y,y′∈X−{x,x′}

y 6=y′

∑
S′ a 4-split of {x,x′,y,y′}

and some S in Σ extends S′

λ(S ′). (3.3)

is maximum. In other words, we consider all 4-splits in F that involve both x′ and x′′
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Figure 3.11: (a) A full flat split system S ′ on the set X ′ = {a, b, c, x}
with x representing two agglomerated elements x′ and x′′. The black

straight lines depict the
(

4
2

)
= 6 splits in S ′. (b) Replacing x by two

points representing x′ and x′′. (c) The disk sectors representing the

options for placing x′′ relative to x′. (d) A placement of x′′ that yields

the four splits {x′, a}|{x′′, b, c}, {x′, a, b}|{x′′, c}, {x′, a, c}|{x′′, b} and

{x′, c}|{x′′, a, b} separating x′ and x′′. (e) An alternative placement of

x′′ that yields again the splits {x′, a}|{x′′, b, c} and {x′, a, b}|{x′′, c} but

also two different splits, namely, {x′, b}|{x′′, a, c} and {x′, b, c}|{x′′, a}.

and select a split system S for which the total weight of those 4-splits that are extended

by some split in S is maximum. Note that there can be more than one S in C that

maximizes (3.3). In this case we select, among those maximizing (3.3), one for which S
contains the two trivial splits {x′}|X \ {x′} and {x′′}|X \ {x′′}, if such a S exists, and

an arbitrary one otherwise. This ensures that if there is a simpler way to accommodate

the input data (i.e., a phylogenetic tree or a circular split system) then we choose this.

3.4.5 Weighting of a flat split system

Once we have computed a full flat split system S on X whose structure reflects that of

the input system of 4-splits (F , λ), it only remains to compute non-negative weights

for the splits in S. To do this, we use an approach similar to the one used in QNet.

More specifically, split weights ω are computed so that the system of 4-splits (F , λ(Σ,ω))

on X (which is defined by setting, for every 4-split S ′ ∈ F , λ(Σ,ω)(S
′) to be the total

weight of those splits S of X that extend S ′) is as close as possible to the input system
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of 4-splits (F , λ) in the least squares sense, that is, we minimize∑
S′∈F

(
λ(S ′)− λ(Σ,ω)(S

′)
)2
. (3.4)

To minimize this last expression we solve a quadratic program (see, e.g., Lawson

and Hanson 1974). In the implementation of FlatNJ we use Gurobi solver (Gurobi

Optimization, Inc., 2015) to find the optimal weights of splits in S.

3.4.6 Filtering of incompatible splits

The user can then filter the resulting weighted flat split system (Σ, ω) if desired using

the method described in Grünewald et al. (2007) to suppress splits with very low weights.

In particular, the user provides a real-valued threshold t, 0 ≤ t ≤ 1, which suppresses

any split S in S for which there exists some other split S ′ in S such that S and S ′ are

incompatible and the weight of S is less than a fraction t of the weight of S ′. The splits

are removed in order of increasing weight.

3.4.7 Drawing a planar split network

The resulting weighted flat split system (S, ω) is represented by a planar split network

N , which is drawn using the algorithm presented in Spillner et al. (2012). It can then

be displayed using the SplitsTree package (Huson and Bryant, 2006). Note that the

filtering mentioned above can help ease interpretation of this network by reducing the

number of small boxes that appear in it. At this stage, the values β(x), defined in (3.1)

for all x in X , are also taken into account as follows. If N already contains a pendant

edge representing the trivial split {x}|X − {x} then the length of this pendant edge is

just increased by β(x). Otherwise (i.e., N does not contain a pendant edge representing

the trivial split {x}|X −{x} and β(x) > 0), a new pendant edge of length β(x) is added

to N . Note that this last step can potentially produce pendant edges that must cross

some other edges in the planar network N .

3.4.8 Implementation of FlatNJ

We have implemented FlatNJ in Java. For analyzing the examples below, we ran the

program on a PC with Intel i5-2300(4) CPU, with 6 GB of main memory and with the

operating system Ubuntu 12.04. The run time of our implementation is superpolynomial

in the worst case due to the fact that the computation of the weights for the splits

involves solving a quadratic program (for this we use algorithms in the Gurobi Optimizer,

version 5.0, www.gurobi.com), although in practice we have not found this to be a

limitation for sets of up to 100 taxa. Note that the entire agglomeration process and

www.gurobi.com


3.5. Consistency of FlatNJ 57

its reversal can be done in polynomial time. More specifically, in our implementation

we take O(n4) time, which is optimal since the input consists of 7 ·
(
n
4

)
4-splits on the

set X .

3.5 Consistency of FlatNJ

An important property that any method for constructing a split network should ideally

satisfy is consistency. This means that if the method is designed to produce a split

system with a certain special property (e.g., compatible or circular), then if such a split

system (or associated data) is taken as input, the same split system should result. For

example, if a compatible/circular weighted split system corresponding to a phylogenetic

tree/outer-labeled planar network is taken as input to Neighbor-Joining/Neighbor-Net,

then it can be shown that the split system will be reproduced (Atteson, 1999; Bryant

et al., 2007).

By construction, FlatNJ always generates a flat split system S on X with the

following special recursive property: S contains at least one pair of taxa that are

neighbors, and if any pair of neighbors in S is agglomerated then a new flat split system

results that has at least one pair of neighbors and that has the same property. We call

such flat split systems neighborly (note that there are flat split systems that are not

neighborly). If (S, ω) is a weighted flat split system, and FlatNJ is given (F , λ(S,ω)) as

input system of 4-splits, then it can be shown that it will reproduce (S, ω) if any of the

following hold:

a) S is compatible,

b) S is circular, or

c) (S, ω) is a neighborly, full flat split system.

Note that both of the scoring functions σmin and σmax are necessary to achieve consis-

tency of FlatNJ in (a)–(c). In particular, when used on its own, the scoring function

σmin can fail to select neighbors even in circular split systems. Similarly, even though

σmax will always select neighbors in circular split systems, used alone it can fail to select

neighbors in neighborly flat split systems.

In general, although we have found that there are many non-full, neighborly flat split

systems for which FlatNJ is consistent, there are also such split systems that FlatNJ

cannot reproduce. Ideally, we would like to give a complete and concise description

of those flat split systems for which FlatNJ is consistent. However, we expect that

there might not be one since such a description would probably pave the way for a

polynomial time algorithm to decide whether or not an arbitrary split system is flat, a

problem that we strongly suspect to be NP-complete.
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Figure 3.12: Neighbors in a loop-free, acyclic, rank three oriented

matroid: (a) a and b are neighbors, (b) a and c are not neighbors

because there are two crossings in between pseudolines corresponding

to a and c: b× e, b× d .

3.6 Construction of oriented matroid splits

Equivalence between flat splits and splits of a loop-free, acyclic, rank three oriented

matroid from Chapter 2 gives an interpretation of the FlatNJ algorithm from the

perspective of oriented matroids. Here we define neighbors, explain initialization

and expansion steps in terms of the oriented matroids, which are appealing for the

implementation of FlatNJ as they are more abstract and easier to handle than pseudo-

configurations of points.

3.6.1 Neighbors in oriented matroids

We designed FlatNJ algorithm to compute flat split systems as an oriented matroid

of rank three, therefore we need to define neighbors in the same terms. We consider

two taxa a and b to be neighbors relative to a flat split system S if no two pseudolines

intersect in between pseudolines that correspond to a and b.

In terms of the wiring diagrams which are a graphical representation of the allowable

sequences we define neighbors as two taxa x and x′ whose respective wires have no

crossings of other wires in between them. For example, a and b are neighbors in the

wiring diagram depicted in Figure 3.12a whereas a and c are not neighbors in the same

wiring diagram (Figure 3.12b).

3.6.2 Initialization of an oriented matroid

We initialize a flat split system by choosing one of the two loop-free, acyclic oriented

matroid of rank three as shown in Figure 3.13. If initial flat split system has one of

the trivial splits with weight 0, we choose an oriented matroid in Figure 3.13a and an



3.6. Construction of oriented matroid splits 59

oriented matroid in Figure 3.13b otherwise.
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Figure 3.13: Two candidate oriented matroids for a flat split system

on four taxa. (a) An arrangement A1 of oriented pseudolines that

corresponds to a flat split system without the split {x2}|{x1, x3, x4}.
(b) An alternative initial arrangement of pseudolines that gives a flat

split system without the split {x1, x3}|{x2, x4}.

3.6.3 Expansion of an oriented matroid

Imagine that we are in the same situation as in Section 3.4.4. Just instead of the flat

split system we have an loop-free, acyclic oriented matroid of rank three with an element

x representing two neighbor elements x′ and x′′. We take x and split it into two taxa

x′ and x′′ as illustrated in Figure 3.14. We double up the pseudoline x and place the

copy either above or below the original pseudoline in such a way that none of the other

pseudolines intersect in between the two copies of x. Then we rename x to x′ and assign

the other pseudoline to x′′ (Figure 3.14b). Next we modify the new arrangement so

that both of the new pseudolines intersect as well. We do this by crossing them in one

of the cells bounded by pseudolines x′ and x′′ (except for the first cell as it corresponds

to the same split as the last one). What oriented matroid we get depends on where we

intersect x′ and x′′ as well as on the initial placement of x′′ with respect to x′. At each

expansion step we have n− 2 possible positions for intersecting x′ and x′′ where n is

the number of elements in X ′ after x is expanded. All in all each expansion gives us

2(n− 2) possible new oriented matroids to chose from. Out of the 2(n− 2) potential
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a
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Figure 3.14: (a) An oriented matroid corresponding to a full flat

split system in Figure 3.11a with x representing two agglomerated

elements x′ and x′′. (b) Replacing pseudoline x with a pseudoline x′

and adding another pseudoline x′′ that is parallel to x′. Note that

there are two ways to do that, i.e., x′′ may be placed either above or

below x′. (c) Red dots indicate cells in which x′ and x′′ could possibly

intersect. (d) An oriented matroid that corresponds to flat split system

in Figure 3.11d. (e) Choosing an alternative intersection point for x′

and x′′ gives a different split system as shown in Figure 3.11e.

(π, κ) we chose the one that maximizes the total recovered 4-split weight as given by

Equation 3.3. In terms of the oriented matroids each step of reversing the agglomeration

is actually a localization, i.e., expansion of the oriented matroid by a single element.
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Chapter 4

Multidimensional scaling

4.1 Overview

Multidimensional scaling (MDS) is a data visualization technique used for displaying

high-dimensional data in a low-dimensional space. Methods for MDS are based on the

pairwise proximities (similarities/dissimilarities) between objects in a high-dimensional

space. In MDS solutions, objects are mapped to points in the low-dimensional space

and proximities are represented as distances between the points (France and Carroll,

2011), see Figure 4.1. Multidimensional scaling was first introduced by Young and

Householder (1938). A couple of decades later Torgerson (1952) proposed the algorithm

for MDS which is now known as classical scaling.

Algorithms for multidimensional scaling work on proximities δij which are derived

from the object × stimuli (dimension) data using some suitable distance metric (France

and Carroll, 2011). The metric may be distances between points in a high-dimensional

space, dissimilarities between biologic sequences or any other source of distance data.

Distances D = {dij} in the MDS solution, on the other hand, are (usually) defined

1 2 3 . . . n
1 0 δ12 δ13 . . . δ1n
2 δ12 0 δ23 . . . δ2n
3 δ13 δ23 0 . . . δ3n
...

...
...

...
. . .

...
n δ1n δ2n δ3n . . . 0

⇒ . . .

1

2

3

n

1 2 3 . . . n
1 0 d12 d13 . . . d1n
2 d12 0 d23 . . . d2n
3 d13 d23 0 . . . d3n
...

...
...

...
. . .

...
n d1n d2n d3n . . . 0

⇒

(a) (b) (c)

Figure 4.1: A general multidimensional scaling scheme. (a) An n× n
input proximity matrix Q which is used to compute (b) an MDS

representation of n points. (c) An n × n distance matrix D that

contains the (Euclidean) distances between points in (b).
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as Euclidean distances between points. Differences between proximities and their

corresponding distances give us a representational error :

eij = δij − dij,

defined for each pair of objects i and j.

4.1.1 Stress

Metric multidimensional scaling methods aim at finding a solution such that distances dij

are as similar to the input proximities δij as possible. This similarity is measured using

a function called stress which may differ depending on the method used. Consequently

most of the multidimensional scaling algorithms compute an MDS embedding by

iteratively minimizing the value of a chosen stress function. Here we discuss a few

commonly used stress functions and give a graphical overview in Figure 4.2

The simplest stress function is raw stress (Kruskal, 1964, p. 8) which is equal to a

sum of squared differences between input proximities δij and output distances dij:

σ2
r =

∑
i,j

[δij − dij]2

Another type of stress function, which is optimized by the ALSCAL algorithm (Takane

et al., 1977), is known as SStress :

σ2
s =

∑
i,j

[
δ2
ij − d2

ij

]2
. (4.1)

SStress is often preferred due to its connection to principal coordinate analysis (Mardia,

1978, p. 1234). However SStress emphasizes large dissimilarities and overlooks small

(Borg and Groenen, 2005, p. 252).

Values of both σ2
r and σ2

s are themselves not very informative as they depend on

the scale of the proximities. To overcome this dependence σ2
r is normalized by the sum

of squared output distances, giving a normalized stress :

σ2
1 =

σ2
r∑
d2
ij

.

In practice σ2
1 values tend to be very small and, as shown in Figure 4.2, not very sensitive

for small differences between input proximities and output distances. Therefore Kruskal

(1964) suggests using the square root of σ2
1 which in the literature is referred to as

Stress-1 or just Stress, see Figure 4.2:

σ1 =
√
σ2

1 (4.2)
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Raw Stress SStress

0 ∆ab

dab

1

Σr
2

0 ∆ab

dab

1

Σs
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Normalized stress Stress-1

0 ∆ab

dab

1

Σ1
2

0 ∆ab

dab

1

Σ1

Figure 4.2: Graphs of four different stress functions (Raw stress,

SStress, Normalized stress and Stress-1) for a (single) distance between

objects a and b as a function of dab. All graphs are drawn with the

same scale and a fixed value for δab, they show how stress changes with

respect to the low-dimensional distance dab. All of the stress functions

equal zero when dab = δab. Raw stress and SStress are both dependent

on the scale of measurement and equally penalize deviations to both

sides of the high-dimensional distance δab. Normalized stress and

Stress-1 do not depend on the scale. Both approach one as dab grows

bigger. Also very small values dab are heavily penalized, preventing

solutions from collapsing into a single point. Normalized stress is

less sensitive to small differences between δab and dab. Stress-1 (σ1) is

preferred as its values are easier to discriminate.
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In some cases, for example when dealing with missing or inaccurate data, another

variation of the Stress-1 known as the weighted stress is used (France and Carroll, 2011):

σw =

√∑
i

∑
j 6=iwij(δij − dij)2∑
i

∑
j 6=iwijd

2
ij

To estimate the fit of individual points a stress per point is computed. Given the

formula for stress and a point i, we extract only those terms of the summation involving

i. For example raw stress for the point i equals:

σ2
r(i) =

∑
j 6=i

[δij − dij]2 .

We mainly use stress σ1 for the evaluation and a weighted variation of the raw stress

for computations:

σ2
rw =

∑
ij

wiwj (δij − dij)2 . (4.3)

4.2 Existing methods for multidimensional scaling

In this section we give a detailed review of the two most widely used multidimensional

scaling techniques, classical scaling and iterative methods, and provide a brief overview

of some of the other approaches.

4.2.1 Classical multidimensional scaling

Classical multidimensional scaling (cMDS) was the first practical method for MDS.

It was introduced by Torgerson (1952, 1958) and Gower (1966) and is also known as

Torgerson scaling or Torgerson-Gower scaling. Classical scaling is attractive since it

can be solved analytically, requiring no iterations. Also, its solutions are nested, that is

the first two dimensions of a 3D solution are the same as the two dimensions of a 2D

solution (Borg and Groenen, 2005).

Classical scaling starts from the matrix of squared proximities Q(2) = {δ2
ij} and uses

it to compute a B matrix:

B = −1

2
JQ(2)J,

where J is a centering matrix:

J = I − n−111T .

Entries of the matrix B can also be computed directly using the following formula:

bij = −1

2

(
δ2
ij −

1

n

∑
k

δ2
ik −

1

n

∑
k

δ2
jk +

1

n2

∑
l

∑
k

δ2
lk

)
(4.4)
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Let B = V ΛV T be an eigendecomposition of B, let Λ+ be a matrix composed of

first d positive eigenvalues and V+ corresponding columns of V . Then let X be V+Λ
1/2
+ .

The rows of X define coordinates of the embedded objects in the d-dimensional space.

Mardia (1978) showed that classical scaling solutions are optimal with respect to

the matrix B as they minimize∑
i

∑
j

(bij − b̂ij)2 = tr(B − B̂)2

where B̂ is a B matrix for the output distances. If the {δ} matrix is Euclidean then

an even stronger optimality condition holds: Classical scaling solutions minimize the

SStress σs (Formula 4.1) for the Euclidean proximity matrices (Mardia, 1978).

Classical scaling solutions are sometimes used as a starting configuration for iterative

MDS algorithms minimizing different stress functions (Malone et al., 2002). For example,

PROXCAL (Busing et al., 1997) lets user choose classical (Torgerson) scaling to generate

the initial configuration. However, the computational complexity of the classical scaling

is dominated by the O(n3) complexity of eigendecomposition calculation (Yang et al.,

2006).

4.2.2 Spring system algorithms

Another class of multidimensional scaling methods treat the embedding problem by

converting it into an equivalent spring system and iteratively minimizing the chosen

stress function. Pairs of points affect each other through the connecting springs as

shown in Figure 4.3. If δij < dij then the corresponding spring is stretched and a force

pulls one point towards the other whereas in case δij > dij the spring is compressed

and therefore pushes points away from each other. In other words the force with which

some point pi affects another point pj is proportional or equal to the difference between

δij and dij (Chalmers, 1996; France and Carroll, 2011). In case both input (δ) and

output (d) distances are equal, the spring is at its rest, i.e., optimal length.

In the original version of the algorithm used for graph drawing by Eades (1984), all

vertices (points) are initially placed at random positions and then the spring system

iteratively moves them to the equilibrium (locally optimal) positions. At each iteration,

all points are considered and the force for each point is computed as a function of forces

coming from all other points. Therefore each iteration has a complexity of O(n2). The

number of iterations used often depends on the size of the data, making the overall

complexity O(n3) (Morrison et al., 2003). To make this approach applicable to large

data sets Chalmers (1996) and Morrison et al. (2003) came up with modifications that

significantly reduce the computational complexity of the original algorithm.
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i j

i j

i j

δij < dij

δij = dij

δij > dij

→ i j

δij = dij

i j

δij = dij

i j

δij = dij

Before After

→

→

(a)

(b)

(c)

Figure 4.3: Embeddings of two points i and j as spring systems. (a)

i and j are placed too far from each other. Original proximity δij

is lower than low-dimensional distance thus the connecting spring is

stretched. After the system is let go, the spring contracts making

dij equal to δij. (b) Points are placed in such a way that dij = δij,

therefore the spring is at rest and does not move; (c) i and j are too

close to each other and the spring is compressed. After letting go, it

expands as points repulse each other via the spring.

The first modification, suggested by Chalmers (1996), reduces the overall complexity

to O(n2). In this variation of the algorithm, each point i is connected by springs to

a certain subset S∗i ⊂ S of points rather than all of them. The subset S∗i is different

for each point and consists of its k nearest neighbors and r random points. Nearest

neighbors are found in the input data and do not change over the iterations, whereas

random points are resampled each time. The complexity of each iteration depends on

the sizes of the sets S∗i . When |S∗i | is bounded by a constant for all i, each iteration runs

in linear time. Chalmers (1996) experimented with different numbers of neighbors and

random points and found that relatively small sizes such as 5 neighbors and 10 random

points work just as well as, for example, 20 and 30. However they only experimented

with a relatively small data set of 831 objects, hence small neighborhood and random

samples might actually depend on the size of the whole data set as, for example,
4
√

831 ≈ 5.4.

Morrison et al. (2003) introduced a hybrid method that uses spring systems as well

as an interpolation technique. It starts by sampling a subset S of
√
n objects and

running Chalmers (1996) algorithm on S as explained above. This gives O(
√
n

2
) = O(n)

complexity of the initial step. The remaining n − √n points are then placed using

an interpolation technique. For each object in i /∈ S, we find an object x ∈ S such

that δix is minimum and draw a circle around x with radius r proportional to δix, then

determine which quadrant is most likely to be best for positioning i and perform a

binary search on that quadrant to find the most suitable initial position is for i. A
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x

is
if

r ∼ δxi

Figure 4.4: A point i is initially placed at the position is on the circle

around another object x. Then forces coming from other points (not

only x) iteratively move it from is through some intermediate positions

to its final position if (Morrison et al., 2003, Figure 2).

random sample S ′ ⊆ S of points is selected and i∪ S ′ is embedded into a spring system

which moves i to its best position with respect to S ′, see Figure 4.4. Each object that

does not belong to the initial random sample S is compared to all
√
n objects in S,

thus the complexity of the algorithm is O(n
√
n) as other operations are performed in

constant time. Later it was reduced to O(n 4
√
n) with the use of pivots for the nearest

neighbor search (Morrison and Chalmers, 2003). Additionally, to refine the final solution

a constant number iterations of the Chalmers (1996) algorithm are run. This does not

influence the overall complexity as each iteration of Chalmers (1996) algorithm has

linear runtime complexity.

4.2.3 Other methods for MDS

The two methods that we have just described are just a few out of many approaches to

the multidimensional scaling problem. There are a lot of algorithms targeting different

aspects of the MDS. A good review can be found in France and Carroll (2011). Here

we briefly review a few commonly used approaches.

Iterative stress minimization

Sammon (1969) developed a very successful iterative method for non-linear dimensional-

ity reduction. It starts with a random initial point configuration and iteratively moves

points using steepest descent optimization.

Another class of somewhat similar methods for iterative stress minimization are

majorization algorithms. Stress functions are quite difficult to minimize due to their

complicated derivatives. Majorization approaches do not work with actual stress

functions, instead they minimize a simpler auxiliary functions (Borg and Groenen,

2005, Chapter 8). Let f(x) be a stress function and let g(x, z) be a function such that
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z

xmin(g)

g(x, z)

f(x)

xmin(f) x

y

Figure 4.5: Function g(x, z) is a majorizing function of f(x) that

touches f(x) at the point z and for all x : g(x, z) ≥ f(x).

g(x, z) ≥ f(x) and f(z) = g(z, z) as shown in Figure 4.5. Then majorization works as

described in Algorithm 4.1.

Algorithm 4.1 Majorization
1: z ← z0

2: x′ ←argminx(g(x, z))

3: if f(z)− f(x′) < ε then

4: return x′

5: else

6: z ← x′

7: goto 2

8: end if

Algorithms that are based on the majorization technique are SMACOF (De Leeuw,

1977; De Leeuw and J., 1977) and PROXSCAL (Busing et al., 1997).

Local scaling

Local scaling methods focus on the good embeddings of the neighborhoods by empha-

sizing small distances over large. Locally linear embedding (LLE) by Roweis and Saul

(2000) computes low-dimensional embeddings by preserving neighborhoods. The global

structure of the data is determined from the local symmetries. Laplacian Eigenmaps

is another local scaling approach proposed by Belkin and Niyogi (2003). It finds em-

beddings which optimally preserve local neighborhoods by using the Laplacian of the

neighborhood graph.
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Very high-dimensional data

Very high-dimensional data suffers from a phenomena known as the curse of dimen-

sionality. As the dimensionality grows, relative differences between lowest and highest

proximities become smaller due to the concentration of measure phenomenon (Donoho,

2000), see Figure 4.6. Some methods for MDS are designed to deal with this issue

specifically. For example, DD-HDS (Lespinats et al., 2007) uses a specific weighting

scheme that emphasizes small proximities even when the difference between small

and large proximities is relatively minor. They use a function based on the Gaussian

probability density function f with mean µ and standard deviation σ (Lespinats et al.,

2007, Formula 6). The weight for proximity between i and j is given

wij = k(min(δij, dij)) = 1−
∫ min(δij ,dij)

−∞
f(u, µ, σ)du.

The min(δij, dij) ensures that weighting is symmetric and emphasizes small proximities

as well as small low-dimensional distances. The stress function is (Lespinats et al., 2007,

Formula 7):

σDD−HDS =
∑
i<j

|dij − δij|
(

1−
∫ min(δij ,dij)

−∞
f(u, µ, σ)du

)
.

Absolute difference between proximities and low-dimensional distance is used to avoid

over representing large proximities which usually result in large differences. (Lespinats

et al., 2007).

Nonmetric methods

Unlike approaches discussed above that rely on the proximities themselves, non-metric

methods focus on the order of the proximities instead. For example if we have three

objects a, b and c with pairwise proximities such that δab < δac < δbc, then nonmetric

methods will try to preserve this order and find embeddings for which dab < dac < dbc

holds. One of the nonmetric scaling methods is RankVisu by Lespinats et al. (2009).

It ranks neighborhoods of the points and aims at preserving this ranking in a low-

dimensional space as much as possible.

4.3 A new agglomerative approach

In general the task of multidimensional scaling is very similar to that of distance-based

phylogenetics. The objective of MDS is to find a configuration of points that best

fits given proximity matrix Q. Meanwhile in distance-based phylogenetics one wants
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Figure 4.6: Concentration of measure phenomenon. We generated

random data sets of 1000 uniformly distributed points in 2, 20, 100

and 500 dimensions and computed pairwise distances between all pairs

of points. Histograms show the distribution of distances for each

dimension. Maximum distance is the square root of the dimension.
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to estimate a network or a tree structure that best resembles dissimilarities between

biological sequences. In both cases we want to fit some sort of “distances” between

objects on some geometric/topological structure. Inspired by this similarity we apply

the agglomerative approach (used in e.g. NeighbourJoining (Saitou and Nei, 1987),

NeighbourNet (Bryant and Moulton, 2004), FlatNJ (Chapter 3, Balvočiūtė et al., 2014)

and hierarchical clustering) to multidimensional scaling. Agglomerative methods for

trees are flexible, produce high quality trees and are computationally efficient even for

large data sets (Walter et al., 2008). At each agglomeration two objects are joined into

one, thus the variance is reduced and accuracy is increasing at every step.

Our algorithm operates either on a proximity matrix {δ} or directly on objects in a

high-dimensional space. Low-dimensional embeddings are then computed by repeating

the following steps:

1. Neighbor identification and agglomeration,

2. Initial embedding, and

3. Expansion or reversal.

See Algorithm 4.2 for more details. The actual implementation of each step depends

on the chosen low-dimensional space and type of the input data. In the following we

explain our algorithm for embedding points in one and then in two dimensions.

Algorithm 4.2 Agglomerative MDS

1: procedure Embedd

2: if n = d+ 1 then

3: return InitEmbedding . initialize embedding in a d-dimensional space

4: end if

5: {a, b} ← FindNeighbors

6: c← Agglomerate(a, b)

7: Embedd

8: P ← Expand(P , c, a, b) . expand c into a and b

9: return P
10: end procedure

4.4 Embeddings on a real line

Scaling in one dimension is usually referred to as unidimensional scaling or seriation and

it is a specific case of the multidimensional scaling where output also gives an order of

objects. Thus it can be viewed more like a problem of ordering rather than embedding.

Unidimensional scaling originates from archeology (Petrie, 1899; Robinson, 1951) where

chronological order is of interest. Since then it has been related to the consecutive ones
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problem in binary matrices (Kendall, 1969) and used for the representation of graphs

on the real line (Lekkeikerker and Boland, 1962). The assembly of DNA sequences is

another interesting application of unidimensional scaling (Garriga et al., 2011) as genes

admit a linear (or circular) ordering in the chromosomes.

Essentially unidimensional scaling is a combinatorial problem of finding the optimal

ordering. Using exhaustive search, exact solutions can only be found for very small

data sets as the number of possible orderings grows exponentially with respect to the

size of the data set (Buchta et al., 2008).

4.4.1 Neighbor identification

First we introduce a definition of neighbors on a real line and then formulate criterion

that could be used for the neighbor identification.

Let ` be a real line, and let P ⊆ ` be a set of points on ` with xi the coordinate of

the point i on `. We define neighbors as follows.

Definition 4.4.1. Two points p′ and p′′ are neighbors in P if for all pi ∈ P \ {p′, p′′}
either xi ≤ xp′ and xi ≤ xp′′ or xi ≥ xp′ and xi ≥ xp′′ .

In other words two points p′ and p′′ are neighbors if none of the other points in P

lie between them on `; see Figure 4.8a.

We formulate our criterion for selecting neighbors based on the observation that a

pair of closest points on the line are always neighbors by Definition 4.4.1. Thus a pair

p′ and p′′ for which

δp′p′′ = min
x,y∈P

δxy (4.5)

holds is selected as neighbors. We experimented with some other formulations of the

criterion which were computationally more demanding and proved to have the same

accuracy with respect to the final result, for more details see Appendix B.

Solving 4.5 exactly takes O(n2) operations in each iteration making overall complexity

O(n3). To reduce the complexity we relax the criterion and look for the reciprocal

nearest neighbors instead. Benzécri (1982) suggested a single cluster algorithm for

hierarchic clustering based on the nearest neighbor chains (NN-chain) which are defined

as follows:

i, NN(i) = j, NN(j) = k, . . . , NN(p) = q, NN(q) = p. (4.6)

NN-chains are characterized by three propositions (Murtagh, 1984):

1. Inter-object dissimilarities are monotonically decreasing along the NN-chain (see

Figure 4.7).
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2. The final link always connects a pair of reciprocal nearest neighbors (RNNs), i.e.,

the final link connects two objects that are each other’s nearest neighbors.

3. The NN-chain does not contain a circuit of more than two nodes.

i j k p q

Figure 4.7: Nearest neighbor chain (NN-chain). See Equation 4.6.

The single cluster algorithm starts growing a NN-chain from some random point,

once a pair of reciprocal nearest neighbors is found, it is agglomerated into one point.

The algorithm continues from the point that preceded the pair on the NN-chain or from a

random point if the chain is empty. See Algorithm 4.3 for more details. Implementation

of the agglomeration procedure (line 7) depends on the type of the input data and we

explain it in the following section.

Algorithm 4.3 Single cluster algorithm (Murtagh, 1984, Algorithm B)

1: NNchain← ∅
2: while X 6= ∅ do

3: r ← Random(X )

4: Push(NNchain, r)

5: p← NearestNeighbor(X , r) . finds nearest neighbor for r in X
6: if Contains(NNchain, p) then

7: c← Agglomerate(r, p)

8: X ← X ∪ c \ {r, p}
9: Pop(NNchain) . removes r from the NNchain

10: Pop(NNchain) . removes p from the NNchain

11: if NNchain = ∅ then

12: goto 3

13: else

14: r ← Peek(NNchain)

15: goto 5 . returns last element without removal

16: end if

17: else

18: r ← p

19: goto 4

20: end if

21: end while
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p′ p′′p i
` xp′ xp xp′′ xi

p′ p′′ i
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Figure 4.8: Agglomeration of points on the line. (a) Two points p′

and p′′ are identified as neighbors and (b) they are joined into p.

4.4.2 Agglomeration

Once a pair of neighbors p′ and p′′ are selected they are merged together into a new

object p as if they were lying on some real line ` as shown in Figure 4.8. Let {wi} be a

set of weights and initially set wi = 1 for all points i ∈ P . When the input data is a

proximity matrix Q, we update it by adding a row and a column for the new proximities

between all objects i ∈ Q \ {p′, p′′} and p which are computed as follows

δip =
wp′δip′ + wp′′δip′′

wp′ + wp′′
. (4.7)

The proximity matrix Q is then reduced by removing all rows and columns that

correspond to p′ and p′′.

If the input is not a matrix of proximities, but instead vectors in high-dimensional

space, we remove p′ and p′′ from the set and assign p a weighted average of the

coordinates of p′ and p′′:

xp(i) =
wp′xp′(i) + wp′′xp′′(i)

wp′ + wp′′
. (4.8)

Here xp(i) is the coordinate of p in the i-th dimension. The weight wp of the new point

p is the sum of the weights of p′ and p′′:

wp = wp′ + wp′′ . (4.9)

That is, weight of some point i is equal to the sum of weights of all points that were

agglomerated into i. When we start with the unit weights, then wi equals the number

of points that are contained in i.

Neighbor identification and agglomeration is repeated until only two objects remain.

These are placed on a real line ` and the whole agglomeration process is reversed.

4.4.3 Initial positioning

Let a and b be the remaining two objects in Q. Map a on ` with xa = 0 and b with

xb = δab as shown in Figure 4.9. This gives a perfect fit for two points because distance

dab = |xa− xb| = δab, thus stress is equal to zero independent of the stress formula used.
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a b
` 0 δab

Figure 4.9: Initial positioning of two points a and b on a real line `.

4.4.4 Expansion

Expansion works by separating points in the reverse order that they were agglomerated.

At each expansion step we select the last agglomerated point p and translate all points

on ` so that p appears at the origin:

xi = xi − xp.

The point p is expanded into two points p′ and p′′ with coordinates xp′ and xp′′ such

that

xp′
wp′

wp′ + wp′′
= −xp′′

wp′′

wp′ + wp′′
,

hence

xp′′ = −xp′
wp′

wp′′
.

We compute coordinates xp′ and xp′′ by minimizing the weighted raw stress σrw. Let

xp′ = x and xp′′ = −x wp′

wp′′
, then weighted raw stress equals:

σrw =
∑
i

[
wiwp′ (δip′ − |xi − x|)2 + wiwp′′

(
δip′′ − |xi + x

wp′

wp′′
|
)2
]

+ wp′wp′′

(
δp′p′′ −

(
wp′

wp′′
+ 1

)
|x|
)2

We only consider distances to points p′ and p′′ as other pairwise distances are not

affected by the expansion of p. The stress is minimum when

δσrw
δx

= 0.

To reduce the number of norms in the derivative, we take advantage of the fact that

we know the position of each point in P \ {p′, p′′} with respect to p. That is, for each

point i we know whether xi < xp, xi = xp or xi > xp. Thus, we divide P \ {p′, p′′} into

two subsets L = {l ∈ P : xl ≤ xp} and M = {m ∈ P : xm > xp} and express stress σrw

as:
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σrw =
∑
l∈L

[
wlwp′ (δlp′ − (x− xl))2 + wlwp′′

(
δlp′′ −

(
−x wp′

wp′′
− xl

))2
]

+
∑
m∈M

[
wmwp′ (δmp′ − (xm − x))2 + wmwp′′

(
δmp′′ −

(
xm + x

wp′

wp′′

))2
]

+ wp′wp′′

(
δp′p′′ −

(
wp′ + wp′′

wp′′

)
|x|
)2

(4.10)

Derivative of the stress (Equation 4.10) with respect to the coordinate x is

δσrw
δx

=x

(
wp′

wp′′
wp(wp + 1)

∑
i∈L∪M

wi

)
︸ ︷︷ ︸

a

+

+ wp′

(∑
l∈L

wl (δlp′′ − δlp′)−
∑
m∈M

wm (δmp′′ − δmp′)
)

︸ ︷︷ ︸
b

+

− sign(x) (wp′wpδp′p′′)︸ ︷︷ ︸
c

.

Assuming that x 6= 0 we get that δσrw
δx

= 0 has two solutions:

x1 =
−b− c
a

,

x2 =
−b+ c

a
,

Out of x1 and x2 we choose the one that minimizes the weighted raw stress.

4.4.5 Optimal weighting and local optimality condition

Once a point p is expanded into p′ and p′′ and their respective coordinates are chosen

such that stress over p′ and p′′ is minimal, the overall stress for all other points is no

longer guaranteed to be minimum. To account for that we explore local optimality

criterion and its application for weighted points.

Pliner (1984) has shown that the local minimum condition for some ordering of

points on a line is reached if and only if

xi =
1

n

n∑
j=1

δijsign(xi − xj) (4.11)
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for all i = 1, . . . , n and xi 6= xj for all i 6= j.

We modify this condition for points with weights. To obtain a weighted version of

the equation 4.11 we take the weighted raw stress

σrw =
∑
i<j

wiwj(δij − |xi − xj|)2

and modify it to include a sign function instead of a norm:

σrw =
∑
i<j

wiwj(δij − (xi − xj)sign(xi − xj))2 (4.12)

To find a condition for a local minimum we compute the derivative of 4.12 with

respect to xi:

δσrw
δxi

= −2wi
∑
j

sign(xi − xj)wj(δij − (xi − xj)sign(xi − xj))

And find when δσrw
δxi

= 0:

−2wi
∑
j

sign(xi − xj)wj(δij − (xi − xj)sign(xi − xj)) = 0∑
j

[sign(xi − xj)wjδij − wj(xi − xj)] = 0∑
j

wjδijsign(xi − xj)− xi
∑
j

wj +
∑
j

wjxj = 0

From here we can obtain the value for xi:

xi
∑
j

wj =
∑
j

wjδijsign(xi − xj) +
∑
j

wjxj

xi =
1∑
j wj

∑
j

wjδijsign(xi − xj) +
1∑
j wj

∑
j

wjxj

The second term 1∑
j wj

∑
j wjxj does not depend on xi and can be ignored, hence a

local minimum condition for the weighted case is:

xi =
1∑
j wj

∑
j

wjδijsign(xi − xj) (4.13)

We adjust coordinates after each expansion to make sure that local optimality

condition is satisfied at every stage.
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Preserving local optimality on expansion

Ideally, we would like to perform an expansion in such a way that optimality is not

violated after each step. To see whether and in what cases it is possible to achieve this

stability we look into the criterion for local optimality (4.13) and explore when it does

not change for all points i ∈ P \ {k} after p is expanded into p′ and p′′. Because the

weight of each point equals the number of objects contained in it we have that :

wp = wp′ + wp′′

δip =
wp′

wp
δip′ +

wp′′

wp
δip′′ . (4.14)

When the expansion is performed in such a way that does not change the order of

the points we also have that:

sign(xi − xp) = sign(xi − xp′) = sign(xi − xp′′) (4.15)

If the optimality criterion is satisfied after the expansion then the term including

point p in the equation 4.13 must be equal to the sum of terms including p′ and p′′:

wpδipsign(xi − xp) = wp′δip′sign(xi − xp′) + wp′′δip′′sign(xi − xp′′) (4.16)

When we incorporate equations 4.14 and 4.15 into 4.16, we get:

wp(
wp′

wp
δip′ +

wp′′

wp
δip′′) = wp′δip′ + wp′′δip′′

wp′δip′ + wp′′δip′′ = wp′δip′ + wp′′δip′′ (4.17)

From 4.17 we see that if 4.16 holds, the local optimality condition is preserved after

each expansion. Consider another case when we allow points to change order. That is,

if after expansion we get that for some point i

sign(xi − xp) = −sign(xi − xp′). (4.18)

Then local optimality is preserved if:

wpδipsign(xi − xp) = wp′δip′sign(xi − xp′) + wp′′δip′′sign(xi − xp′′)
wp′δip′ + wp′′δip′′ = −wp′δip′ + wp′′δip′′

2wp′δip′ = 0 (4.19)

From 4.19 we get that 4.18 holds and the optimality criterion is preserved is when:

wp′ = 0 or δip′ = 0.
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4.4.6 Implementation and computational complexity

The computational complexity of agglomeration depends on the clustering algorithm

and input update. The reduction formula (4.7) satisfies the reducibility condition

of Murtagh (1984), so neighbor finding is based on the single cluster algorithm with

complexity O(n2) for proximity matrices and O(n2k) for objects in k-dimensional space.

Complexity of the input update also depends on the type of the data we are using. It

is O(n) per iteration for a proximity matrix and O(k) for k-dimensional objects, overall

complexities are O(n2) and O(nk) respectively. To sum up, runtime complexity of the

agglomeration is O(n2) for proximity matrix and O(n2k) for k-dimensional objects.

Initial embedding is straightforward and requires a constant number of operations

for proximity matrices and O(k) operations for k-dimensional objects.

The most computationally expensive step is the expansion. For the proximity

matrix it requires O(n) operations to compute coordinates for the expanded points and

another O(n) to evaluate both solutions. Applying local optimality criterion requires

O(n) operations per point, hence O(n2) per iteration and O(n3) overall. Therefore

runtime complexity of the expansion is O(n3) for proximity matrix and O(n3k) for

k-dimensional objects. By tracking the change of locally optimal coordinates we could

reuse the optimal coordinates and adjust them with respect to the expanded points

only. This would reduce the complexity to O(n2) and O(n2k).

4.5 Embedding points in the two-dimensional space

After exploring how agglomeration works for a relatively simple unidimensional case we

consider a more complicated problem of scaling into two-dimensional spaces. Here we

focus on the computational complexity as well as accuracy. To keep runtime as low as

possible different neighbor finding strategies are used for the proximity matrices and

for high-dimensional objects.

4.5.1 Neighbor identification and agglomeration

We agglomerate points in two dimensions in the same manner as we did for unidimen-

sional case, i.e., we take two points p′ and p′′ that we choose as neighbors and replace

them with a new point p that is placed between p′ and p′′ as shown in Figure 4.10. The

actual position of the p depends on the weights of wp′ and wp′′ .

We use the same formulas for updating weights and coordinates as we did in the

unidimensional case (Formula 4.9 and Formula 4.8 accordingly). However, for the

distance update we can no longer take the weighted average. Instead we take a weighted

mean (Gower, 1967a) as it is done in the weighted mean-pair method by Sokal and
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p′
p′′

p′
p′′

p

(a) (b)

Figure 4.10: Agglomeration in two dimensions. (a) A set of points

before the agglomeration of p′ and p′′. (b) Points p′ and p′′ are

agglomerated into p that is placed in between p′ and p′′.

Michener (1958). This approach is often referred to as median linkage clustering by

Gower (1967a).

We compute new distances as follows. Let P be the set of points and let D = {d} be

the pairwise distance matrix on P . Let p′, p′′ ∈ P be neighbors and let i ∈ P \ {p′, p′′}
be any other point in P , then distance dip equals the length of the weighted median of

the triangle formed by p′, p′′ and i:

dip =

√
wp′

wp
d2
ip′ +

wp′′

wp
d2
ip′′ −

wp′wp′′

w2
p

d2
p′p′′ ,

see Figure 4.11. We substitute distances d to proximities δ and use the following formula

to update proximity matrix on agglomeration:

δip =

√
wp′

wp
δ2
ip′ +

wp′′

wp
δ2
ip′′ −

wp′wp′′

w2
p

δ2
p′p′′ , (4.20)

with wp = wp′ + wp′′ as in the Formula 4.9.

The single cluster algorithm that we used for the unidimensional scaling requires

the agglomeration formula to satisfy the reducibility property which requires that

i

p′
p′′

p

Figure 4.11: Agglomeration of p′ and p′′ into p. Distance between i

and p is equal to the length of the weighted median ip of the triangle

p′p′′i.



4.5. Embedding points in the two-dimensional space 81

x1
x2

x3

x4

y

x1 x2 x3 x4

r1

r2

r3

(a) (b)

x1 x2

(c)

Figure 4.12: Single cluster algorithm applied to points in 2D space. (a)

A set of four points X = {x1, x2, x3, x4} in a two-dimensional space.

Radii of circles around the points are such that r1 > r2 > r3. (b) A

nearest neighbor chain with x1 as a starting point. Points x3 and x4

are the reciprocal nearest neighbors, that are joined into y as shown

in (a). (c) NN-chain after the agglomeration. If we continue from x2

we get that x1 and x2 are the pair of the reciprocal nearest neighbors,

however point y is closer to x1 than is x2.

agglomeration of two objects p′, p′′ ∈ X cannot produce a new object p that would be

closer to any of the other objects in X than was p′ or p′′ (Murtagh, 1984, Section 3); see

Figure 4.12 for an example where this property fails when applying the single cluster

algorithm for points in two-dimensional space.

Müllner (2011) suggested a generic clustering algorithm that supports any proximity

update formulae and does not require for the reducibility property to hold. This

algorithm has O(n3) worst case and O(n2) best case runtime complexity (Müllner,

2011). We can break down the complexity into two major components: the number of

iterations and the complexity of each iteration. There is not much we can do about

the number of iterations, but there are tricks for finding nearest neighbors that can

reduce complexity of each iteration. While exact nearest neighbor search requires O(n)

operations for each point, we can easily reduce it if we relax neighbor criterion and look

for approximately nearest neighbors instead.

4.5.2 Nearest neighbor search strategies

Let X be a set of objects and let a ∈ X . Then b ∈ X is said to be the nearest neighbor

of a if |a − b| ≤ |a − i| for all i ∈ X \ {a, b}. Finding such an object b for a is a task

of O(nd) complexity (n = |X | and d is the dimension of objects in X ). Thus it takes

quite a lot of time for large data sets of high dimension. However, in some cases an

approximately nearest neighbor is just as good and accuracy can be exchanged for
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speed. Most of the algorithms for finding approximately nearest neighbors comprise of

two steps (Buaba et al., 2014), namely (1) preprocessing of the input data into some

simpler structure, and (2) localized search in this structure.

A common method for approximate neighbor finding is locality sensitive hashing

by Indyk and Motwani (1998) or LSH for short. This algorithm hashes objects into

buckets and assumes that close (similar) objects will appear in the same bucket. It has

a query complexity of O(dnq) where q ∈ (0, 1). A similar strategy is used in random

mapping onto one dimension by Kaski (1998). Let {ri} be a set of random numbers

with |{ri}| = d, then random projection of some object x with coordinates (x1, . . . , xd)

in d-dimensional space is (Kaski, 1998, Formula 2):

p(x) =
d∑
i

rixi

See Figure 4.13 for an example how random embedding works for a set of points in

two-dimensional space.

Random mapping projects objects onto a continuous line giving us a linear search

space. Let k ≤ n be the size of search space and let x ∈ X be an object with a random

projection p(x) on the line `r. We find an approximately nearest neighbor of x by

considering points whose projections are in the set of p(x)-nearest neighbors on `r.

The rationale behind this approach is the assumption that points that are close in the

high-dimensional space will also be near each other on the projective line (Kaski, 1998).

For example, take the set of points in Figure 4.13 choose some point x and compare its

k nearest neighbors with k nearest neighbors in the projection as shown in Figure 4.14.

We experimented with different values of k and found that k ≈ √n performs better

than small constant numbers and is still significantly smaller than n.

Agglomeration

Algorithm 4.4 is the modification of the generic agglomerative clustering algorithm by

Müllner (2011). We use the random projection when working with high-dimensional

objects and no projection for the distances. The procedure for finding (approximately)

nearest neighbors is given in Algorithm 4.5. Procedures that differ for the proximity

data and high-dimensional objects are described separately in Algorithm 4.6 and

Algorithm 4.7 accordingly. Random projection allows us to limit the complexity of the

nearest neighbor search and loops in the lines 16 and 22 of Algorithm 4.4 to O(k) thus

reducing the overall complexity to approximately O(nk) best and O(nk2) in the worst

case. See Section 4.5.6 for more details on the runtime complexity.
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`r

p(x)

x

Figure 4.13: A set of points (black) and their projections (white) onto

a random line `r. For example p(x) is the projection of x on `r.

`r

x

a

Figure 4.14: Three nearest neighbors of x. Blue circle encloses true

nearest neighbors whereas red curve bounds its nearest neighbors on

the projective line `r.
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Algorithm 4.4 Approximate clustering.

procedure ApproximateClustering(X )

L← ∅
nnghbr ← []

mindist← []

for x ∈ X do . makes a list of nearest neighbors

UpdateNearestNeighbor(x, nnghbr,mindist)

end for

Q←MakePriorotyQueue(X ,mindist) . sorts X by values in mindist

while |X | > 1 do

a← Pop(Q)

b← nnghbr[a]

Remove(Q, b) . removes b from Q

c← Agglomerate(a, b)

X ← X ∪ c \ {a, b} . updates X
Push(L, a, b) . saves a and b as neighbors

for x ∈ GetNeighborhood(a) ∪GetNeighborhood(b) do

if nnghbr[x] = a or nnghbr[x] = b then

nnghbr[x] = FindNearestNeighbor(x)

UpdateQ(Q, x,mindist[x])

end if

end for

for x ∈ GetNeighborhood(c) do

if GetDistance(x, c) < mindist[x] then

nnghbr[x] = c

mindist[x] = GetDistance(x, c)

UpdateQ(Q, x,mindist[x])

end if

end for

UpdateNearestNeighbor(c, nnghbr,mindist)

UpdateQ(Q, c,mindist[c])

end while

return L

end procedure

procedure UpdateNearestNeighbor(x,nnghbr,mindist)

nnghbr[x]← FindNearestNeighbor(x)

mindist[x]← GetDistance(x, nnghbr[x])

end procedure
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Algorithm 4.5 Find nearest neighbor.

procedure FindNearestNeighbor(y)

neighbor ← 0

min←∞
for x ∈ GetNeighborhood(y) do

if GetDistance(x, y) < min then

neighbor ← x

min← GetDistance(x, y)

end if

end for

return neighbor

end procedure

Algorithm 4.6 Procedures for the proximity matrix.

procedure Agglomerate(a,b)

for x ∈ X \ c do

δxc ←
√

2δ2xa+2δ2xb−δ
2
ab

4

end for

δcc = 0

return c

end procedure

procedure GetNeighborhood(x)

return X \ x
end procedure

procedure GetDistance(x, y)

return δxy

end procedure
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Algorithm 4.7 Procedures for high-dimensional objects.

procedure Agglomerate(a,b)

c← 1
2
(a+ b) . creates c with coordinates that are average of a and b

UpdateProjection(a.b.c)

return c

end procedure

procedure GetNeighborhood(x)

return NeighborsInProjection(x, k) . returns k nearest neighbors for x

end procedure

procedure GetDistance(x, y)

return ComputeDistance(x, y)

end procedure

4.5.3 Initial positioning

Every Euclidean metric on n points can be embedded into n − 1 dimensions (Borg

and Groenen, 2005, p. 419). Therefore any three points, assuming that they satisfy

triangle inequality, can be placed in a two-dimensional space with stress equal to zero.

We embed three points p1, p2 and p3 by assigning them the following coordinates as

shown in Figure 4.15a. Point p1 is placed at the origin, p2 is placed in the horizontal

axis to the right of p1 with the coordinates x1(p2) = δ12 and x2(p2) = 0. Coordinates

for the last point p3 are then computed using the Pythagorean theorem:

(x1(p1)− x1(p3))2 + (x2(p1)− x2(p3))2 = δ2
13

(x1(p2)− x1(p3))2 + (x2(p2)− x2(p3))2 = δ2
23

By inserting the coordinates of p1 and p2 we have:

x1(p3)2 + x2(p3)2 = δ2
13

(δ12 − x1(p3))2 + x2(p3)2 = δ2
23

From here we get:

x1(p3) =
δ2

12 + δ2
13 − δ2

23

2δ12

x2(p3) =
√
δ2

13 − x1(p3)2

The second coordinate x2(p3) can be either positive or negative. Without loss of

generality we always place p3 above the first (horizontal) axis, i.e., choose the positive

coordinate.
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p1

δ12 + ε12 δ23 + ε23

δ13 − ε13
p2

p3p1 p2

p3

δ12

δ23
δ12

(a) (b)

Figure 4.15: Initial placement of three points p1, p2 and p3 in the

two-dimensional space. (a) Points form a triangle when proximities

satisfy the triangle inequality, and (b) points are placed on the line

when the triangle inequality is not satisfied.

If proximities between the three remaining objects do not satisfy the triangle

inequality, we cannot find an exact embedding. Let δ13 be the largest proximity between

the three remaining objects and let

ε = δ13 − (δ12 + δ23) (4.21)

be the residual. If we add ε to δ12 + ε23 then the triangle equality is satisfied. Split the

ε into three components:

ε12 + ε23 + ε13 = ε

and rewrite Equation 4.21 as follows

(δ12 + ε12) + (δ23 + ε23) = (δ13 − ε13).

Let the distances in the embedding be

d12 =δ12 + ε12,

d23 =δ23 + ε23, and

d13 =δ13 − ε13 = δ13 − ε+ ε12 + ε23.

The weighted raw stress is minimized when

w1w2ε
2
12 + w2w3ε

2
23 + w1w3(ε− ε12 − ε23)2 (4.22)

is minimized. By minimizing Equation 4.22 we get:

ε12 =
w3

w1 + w2 + w3

ε,

ε23 =
w1

w1 + w2 + w3

ε, and

ε13 =
w2

w1 + w2 + w3

ε.

Hence we place p1 at the origin, p2 at (0, δ12 + ε12) and p3 at (0, δ13 − ε13) as shown in

Figure 4.15b.
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4.5.4 Expansion

The expansion step consists of two parts. First we take the pair that was agglomerated

last and separate it into two points which are placed on the opposite sides of the

agglomerated point. Next we adjust the two expanded points and the neighborhood of

the agglomerated point in the same way as described by Morrison et al. (2003).

Placing the expanded points

To expand some point c which is an agglomerate of a and b we will refer to some other

two points p1 6= p2. Let (x1, y1) and (x2, y2) be the coordinates of p1 and p2 respectively.

When performing the agglomeration to get the coordinates of c we took the weighted

average of the high-dimensional coordinates of a and b. We assume that the same also

holds in the two-dimensional space, i.e.,

wa
wc
xa +

wb
wc
xb = xc

wa
wc
ya +

wb
wc
yb = yc (4.23)

For the sake of simplicity assume that at each expansion step we translate all points so

that c is placed at the origin. Then from the equations in 4.23 we have that:

xa = −wb
wa
xb

ya = −wb
wa
yb (4.24)

Also, as c is between a and b we get that dac = wa

wc
dab and dbc = wb

wc
dab. Thus:

x2
a + y2

a =
w2
a

w2
c

d2
ab

x2
b + y2

b =
w2
b

w2
c

d2
ab (4.25)

To start with, the only coordinates that we know are those of p1, p2 and c. After

the expansion of c, p1c and p2c become weighted medians of the triangles 4ap1b and

4ap2b respectively, see Figure 4.16. Hence we will refer to these segments as weighted

medians and denote m1 = dp1c and m2 = dp2c. Since c was placed at the origin we have

that:

x2
1 + y2

1 = m2
1

x2
2 + y2

2 = m2
2. (4.26)
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c

a

b

p1

p2

da1

db1
m1

m2

db2

da2

dab
c

p1

p2

m1

m2

(a) (b)

dac

dbc

Figure 4.16: Initial expansion of the two points a and b with respect

to some other two points p1 6= p2.

Corresponding medians in high-dimensional space we denote as µ1 and µ2:

µ1 = δp1c

µ2 = δp2c.

Ideally we would have m1 = µ1 and m2 = µ2. If this is the case, then we can easily

find coordinates of a and b from Q distances. However, this quite likely might not be

the case, thus we need to use scaling. Let s1 = m1

µ1
and s2 = m2

µ2
be the scaling factors

for proximities in triangles 4ap1b and 4ap2b respectively.

From the Pythagorean theorem we have that:

d2
a1

= (xa − x1)2 + (ya − y1)2

d2
a2

= (xa − x2)2 + (ya − y2)2

d2
b1

= (xb − x1)2 + (yb − y1)2

d2
b2

= (xb − x2)2 + (yb − y2)2. (4.27)

With the use of equations 4.24, 4.25 and 4.26 we can rewrite 4.27 to

d2
a1

=
w2
a

w2
c

d2
ab − 2xax1 − 2yay1 +m2

1

d2
a2

=
w2
a

w2
c

d2
ab − 2xax2 − 2yay2 +m2

2

d2
b1

=
w2
b

w2
c

d2
ab − 2xbx1 − 2yby1 +m2

1

d2
b2

=
w2
b

w2
c

d2
ab − 2xbx2 − 2yby2 +m2

2.
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a bc

Figure 4.17: Neighborhood of the expanded points.
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From equations 4.28 we can express the coordinates of a and b which we do not

provide here due to their complexity. We only need to compute coordinates for either a

or b as from Equation 4.24 b can be expressed in terms of a and vice versa.

Local adjustment of the expanded points

After initial expansion we adjust coordinates of points using a heuristic approach based

on the spring systems as described by Morrison et al. (2003) (see Section 4.2.2). Since

each point is adjusted with respect to its nearest neighbors as well as a set of random

points we need to keep neighborhoods of points up to date. We expect each expansion

to have a local effect only. This is because in the agglomeration we assume two points

a and b to be each other’s (approximately) nearest neighbors; this means that there

should be no other points in the radius δab from either a or b as shown in Figure 4.17.

Therefore when updating neighbors we look at the points that are nearest neighbors of

c and also at the neighbors of the neighbors of c. We check whether a and/or b might

be closer to some point in the set than any of the current nearest neighbors. If this

is the case, the nearest neighbor list of that point is updated. We also look at the

neighborhoods of a and b. Initially we assign both of them the same neighborhoods as c

had and then check whether any of the points in the set appear closer. The greedy way

would be to go through all of the points that are present in the current configuration,
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but because we assume a and b to be an approximately closest pair of points, we also

assume that neighborhoods of both of them should not be very different from the

neighborhood of the point c. This allows us to reduce the search space significantly,

especially in case of large data sets. Each point in the neighborhood as well as a and b

is assigned a set of random points to correct for the local forces. Then we use a spring

system model to move each point to a new (likely more optimal) position.

Each coordinate of the point p is translated by a force vector which is an average of

all forces coming from neighboring and random points. Each interaction between point

p and some other point i is assigned a weight wip:

wip = wiwp max

(
δip
dip
,
dip
δip

)
,

here wj is the weight of the point j which is equal to the number of objects that j

contains at the current stage, i.e. the number of objects that were agglomerated into

j. Interaction between some two points is actually an interaction between pairs of

all objects in both points, therefore we want to emphasize distances between “heavy”

points more than between “light” ones. The other component max
(
δip
dip
,
dip
δip

)
makes

sure that we give more weight to the currently worse fits. Now considering weights

and distances in low and high-dimensional spaces we compose the force vector for all

coordinates pj of the point p in the low-dimensional space:

f(pj) =

∑
iwip(ij − pj)

dip−δip
dip∑

pwip

4.5.5 Global adjustment

At each step we perform local adjustments, however expansion of some two points might

also have an impact on some points further away as well. To compensate for that a

few times during the expansion and also at the end we perform a global adjustment

procedure. It adjusts all of the points in the current configuration in the same way as

local adjustment, only we do not need to update any of the neighborhoods as all of

them are already up to date. However, random point sets still need to be updated and

preferably before every adjustment as this enhances performance of the algorithm and

helps to avoid getting stuck in a local minima.

4.5.6 Computational complexity

We have already discussed computational complexity of the agglomeration procedure

which is O(n2) best and O(n3) worst case for the proximity data and O(n
√

(n)d) best

and O(n2d) worst case for objects in d-dimensional space.
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Initial embedding has the same complexity as for unidimensional scaling, that is,

we have O(c) for proximity and O(d) for vector data.

Expansion consists of the initial expansion which runs in constant time and refinement

which depends on the size of neighborhoods k and number of random points r that we

use to adjust each expansion. We choose k = 4
√
n and r = ck. Then each adjustment

requires (O( 4
√
n)) operations. During the expansion we also perform some global

adjustments each of which requires O(n 4
√
n) computations. Hence the overall expansion

complexity is O(n 4
√
n) for proximities and O(n 4

√
nd) for the vectors.

Summing up, we get that the most computationally costly step for the two-

dimensional embedding is the agglomeration. It determines the overall complexity

making it O(n2) best and O(n3) worst case for the proximity data and O(n
√

(n)d)

best and O(n2d) worst case for vector data. Random embedding of d-dimensional

objects requires O(nd) operations and thus does not affect the overall complexity of

the algorithm.

4.5.7 Performance

We implemented the algorithm for agglomerative multidimensional scaling as described

in this section in java programing language. To test its performance we generated

synthetic data sets each containing:

• nc clusters,

• m points per cluster

• in d dimensions.

Boundaries of each cluster were defined as cubes in d dimensional space with edges of

length l.

By running multiple tests we got very promising results concerning both accuracy

and speed out method. For example a good quality embedding (σ1 = 0.166) for a set of

100,000 points (nc = 10, m = 10, 000, l = 0.2) in five dimensions was computed in only

two minutes on a laptop with an i5 processor.

To compare our algorithm to other available methods we used smaller data sets

due to the high computational complexities of some of the other methods. Figure 4.18

shows multidimensional scaling plots of four different methods for a set points with

parameters: nc = 10, m = 200, d = 5 and l = 0.2. Sammon mapping produced a plot

with lowest stress and very easily identifiable clusters, but was relatively slow as it took

a few minutes compute a plot for 2,000 points. Agglomerative clustering performed

almost as good as Sammon mapping on this data set and took only a few seconds to

compute the plot. Classical scaling and PROXSCAL produced plots with relatively

high stress values and fewer clusters than expected.
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Figure 4.18: MDS plots for a set of 2,000 random points in five

dimensions with 10 clusters computed with different methods.
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4.6 Alternative strategies

4.6.1 Expansion using numerical optimization

Initially we did not adjust points and instead chose to work on finding the globally

optimal initial placement. To place a and b in such a way that Equation 4.24 holds and

the stress for a and b is minimized we need to find the points where the stress gradient

vanishes. For that we look at the weighted raw stress:

σrw =
∑
i

[
wawi(δai − dai)2 + wbwi(δbi − dbi)2

]
+wawb(δab − dab)2

High-dimensional distances d are already known as are coordinates of all points

i /∈ {a, b}. Therefore we can write low-dimensional distances as a function of a and/or

b and by substituting b with −wb

wa
a (Equation 4.24) as a function of a only. Thus σrw

becomes:

σrw =
∑
i

[
wawi(δai − |i− a|)2 + wbwi(δbi − |i+

wb
wa
a|)2

]
(4.29)

+wawb(δab − (1 +
wb
wa

)|a|)2 (4.30)

And its derivative with respect to a is:

δσrw
δa

=
∑
i

[
wawi

(
δai
|i− a| − 1

)
(i− a)− wbwi

(
δbi

|i+ wb

wa
a| − 1

)(
i+

wb
wa
a

)]

− (wawb + w2
b )

(
δab
|a| − (1 +

wb
wa

)

)
a (4.31)

Finding a solution for δσrw
δa

= 0 for more than one point i is computationally too difficult,

but can be achieved using numerical methods. We employed Newton’s method for

multiple dimensions as a = {x, y}:

an+1 = an − γ [Hσrw(an)]−1∇σrw(an)

Here Hσrw(an) is a Hessian matrix:

Hf(an) =

[
δ2σrw
δx2n

δ2σrw
δxnδyn

δ2σrw
δynδxn

δ2σrw
δy2n

]

We start computations from four different starting points a0: { δab
2
, 0}, {0, δab

2
}, {− δab

2
, 0}

and {0,− δab
2
}. At the end, if the computations converge to different points we choose

the one for which 4.29 is minimal as the solution.
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Applying numerics for expansion is computationally inefficient as finding a global

optimal position requires O(n) computations at each iteration. However it might be

useful for the initial expansions with respect to the points in the neighborhood. To test

for that we compare numerics to the methods of random pair and average coordinates.

As shown in Figure 4.19 applying numerics helps to find more optimal local positions,

however this does not guarantee better overall stress as in many cases the suboptimal

local placements that we get using other two approaches resulted in better global stress

values.

4.6.2 Alternative initial expansion strategies

One should also consider that unless d = 2 the coordinates that we get depend on the

choice of p1 and p2. To check whether it would be better to consider all pairs of p1

and p2 from the neighborhood of c we ran a simulation. We generated a random set

of approximately 3000 points in a 100-dimensional space and ran our algorithm. In

each expansion step, we tried both strategies as well as the numerical optimization and

evaluated global and local stress values for the expanded points a and b. Local stress

was estimated by considering points in the neighborhood of c, whereas global stress

was computed by taking all points into account. Results of the simulation are shown in

the graphs in Figure 4.19. Stress values do not favor any of the two strategies as ratios

between stress for taking the average over all pairs and selecting a random pair are

concentrated around 1. We persisted to expand points with respect to a set of random

points as this approach is computationally faster.

4.6.3 Embeddings in higher dimensions

Algorithm for computing embeddings in the plane can be easily extended to more than

two dimensions. Let q be the dimensionality of the embedding. The agglomeration

procedure would not need to change as update formulas for two dimensions fit higher

dimensions just as well. The initial embedding could be performed with, for example

classical scaling onto the q dimensions, followed by the expansion in the q-dimensional

space. Formulas for the initial expansion can be easily extended to higher dimensions

by simply taking q points each time and finding initial embeddings with respect to

them. Refinement, just like agglomeration, would not need any modifications.
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Figure 4.19: Comparison of the three initial expansion strategies

(random pair, average of all pair, numeric with respect to all pairs):

(a) with respect to all pairs of points in the neighborhood, and (b) one

random pair from the neighborhood. At each iteration all approaches

were tested and the resulting stress values compared. Graphs show

distribution of ratios of the stress values that we get with different

approaches at each iteration. Only stress scores of the expanded points

are considered. Simulation was run on a random data set of 3000

objects in a 100-dimensional space. Global stress evaluates the overall

placement of the expanded points whereas local stress shows how well

they fit in the neighborhood. Ratios lower than one indicate that the

first approach produce lower stress whereas higher than one indicate

better performance of the second approach in each of the comparisons.
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Chapter 5

Applications

In this chapter we demonstrate how planar split networks and multidimensional scaling

plots can be used to visualize and analyze data. We do this with four data sets

that highlight different benefits of the planar split networks and MDS plots versus

trees and outer-labeled networks. The first example that we use consists of whole

genome HIV sequences and illustrates a good application of planar split networks

for the study of recombination. Next, we consider a data set that contains ancestral

sequences of certain fluorescent proteins as well as sequences from currently living

organisms. The third example, a collection of mitochondrial sequences from gall wasps,

illustrates FlatNJ’s applicability for biogeographical studies. Finally, we construct a

data set from coordinates of some of the European capitals and show how different

methods behave with data that is almost completely planar in nature. For all these data

sets we compare FlatNJ networks to Neighbor-Joining trees, Neighbor-Net networks

and multidimensional scaling plots. We build our discussion on the results published

in (Balvočiūtė et al., 2014) and complement it with some observations concerning

multidimensional scaling.

All trees and outer-planar networks were computed with Neighbor-Joining and

Neighbor-Net algorithms respectively as implemented in the program SplitsTree version

4.13.1 (Huson and Bryant, 2006). Neighbor-Net and FlatNJ networks were filtered as

described in Section 3.4.6 with threshold 0.15. Multidimensional scaling plots were

computed with the algorithm presented in the previous chapter with additional iterations

of greedy refinement. All networks (including trees) and MSD plots were evaluated by

estimating the Stress-1 σ1 (Formula 4.27).
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5.1 A circulating recombinant form of HIV

The first example involves the study of recombination in viruses, for which split networks

have been commonly used. In this example, we applied FlatNJ to analyze the circulating

recombinant form CRF49 of HIV reported in de Silva et al. (2010).

We aligned the three whole genome sequences representing CRF49 (accession

numbers HQ385477, HQ385478 and HQ385479) published in de Silva et al. (2010)

together with reference sequences for the collection

Sub = {A,B,C,D, F,G,H, J,K}

of known subtypes of HIV (see supplementary material for details). We used the

reference alignment (version 2010) from the HIV databases at the Los Alamos National

Laboratory (www.hiv.lanl.gov) to get the representative sequences of known subtypes.

A multiple sequence alignment of all sequences was generated with mafft (Katoh et al.,

2002), v6.864b, maxiterate – 1000, localpair. The alignment was edited with GBlocks

(Castresana, 2000), v.0.91b, minimum length of a block – 2, allowed gap positions –

half.

In Figure 5.1 we present the networks produced by FlatNJ and Neighbor-Net,

Neighbor-Joining and a MDS plot for this data set.

It was found in de Silva et al. (2010) that CRF49 is composed of the known subtypes:

• J (48%),

• A (23% of total sequence length),

• C (18%),

• K (5%) and,

• unknown (6%).

This composition is reflected by the fact that both the Neighbor-Net and FlatNJ networks

contain the splits SJ = {CRF49 , J}|Sub−{J} and SC = {CRF49 , C}|Sub−{C}. The

Neighbor-Joining tree only contains the split SJ . Moreover, the weight assigned to

these splits in both networks is quite similar to the relative contribution of subtypes J

and C to CRF49.

Note that the FlatNJ network also contains the split SA,G = {CRF49 , A,G}|Sub−
{A,G}, which indicates that subtypes A and/or G could have contributed to CRF49.

According to de Silva et al. (2010), subtype A contributed to CRF49, but this cannot

be easily deduced from the NeighborNet network. In fact, it is impossible to display the

three splits SJ , SC and SA,G together in any outer-labeled split network. Hence, the

FlatNJ network provides a more complete visualization of the composition of CRF49

inferred in de Silva et al. (2010).

In the multidimensional scaling plot all of the contributing subtypes are placed closer

to CRF49 than any other subtype. However, note a somewhat concentric placement

www.hiv.lanl.gov
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Figure 5.1: Split networks and a multidimensional scaling plot for the

HIV data set.
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of the subtypes in the plot that is typical for the very high-dimensional data. Indeed,

as we took whole genome sequences, the alignment is approximately 8,450 bases long.

All pairwise distances for this data set are shown in Table A.3 in Appendix A.3. Most

of the distances between different subtypes are between 0.13 and 0.15; this lack of

variation is quite typical for high dimensional data. Pairwise distances within subtypes

are smaller and mostly vary between 0.06 and 0.08, thus sequences that belong to the

same subtype cluster together in the MDS plot.

Significantly lower Stress-1 values for the networks than for the MDS plot suggest

that networks may suit this high dimensional data better than two-dimensional plots.

5.2 Ancestral forms of fluorescent proteins

We now consider a data set presented in Ugalde et al. (2004) to investigate the evolution

of fluorescent proteins in corals. This data set consists of previously published proteins

and reconstructed ancestral sequences presented in Ugalde et al. (2004).

Here we focus on those groups of proteins for which an ancestral sequence was

presented in Ugalde et al. (2004): Red = {Kaede,mc1,R1 2}, pre-Red = {G1 2}∪Red,

Red/Green = {R2,mc2,mc3,mc4}∪pre-Red and ALL = {G5 2,mc5}∪Red/Green. The

sequences included in this data set are listed in Table A.1 (Appendix A.1). A mul-

tiple sequence alignment of all sequences was generated with mafft (Katoh et al.,

2002), v6.864b, maxiterate – 1000, localpair. The alignment was edited with GBlocks

(Castresana, 2000), v.0.91b, minimum length of a block – 2, allowed gap positions –

none.

Networks and a MDS plot are depicted in Figure 5.2. We use the same labels as in

Ugalde et al. (2004); names of the groups above are used to indicate the corresponding

ancestral sequences.

Both Neighbor-Net and FlatNJ networks group sequences emitting the same color

(red, green or cyan) together. However, the networks also contain many pairs of

incompatible splits suggesting a complex, non-treelike evolution of fluorescent proteins

in corals. This is in agreement with the findings in Kelmanson and Matz (2003),

suggesting that intra-locus recombination could be one of the mechanisms that produced

the sequence diversity we see today. This data set illustrates that it could be useful to

allow internal labels when ancestral sequences are present. Indeed, in contrast to the

Neighbor-Net, FlatNJ places all four ancestral sequences inside the network. Moreover,

their placement relative to one another also better reflects the groups of proteins given

above.
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Figure 5.2: Split networks and a multidimensional scaling plot for the

fluorescent protein data set.
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Figure 5.3: A map with the sampling locations of the sequences in

the gall wasp data set. The accession numbers corresponding to the

labels used in the map and the networks can be found in Table A.2.

A good fit for the MDS plot agrees with the suggested non-tree like evolution. Note

that we can use MDS plot to generate a flat split system by adding pseudolines to it.

The most straightforward way to do it would be to cut the plane with straight lines

separating points in the plot. The fact that FlatNJ network has relatively high stress

could mean that neighborliness condition might be too strong for this data set. The

affine split network generated by cutting MDS plot with straight lines, on the other

hand, does not have to be neighborly.

5.3 Biogeography of gall wasps

In our next example we consider a data set of 80 mitochondrial DNA sequences sampled

from individuals of the species A. kollari (oak gall wasp) for which geographic coordinates

for the sampling locations corresponding to each sequence are known (see Figure 5.3).

This data set was also used in Spillner et al. (2012) to illustrate how, in a somewhat

ad-hoc fashion, flat split systems can also be generated using multidimensional scaling

as implemented in R (Spillner et al., 2012).

Accession numbers for the sequences included in the data set are listed in Ap-

pendix A.2 (Table A.2) along with the country in which the sequence was sampled.

The sequences all have the same length and the alignment contains no gaps.
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A. kollari is native to regions at the latitude of the Mediterranean from Portugal

to Iran. In Stone et al. (2001, 2007) a study of the colonization of Northern Europe,

in particular the British Isles, by this species is presented concluding that the data

suggests that a large number of individuals of A. kollari that came originally from the

Eastern Mediterranean were introduced to Britain by human trade. One step taken to

reach this conclusion was the generation of a NeighborNet network for the sequences,

which suggested that a tree-based analysis was not sufficient to fully assess the data. A

Neighbor-Joining tree shown in Figure 5.5 has a significantly higher Stress-1 value than

networks in Figure 5.4 or MDS plot.

The network estimated with FlatNJ is quite similar to the network produced

by Neighbor-Net, with 45% of the total weight of all splits in the FlatNJ network

corresponding to splits that are also represented in the Neighbor-Net. This is somewhat

reassuring as we feel that it is desirable for FlatNJ not to behave too differently from

the well-established Neighbor-Net method, at least for the data that is planar in nature.

The multidimensional scaling plot for this data set has even better stress value. This

once again confirms that for data that is somewhat planar in nature; two-dimensional

embeddings may be more accurate than networks.

We next explored a way to visualize the relationship between the geographic and

genetic data using split networks. More specifically, we generated the flat split system

Σgeo from Euclidean distances between the sampling locations and, to investigate which

of the splits in Σgeo are supported by the genetic distances, we reassigned weights to the

splits in Σgeo by minimizing the objective function (3.4) for the 4-split weights obtained

from the sequence alignment. The split network representing the resulting weighted

flat split system is depicted in Figure 5.6. The network displays a clear-cut geographic

structure, although it is quite different from the FlatNJ network in Figure 5.4. Even so,

the split highlighted in bold is present (up to sequence 80) in both networks, which

might represent a signal for a geographical divide between the sequences from Iberia

and South-Western France and the other sequences. Note that such a major divide has

also been observed for other species from the genus Andricus (Stone et al., 2007).
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FlatNJ (σ1 = 0.174)

Neighbor-Net (σ1 = 0.231)

Figure 5.4: Split networks produced by Neighbor-Net and FlatNJ

from the sequence alignment for the gall wasp data set. The coloring

scheme is the same as in Figure 5.3.
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Figure 5.5: A Neighbor-Joining tree and a multidimensional scaling

plot for the gall wasp data set from sequence data.
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Figure 5.6: Split network produced by FlatNJ for the gall wasp data

set from geographic coordinates with split weights computed using

the 4-splits generated from the sequence alignment as described in

the text. The split highlighted in bold separates the sequences from

Iberia and Southern France from the other sequences. The coloring

scheme is the same as in Figure 5.3.
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5.4 European capitals data set

In our last example we look at data that is almost completely Euclidean. To demonstrate

FlatNJ’s potential in revealing spatial information, we applied FlatNJ to the system

of 4-splits generated from geographic coordinates of some of the European capitals as

explained in Section 3.2.1.

The resulting network together with a Neighbor-Net network, both of which have

been manually adjusted for layout purposes, are depicted in Figure 5.7. The FlatNJ

network has captured much of the spatial distribution of the capitals and as expected

placed some of them in the inside of the network. Neighbor-Net also does quite well

at capturing the relative positions of the capitals with some distortion in the part of

the network that represents Eastern Europe what is due to the outer-planar nature of

the Neighbor-Net networks. This might also explain why the network produced with

FlatNJ appear more “boxy” than that computed with Neighbor-Net, FlatNJ is using

more splits to avoid distorting geography, but at the price of having to introduce more

incompatibility.

Recall from Section 3.2.1 that FlatNJ uses Euclidean norm to estimate distances.

For consistency, we compute input distances for MDS as Euclidean norms, thus ignoring

the curvature of the globe. Hence we get that multidimensional scaling for European

capitals dataset behaves exactly as expected and generates a plot with Stress-1 equal to

zero, see Figure 5.9.) Neighbor-Joining estimated a tree with very high Stress-1 value

σ1 = 0.397 (see Figure 5.8), proving its unsuitability for the planar data.

5.5 Discussion

In the analysis of recombination the added value of having labels inside the network

is mainly the flexibility gained by representing collections of splits that cannot be

displayed with outer-labeled networks. We also saw that ancestral sequences can be

naturally placed by FlatNJ in the interior of the network, which not only helps avoid

unnecessary distortion in the representation, but might potentially help to identify

candidate ancestral sequences in situations where these are not known. In the third data

set geographic considerations were of interest and we demonstrated that FlatNJ could

also be useful for analyzing and visualizing such data. The final example illustrates

FlatNJ’s suitability for the data that is planar. However, one should be careful when

applying any of the methods discussed and ideally try at least a few of them to find the

best fit.

Even though we have found that FlatNJ is able to visualize more information than

Neighbor-Net this can come at a price: To avoid distortion FlatNJ sometimes uses
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FlatNJ (σ1 = 0.191)

Neighbor-Net (σ1 = 0.231)

Figure 5.7: FlatNJ and Neighbor-Net networks of the European capi-

tals.
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more pairs of incompatible splits to represent the data than NeighborNet (see, e.g.,

the networks N5 and N8 in Figure 3.1). Moreover, we have found that producing a

suitable layout of the labels of interior vertices can be quite challenging, especially

for data where large groups of taxa label the inside of the network as in Figure 5.4.

Developing alternative ways to draw the network that address this would be desirable.

More generally, although having a planar network can be useful for interpreting data, as

noted in Huson and Bryant (2006), some data sets are intrinsically better represented

by high-dimensional, non-planar networks such as the ones that can be generated using

split decomposition. It is therefore still an interesting challenge to develop methods to

help effectively construct and visualize such networks.
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Appendix A

Data sets

A.1 Fluorescent protein data set

Id Accession Color Organism Source

number

mc1 AY181552 red Montastraea cavernosa Kelmanson and Matz (2003)

mc2 AY181553 green Montastraea cavernosa Kelmanson and Matz (2003)

mc3 AY181554 green Montastraea cavernosa Kelmanson and Matz (2003)

mc4 AY181555 green Montastraea cavernosa Kelmanson and Matz (2003)

mc5 AY181556 cyan Montastraea cavernosa Kelmanson and Matz (2003)

G1 2 AY182020 green synthetic Kelmanson and Matz (2003)

G5 2 AY182023 cyan synthetic Kelmanson and Matz (2003)

R1 2 AY182013 red synthetic Kelmanson and Matz (2003)

R2 AY182014 green synthetic Kelmanson and Matz (2003)

Kaede AB085641 red Trachyphyllia geoffroyi Ando et al. (2002)

ALL AY648253 — synthetic Ugalde et al. (2004)

Red/Green AY648241 — synthetic Ugalde et al. (2004)

pre-Red AY648264 — synthetic Ugalde et al. (2004)

Red AY648275 — synthetic Ugalde et al. (2004)

Table A.1: Sequences identifiers, accession numbers and additional

information for the amino acid sequences in the fluorescent protein

data set.
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A.2 Gall wasp data set

Id Accession

number

Country Id Accession

number

Country Id Accession

number

Country

(1) AF242739 Hungary (28) EF031373 France (55) EF031411 Hungary

(2) AF242740 Hungary (29) EF031374 France (56) EF031412 Italy

(3) AF242741 Italy (30) EF031375 Spain (57) EF031414 Netherlands

(4) AF242742 Spain (31) EF031376 France (58) EF031416 Netherlands

(5) AF242743 Spain (32) EF031378 Spain (59) EF031418 Hungary

(6) AF242744 Turkey (33) EF031379 Portugal (60) EF031419 France

(7) AF242746 Hungary (34) EF031380 Spain (61) EF031420 France

(8) AF242747 France (35) EF031381 France (62) EF031421 France

(9) AF242749 France (36) EF031385 Spain (63) EF031422 Hungary

(10) AF242752 France (37) EF031386 Spain (64) EF031423 Hungary

(11) AF242753 Italy (38) EF031387 Spain (65) EF031424 Hungary

(12) AF242754 Italy (39) EF031388 France (66) EF031431 UK

(13) AF242757 France (40) EF031390 Spain (67) EF031432 UK

(14) AF242758 France (41) EF031391 Spain (68) EF031433 Ireland

(15) AF242759 France (42) EF031392 France (69) EF031434 Ireland

(16) AF242761 France (43) EF031393 Italy (70) EF031435 Ireland

(17) AF242764 France (44) EF031394 Germany (71) EF031438 France

(18) AF242765 Spain (45) EF031397 Turkey (72) EF031439 UK

(19) AF242766 Spain (46) EF031398 Italy (73) EF031440 UK

(20) EF031335 France (47) EF031399 Netherlands (74) EF031442 UK

(21) EF031337 France (48) EF031400 Netherlands (75) EF031443 UK

(22) EF031338 France (49) EF031401 Germany (76) EF031444 UK

(23) EF031339 France (50) EF031402 France (77) EF031445 UK

(24) EF031350 France (51) EF031403 France (78) EF031446 UK

(25) EF031351 France (52) EF031404 France (79) EF031447 UK

(26) EF031352 France (53) EF031406 France (80) EF031437 Hungary

(27) EF031353 France (54) EF031408 Hungary

Table A.2: Sequence identifiers with corresponding accession numbers

and countries of origin for the gall wasp data set. UK stands for

United Kingdom.

A.3 HIV pairwise dissimilarity data
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A
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B

B

Table A.3: Pairwise dissimilarities between sequences in the HIV data set. Cells are colored by the

dissimilarity measures, the redder the cell, the more similar are the corresponding sequences.





Appendix B

Neighbor finding on a real line

It is easy to see that for any three points p1, p2, p3 on ` such that x1 ≤ x2 ≤ x3 the

following holds:

d12 + d23 = d13 (B.1)

Here dij = |xj − xi| is a distance between two points i and j.

From equation B.1 we derive our first condition that could be used for the identifi-

cation of neighbors: ∑
i∈P\{p′,p′′}

(|δip′ − δip′′ | − δp′p′′)2 = 0 (B.2)

If any of the points in P \ {p′, p′′} lay in between p′ and p′′ then equation B.2 is not

satisfied. However, if proximities come from data that has dimension dh higher than

one, then eq. B.2 would not hold either. Therefore instead of looking for a pair of

objects that satisfy B.2, we look for a pair for which this sum is minimal:∑
i∈P\{p′,p′′}

(|δip′ − δip′′ | − δp′p′′)2 → min . (C1)

Another, much simpler criterion comes from the same definition 4.4.1. It picks as

neighbors two objects p′ and p′′ with the lowest pairwise proximity:

δp′p′′ → min . (C2)

As the order in which we agglomerate has an effect on the ordering that we get

on expansion, we decide to add one more criterion which has better defined order of

agglomeration. Let point i be the point that has smallest average proximity to all other

points, then we take i and its nearest neighbor as a pair of neighbors:

δij → min : δik → min
1

n

n∑
j

(C3)
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Figure B.1: Error bars for all four neighbor selection criteria discussed

in the text.

Complexity of the C3 is the same as C2 as it takes O(n2) computations to identify the

first neighbor and then O(n) to find its nearest neighbor.

All three criteria are effective as they identify true neighbors when applied to the one

dimensional data. However, their computational complexities are far from ideal. In case

of the criterion C1 computing score for each pair requires O(n) operations. Multiplying

it by the number of pairs which is quadratic and the linear time of iterations we find

that overall complexity is O(n4). Second criterion is somewhat lighter as it takes only

one operation to compute score for each pair. Consequently overall complexity for the

criterion C2 is O(n3). It is still too large for large datasets. Therefore we add one more

criteria which is a generalization of C2. We say that two objects p′ and p′′ are neighbors

if they are each others reciprocal nearest neighbors:

NN(p′) = p′′ and

NN(p′′) = p′ (C4)

Graph in Figure B.1 shows error bars that we get when using each of the criteria

C1, C2, C3 and C4 for different dimensions. The resulting stress values do not differ

among criteria much, therefore we choose to use the one with lowest computational

complexity, that is C4.
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