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Preface

The common denominator of this thesis is, loosely speaking, the treatment of signals towards a
compact and meaningful representation, in particular taking advantage of mathematical tools of
discrete nature; the concrete meaning that these terms take varies across the two parts of the
thesis, and is properly defined therein. The exposition of each part is self-contained and with no
cross-reference; extensive review of the literature is offered for each topic separately.

Common keywords of the two parts are probably: subsampling, partitions, partial orders, graphs
(including trees), wavelets.

The two parts are presented in chronological order. Differences in style of exposition reflect the
different stage of development of the two projects (by the delivery of this thesis) as well as the
different common practices of each subject matter.

Despite the common ground, the mathematical flavour of the two parts is very different. The
drift from one subject to the other, even though seemingly radical, was not the result of a plan,
but happened gradually and organically. Subsampling of point-clouds is the main subject of the
first project. On the one hand, constructing a graph from a point-cloud is the first step of several
algorithms reviewed at the time of the first project. This triggered an interest for Graph Signal
Processing. On the other hand, while considering several subsampling strategies to compare
with, the attention fell onto Determinantal Point Processes. The study of the latter resulted in a
growing interest towards an algebraic foundation of the theory of Graph Signal Processing, that
led to the use of Matroid Theory. The complexity of subject outgrew the expectations, pushing
out of reach some of the former targets. In particular Probability Theory disappeared from the
scope of the second project while Combinatorics was taking over.

The first part is much closer to a direct application, while the second is probably more theoretically
ambitious.
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CHAPTER 1

Multi-Scale Vector Quantization with Reconstruction Trees

1. Problem Statement

The setting at hand is of interest from various points of view. For this reason we would like to
provide the reader with a sketch of the mathematical problem itself, before contextualizing it
with motivations, background and connections with related lines of research.

A random vector X is given, taking values in a bounded region X ⊂ RD, and distributed according
to a probability measure ρ, so that supp(ρ) ⊆ X . We consider n identical and independent copies
of X, denoted by X1, . . . , Xn. A sample x1, . . . , xn drawn from the above random variables will
be called dataset, possibly arranged as empirical measure ρ̂ =

∑n
i=1 δxi . The dataset is meant to

be the only input, while ρ remains unknown.

The aim is determining a set of N ≤ n vectors in X , that will be called centroids, c1, . . . , cN ,
together with a function P sending each point of X to a centroid. To this end, each centroid ci is
associated with a subset Ii ⊆ X , called cell. These cells are such that Λ = {I1, . . . , IN} defines a
partition of X ; namely

⋃
I∈Λ I ⊇ X and I ∩ J = ∅ whenever I 6= J . Then, the map PΛ : X → X

is defined by

PΛ(x) =
N∑
j=1

cj1Ij (x), (1)

for x ∈ X ; therefore sending each point of Ij to cj . With slight abuse of notation we call PΛ a
nonlinear projection.

The following functional will be called error, or distortion, induced by PΛ:

E [PΛ] = E[‖X − PΛ(X)‖2] =

∫
X
dρ(x) ‖x− PΛ(x)‖2 , (2)

where ‖·‖ is the Euclidean norm in RD. We aim at providing a computationally cheap way to

determine a projection P̂Λ depending only on the data x1, . . . , xn, in such a way that it has low
expected distortion.

Besides computational convenience, the choice of N (hence the design of Λ) is desired to be
flexible. This in turn is related with the idea of a coarse-to-fine representation of the dataset.
Let’s introduce a scale parameter η ∈ R+, used to gauge the complexity of the partition Λ. A
coarse-to-fine family of partitions Λη is such that:

η1 > η2 > . . . (3)

Λη1 ⊇ Λη2 ⊇ . . . (4)

Nη1 ≤ Nη2 ≤ . . . (5)

5



6 1. MULTI-SCALE VECTOR QUANTIZATION WITH RECONSTRUCTION TREES

where the notation Λη1 ⊇ Λη2 means that for all I ∈ Λη2 there exists J ∈ Λη2 such that I ⊆ J ,
that is, Λη2 is a refinement of Λη1 . In other words, each cell of Λη1 gets split in a number of cells
in Λη2 (or remains unchanged).

The operative definition of Λη (depending on the data x1, . . . , xn) is deferred to later sections, but,
regardless it, E [PΛη ] would in general decrease together with η. Our main contribution consists
in an estimate of the form:

E [PΛη ] ≤ ε(n, η) (6)

under suitable assumptions, therefore providing statistical guaranties on the accuracy of using
PΛ(x) as an approximation of x.
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2. Background

Dealing with large high-dimensional data-sets is a hallmark of modern signal processing and ma-
chine learning. In this context, finding parsimonious representation from unlabelled data is often
key to both reliable estimation and efficient computations, and more generally for exploratory
data analysis.

Indeed the problem of dealing with large high-dimensional data is twofold. On the one hand
complex algorithms simply cannot run in real time on such large datasets. On the other hand,
besides the practical inconvenience, the analysis may qualitatively benefit from some sort of
compressive preprocessing, or, as it shall be referred to, a parsimonious representation. This idea
is based on the assumption that the relevant information carried by the data is less voluminous
than what size and dimensionality may suggest. A parsimonious representation is supposed to
highlight relevant information and put aside redundancies. Indeed here comes into play the other
key concept motivating our work, that is the multi-scale approach to data representation: even
if there is no redundancy, the information can still be filtered according to some measure of
relevance, in order to be processed accordingly, rather than in an unstructured batch.

2.1. Dimensionality and Representation.

Even being distinct features, size and dimensionality of a dataset are in fact related once a certain
task to be carried out is fixed, as effective dimensionality affects the minimum size necessary to
perform that task.

The term Course of dimensionality was coined first by R.E. Bellman in the late 1950s to describe
the typical difficulties occurring whenever low dimensional intuition is naively carried over high-
dimensional problems [8, 31, 52].

Referring to the problem sketched through the previous section, the term dimesionality here
broadly refers to various definitions of dimension that one might associate to the support S =
supp(ρ) ⊂ X of the probability measure of the data ρ. Most definitions are metric in nature, and
deal with the idea of covering or packing the support with open metric balls (D-dimensional in
our context). We briefly review the definitions of Minkowski-Bouligand dimension and Hausdorff;
even if they are not used explicitly in our results, they do provide useful insights about our main
assumptions. The Minkowski-Bouligand dimension [37] is based on relating the radius r of the
balls with the number of balls needed to build a cover. Let Nr(S) denote the least number of
r-balls necessary to open-cover S; the Minkowski-Bouligand dimension of S reduces to:

dimB(S) = lim
r→0

log(Nr(S))

log(1/r)
(7)

which clearly reduces to d if S is a d-dimensional manifold embedded in X , so that Nr(S) is
roughly proportional to r−d for r small compared to the size of S. From this definition stems
the intuition behind dimensionality reduction. Suppose we want to quantize X through a finite
number of centroids, such that every point of X is less than r distant from the closest centroid.
This requires O(r−D) centroids, which can be overwhelming for real world values of D. Though
our actual aim is not to quantise X but S, whose dimensionality might be significantly lower.

Quantizing through a cover of equal radius balls, as mentioned above, is not necessarily a good
idea, in that the ρ-measure of such balls can significantly vary along S. Of course the ρ-measure
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of a ball is related to the number of data points that are likely to fall inside that ball, hence,
roughly speaking, to the importance of the corresponding centroid.

A Vector Quantization procedure is defined by a set of code vectors and an associated partition
of the data space [41]. The idea is that compression can be achieved replacing all points in a
given cell of a partition by the corresponding code vector. As a matter of fact, Secion 1 describes
a vector quantization setting. A variety of different strategies have been proposed, aiming at a
quantization that is even in some sense, to meet the necessities of the application at hand, either
deterministically or stochastically. Some of these will be presented in detail in this thesis, more
precisely assuming the error measure of Equation (2) to be convenient.

We review an example that considers a slightly different error measures, but is useful since its
optimal solutions are relatively well understood, at least in an asymptotic sense. In this case we
talk about Optimal Quantization; there are no data involved, partition and centroids are built
on ρ to meet the actual minimum of the corresponding objective function. As a result, the only
considered partitions are Voronoi-Dirichlet tilings, as optimal quantizers always correspond to
such partitions. Indeed, from Equation (2):

E(PΛ) =

N∑
j=1

∫
Ij

‖x− cj‖2dρ(x) ≥
N∑
j=1

∫
Ij

min
l
‖x− cl‖2dρ(x) = E[min

l
‖x− cl‖2], (8)

and, by defining Vl = {x ∈ X |l = argminj ‖x− cj‖}, Λ∗ = {Vl}l:

E(PΛ∗) = E[min
l
‖x− cl‖2]. (9)

On the other hand, at fixed partition Λ∗ = {Vl}l, a minimization with respect to the choice of
the centroids factorizes into independent problems, one for each cell:

argmin{cI∈I}I∈Λ∗
E(PΛ∗) =

{
argmincI E[‖x− cl‖2]

}
I∈Λ∗

,

so that, for an optimal quantization, the centroids are always given by the means:

cI = ρ(I)−1

∫
I
xdρ(x).

Example 2.1.1 ([47]). Let’s restrict to the special case of a probability measure ρ that is sup-
ported on a compact Riemannian d-submanifoldM⊂ X and admits a density p :M→ R+. The
following distortion functional is considered:

Eα(PSN ) := E[‖dM(x, PSN (x))‖α] (10)

with α > 0 and dM(, ) is the Riemannian metric, which is in general larger than the euclidean
metric, to an extent that depends on the local curvature. Because [47] is concerned with the
asymptotic behaviour of an optimum quantization, they only consider projections PSN associated
with Voronoi-Dirichlet tilings generated by discrete subsets SN ⊂M,#SN = N , that is:

PSN (x) = argminy∈SN dM(x, y).

In this context, for N →∞, [47] provides an asymptotic characterization of the optimum quan-
tization, together with asymptotics for the corresponding distortion. For clarity we use the
notation ρa(A) :=

∫
A p(x)adωM(x) where dωM(x) is the Riemannian volume measure. Let S∗N

be an optimal quantization, that is, attaining the minimal possible distortion. It can be shown
that:

lim
N→∞

Eα(PS∗N )N−
α
d = C(α, d)

(
ρ

d
α+d (M)

)α+d
d (11)
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C(α, d) depends only on α and d. Furthermore S∗N is asymptotically even with respect to ρ
d

α+d

in the following sense:

lim
N→∞

#(K ∩ S∗N )

N
=

ρ
d

α+d (K)

ρ
d

α+d (M)
(12)

for any measurable1 K ⊆M. Roughly speaking, an optimum quantization S∗N tends to divide X
in cells that have equal mass according to an adjusted measure ρ

d
α+d .

We will obtain, later in this thesis, results related with (11) from the last example, but in a
non-asymptotic framework, that is for finite N , and with a partition that has a constructive
definition.

Based upon the insight of this last example, we may step forward from the metric definition of
effective dimension in (7), to a measure-based framework.

To this end, let us introduce the Hausdorff dimension. We use a slightly non-standard definition
that better suits the context of this section. Equivalence to the usual definition2 is discussed in
[37, page 36]:

Bαδ (S) = inf

{∑
i

rαi | {B(xi, ri)}i is a cover of S, ri < δ ∀ i
}
, Bα(S) = lim

α→0
Bαδ (S). (13)

It can be easily shown that Bα(S) is non-increasing with respect to α, and is always constantly
+∞ or 0, except for one value of α in which the discontinuity occurs. This value corresponds to
the so called Hausdorff dimension:

dimH(S) = sup{α | Bα = +∞} = inf{α | Bα = 0}.

If S is a d-dimensional manifold dimH(S) = d; moreover, we introduced this as a measure-based
definition because it can be shown that, for d = dimH(S), Bd(S) behaves like a measure3. The
Hausdorff dimension in fact offers a framework to deal with other measures, in which context a
fundamental result is the Mass Distribution Principle; the following is an adaptation from [37,
Propositions 4.2,4.9]:

Proposition 2.1.2. Let X be a bounded and measurable domain in RD. Let ρ be a probability
measure on X and let S ⊆ X be a Borel subset. Suppose that for some d > 0 there are 0 <
c1, c2 <∞ and ε > 0 such that, ∀x ∈ S, r ∈ (0, ε]:

c1 ≤
ρ(B(x, r))

rd
≤ c2 (14)

where B(x, r) is a ball of centrum x and radius r. Then:

ρ(S)

c2
≤ Bd(S) ≤ 2d

c1
,

and therefore:

d = dimH(S) ≤ dimB(S).

1with ρ(∂K) = 0 and compact closure.
2as in [37, page 27]
3it is indeed proportional to the d-volume measure in the manifold case.
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We may ask wether it is really necessary to check the condition (14) on all the open balls of
any possible radius and center. Similar situations often occurs in Measure Theory, where large,
uncountable families of subsets may sometimes be reduced to countable subfamilies for some
specific purpose.

Two facts are clear:

• since the measure is monotone by inclusion, we can restrict to a discrete sequence of
radiuses r0 > r1 > · · · ∈ (0, R) that accumulates on 0;
• it’s not necessary to take all possible centers, as long as, for each point x ∈ X , we have

a sequence of nested balls B(x1, r1) ⊃ B(x2, r2) ⊃ · · · 3 x one for each radius of the
sequence.

Notice that, in this way, for each value of r we will have a r-cover of X . As we will see in later
sections, these structured families of subsets are tightly related to the so called dyadic cubes, and
their generalizations, and will be pivotal tools to our main result.

The concept of effective dimensionality is crucial to our analysis, and the assumptions of our
main result are tightly related with the Condition (14), with some differences due to the fact that
we will be dealing with families of subsets that are not balls nor cubes. These families, called
Partition Trees, will be introduced in the next chapter. Since we will need Condition (14) to hold
true for our main result, it would be useful to derive it from a definition of effective dimension,
that is, the opposite implication with respect to Proposition 2.1.2; unfortunately this implication
is more delicate, and in fact unavailable at this level of generality. A partial answer is provided
by the so called Frostman’s Lemma [37]. We will derive a result in this vein, more specific to our
approach, in the case in which the support S is a manifold. Condition (14) is in fact equivalent
to the so called Ahlfors regularity [46], see Section 5.2.

2.2. Learning the Identity.

Throughout the last subsection we dealt with the problem of quantizing a probability measure ρ,
temporarily ignoring the fact that in practice, as anticipated in Section 1, ρ is out of reach and
we only have access to a finite sample.

Based of Section 1, since PΛ is a function, one could be tempted to interpret our problem as
inference of a function from a sample, as in Supervised Learning. Indeed Supervised Learning is
concerned with the problem of inferring a functional relationship f : X → Y from a dataset of
input-output pairs, and based upon minimization of a suitable error measure, such as the least
squares loss; see for example [49]. The setting classically consists of a probability measure ρZ
on a product space Z = X × Y, with both X ,Y subsets of finite dimensional Hilbert spaces. A
dataset (x,y) = {(x1, y1), . . . , (xn, yn)} of n independent random observations is given, assumed
to be identically distributed according to ρZ . It is usually assumed that X is bounded and∫
‖y‖2dρ(x, y) < +∞. The marginal probability measure ρX on X is defined by ρX (S) :=

ρ(S × Y). Therefore dρ(x, y) = dρ(y|x)dρX (x), with ρ(y|x) the conditional probability measure
on Y with respect to x.

The goal is estimating the regression function fρ(x) defined as the conditional expectation of the
random variable y at x:

fρ(x) := E(y|x) =

∫
Y
ydρ(y|x).
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The risk functional:

EZ(f) :=

∫
Z
|y − f(x)|2dρ,

is defined for f ∈ L2(X , ρX). This functional has fρ as minimizer, since:

EZ(f) = EZ(fρ) + ‖f − fρ‖2L2(X ,ρX). (15)

Analogies between the setting of Section 1 and the one of Equation (15) are not strict, as in
the first case there’s just one X space; however, it is in order to notice that the least squares
distortion in Equation (2) is such that the identity function I : X → X , x 7→ x gives clearly zero
distortion. This suggests that we are in a peculiar supervised learning scenario in which we know
the target function in advance.

Based upon this insight, we can define from (15) another risk functional:

EX (f) := ‖f − fρ‖2L2(X ,ρX) = EZ(f)− EZ(fρ)

which is still minimized by fρ, but doesn’t explicitly mention the space Y.

Hence our objective is still to find an estimator f̂ for fρ based on the data {x1, . . . , xn} such that

the quantity EX (f̂ ) is small with high probability. Because a solution is known, the problem
might seem trivial, but in fact its formulation is not complete yet.

Indeed, as in Supervised Learning, we need to sets a suitable hypothesis space H, in such a way

that the solution f̂ ∈ H whilst having low expected risk, also exhibits properties that make it
convenient in practice in some sense. Since fρ is known it is not informative, and as a result it is
natural to choose H such that fρ 6∈ H; therefore the risk functional cannot vanish on H and its
analysis is non trivial.

We already outlined in Section 1 what kind of hypothesis space we are looking for. Indeed the PΛ

functions are piece-wise constant on certain partitions Λ with a limited number of cells/centroids.
This choice is convenient as it provides useful information about the dataset as a whole, in a
parsimonious way. Given a partition of Λ = {Ij}j=1,...,N , the space:

HΛ = {f : X → X | f(x) =

N∑
j=1

cj1Ij (x), cj ∈ RD ∀j}

is a vectorial space of dimension ND, even though, to any practical use, only the functions
satisfying cj ∈ Ij ,∀j are meaningful. Furthermore the partition will not be fixed, so we deal with
a function space H that is not a vector space, but rather a union of patches, each of which is a
subset of a vector space corresponding to an admissible partition Λ. Admissible partitions will
have constraints, whose operative definition is provided in later sections.

There is a huge literature about parsimonious representation of functions through multi-resolution
analysis and related topics. Our work can be regarded as an attempt to import some of this
knowledge in our different setting, as described in the next section.

2.3. Multi-Resolution and Adaptivity.

Wavelets, in their numerous instances and developments, are ubiquitous in signal processing, see
for example [28, 64]. Their strength stems from the hierarchical organization of the information
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contained in a signal, so that simple elementary components can be added up to a desired level
of accuracy in a way that is efficient and manageable; furthermore they offer an intuitive tool for
alternative definitions of important function spaces, such as Lp, Hp and Besov spaces. We provide
here a very brief example that will turn out useful as reference to justify some later choices.

Consider the unit interval (0, 1] ⊂ R with the Lebesgue measure. Within the unit interval one
can build the family of subsets:

T = {Ij,k = 2−j(k + (0, 1])}k∈{1,...,2j},j∈{0,1,...}
also called dyadic intervals. Clearly, for each value of j, the subset {Ij,k}k∈{1,...,2j} is a partition
of the unit interval. It is well known that, provided appropriate orthogonal functions φ, ψ ∈
L2((0, 1]) supported on (0, 1], the set of functions:

{φ(·), 2j/2ψ(2j · −k) ∀k ∈ {1, . . . , 2j}, j ∈ {0, 1, ...}} (16)

is an orthonormal basis for L2((0, 1]), with each ψI supported on a dyadic interval I ∈ T. An
example is provided by the Haar wavelets: φ(0,1] = 1(0,1], ψ(0,1] = 1(0,1/2] − 1(1/2,1].

For expository purposes we restrict our attention to orthonormal wavelets. In this case, any
function f ∈ L2((0, 1]) will be represented by a set of wavelet coefficients:

a0(f) = 〈φ, f〉, {aI(f) = 〈ψI , f〉}I∈T
f = a0(f)φ+

∑
I∈T

aI(f)ψI
(17)

whose decay with respect to j carries important information about the smoothness of f ; further-
more one can consider subspaces of L2((0, 1]) given by:

Vn = span
(
φ, {ψj,k}k∈{1,...,2j},j∈{0,...,n}

)
,

being linear finite-dimensional subspaces, so that PVn(f), the L2-orthogonal projection of f onto
Vn, provides an approximation of f at resolution j = n. Linearity clearly entails:

inf
g∈Vn
‖f − g‖2L2(0,1] = ‖f − PVn(f)‖2L2(0,1] =

∞∑
j=n+1

2j−1∑
k=0

|aj,k(f)|2.

Oftentimes functions are not evenly smooth on their domain, making Vn approximations incon-
venient; this motivated the introduction of non-linear approximation strategies. One of these
consists in considering nonlinear subspaces of L2((0, 1]) given by:

Ση = {f ∈ L2((0, 1])|∀I ∈ T, aI(f) 6∈ (0, η)}
Being Ση a non-linear space, the L2-best approximation of a function f in Ση cannot be found
by orthogonal projection; still this can be found by simply keeping the only non-zero wavelet
components such that aI(f) ≥ η, that is, by wavelet thresholding ; indeed, by orthonormality:

inf
g∈Ση

‖f − g‖2L2(0,1] =
∑

aI(f)<η

|aI(f)|2.

Given an approximation g ∈ Ση of f ∈ L2((0, 1]), the subset Sη(g) ⊂ T whose I ∈ Sη(g) yield
aI(g) 6= 0 can be arbitrarily unstructured, and this, as observed in [24], can cause inconvenient
storage of the coefficients. Therein, it is proposed to choose a representation of f that is slightly
less compact, in terms of number of wavelet components, but with constraints on the structure
of the subset Tη ⊂ T whose wavelet coefficients are preserved.
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Consider T as a graph, in fact a tree, whose root is I0,0, and each edge connects an interval Ij,k
with a subinterval of the form Ij+1,k′ . The constraint on Tη requires it to be a subtree of T
containing the root, and actually the smallest such subtree containing Sη. A similar strategy is
adopted in [12] as well, for different reasons, and is also at the core of our work. This point is
further discussed in Section (3.1).

The idea of a multiscale approach to vector quantization is not new [41, page 410], and tree based
algorithms are a key tool to reduce complexity of countless data mining tasks, such as nearest
neighboor search. Yet theoretical estimates of the L2-distortion, in the form of learning rates,
were not available in this case, to the best of our knowledge.

A set of functions like the wavelet basis (16) is a prototypical example of what is more generally
called a Dictionary. Any function can be represented on any basis, but the corresponding coeffi-
cients will be in general all non-zero. A dictionary is a (typically overcomplete) set of functions,
designed in such a way that a specific set of functions of interest can be represented with sparse
coefficients, that is, only using a small subset of the dictionary. Sparse Dictionary Learning tries
to find a dictionary that allows the sparsest representations for a given set of functions; see for
example [56]. In this case the representation is called adaptive, as it adapts to a specific source.
Vector quantization, as in Equation (1), can be considered an extreme case of sparse dictionary
learning, in which all coefficients are zero but one; see for example [77]. We will touch again
upon the subject through next subsection.

2.4. Higher Order.

In Section 1 we outlined the general form that the projection PΛ will take for the main algorithm
we analyze, as a piece-wise constant function, that is, whose image is a finite set of centroids,
one for each cell of the partition Λ. We mentioned that this point of view is shared with Vector
Quantization algorithms [41], being k-means perhaps the most popular instance of such [5].

In Approximation Theory from a piece-wise constant approximation we can step further to piece-
wise linear or piece-wise polynomial approximations. In the same way, here we might consider
functions PΛ that project each cell of the partition Λ onto a corresponding hyperplane, rather
than to a centroid; that would be considered a piece-wise linear approximation.

Let c1, . . . , cN be a set of centroids as before, and V1, . . . , VN be a set of d dimensional linear
subspaces, where d is assumed fixed and known, and Λ = {I1, . . . , IN} defines a partition of X as
before. Then, the nonlinear projection will, in this case, take the form

P 1
Λ(x) =

K∑
j=1

1Ij (x)
(
cj + PVj (x− cj)

)
, (18)

therefore orthogonally projecting each cell Ij onto the corresponding affine hyperplane, parallel
to Vj and through cj . A natural choice for empirically estimating cj and Vj is via mean and PCA,
both restricted on the cell labeled by j. In the aforementioned manifold case, the hyperplane
parallel to Vj through cj can be thought of as a rough approximation of a tangent space to the
manifold at some point on it, within Ij . However cj is in general not on the manifold, and
the hyperplane in (18) is not meant to approximate a tangent space but the manifold itself (its
portion lying inside Ij). The two hyperplanes may not even be parallel, in particular when the
curvature is not isotropic.
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While Equation (1) corresponds to the Vector Quantization problem, here Equation (18) might be
considered a special instance of the Dictionary Learning or of the Subspace Clustering problem.
Some popular algorithms addressing the latter problems are k-SVD [2] and k-flats [19], even
though none of them exactly uses the form (18). On the other hand a projection of the form (18)
is in fact at the base of the algorithm GMRA introduced in [3, 63, 59]. The latter also shares
with our approach the multi-scale framework, that was suggested through the previous sections
and will be further clarified later. For this reason, our approach might be considered a 0-th order
version of the GMRA, but comparison should be carried out carefully. To this respect we draw
the reason’s attention on two points:

• Working with a representation of the form (18) requires stronger prior knowledge about
the probability measure ρ. Algorithmically, the intrinsic dimension d is either assumed
to be known, or has to be inferred, while (1) does not require that. From the point of
view of the statistical guaranties, GMRA analysis also requires more algorithm-specific
assumptions with respect to our approach, as we will comment in detail later.
• By comparing the expected distortion caused by (1) or (18), it’s only meaningful to

compare representations that carry the same amount of information, and that have
similar computational complexity. For instance, performing (18) requires an amount of
extra storing space that is proportional to dDN , if the two representations work with
the same cardinality N . On the other hand, beside the distortion, a more expressive
representation might be useful to some specific purpose, for example for representing of
functions over X ; we will not cover this subject any further.

Also the two algorithms build the partition Λ in similar yet different ways. Detailed comparison
of algorithms and statistical guaranties is presented in Section 4.

The empirical evaluation of the intrinsic dimension is a topic worth interest in its own right.
In fact the GMRA algorithm originally stemmed from the observation that the procedure used
to empirically estimate the hyperplanes Vj in (18), the Principal Component Analysis (PCA)
[13], naturally offers a mean towards dimensionality estimation. PCA works on the empirical
covariance matrix of a point cloud, in our case the portion of the dataset that lies inside a cell.
The covariance matrix of a distribution is known to have eigenvalues that gauge how far the
distribution spreads along each of the principal (orthogonal) axes (variance-wise). Given that a
cell is comparable to a ball of radius r, it can be shown that the d leading eigenvalues are expected
to be proportional to r, while the remaining tend to vanish as O(r2), so that, at an appropriate
scale r, a gap opens in the spectrum, suggesting the effective dimension d. We refer to [60] and
reference therein for pointers to the specific literature.

2.5. Manifold Ansatz.

In this section some loosely related literature about data representation will be presented. This
was mostly motivational to GMRA [3, 63, 59] and therefore for us.

We already mentioned multiple times, as a special case, the possibility that the support of ρ
may happen to be a smooth manifold embedded in X ; this is indeed a case in which several
computations can be carried out neatly; see Proposition 3.4.1. On the other hand this case
also turns out to be particularly relevant in several applications. In the literature the attention
is sometimes devoted to finding an approximation for the support of the distribution ρ rather
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than for the distribution itself; hence we can talk about Set Learning or, more often, Manifold
Learning; referring to data coming from various applications, it has been noticed that, except
for the possible presence of some sort of noise, the support of the data seems to be often well-
approximated by a smooth low-dimensional manifold, embedded in the ambient space. The latter
idea goes under the name of Manifold Hypothesis; roughly speaking, naturally occurring data
are most likely generated by hidden dynamical systems that have much fewer degrees of freedom
than the actual dimension of the data.

Some effort has been devoted to formalize when the manifold hypothesis is quantitatively justified;
for example [38] and [73] proved that, depending on a desired confidence and under suitable
assumptions, there is critical value of the sample size over which it is possible to say whether the
data describe a manifold in a specific geometrical sense, while [76] derived the critical sample
sizes over which we can infer topological invariants of the manifold underlying the data with
high confidence; remarkably, these results are independent from the context the data come from.
Arguably the research about convergence of the Graph Laplacian of a point cloud to the Laplace-
Beltrami operator of the underlying manifold [50] also belongs in this vein.

Once the Manifold Hypothesis is assumed holding true (or taken as a convenient ansatz) an
algorithm is then needed to construct an empirical estimator of the supposed manifold support
of the data.

Elementary empirical estimators are of course the mean and the PCA, used when the model
consists of a flat manifold, that is, an affine subspace (a single point being considered a 0-
dimensional instance of such). Statistical properties of mean and PCA are well understood [13],
providing finite-sample concentration inequalities.

Starting from PCA a number of developments can be considered to relax the linearity assump-
tion; these include Isomap [102], Hessian Eigenmaps [32], Laplacian Eigenmaps [7] and related
developments such as Diffusion Maps [70]. Another way to tackle non-linearity is kernel PCA,
performing PCA after a suitable nonlinear embedding [91, 90]. We also mention Principal Man-
ifolds [44], the Autoencoders designed for non-linear dimensionality reduction [9], Local Linear
Embedding [88] and Local Tangent Spaces Alignment [111], for all of which we refer the reader
to the specific literature.

Statistical guaranties about the performance of the algorithms above are rarely available.

Vector Quantization in general, as well as the piece-wise linear approach mentioned in the previous
subsection, can be considered instances of Manifold Learning. Indeed this is the context in which
GMRA was convieved.

Some of the algorithms above are considered global, especially kernel-PCA and the ones involving
a Laplacian operator; indeed they are meant to process the dataset in its entirety, aiming at a
representation that takes into account both large scale features and details. This typically implies
at some point the necessity to invert matrices as large as the sample size, which is considered
computationally intensive for real world data. On the other hand a method would be considered
local if it splits the dataset in smaller batches to be processed independently. From the methods
above some can be considered mixed local, as they entail both local and global steps, cooperating
to balance manageability and accuracy. That’s in fact the case for the prototypes given in
Equation (1) and (18); the representation itself is local in structure, except that we haven’t
mentioned yet how the partitions Λ are sorted out.
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3. Algorithm Statement and Main Result

In Section 1 we outlined the problem of our interest, as constructing en empirical estimator
for a Vector Quantization, using multi-resolution tools. A set of centroids and a corresponding
partition are considered, and then all data points in each cell of the partition are represented by
the corresponding centroid. In this section we provide the operative definition of an algorithm
addressing this problem, and it’s statistical analysis.

The most classical approach in this context is probably K-means, where the set centroids (means)
is defined by a non-convex optimization over all possible partitions of the data; the latter has
been extensively studied and found countless applications, a comparison is presented in Section 4,
together with review of some other related subjects. Our approach is not to be considered a
mere alternative to K-means, as it offers a multi-resolution representation of the dataset; the
hierarchical organization of the information naturally provides more flexibility for exploratory
purposes.

The novelty of the present work stems from framing the vector quintization problem within
a supervised learning setting, by providing a multi-resolution empirical estimator, and therein
obtaining statistical guaranties in the form of learning rates, stated from simpler assumptions
as compared to similar works in the literature; furthermore non-asymptotic estimates for the
expected distortion of the corresponding infinite sample problem are provided.

3.1. Partition Trees and Subtrees.

In Section 1 a one-parameter family of partitions Λη was introduced, such that Λη2 is a refinement
of Λη1 whenever η2 < η1. An instance of such a family of partitions was not provided yet, except
for the dyadic cubes used to define wavelets. Before describing the family Λη that will be the
subject of our main result, we point out here that Λη may or may not depend on ρ. Of course
a depending one has higher chances to provide higher accuracy at lower complexity (that is, at
lower N). On the other hand a Λη depending on ρ, i.e. adaptive, will in turn be more expensive
to build.

The strategy that we pursue, borrowed from [12] and references therein, is to start with a family
of partitions that are easy to build, independent or loosely dependent4 on ρ, that will be called
partition tree T. Then from this partition tree, an adaptive family Λη will be extracted, with
an algorithm that depends on ρ, and aims at produce a low expected distortion; in fact it will
depend only on the dataset x1, . . . , xn, as ρ would in practice be unknown.

In Section 2.3 we anticipated as a constrained subset of the dyadic cubes can provide an efficient
representation in the context of wavelet thresholding; the constraint consists in the subset being
a subtree. We will show that a similar constraint on subsets of a partition tree T in fact naturally
provides a partition, and therefore is particularly convenient to tackle partition refinements in
our context. As anticipated, also the way the subtree is selected will be tightly related with the
wavelet thresholding introduced in Section 2.3.

4a loose dependence is implicit in our Assumption 3.3.1
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We begin introducing the definition of a partition tree. In the following we denote by X ⊂ RD
the data space endowed with its natural Borel σ-algebra B(X ) and by ]A the cardinality of a set
A.

Definition 3.1.1. A partition tree T is a denumerable family {Λj}j∈N of partitions of X satisfying

a) Λ0 = {X} is the root of the tree;
b) each family Λj = {I}I∈Λj is a finite partition of X of Borel subsets, i.e

X =
⋃
I∈Λj

I

I ∩ J = ∅ ∀I, J ∈ Λj , I 6= J

]Λj < +∞
I ∈ B(X ) I ∈ Λj

;

c) for each I ∈ Λj, there exists a family C(I) ⊆ Λj+1 such thatI =
⋃

J∈C(I)
J

]C(I) ≤ a
, (19)

where a ∈ (0,+∞) is a constant depending only on T.

The family T is called tree because it is naturally associated with a graph, in fact a tree. This
graph has a vertex corresponding to each cell of all partitions, and edges corresponding to couples
of cells I, J ∈ T such that I ⊇ J and such that the corresponding partitions are consecutive in
the refinement sequence. This will be alternatively denoted as a family Λj of partitions, in which
j is called depth, that is the edge-counting distance from Λ0, the coarsest partition made by only
one cell.

Note that, we allow the partition tree to have arbitrary, possibly infinite, depth, needed to derive
asymptotic results.

Further, notice that, since #Λj ≤ aj the constant a characterize how the cardinality of each
partition increases at finer scale. The case a = 2 corresponds to dyadic trees.

We add some further definitions. For any j ∈ N, and I ∈ Λj the depth of I is j and is denoted by
jI . The cells in C(I) ⊂ Λj+1 are the children of I, the unique cell J ∈ Λj−1 such that I ∈ C(J) is
the parent of I and is denoted by P(I) (by definition P(X ) = X ). We regard T as a set of nodes
where each node is defined by a cell I with its parent P(I) and its children C(I). The following
definition will be crucial.

Definition 3.1.2. A (proper) subtree of T is a family T ⊂ T of cells such that P(I) ∈ T for all
I ∈ T and

Λ(T ) = {I ∈ T : I 6∈ T ,P(I) ∈ T },

denotes the set of outer leaves.

It is important in what follows that Λ(T ) is a partition of X if T is finite, see Lemma 5.1.2. If
the T is not finite Λ(T ) can still define a partition of unbounded cardinality (enumerable), but
this case is beyond the scope of our present work.
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3.2. Reconstruction Trees.

We next discuss a data driven procedure to derive a suitable partition and a corresponding
nonlinear projection. To do this end, we need a few definitions depending on an available dataset
x1, . . . , xn.

For each cell I, we fix an arbitrary point x̂∗I ∈ X and define the corresponding cardinality and
center of mass, respectively, as

nI =
n∑
i=1

1I(xi), ĉI =


1

nI

n∑
i=1

xi1I(xi) if x ∈ I and nI 6= 0

x̂∗I if x ∈ I and nI = 0
,

where 1I is the characteristic function of I, i.e.

1I(x) =

{
1 x ∈ I
0 x /∈ I

.

If 0 ∈ X , a typical choice is x̂∗I = 0 for all cells I ∈ T. While E(P̂n) depends on the choice of x̂∗I ,
our bounds hold true for all choices. We point out that it is more convenient to choose x̂∗I ∈ I, as

this (arbitrary) choice produces an improvement of E(P̂n) for free, in particular whenever ρI > 0
but nI = 0.

Using this quantity we can define a local error measure for each cell I,

ÊI =
1

n

∑
xi∈I
‖xi − ĉI‖2 =

1

n

n∑
i=1

‖xi − ĉI‖2 1I(xi)

as well as the potential error difference induced by considering a refinement,

ε̂2I = ÊI −
∑
J∈C(I)

ÊJ =
1

n

∑
J∈C(I)

‖ĉJ − ĉI‖2 , (20)

where the second equality is consequence of the between-within decomposition of the variance.
A motivation for considering a thresholding on ε̂2I has been mentioned in Section (2.3). Indeed,
referring to the notation therein, considering the special case of Haar wavelets, we have:

φ(·) = 1(0,1](·), ψ(·) = φ(·)− φ(2·).

For any interval Ij−1,k =: I and its subintervals Ij,2k−1 =: J1, Ij,2k =: J2, it easily follows:

|aJ1 |2(f) + |aJ2 |2(f) = ‖f − fI‖2L2(0,1] −
(
‖f − fJ1‖2L2(0,1] + ‖f − fJ2‖2L2(0,1]

)
:= ε2I(f)

where fI =
∫
I
f(x)
|I| dx, and |I| is the Lebesgue measure of I. Our algorithm is based on thresholding

a quantity formally corresponding to εI(f), which in turns is very close to thresholding the actual
wavelet coefficients, with the difference required by the necessity of building a partition of X .

Following [12], we first truncate the partition tree at a given depth, depending on the size of the
data set. More precisely, given γ > 0, we set

jn =

⌊
γ lnn

ln a

⌋
=⇒ ajn ≤ nγ . (21)
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We add a a few comments, the above vector quantization procedure, that we call reconstruction
tree, is recursive and depends on the threshold η. Different quantizations and corresponding
distortions are achieved by different choices of η. Smaller values of η correspond to vector quan-
tization quantizations with smaller distortion. It is a clear that the empirical distortion becomes
zero for a suitably small η corresponding to having a single point in each cell. Understanding
the behaviour of the expected distortion as function of η and the number of points is our main
theoretical contribution. Before discussing these results we discuss the connection of the above
approach to related ideas. A similar construction is given in [59], where however the thresholding
criterion η depends on the scale, see Section 2.3 of the cited reference.

The parameter γ is an a-priori bound on the depth of the partion tree. It is needed to show that

PTη is closed to its empirical counterpart P̂Tη and it controls the size of the truncated partition
tree T ∗n , see Proposition 7.2.4 and bound (82). For essentially the same technical reason, in [59]
the partition tree is truncated to the largest subtree whose leaves contain at least d points and
d denotes the intrinsic dimension of the data. From a pratical point of view, the parameter γ

allows to have partition Λ̂n with a small number of cells, so that the final vector quantization is
parsimonious.

Deeper trees are considered as data size grows. This choice is only meant to prevent our statistical
analysis to be affected by unlikely worst case scenarios, and introduces no substantial restriction
from a practical point of view.

As a second step, we select the cells such that ε̂I ≥ η. Since ε̂I is not an decreasing function with
the depth of the tree, this requires some care – see Remark 5.1.1 for an alternative construction.
Indeed, for a threshold η > 0, we define the subtree

T̂η =

{X} if ε̂I < η ∀I ∈
⋃
j≤jn

Λj

{I ∈ T | ∃j ≤ jn, J ∈ Λj , J ⊂ I, ε̂J ≥ η} otherwise
(22)

and Λ̂η is defined as outerleaves of T̂η, i.e. Λ̂η = Λ(T̂η), see Figure 1 below. Note that T̂η is finite,

so that by Lemma 5.1.2 T̂η is a partition of X such that jI ≤ (γ lnn)/ ln a for all I ∈ Λ̂η.

The code vectors are the centers of mass of the cells the above empirical partition, and the
corresponding nonlinear projection is

P̂η =
∑
I∈Λ̂η

ĉI1I(x). (23)

3.3. General Assumptions.

In this section, we introduce our main assumptions and then discuss a motivating example where
data are sampled at random from a manifold.

We consider a statistical learning framework, in the sense that we assume the data to be random
samples from an underlying probability measure. More precisely, we assume the available data
to be a realization of n identical and independent random vectors X1, . . . , Xn taking values in a
bounded subset X ⊂ RD and we denote by ρ the common law. Up to a rescaling and a translation,
we assume that 0 ∈ X and

diam(X ) = sup
x,y∈X

‖x− y‖ ≤ 1. (24)
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Our main assumption relates the distribution underlying the data to the partition tree to be used
to derive a MSVQ via reconstruction trees. To state it, we recall the notion of essential diamater
of a cell I, namely

diamρ(I) = inf
J⊂I
ρ(J)=0

diam(I \ J).

Assumption 3.3.1. There exists s > 0 and b > 1 such that for all I ∈ T

diamρ(I) ≤ C1ρ(I)s (25a)

diamρ(I) ≤ C2b
−jI (25b)

where C1 > 0 and C2 > 0 are fixed constants depending only on T.

To simplify the notation, we write cT for a constant depending only on s, b, C1, C2 and we write
A . B if there exists a constant cT > 0 such that A ≤ cTB.

Given the partition tree T, the parameters s and b define a class Pb,s(T) of probability measures
ρ and for this class we are able to provide a finite sample bound on the distortion error of our
estimator P̂η, see (29). In the context of supervised machine learning Pb,s(T) is an a-priori class
of distributions defining a upper learning rate, see (31a). It remains an open problem to provide
a lower min-max learning rate.

Clearly, (25b) is implied by the distribution-independent assumption that

diam(I) . b−jI for all I ∈ T, (26)

i.e. the diameter of the cells goes to zero exponentially with their depth. This assumption
ensures that the reconstruction error goes to zero and, in supervised learning, it corresponds to
the assumption that the hypotheses space is rich enough to approximate any regression function,
compare with condition (A4) in [59].

Eq. (25a) is a sort of regularity condition on the shape of the cells and, if it holds true, (25b) is
implied by the following condition

ρ(I) . c−jI for all I ∈ T, (27)

which states that the volume of the cells goes to zero exponentially with their depth.

3.4. Results and Constructions about Partition Trees.

The parameter s is related to the intrinsic dimension of the data, still depending also on the
partition tree. For example, if X = [0, 1)D is the unit cube and ρ is given by

ρ(E) =

∫
E

p(x)dx E ∈ B(X ),

where dx is the Lebesgue measure of RD and the density p is bounded from above and away from
zero, see (28b) below, it is easily to check that the family T = {Λj} of dyadic cubes

Λj = {[2−j(k1 − 1), 2−jk1)× . . .× [2−j(kD − 1), 2−jkD) | k1, . . . , kD = 1, ..., . . . , 2j} j ∈ N

is a partition tree satisfying Assumption 3.3.1 with s = 1/D and a suitable b > 1. The con-
struction of dyadic cubes can be extended to more general settings, see [23, 42] and references
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therein, by providing a large class of other examples, as shown by the following result. The proof
is deferred to Section 5.

Proposition 3.4.1. Assume that the support M of ρ is a connected submanifold of RD and the
distribution ρ is given by

ρ(E) =

∫
E∩M

p(x)dρM(x) E ∈ B(X ) (28a)

0 < p1 ≤ p(x) ≤ p2 < +∞ x ∈M (28b)

where ρM is the Riemannian volume element of M, then there exists a partition tree T of X
satisfying Assumption 3.3.1 with s = 1/d, where d is the intrinsic dimension of M.

We recall that, as a submanifold of RD, M becomes a compact Riemannian manifold with
Riemannian distance dM and Riemannian volume element ρM, see for example [82]. We stress
that the construction of the dyadic cubes only depend on dM.

By inspecting the proof of the above result, it is possible to show that a partition tree satisfying
Assumptions 3.3.1 always exists if there are a metric d and a Borel measure ν on M such that
(M, d, ν) is an Ahlfors regular metric measure [46, page 413], ρ has density p with respect to ν
satisfying (28b) and the embedding of (M, d) into (Rd, ‖·‖) is a Lipschitz. function.

This proposition is only a step towards understanding the geometrical meaning of our assumptions
and their algorithmic implications. In Section 4 We provide further discussion, together with some
options for the practical construction of a partition tree satisfying the requirements.

3.5. Main Result.

In this section we state and discuss our main results, characterizing the expected distortion of
reconstruction trees, as well as the result on the Approximation Error. The proofs are deferred
to Sections (5)(7). Our first result is a probabilistic bound for any given threshold η. Recall that

s > 0 is defined by (25a) and P̂η by (22) and (23).

Theorem 3.5.1. Fix γ > 0 as in (21) and η > 0, for any 0 < σ < s

P
[
E [P̂η] & η

4σ
2σ+1 (1 + t)

]
. η−

2
2σ+1 exp

(
−cTnη2t

)
+ (nγ + η−

2
2σ+1 ) exp

(
−canη2

)
t > 0, (29)

where ca = 1
128(a+1) and cT > 0 depends on the partion tree T.

As shown in Remark 5.1.10, it is possible to set σ = s up to an extra logarithmic factor.

Next, we show how it allows derive the best choice for η as a function of the number of examples,
and a corresponding expected distortion bound.

Corollary 3.5.2. Fix γ > 1, β > 0 and set

ηn =

√
(γ + β) lnn

can
and P̂n = P̂ηn n ≥ 1, (30)
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where ca = 1
128(a+1) . Then for any 0 < σ < s

P

[
E [P̂n] &

(
lnn

n

) 2σ
2σ+1

(1 + t)

]
.

1

nβ
+

1

ncTt−1
, (31a)

where cT > 0 is a constant depending on the partition tree T. Furthermore

lim
t→+∞

lim sup
n→+∞

sup
ρ∈Pb,s(T)

P

[
E [P̂n] &

(
lnn

n

) 2σ
2σ+1

t

]
= 0, (31b)

where Pb,s(T) is the family of distributions ρ such that Assumptions 3.3.1 hold true.

If t is chosen large enough so that cTt− 1 = β, then bound (31a) reads as

P

[
E [P̂n] ≥ c1

(
lnn

n

) 2σ
2σ+1

]
≤ c2

1

nβ

where c1 and c2 are suitable constants depending on T. Comparison of this result with other
similar in the literature is presented in Section 4.

The proof of Theorem 3.5.1 relies on splitting the error in several terms. In particular, it requires
studying the stability to random sampling and the approximation properties of reconstruction
trees. This latter result is relevant in the context of quantization of probability measures, hence
of interest in its own right. We present this result first.

3.6. Approximation Error.

Towards this end, we need to introduce the infinite sample version of the reconstruction tree. For
any cell I ∈ T, denote the volume of the cell by

ρI = ρ(I),

the center of mass of the cell by

cI =


1
ρI

∫
I

x dρ(x) if ρI > 0

x∗I if ρI = 0,

where x∗I is an arbitrary point in X . The local expected distortion in a cell by

EI =

∫
I

‖x− cI‖2 dρ(x),

and

ε2I = EI −
∑
J∈C(I)

EJ =
∑
J∈C(I)

ρI ‖cJ − cI‖2

Given the threshold η > 0, define the subtree

Tη =

{
{X} if εI < η ∀I ∈ T

{I ∈ T | ∃J ∈ T such that J ⊂ I and εJ ≥ η} otherwise
, (32)
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and let Λη = Λ(Tη) be the corresponding outerleaves. Lemma 5.1.5 shows that Tη is finite, so
that by Lemma 5.1.2 Λη is a partition and the corresponding nonlinear projection is

PΛη(x) =
∑
I∈Λη

cI1I(x) (33)

so that the code vectors are the centers of mass of the cells.

Comparing the definition of Tη and T̂η, we observe that T̂η is truncated at the depth jn given
by (21), whereas Tη is not truncated, but its maximal depth is bounded by Lemma 5.1.8.

Given the above definitions, we have the following result.

Theorem 3.6.1. Given η > 0, for all 0 < σ < s

E(PΛη) . η
4σ

2σ+1 . (34)

Note that the bound is meaningful only if 0 < η < 1. Indeed for η ≥ 1 Λη = {X} and E(PΛη) ≤ 1,
see Remark 5.1.6.

The quantity E(PΛη) is called approximation error, by analogy with the corresponding definition
in statistical searning theory, and is at the core of our analysis.

The problem of approximating a probability measure with a cloud of points (that is, with the
corresponding counting measure) is related to the so called optimal quantization [47]. The cost
of an optimal quantizer is defined as:

VN,p(ρ) := inf
S⊂X ,|S|=N

Ex∼ρd(x, S)p

where d(x, S) = miny∈S ‖x−y‖. An optimal quantizer corresponds to a set S of N points attaining
the infimum, with the corresponding Voronoi-Dirichlet partition of X . One can interpret the
apporximation error E(PΛη) as the quantization cost associated with the (suboptimal) quantizer
given by the partition Λη as defined in (32) with the corresponding centers {cI}I∈Λη , and N :=
#Λη.

This point of view is also taken through the analysis of k-means given in [19], optimal quantizers
corresponding in fact to absolute minimizers of the k-means problem. Asymptotic estimates for
the optimal quantization cost are available, see [19] and references therein. In the special case of
supp(ρ) =M, beingM a smooth d-dimensional manifold emdedded in X (setting of Proposition
(3.4.1)), they read:

lim
N→∞

N2/dVN,2(ρ) = C(ρ) (35)

where C(ρ) is a constant depending only on ρ. We underline that the result provided by Propo-
sition 3.6.1 is actually a non-asymptotic estimate for the quantization cost, when the quantizer is
given by the outcome of our algorithm. The quantization cost is strictly higher than the optimal
one, since, for instance, an optimal quantizer always corresponds to a Voronoi-Dirichlet partition
[47], whereas the partitions Λη are never such. Nevertheless, as observed in Section 4, a Voronoi
quantizer is not suitable multiscale refinements, whereas ours is. Proposition 3.6.1 does not di-
rectly compare with (35), as it depends on a different parameter quantifying the complexity of
the partition, namely η instead of N . Though, by carefully applying (55b), in the manifold case
we get:

E(PΛη) .

(
logN

N

) 2
d

(36)
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so that the bound is in fact optimal up to a logaritmic factor. Furthermore, it is in order to observe
that Assumption 3.3.1 together with Proposition 3.6.1 provides a more transparent understanding
of the approximation part of the analysis, as compared to other works in the literature, as we
review in Section 4. It is worth stressing that Assumption 3.3.1 do not depend on the thresholding
algorithm, but only on the mutual regularity of ρ and T. Lastly we notice that, while for the
sake of clarity none of the constants appear explicitly in our results, the proofs allow in principle
to estimate them. Further comments about the constants are provided in Section 4.4.
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4. Comparisons and Further Results

In this section a detailed comparison with the closest study in literature is provided, together
with some new results and further contextualization.

4.1. Comparison with Geometric Multi-Resolution Analysis (GMRA).

A main motivation for our investigation was the algorithm GMRA [3, 63, 59], which introduces
the idea of learning multi-scale dictionaries by geometric approximation.

Among the differences between GMRA and Regression Trees, the former represents data through
a piece-wise linear approximation, while the latter through a piece-wise constant approximation,
as outlined in Section (2.4). More precisely, rather than considering the center of mass of the data
in each cell (20), a linear approximation is obtained by (local) Principal Component Analysis, so
that the data belonging to a cell are orthogonally projected onto an affine subspace of suitable
dimension.

Criteria of comparison might be the amount of distortion, the complexity of the representation,
and the practical applicability to a specific source. Roughly speaking the piece-wise linear ap-
proach is particularly natural in the case of a ρ measure that is close to the Riemannian volume
measure ρM of a manifoldM of known dimension, while the piece-wise constant approach is less
constraining, and might be beneficial for measures ρ that are far from evenly distributed along
the support, or in case the dimension is unknown or ambiguous.

Other differences are more technical. The thresholding strategy is different: unlike [12] and our
work, in [59] the local improvement ε̂ is scaled depending on its depth in the tree. Namely, while
in (22) the cells are chosen according to ε̂I ≥ ηn, the GMRA thresholding is ruled by:

∆̂j,k ≥ 2−jτn

where ∆̂j,k is formally analogous to ε̂I and τn to ηn. See Section (2.3) in [59]. Therein this
choice is justified by alleged experimental evidence as well as improved statistical guaranties.
This phenomenon seems to be specific of the GMRA approach though. One of our purposes was
indeed to check whether the learning rates are significantly affected in our case; as we are about
to discuss, we obtain comparable rates with respect to [59].

We now provide a comparison of the analyses.

4.1.1. Comparison of Assumptions and Results.
In [59], Definition 5, a model class Bs is introduced in terms of the decay of the approximation
error with respect to the scale parameter τ , following ideas from [12], where a similar model class
is defined through Definition 5 therein. The problem of estimating the approximation error is
essentially circumvented by grouping together all the probability measures that share the same
decay. Indeed both the mentioned definitions explicitly depend on the thresholding algorithm of
interest, as, for instance, Equation 7 in [59] features T(ρ,η), the thresholded subtree corresponding
to a certain ρ via the GRMA algorithm.
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Our way to tackle the problem is substantially different; Assumption 3.3.1 describes a property of
mutual regularity of the measure ρ with respect to the partition tree T that does not depend on the
Reconstruction Tree algorithm. Based on this mutual regularity assumption, Proposition 3.6.1
addresses directly the approximation error, by providing an upper bound.

We already commented in Section 2.1 how Assumption 3.3.1 is tightly related to the so called
Ahlfors regularity, and with the effective dimension of the support of ρ. Furthermore Proposi-
tion 3.4.1 provides an explicit example in which the assumption is satisfied as a consequence of
simpler regularity properties.

In this vein, [59] provides Proposition 3 and Lemma 6, to address the existence of partition trees
satisfying their Assumptions. In particular, the works [3, 63, 59] mentions several options as
how a convenient partition tree can be built practically. The basic idea is to randomly split the
dataset in two batches, one of which is used to build the partition tree T, while the other is
later utilized for the adaptive thresholding. Working with two separate batches eliminates the
unwanted bias induced by cross correlation. As far as algorithms, the mentioned options are the
following:

• Cover Tree [11]. Each Λj-partition of the partition tree T is built from a set of centroids
Cj that is a subset of the dataset. These subsets are generated with a recursive filtering
algorithm, which ensures that each Cj is a cover with respect to a radius 2−j . This means
that each point of the dataset is closer than 2−j to some centroids of Cj , for each j, while
the centroids of Cj are at least 2−j apart. The construction entails time complexity of

order O(CdDn log n). Once the centroids are chosen, the actual nested partitions can
be built, bottom-up, by merging Voronoi cells at fine scale. See Appendix A in [59].
• METIS [55]. This algorithm first builds a graph by thresholding an exponential prox-

imity kernel. The graph is then processed by a coarsening-partition-refining scheme.
• Iterated PCA [99]. This algorithm splits the data iteratively, by cutting X through an

affine hyperplane, parallel to the appropriate principal components.
• Iterated k-means [99]. This algorithm splits the data iteratively, by performing k-means,

with k = 2.

Among these options, the first is the one of choice in [59], by comparison of efficiency and
compatibility with the assumptions of the statistical analysis. Despite the mentioned differences
in our algorithm and analysis, still the Cover Tree algorithm is expected to provide an empirical
counterpart of the construction we outline through the proof of Proposition 3.4.1, as the algorithm
to some extent mimics the construction of dyadic cubes in [23].

Regarding our main result, Theorem 3.5.1, this bound can be compared with Theorem 8 in
[59] under the assumption that M is a compact C∞ manifold. Eq. (31a) with s = 1/d gives

a convergence rate of the order (lnn/n)
2p

2p+d for any p = σ/s ∈ (0, 1), whereas the GMRA

algorithm has a rate of the order (lnn/n)
2

2+d , see also Proposition 3 of [59]. Hence, in the limit
p → 1, therefore up to a logarithmic factor, our estimator has the same convergence rate of the
GMRA algorithm. However it is in order to underline that our algorithm works with a cheaper
representation, as long as the partitions have the same cardinality; indeed, given the adaptive
partition Λ̂η, it only requires to compute and store the centers of mass {ĉI}I∈Λ̂η

.

In fact direct comparison of the rates should be taken with a grain of salt, as the cardinality
of the optimal partition is specific of each algorithm. As a result, asking which representation



4. COMPARISONS AND FURTHER RESULTS 27

performs better, in terms of distortion vs compression rate, might still have a ρ-dependent an-
swer; regardless, as already pointed out in Section 2.4, one of the representations might be more
convenient for other reasons, depending on the application.

4.1.2. The As case.
In the mentioned papers [12] and [59] a further approximation model is introduced, in both
referred to with As. This model is in fact introduced before the adaptive thresholding Bs case,
as it corresponds to the case of a non-adaptive truncation of the patition tree at a scale j, that is
independent from the data or their distribution ρ. This method clearly provides a strictly rougher
estimation, as compared to the adaptive case.

The reader might have noticed that in our analysis the non-adaptive model is disregarded. This
is due to the fact that we decided to work with simpler assumptions (3.3.1), as compared to the
mentioned papers; this assumptions, even not being specific to the algorithm at hand, still offer
a way to estimate #Tη explicitly in adaptive case (Proposition 55a); but the same machinery is
not suitable to deal with the As case. Considering that the approximation obtained through a
horizontally truncated subtree would be very crude in most cases, we decided to prioritize the
adaptive case.

4.2. K-Means.
Our procedure being substantially a vector quantization algorithm, a comparison with the most
common approach to vector quantization, namely K-means, is in order. In K-means, a set of K
code vectors c1, . . . , cK are derived from the data and used to define corresponding partitions via
the corresponding Voronoi diagram

Vj = {x ∈ RD | ‖x− cj‖ ≤ ‖x− ci‖ , ∀i = 1, . . . ,K, i 6= j}.
Code vectors are defined by the minimization of the following empirical objective

min
c1,...,cK

1

n

n∑
i=1

min
j=1,...,K

‖xi − cj‖2 .

This minimization problem is non convex and is typically solved by alternating minimization, a
procedure referred to as Lloyd’s algorithm [62]. The inner iteration assigns each point to a center,
hence a corresponding Voronoi cell. The output minimization can be easily shown to update the
code vectors by computing the center of mass, the mean, of each Voronoi cell. In general the
algorithm is ensures to decrease or at least not increase the objective function and to converge
in finite time to a local minimum. Clearly, the initialization is important, and initializations
exist yielding some stronger convergence guarantees. In particular, K-means++ is a random
initialization providing on average an ε approximation to the global minimum [5].
Compared to K-means, reconstruction trees restrict the search for a partition over a prescribed
family defined by the partition tree. In turns, they allow a fast multi-scale exploration of the
data, while K-means requires solving a new optimization problem each time K is changed (indeed
it can be shown that a solution for the K − 1 problem leads to a bad initialization for the K
problem). Further, unlike restriction trees, the partitions found by K-means at different scales
(different values of K) are generally unrelated, and cannot be seen one a refinement of the other.

Regarding statistical analysis, in a similar setting [19] shows that the k-means algorithm, with

a suitable n-dependent choice of k, provides a convergence rate of the order (1/n)
1
d+1 and k-flat

algorithm of order (1/n)
2
d+4 ; though these bounds might not be as tight, due to the difference in

proof techniques.
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4.3. Quantization via Subsampling.
In this section we argue that the learning rate given by our main result seems to be, to some
extent, robust with respect to the algorithm choice. In order to show that, we present a simple
algorithm, different from the one analized above, for which it’s fairly easy to obtain a learning
rate, at least asymptotically.

We present the infinite sample version of the algorithm first. A non-linear projection is defined, as
above, by a set of N centroids SN = {ci}i=1,...,N and a corresponding partition ΛN = {Ii}i=1,...,N

of X :

PΛN (x) =

N∑
i=1

ci1Ii(x)

but now we compute SN ∼ ρN as a i.i.d. sample from ρ, and ΛN as the Voronoi-Dirichlet partition
generated by SN .

The finite sample version of this algorithm will be defined as follows. We are given n data, that

is, a i.i.d. sample {x1, ..., xn} ∼ ρn. The centroids ŜN , with N ≤ n, will be chosen by uniform

subsampling without replacement from {x1, ..., xn}; namely, ŜN is obtain from ŜN−1 by drawing

a new centroid from {x1, ..., xn} \ ŜN−1 with uniform probability. Notice that every subset of
N variables {xi1 , xiN } is drawn from the same measure ρN , and each of them has the same

probability to be chosen as ŜN . So ŜN ∼ ρN .

More precisely, let I be the uniform distribution across {1, . . . , n}, then the sampling of in-
dexes I1, . . . , IN without replacement implies that these indexes are distributed according to the
corresponding multihypergeometric distribution. Furthermore I1, . . . , IN are independent from
{x1, ..., xn}. Now let y1, . . . , yn be such that yi = xIi . The claim corresponds to saying that
yi, . . . , yn are identically and independently distributed according to ρ.

Let E ⊆ RD. Then:

P[xIi ∈ E] =
n∑
j=1

P[xj ∈ E|Ii = j]P[Ii = j],

where Ii ⊥ xj , so that:

=
n∑
j=1

P[xj ∈ E]P[Ii = j] = P[xj ∈ E]
n∑
j=1

P[Ii = j] = P[xj ∈ E],

therefore yi = xIi ∼ ρ. Now:

P[xIi1 ∈ E1, . . . , xIik ∈ Ek] =

n∑
j1,...,jk=1

P[xj1 ∈ E1, . . . , xjk ∈ Ek|Ii = j]P[Ij1 = j1, . . . , Ijk = jk],

and since j1 6= · · · 6= jk, so that:

= P[xj1 ∈ E1] · · · · · P[xjk ∈ Ek|Ii = j]
n∑

j1,...,jk=1

P[Ij1 = j1, . . . , Ijk = jk]

and the claim follows.

Therefore there is no actual difference between ŜN and SN , which is the same as saying that

ŜN has no extra variance due to the size of the sample n; SN itself does have variance though,
depending on N , because the algorithm is randomized. Notice that PΛNρ =

∑
I ρ(I)δcI ; this
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differs from what is often called empirical measure, namely ρ̂N =
∑

I∈ΛN
1
N δcI . By applying

Lemma 3.1 from [20] we obtain that:

E(PΛN ) = W 2
2 (ρ, PΛNρ) = Θ

(
N−

2
d

)
(37)

where W2(, ) is the 2-Wasserstein distance between probability measures, and the second equality
is discussed in [19, 20].

To compare (37) with Corollary 3.5.2 in the manifold case, we proceed as follows. We impose the
value of Nn to be comparable with #Ληn , so that the algorithms produce comparable outcomes.

This is done by using the estimates (30) and (55b), namely Nn ∝ ( n
logn)

d
d+2 , so that the (37)

becomes:

E(PNn) = Θ

((
log n

n

) 2
d+2

)
(38)

so that, asymptotically, the uniform subsampling algorithm achieves the same learning rate as in
our main result.

Lastly we make the reader notice that, as far as multiscale refinements are concerned, the uniform
subsampling algorithm allows in fact to be performed coarse-to-fine. Indeed, as described above,
SN is built one centroid at a time, and ΛN is computed, as Voronoi-Dirichlet partition of SN , from
ΛN−1 by updating the only cells corresponding to centroids of SN−1 that are nearest neighboors
of the new centroid in SN .

4.4. Pseudo-Normas.

This section contains a remark that arose during our investigation, by comparing our result and
our main sources; this is at the moment still at an early stage of understanding.

We invite the reader to compare the following three constants:

(1) Consider the quantity |f |Bs in [12] at (2.1.6)

‖f − PΛ(f,η)
(f)‖ ≤ Cs|f |Bs(#T (f, η))−s

where f is a function being learned via adaptive non-linear projection PΛ(f,η)
(f), and Cs

is a constant depending only on s.
(2) We already mentioned (35), from [19]. Its extended form reads:

lim
N→∞

N2/dVN,2(ρ) = C2,d

(∫
M
dµIp(x)

d
d+2

) d+2
d

where C2,d is a constant depending only on d, dµI is the first fundamental form of
M, and p is the density associated with the probability measure ρ; in this case it is
assumed that such a density is well defined, as in Proposition 3.4.1.

(3) By inspecting the proof of (55a), in the form with s rather than σ, we observe that the
constant, implicit in ., only depends on the constants C, b from the Assumptions. In
fact the following lemma provides an explicit form for the constant, under assumptions
along the line of Proposition 3.4.1.
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Lemma 4.4.1. Assume that ρ has density p with respect to a probability measure µ and the
following two assumptions hold true

a) there are two constants Φ−,Φ+ > 0 such that for all I ∈ Λ with ρI > 0

Φ− ρI ≤ p(x)µI ≤ Φ+ ρI µ-almost all x ∈ I Φ− ρI ≤ µI (39)

where µI = µ(I);
b) there exists s ∈ (0,+∞) and Ds > 0 such that

diamµ I ≤ Ds µ
s
I I ∈ Λ (40)

then

]{I ∈ Λ : EI ≥ η2} ≤ Φ−1
−

(
D2
s Φ+ ‖p‖ 1

2s+1

) 1
2s+1

η−
1

2s+1 (41)

≤ Φ−1
−
(
D2
s Φ+

∥∥p−2s
1|p(x)>0

∥∥) 1
2s+1 η−

1
2s+1 .

The first inequality in (39) implies p(x) > 0 µ-almost everywhere, so that the measures ρ and µ
restricted to I are equivalent. The blue inequality in (39) is an alternative independent condition
with respect to the first inequality in (39). A typical example is when M is a manifold with
dimension d and µ is the Riemannian volume element of M. If I ∩M are ball-like , then we
expect that s = 1/d.

Recalling that the constant |f |Bs is directly related to the Besov norm ‖ · ‖Bsq in the case of

classical wavelets for function approximation (see [24]), it turns out that a direct comparison
of the constants in the three instances of least square approximation error above, that is, form
[12], [19] and the bound (36) together with Lemma 4.4.1, suggest that the constant expressed

via
(∫
M dµIp(x)

d
d+2

) d+2
d

might provide an analogue of the Besov norm in the manifold setting of

the present work. This is at the moment just a rough idea.

Proof of Lemma 4.4.1 is provided in the next section.

4.5. Further Comparisons.

4.5.1. Decision and Regression Trees. The above procedure was named Reconstruction Tree
because of its formal analogy to that of Decision Trees for supervised learning; see for example
[54], Chapter 8. In fact, as already mentioned, our construction and analysis follows closely that
of tree based estimators studied in [12], in the context of least square regression, whose estimator
can be Regression Tree accordingly. Despite the formal similarity, the two settings do exhibit
distinct features. For example, the analysis in [12] is specifically formulated for scalar functions,
while our analysis is necessarily vectorial in nature. In [12] a uniform bound |y| < M is imposed,
while in our setting we can assume a local bound for free; namely, if f is constant on a cell
I ⊂ X then ‖x− f(x)‖2 ≤ diam(I)2 for all x ∈ I. The present setting finds a natural instance
in the case of a probability measure supported on a smooth manifold isometrically embedded in
X (see Section 3.3), while this case is hardly addressed explicitly in the literature about least
square regression. On the other hand, the manifold case is actually discussed, in the context of
classification through Decision Trees, in [93].
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4.5.2. Empirical Risk Minimization. Again in analogy to supervised learning, as in [12], one
can consider the minimization problem:

min
F∈H
Ê [F ],

where H is the (finite-dimensional) vector space of the vector fields F : X → RD, which are piece-
wise constant on a given partition Λ. There correspond a number of independent minimization

problems, one for each cell in Λ, so that P̂η from (23) is easily shown to be a minimizer. The
minimizer is not unique, since the value of F is irrelevant on cells I ∈ Λ such that nI = 0. Similar
considerations hold for minF∈H E [F ] as well, in which case the value of F is irrelevant whenever
ρI = 0. See also Section 3.2, Section 3.6 and Lemma 7.1.2.

One could consider minimization over a wider class of functions, piece-wise constant on different
partitions, for example on all the partitions with a given number of cells that are induced by proper
subtrees T of a given partition tree T. This would be a combinatorial optimization problem. The
algorithm defined in (22) overcomes this issue by providing a one-parameter coarse-to-fine class
of partitions, such that each refinement carries local improvements ε̂ that are uniformly bounded.
As observed in [12], such a strategy is inspired by wavelet thresholding.

4.5.3. Hierarchical Clustering. Lastly, our coarse-to-fine approach can be compared with hier-
archical clustering, in particular with the so called Ward’s method, which proceeds in the opposite
way. Indeed, this algorithm produces a coarser partition of the data starting from a finer. It
starts with a Voronoi partition having all the data as centers, and at each step it merges a couple
of cells that have the smallest so called between cluster inertia [108]. Interestingly this definition

has an analogue in our algorithm. Our ÊI corresponds to the within cluster inertia of a cell I
while ε̂2I to the between cluster inertia (up to a factor 1/n) of cells that merge into I. Nevertheless
the obtained partitions will not in general coincide.
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5. Proofs of Approximation Results

Structural results about the partition tree and how its size is estimated are presented first.
Statistical results and stability properties are delayed to later sections.

5.1. Structure of the partition tree and approximation. We introduce some further
notations about partition trees.

With slight abuse of notation, we regard T = ∪j∈N ∪I∈Λj I as the (disjoint) union of the cells in
each partition Λj . It a cell does not split, i.e. C(I) = I, we regard I ∈ Λj and C(I) ∈ Λj+1 as
different cells.

Given a cell I ∈ T, for any k ∈ N we set

Ck+1(I) = C(Ck(I)) Pk+1(I) = P(Pk(I)),

where C0(I) = P0(I) = {I} and, clearly,

Pk(I) = {X} k ≥ jI .

Furthermore, for any pair I, J ∈ T, I 6= J one and only one of the following alternative possibilities
holds true

I ∩ J = ∅ or J ∈ Ck(I) or I ∈ Ck(J) (42)

for some k ≥ 1.

If {Tt}t∈T is an arbitrary family of subtrees, clearly the intersection ∩t∈TTt and the union ∪tTt
are the smallest and the largest subtrees in the family.

Given a subset S ⊂ T, we set

T (S) =
⋂
{T | T is a subtree and S ⊂ T },

which is the smallest subtree containing all the cells in S, and

T (S) =
⋃
I∈S
{Pk(I) | k = 0, . . . , jI} =

⋃
I∈S
T (I) (43a)

]T (S) ≤ 1 +
∑
I∈S

jI . (43b)

The following remark provides an alternative definition of T̂η and a similar procedure can be
applied to Tη

Remark 5.1.1. Given η > 0 and jn ∈ N, set

Ŝη = {I ∈ T | jI ≥ jn, ε̂I ≥ η}

which is a finite subset of T. It is easy to check that T (Ŝη) = T̂η, see Figure 1.
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Figure 1. The adaptive tree

The following lemma is quite obvious.

Lemma 5.1.2. If T is finite subtree, the family of outer leaves

Λ(T ) = {I ∈ T : I 6∈ T ,P(I) ∈ T }

is a partition with

]Λ(T ) ≤ (a− 1) ]T + 1 ≤ a ]T . (44)

Proof. For any j ∈ N, we fix an arbitrary order among the cells in Λj , i.e.

Λj = {Ij,1, . . . , Ij,Nj} Nj = #Λj .

Given two different cells I = Ij,k and J = Ij′,k′ in T, we say that I is older than J either if j < j′

or j = j′ and k < k′.

By definition T contains the parents of all its elements and, hence, the root X . Define, by
induction, the family of subtrees

T1 = {X} Tn+1 = Tn ∪ {I},

where I is the oldest cell in T \ Tn. Note that, by construction, I ∈ Λ(Tn). Since T is finite by
assumption, TN = T with N = ]T .

We now prove by induction on n = 1, . . . , N that Λ(Tn) is a partition. If n = 1

Λ(T1) = {I ∈ T|I 6= X ,P(I) = X} = C(X ) = Λ1

which is a partition by assumption and, by (19), it satisfies (44). Assume that Λ(Tn) is partition
satisfying (44) with T = Tn. By construction, Tn+1 = Tn ∪ I with I ∈ Λ(Tn), then

Λ(Tn+1) =

 ⋃
J∈C(I)

{J}

⋃(Λ(Tn) \ {I})

which is a partition since I = ∪J∈C(I)J and

]Λ(Tn+1) ≤ a+ ]Λ(Tn)− 1 ≤ a+ (a− 1)]Tn = (a− 1)(]Tn + 1) + 1 = (a− 1)(]Tn+1) + 1,

so that (44) holds true with T = Tn+1. �
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We observe that, given a cell I, by definition of diamρ(I), it exists a measurable subset J ⊂ I
such that ρ(J) = 0 and diam(I \ J) = diamρ(I). Furthermore,

P [‖Xi −Xj‖ > diamρ(I)|Xi, Xj ∈ I] = 0 i, j = 1, . . . , n.

The following simple lemmas will be useful.

Lemma 5.1.3. Given a cell I ∈ T with ρ(I) > 0

‖x− cI‖ ≤ diamρ(I) ρ− almost all x ∈ I (45a)

‖cJ − cK‖ ≤ diamρ(I) J,K ∈ C(I) (45b)

‖ĉI − cI‖ ≤

{
diamρ(I) nI 6= 0

diam(X ) nI = 0
almost surely (45c)

Proof. By definition of essential diameter, there exists I0 ⊂ I such that diam(I0) = diamρ(I)
and ρ(I \ I0) = 0. Let C the closed convex hull of I0. It is known that diam(C) = diamρ(I) and,
by convexity theorem, see [92, Thm. 5.7.35],

cI =
1

ρ(I0)

∫
I0

x dρ(x) ∈ C,

so that (45a) is clear. Since J,K ⊂ I, Eq. (45b) is a consequence of the fact that cJ , cK ∈ C. If
nI = 0, ĉI = x̂∗I ∈ X so that (45c) is clear. If nI 6= 0, almost surely ĉI ∈ C so that

‖ĉI − cI‖ ≤ diam(C) = diam(I0) = diamρ(I).

�

Given a cell I ∈ T, the within-between decomposition of the variance

EI =
∑
J∈C(I)

EJ +
∑
J∈C(I)

ρI ‖cJ − cI‖2 , (46)

implies

ε2I =
∑
J∈C(I)

ρI ‖cJ − cI‖2 (47)

As a consequence we have the following decomposition.

Lemma 5.1.4. Given I ∈ T, for all N ∈ N

EI =
N∑
k=0

∑
J∈Ck(I)

ε2J +
∑

J∈CN+1(I)

EJ . (48)

Proof. The claim is clear for N = 0. Assume that it holds true for N . Then, for any
J ∈ CN+1(I)

EJ = ε2J +
∑

J ′∈C(J)

EJ ′ ,

hence

EI =

N∑
k=0

∑
J∈Ck(I)

ε2J +
∑

J∈CN+1(I)

ε2J +
∑

J ′∈C(J)

EJ ′

 ,
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by observing that a cell J ′ ∈ C(J) for some J ∈ CN+1(I) if and only if J ′ ∈ CN+2(I), so that (48)
holds true for N + 1. �

We now show that the set Tη defined by (32) is a finite subtree.

Lemma 5.1.5. The family Tη is a finite subtree of T.

Proof. If Tη = {X}, there is nothing to prove. Otherwise, if I ∈ Tη, then by definition there
exists J ∈ T such that J ⊂ I and εJ ≥ η. Since P(I) ⊃ I ⊃ J , then P (I) ∈ Tη, so that Tη is a
subtree.

We now show that Tη is finite. From (48) with X = I and (50) we get that for all N ∈ N
N∑
k=0

∑
J∈Ck(X )

ε2J ≤ EX ≤ 1.

Then the series
∑+∞

k=0

∑
J∈Ck(X ) ε

2
J =

∑
I∈T ε

2
J is sommable. Hence, the set

Sη = {I ∈ T : εI ≥ η, }

is finite. Furthermore, by construction

Tη = T (Sη) =
⋃
I∈Sη

T (I). (49)

see Figure 1. Bound (43b) implies that Tη is finite. �

Remark 5.1.6. By (24),

ε2I ≤ EI ≤ diamρ(I)2ρI ≤ diam(X )2 ≤ 1, (50)

and εI < EI ≤ 1 provided that εI > 0. Furthermore, by (50) Tη = Λη = {X} for all η ≥ 1 and

E(PΛη) = EX ≤ 1. By the same argument T̂η = Λ̂η = {X}. Hence, it is enough to consider the
case 0 < η < 1.

5.1.1. A-term: Approximation error. In this section, we bound the approximation error,
which is based in an estimation of the number of cells whose loss of inertia is big enough.

Lemma 5.1.7. Given a partition Λ ⊂ T, given 0 < η < 1,

]{I ∈ Λ : εI ≥ η} ≤ ]{I ∈ Λ : EI ≥ η2} . η−
2

2s+1 . (51)

Proof. First inequality in (51) is a direct consequence of (50). By (25a) there exists C > 0
such that for all I ∈ T

diamρ(I) ≤ CρsI I ∈ Λ,

then, by (50)

EI ≤ C2ρ2s+1
I .

Set Λ+ = {I ∈ Λ : EI ≥ η2} and N+ = ]Λ+. Fix q ≥ 1, clearly

η
2
qN+ ≤

∑
I∈Λ+

E
1
q

I ≤ C
2
q

∑
I∈Λ+

ρ
2s+1
q

I . (52)
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The Holder inequality with 1/p+ 1/q = 1 gives

∑
I∈Λ+

ρ
2s+1
q

I ≤

∑
I∈Λ+

ρ
p(2s+1)

q

I

 1
p
∑
I∈Λ+

1q

 1
q

≤

(∑
I∈Λ

ρI

) 2s+1
2s+2

N
1

2s+2
+ = N

1
2s+2

+

where the last inequality follows by choosing p(2s+1)
q = 1, i.e. q = 2s+ 2. By replacing in (52)

N
1− 1

2s+2
+ ≤ C

1
s+1 η−

2
2s+2

and, since 1− 1
2s+2 = 2s+1

2s+2 , we get (51). �

We first observe that the proof of the above lemma only depends on Assumption (25a) and the
constant in the inequality (51) only depends on the constant in (25a), denoted by C in the proof.
Furthermore, without Assumption (25a) we always have the following bound

]{I ∈ Λ : EI ≥ η2} ≤ ]{I ∈ Λ : EI ≥ η2} ≤ η−2.

where the first inequality is consequence of (50) and the last bounds is due to (46) with I = X

1 ≥ EX ≥
∑
I∈Λ

EI ≥
∑

I∈Λ,EI≥η2

EI = η2 ]{I ∈ Λ : EI ≥ η2}.

We recall that Λη = Λ(Tη) is the family of the corresponding outer leaves, which is a partition of
X by Lemma 5.1.2. In order to bound the cardinality of Λη we need an auxiliary lemma based
on Assumption (25b).

Lemma 5.1.8. Given η > 0, set

jη = sup{jI ∈ N | I ∈ T and εI ≥ η}. (53)

then

jη . ln(
2

η
). (54)

If {jI ∈ N | I ∈ T and εI ≥ η} = ∅ we set jη = 0.

Proof. If Tη = {X} or {jI ∈ N | I ∈ T and εI ≥ η} = ∅, then jη = 0, so that the claim is
evident. If Tη 6= {X}, then 0 < η < 1. Take I ∈ T such that εI ≥ η. By (50) and (25b)

η2 ≤ ε2I ≤ ρI diamρ(I)2 ≤ C2b
−2jI

Hence

jI ≤
1

ln b
ln(

1

η
) +

1

2 ln b
lnC2 ≤ E ln(

2

η
),

where E = max{1, lnC2
2 ln 2}/ ln b. �

Proposition 5.1.9. Given η > 0, for all σ < s,

]Tη . η−
2

2s+1 ln(
2

η
) . η−

2
2σ+1 (55a)

]Λη . η−
2

2s+1 ln(
2

η
) . η−

2
2σ+1 , (55b)

where the constants in . also depend on σ.
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Proof. As observed in Remark 5.1.6, we can assume that 0 < η < 1. Let

Υ = {I ∈ Tη | εI ≥ η and εJ < η ∀J ∈ Ck(I), k ≥ 1}.
By (42) the elements of Υ are disjoint. Let Λ ⊂ T be a partition such that Υ ⊂ Λ. Hence, by (51)

]Υ ≤ ]{I ∈ Λ | εI ≥ η} . η−
2

2s+1 . (56)

We claim that
Tη =

⋃
J∈Υ

T (J) = T (Υ).

By construction Tη ⊃
⋃
J∈Υ T (J). To prove the opposite inclusion, fix I ∈ Tη, then there exists

J1 ∈ T such that J1 ⊂ I and εJ1 ≥ η. If J1 ∈ Υ, then I ∈ T (J1). Otherwise, there exists
J2 ⊂ J1 ⊂ I and εJ2 ≥ η. If J2 ∈ Υ, I ∈ T (J2). Otherwise, because of Tη is finite, we can repeat
the procedure until we get Jk ∈ Υ such that Jk ⊂ I, then I ∈ T (Jk) and the claim is proven.
By (43b)

]Tη = ]T (Υ) ≤ 1 +
∑
J∈Υ

jJ ≤ 1 + ]Υ jη . η
− 2

2s+1 ln(
2

η
),

since, by definition, jJ ≤ jη and the last inequality is due to (56) and (54). This shows the first
inequality in (55a). Since σ < s, for some δ > 0

η−
2

2s+1 ln(
2

η
) = η−

2
2σ+1 ηδ ln(

2

η
) ≤ Cη−

2
2σ+1

where C = sup0<η≤1 η
δ ln( 2

η ), which is finite, since limη→0 η
δ ln( 2

η ) = 0. Bound (55b) is a direct

consequence of (44). �

Remark 5.1.10. In the following, for sake of clarity we bound the logarithmic dependence on η
by considering σ < s. However our results can be extended to σ = s by adding a logarithmic
factor, as in (55a) and (55b).

5.2. Manifold Setting Results.

Proof of Thm. 3.4.1. We first observe that it is enough to show that there exists a partition
tree T′ = {Λj} for M. Indeed, by adding to each partion Λj , the cell I0 = X \ M, we get a
partion of X , which satisfies Assumptions 3.3.1, since diamρ(I0) = 0.

Since X is bounded, then M is a connected compact manifold and, hence, (M, dM, ρM) is an
Ahlfors regular metric measure space [46, page 413], i.e.

d1 r
d ≤ ρM(BM(x, r)) ≤ d2 r

d r ≤ diam(M),

where BM(x, r) is the ball of center x and radius r with respect to the Riemannian metric dM.
By (28b)

d1p1 r
d ≤ ρ(BM(x, r)) ≤ d2p2 r

d r ≤ diam(M), (57)

where d is the intrinsic dimension of M. Since (M, dM, ρ) is an Ahlfors regular metric measure,
too, there exists a family of dyadic cubes, i.e for each j ∈ Z there is a family Λj = {I} of open
subsets of M such that

ρ(M\∪I∈ΛjI) = 0 (58a)

I ∩ J = ∅ I, J ∈ Λj , I 6= J (58b)

either I ∩ J = ∅ or J ⊂ I I ∈ Λj , J ∈ Λj+` (58c)
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I ⊃ BM(xI , r0δ
j) I ∈ Λj (58d)

I ⊂ BM(xI , r1δ
j) I ∈ Λj (58e)

where 0 < r0 < r1 and δ ∈ (0, 1) are given constants [23, Theorem 11]. As noted in [42], it is
always possible to redefine each cell I ∈ Λj by adding a suitable portion of its boundary in such
a way that

M = ∪I∈ΛjI (59)

and (28a)–(58e) still hold true, possibly with different constants. Since M is compact, there
exists j0 ∈ Z such that BM(x0, r1δ

j0) = M for some x0 ∈ M. Hence, possibly redefining j,
r0 and r1, we can assume that Λ0 = {M} and, as a consequence of (58b), (58c) and (59), the
family {Λj}j∈N is a partion tree forM where the bound in (19) is a consequence of the following
standard volume argument. Fix j0 large enough such that for all j ≥ j0, r1δ

j ≤ diamM, then
given I ∈ Λj

ρ(I) =
∑
J∈C(I)

ρ(J) ≥
∑
J∈C(I)

ρ(BM(xJ , r0δ
j+1)) ≥ ]C(I) d1p1r

d
0δ
d(j+1),

where the third and the forth inequalities are consequence of (58d) and (57).

On the other hand, by (58e) and (57),

ρ(I) ≤ ρ(BM(xI , r1δ
j)) ≤ d2p2r

d
1δ
jd

so that

]C(I) ≤ d2p2r
d
1

d1p1rd0δ
d

= D

Bound (19) holds true by setting

a = max{max
j<j0
I∈ΛJ

{# C(I)}, D}.

We now show that (25b) holds true. Indeed, sinceM is Riemmannian submanifold of RD it holds
that

‖y − x‖ ≤ dM(y, x) x, y ∈M, (60)

see [82, Corollary 2 and Proposition 21, Chapter 5]. Given I ∈ Λj , by (58e),

diamρ(I) ≤ diam(I) ≤ sup
x,y∈I

‖x− y‖ ≤ sup
x,y∈BM(xI ,r1δj)

dM(x, y) ≤ 2r1δ
j ,

so that (25b) holds true with b = 1/δ > 1 and C2 = 2r1. To show (25a), given I ∈ Λj , by (58d)
and (57)

ρ(I) ≥ ρ(BM(xI , r0δ
j)) ≥ d1p1δ

jd.

Hence

diamρ(I) ≤ 2r1δ
j ≤ 2r1

(
ρ(I)

d1p1

) 1
d

,

so that (25a) holds true with C1 = 2r1(d1p1)−
1
d and s = 1/d. �

Proof of Lemma 4.4.1. With the notation of the above proof. Since EI = 0 if ρI = 0, we
can assume that ρI > 0, so that by assumption µI > 0 and, with (40),

EI ≤ Φ+
ρI
µI

∫
I
‖x− cI‖2 dµ(x) ≤ Φ+D

2
sρIµ

2s
I .



5. PROOFS OF APPROXIMATION RESULTS 39

Fix q ≥ 1, as in (52)

η
1
qN+ ≤ Φ

1
q

+D
2
q
s

∑
I∈Λ+

ρ
1
q

I µ
2s
q

I , (61)

and Holder inequality with 1/p+ 1/q = 1 gives

∑
I∈Λ+

ρ
1
q

I µ
2s
q

I ≤

∑
I∈Λ+

(ρI µ
2s
I )

p
q

 1
p
∑
I∈Λ+

1q

 1
q

≤

(∑
I∈Λ

µI(
ρI
µI

)
1

2s+1

) 2s+1
2s+2

N
1

2s+2
+ =

(∑
I∈Λ

ρI(
ρI
µI

)−
2s

2s+1

) 2s+1
2s+2

N
1

2s+2
+

where the last inequality follows by choosing p/q = 1/(2s+ 1), i.e. q = 2s+ 2. Since the function

t 7→ t−
2s

2s+1 is convex on (0,+∞), Jensen inequality and the first inequality in (39) give

ρI(
ρI
µI

)−
2s

2s+1 ≤ ρI
µI

∫
I
p(x)−

2s
2s+11|p(x)>0 dµ(x)≤ ρI

µI

∫
I

p(x)
1

2s+1

p(x)
dµ(x) ≤ 1

Φ−

∫
I
p(x)

1
2s+1dµ(x)

≤ 1

Φ−

∫
I
p(x)−

2s
2s+11|p(x)>0dµ(x).

By replacing in (61) we get

N+ ≤ Φ−1
−

(
D2
s Φ+ ‖p‖ 1

2s+1

) 1
2s+1

η−
1

2s+1

≤ Φ−1
−

(
D2
s Φ+

∥∥p−2s
1|p(x)>0

∥∥
1

2s+1

) 1
2s+1

η−
1

2s+1

�



40 1. MULTI-SCALE VECTOR QUANTIZATION WITH RECONSTRUCTION TREES

6. Statistical Tools

We recall the following probabilistic inequality based on a result of [84, 85], see also [110,
Theorem 3.3.4] and [83] for concentration inequalities for Hilbert-space-valued random variables.

Proposition 6.0.1. Let ξ1, . . . , ξn be a family of independent zero-mean random variables taking
values in a real separable Hilbert space and satisfying

E[‖ξi‖m] ≤ 1

2
m!Σ2Mm−2 ∀m ≥ 2, (62)

where Σ and M are two positive constants. Then, for all n ∈ N and t > 0

P

[∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥ ≥ t
]
≤ 2 exp

(
− nt2

Σ2 +Mt+ Σ
√

Σ2 + 2Mt

)
= 2 exp

(
−n Σ2

M2
g(
Mt

Σ2
)

)
(63)

where g(t) = t2

1+t+
√

1+2t
. In particular, if ξi are bounded by M with probability 1, then

P

[∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥ ≥ t
]
≤ 2 exp(− nt2

4M2
). (64)

Proof. Bound(63) is given in [84] with a wrong factor, see [85]. To show(64), note that (62)
is satisfied with Σ = M . Furthermore, for all t ≤ 1, g(t) ≥ t2/4, so that if t ≤M ,

P

[∥∥∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥∥∥ ≥ t
]
≤ 2 exp(− nt2

4M2
)

whereas, if t > M , (64) is trivially satisfied. �

The following concentration inequality is based on [66] and we adapt the proof of Theorem 10
in [67]. We introduce the following notation. Given a family ξ1, . . . ξn of independent random
variables taking value in some measurable space Y and a measurable positive bounded function
f : Yn → R, for any k = 1, . . . , n set

Vk = f(ξ1, . . . , ξn)− inf
y∈Y

f(ξ1, . . . , ξk−1, y, ξk+1, . . . , ξn)

= sup
y∈Y

(
f(ξ1, . . . , ξn)− f(ξ1, . . . , ξk−1, y, ξk+1, . . . , ξn

)
.

Proposition 6.0.2. With the above notation, if there exist two constants α, β > 0 such that

max
k=1,...,n

Vk ≤ α (65a)

n∑
k=1

V 2
k ≤ βf(ξ1, . . . , ξn) (65b)

then, for any t > 0

P
[∣∣∣√f(ξ1, . . . , ξn)−

√
E[f(ξ1, . . . , ξn)]

∣∣∣ > t
]
≤ 2 exp(− t2

2 max{α, β}
). (66)
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Proof. Set Zk = Vk/α and Z = f(ξ1, . . . , ξn)/α. By construction

Zk ≤ 1 k = 1, . . . , n
n∑
k=1

Z2
k ≤

β

α
Z.

Let γ = max{β/α, 1}. Theorem 13 of [66] gives that

P [E [Z]− Z > t] ≤ exp(− t2

2γE[Z]
) (67)

P [Z − E [Z] > t] ≤ exp(− t2

2γE[Z] + γt
). (68)

By replacing t with 2t
√

E[Z] in (67)

exp(−2t2

γ
) ≥ P

[
E [Z]− 2t

√
E[Z] + t2 > Z + t2

]
= P

[∣∣∣√E[Z]− t
∣∣∣ >√Z + t2

]
≥ P

[√
E[Z]−

√
Z > 2t

]
since √

E[Z]− t ≤
∣∣∣√E[Z]− t

∣∣∣ ≤√Z + t2 ≤
√
Z + t

provided that
∣∣∣√E[Z]− t

∣∣∣ ≤ √Z + t2. Hence

P
[√

E[Z]−
√
Z > t

]
≤ exp(− t

2

2γ
). (69)

Setting t2

2E[Z]+t = 2τ2, bound (68) gives

exp(−2τ2

γ
) ≥ P

[
Z − E[Z] > τ2 +

√
τ4 + 4τ2E[Z]

]
≥ P

[
Z − E[Z] > 4τ2 + 4τ

√
E[Z]

]
= P

[
Z >

(√
E[Z] + 2τ

)2
]

= P
[√

Z −
√
E[Z] > 2τ

]
,

so that, setting τ = t/2,

P
[√

Z −
√
E[Z] > t

]
≤ exp(− t

2

2γ
). (70)

Bounds (69) and (70) imply that

P
[∣∣∣√Z −√E[Z]

∣∣∣ > t
]
≤ 2 exp(− t

2

2γ
),

and, by replacing t with t/
√
α,

P
[∣∣∣√f(ξ1, . . . , ξn)−

√
E[f(ξ1, . . . , ξn)]

∣∣∣ > t
]
≤ 2 exp(− t2

2αγ
).
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where αγ = αmax{β/α, 1} = max{β, α}. �
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7. Proofs of Stability Results

The proof of Theorem 3.5.1 is based on the estimate of Proposition (55a), plus borrows some
ideas from [12, 59] adapted to our setting through some intermediate results. For sake of clarity

let P̂η = P̂
Λ̂η

.

Proof of Thm. 3.5.1. Consider the following decomposition

x− P̂
Λ̂η

(x) =
(
x− PΛ(T̂η∪T2η)(x)

)
+
(
PΛ(T̂η∪T2η)(x)− PΛ(T̂η∩Tη/2)(x)

)
+

+
(
PΛ(T̂η∩Tη/2)(x)− P̂Λ(T̂η∩T2η)(x)

)
+
(
P̂Λ(T̂η∩T2η)(x)− P̂Λ(T̂η)(x)

)
,

which holds for all x ∈ X . Since∥∥∥∥∥
4∑
i=1

vi

∥∥∥∥∥
2

≤ 4

4∑
i=1

‖vi‖2 v1, . . . , v4 ∈ RD,

it holds that

E [P̂
Λ̂η

] . E [PΛ(T̂η∪T2η)]︸ ︷︷ ︸
A

+

∫
X

∥∥∥PΛ(T̂η∪T2η)(x)− PΛ(T̂η∩Tη/2)(x)
∥∥∥2
dρ(x)

︸ ︷︷ ︸
B

+

∫
X

∥∥∥PΛ(T̂η∩Tη/2)(x)− P̂Λ(T̂η∩Tη/2)(x)
∥∥∥2
dρ(x)

︸ ︷︷ ︸
C

+

∫
X

∥∥∥P̂Λ(T̂η∩T2η)(x)− P̂Λ(T̂η)(x)
∥∥∥2
dρ(x)

︸ ︷︷ ︸
D

.

We bound the four terms.

A) Since T̂η ∪ T2η ⊃ T2η, Λ(T̂η ∪ T2η) is a partition finer than Λ2η, then

E [PΛ(T̂η∪T2η)] ≤ E [PΛ2η ] . η
4σ

2σ+1 ,

where the last inequality is a consequence of (34).
B) Bound (81a) implies that the term B is zero with probability greater than 1− pB where

pB . (nγ + η−
2

2σ+1 ) exp(−canη2).

C) Since Λ(T̂η ∩ Tη/2) ⊂ Tη/2 ∪ Λη/2 = I and ]Λ(T̂η ∩ Tη/2) ≤ ]Λη/2 = N , by (72) term C is

bounded by t∗ = η
4σ

2σ+1 t with probability greater than 1− pC with

pC = 2]I exp

(
−nt

∗

4N

)
. η−

2
2σ+1 exp

(
−cTnη2t

)
(71)

where the second inequality is a consequence of (55a) and (55b), and cT > 0 is a suitable
constant depending on the partition tree T.

D) By (81b) term D is zero with probability greater that 1− pD where

pD . η
− 2

2σ+1 exp(−canη2).
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If follows that with probability greater than 1− (pB + pC + pB)

E [P̂
Λ̂η

] . η
4σ

2σ+1︸ ︷︷ ︸
A

+ η
4σ

2σ+1 t︸ ︷︷ ︸
C

i.e.

P
[
E [P̂

Λ̂η
] & η

4σ
2σ+1 (1 + t)

]
. (nγ + η−

2
2σ+1 ) exp

(
−canη2t

)︸ ︷︷ ︸
pA+pD

+ η−
2

2σ+1 exp
(
−cTnη2t

)︸ ︷︷ ︸
pC

which gives (29). �

Proof of Cor. 3.5.2. Since η2
n = (γ+β) lnn

can
, then bound (29) gives (31a) since

(nγ +

(
can

(γ + β) lnn

) 1
2σ+1

) exp
(
−canη2

n

)
. nγn−(γ+β) = n−β(

can

(γ + β) lnn

) 1
2σ+1

exp
(
−cTnη2

nt
)
. nn−cTt = n1−cTt

where cT = cTc
−1
a (γ + β). Eq. (31b) is clear. �

Proof of Prop. 3.6.1. Given I ∈ T, by (50) and (25b),∑
J∈CN+1(I)

EJ . a b−2(jI+N+1)

so that

lim
N→+∞

∑
J∈CN+1(I)

EJ = 0

and, by taking the limit in (48),

EI =

+∞∑
k=0

∑
J∈Ck(I)

ε2J .

Set Tk = Tη/2k for all k ∈ N, then

E(PΛη) =
∑
I∈Λη

EI =
∑
I∈Λη

+∞∑
k=0

∑
J∈Ck(I)

ε2J =
∑
J /∈Tη

ε2J

=
+∞∑
k=0

∑
J∈Tk+1\Tk

ε2J ≤
+∞∑
k=0

]Tk+1 (
η

2k
)2

.
+∞∑
k=0

η2

22k
(
η

2k+1
)−

2
2σ+1 = η

4σ
2σ+1

+∞∑
k=0

4
k+1
2σ+1

−k . η
4σ

2σ+1

where the first inequality is a consequence of the fact that εJ < ( η
2k

)2 if J /∈ Tk, the second

inequality follows from (55a), whereas the last inequality holds since the series
∑+∞

k=0 4−
2σk−1
2σ+1

converges. �
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7.1. C-term: sample error. The following result bounds the sample error for a given
partition.

Proposition 7.1.1. Fix a data-independent subset I ⊂ T of cells and N > 0. Given a partition

Λ̂ ⊂ I (possibly depending on the data) such that ]Λ̂ ≤ N , for any t > 0,

P

[∫
X

∥∥∥PΛ̂
(x)− P̂

Λ̂
(x)
∥∥∥2

dρ(x) > t

]
≤ 2 ]I exp

(
− nt

8N

)
(72)

Proof. Consider the following event

Ω =
⋃
I∈I
{√ρI ‖ĉI − cI‖ > t},

which is well-defined since I does not depend on the data X1, . . . , Xn. By union bound

P[Ω] ≤ ]I sup
I∈I
ρI>0

P[‖ĉI − cI‖ >
t
√
ρI

]. (73)

Fix I ∈ I with ρI > 0. The tower property with respect to the binomial random variable nI gives

P[‖ĉI − cI‖ > t] =
n∑
k=0

(
n

k

)
ρkI (1− ρI)n−k P[‖ĉI − cI‖ > t | nI = k].

Conditionally to the event {nI = k} with k > 0, up to a permutation of the indexes, we can
assume that X1, . . . , Xk ∈ I and Xk+1, . . . , Xn /∈ I. Furthermore,

ĉI − cI =
1

k

k∑
i=1

(Xi − cI) =
1

k

k∑
i=1

ξi

where ξ1, . . . , ξk are independent zero mean random vectors bounded by M = diamρ(I) almost
surely by (45a). Hence, by (64)

P[‖ĉI − cI‖ > t | nI = k] ≤ 2 exp(− kt2

4 diamρ(I)2
),

which holds true also if k = 0. Hence,

P[‖ĉI − cI‖ > t] ≤ 2

n∑
k=0

(
n

k

)
(ρI exp(− t2

4 diamρ(I)2
))k(1− ρI)n−k

= 2

(
1− ρI

(
1− exp(− t2

4 diamρ(I)2
)

))n
≤ 2 exp

(
−nρI

(
1− exp(− t2

4 diamρ(I)2
)

))
where in the fourth term we use the bound (1− τ)n ≤ exp(−nτ) with 0 ≤ τ ≤ 1. Since

1− exp(−τ) ≥ τ

2
for all τ ≤ 1,

then, for all t ≤ diamρ(I),

P[‖ĉI − cI‖ > t] ≤ 2 exp

(
−nρI

t2

8 diamρ(I)2

)
≤ 2 exp

(
−nρI

t2

8

)
. (74)
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If diamρ(I) < t ≤ diamX ≤ 1, by (45c), clearly P[‖ĉI − cI‖ > t | nI > 0] = 0, so that

P[‖ĉI − cI‖ > t] = P[‖x̂∗I − cI‖ > t] | nI = 0]P [nI = 0] ≤ (1−ρI)n ≤ exp(−nρI) ≤ 2 exp

(
−nρI

t2

8

)
,

where the last bound holds true for any t ≤ 2
√

2. Finally, if t > diamX , as above

P[‖ĉI − cI‖ > t] = P[‖x̂∗I − cI‖ > t] | nI = 0]P [nI = 0] = 0

since x̂∗I , cI ∈ X , compare with (45c). It follows that (74) holds true for all t > 0. From (73)

P[Ω] ≤ 2 ]I exp

(
−nt

2

8

)
.

Since Λ̂ ⊂ I, on the complement of Ω,∫
X

∥∥∥PΛ̂
(x)− P̂

Λ̂
(x)
∥∥∥2

dρ(x) =
∑
I∈Λ̂
ρI>0

ρI ‖ĉI − cI‖2 ≤ Nt2,

and bound (72) follows by replacing t with
√
t/N . �

Remark 7.1.2. By inspecting the proof, it turns out that the assumption x̂I
∗ ∈ X is only needed

in this proposition and it can be replaced by the condition that infx∈X ‖x̂∗I − x‖ ≤ 1, so that
‖x̂∗I − cI‖ ≤ 2.

7.2. B and D terms: Stability of PΛ with respect to the partition. The following
result is well-known.

Lemma 7.2.1. Given a cell I ∈ T with ρI > 0, for all t > 0

P
[∣∣∣nI
n
− ρI

∣∣∣ ≥ ρIt] ≤ 2 exp

(
− nρIt

2

2(1 + t/3)

)
≤ 2 exp

(
−nρIt

2

MI

)
(75)

where MI = 2/3 max{4, (1 + 2ρI)/ρ1}.

Proof. We apply the Bernstein inequality, see [17, Corollary 2.11], to the family of inde-
pendent random variables 1I(X1), . . . ,1I(Xn), which satisfy

E[1I(Xi)] = ρI i = 1, . . . , n
n∑
i=1

E[1I(Xi)
2] = nρI

n∑
i=1

E[1I(Xi)
m] = nρI ≤

nρI
2
m!(

1

3
)m−2 m ∈ N, m ≥ 3,

then,

P [|nI − nρI | ≥ nρIt] ≤ 2 exp

(
− (nρIt)

2

2(nρI + nρIt/3)

)
= 2 exp

(
− nρIt

2

2(1 + t/3)

)
.

Observing that
|nI − nρI | ≤ nmax{ρI , 1− ρI}.

If t > max{1, 1/ρI − 1} = t∗, then P [|nI − nρI | ≥ nρIt] = 0. If t ≤ max{1, 1/ρI − 1} = t∗, it
holds that

2(1 + t/3) ≤ 2(1 + t∗/3) = MI ,
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so that the second bound in (75) is clear. �

The following lemma provides a concentration inequality of
√

nI
n .

Lemma 7.2.2. Given a cell I ∈ T with ρI > 0, for all t > 0

P

[∣∣∣∣√nI
n
−√ρI

∣∣∣∣ ≥ t] ≤ 2 exp

(
−nt

2

2

)
. (76)

Proof. We apply Proposition 6.0.2 with Y = {0, 1}

ξi = 1I(Xi) f(y1, . . . , yn) =
1

n

n∑
i=1

yi,

where f is clearly bounded, and

f(ξ1, . . . , ξn) =
nI
n

E [f(ξ1, . . . , ξn)] = ρI .

Given k = 1, . . . , n, it holds that

Vk(ξ1, . . . , ξn) =
1

n
sup
y∈Y

(1I(Xi)− y) =
1

n
1I(Xi) ≤

1

n
,

so that α = 1/n. Furthermore∑
k

V 2
k (ξ1, . . . , ξn) =

1

n2

∑
k

1I(Xi) =
1

n
f(ξ1, . . . , ξn)

then β = 1/n and Eq. (66) implies (76). �

The following lemma shows that, given a cell I ∈ T, ε̂I concentrates around εI .

Lemma 7.2.3. Given I ∈ T, for all t > 0

P [|ε̂I − εI | > t] ≤ 2` exp

(
−n t2

64`diamρ(I)2

)
. (77)

where ` = 1 + ]C(I).

Proof. Fix I ∈ T. If ρJ = 0 for some J ∈ C(I), then almost surely Xi /∈ J for all i = 1, . . . , n
and, hence, nJ = 0, so that both ε̂I and εI do not depend on the children J . Hence, without loss
of generality, we can assume that ρJ > 0 for all J ∈ C(I).

Let ` = ]C(I) + 1. Set L2(C(I)) = R`−1, regarded as Euclidean vector space whose norm is
denoted by ‖v‖2. Define v, v̂, ŵ ∈ L2(C(I))

v(J) =
√
ρJ ‖cJ − cI‖

v̂(J) =

√
nJ
n
‖ĉJ − ĉI‖

ŵ(J) =
√
ρJ ‖ĉJ − ĉI‖ .

Then

|ε̂I − εI | = |‖v̂‖2 − ‖v‖2| ≤ ‖v̂ − v‖2 ≤ ‖ŵ − v‖2 + ‖v̂ − ŵ‖2 . (78)
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We now bound the first term. Set I = C(I) + {I} and ]I = `.

‖ŵ − v‖22 =
∑
J∈C(I)

ρJ |‖ĉJ − ĉI‖ − ‖cJ − cI‖|2

≤ 2
∑
J∈C(I)

ρJ |‖ĉJ − cJ‖+ ‖ĉI − cI‖|2

≤ 2
∑
J∈I

ρJ ‖ĉJ − cJ‖2

≤ 2`max
J∈I

ρJ ‖ĉJ − cJ‖2 ,

Setting

ΩI =
⋃
J∈I

{
‖ĉJ − cJ‖ >

t√
2`ρJ

}
,

bound (74) gives

P [ΩI ] ≤ 2` exp

(
− nt2

16`diamρ(I)2

)
,

so that

P [‖ŵ − v‖2 > t] ≤ 2` exp

(
− nt2

16`diamρ(I)2

)
. (79)

We now bound the second term in (78). Set

Ω′I =
⋃

J∈C(I)

{
|
√
nJ
n
−√ρJ | >

t√
`diamρ(I)

}
,

bound (75) gives

P
[
Ω′I
]
≤ 2` exp

(
− nt2

2`diamρ(I)2

)
,

On the complement on Ω′I

‖ŵ − v̂‖22 =
∑
J∈C(I)

‖ĉJ − ĉI‖2
(√

nJ
n
−√ρJ

)2

≤ `diamρ(I)2 sup
J∈C(I)

∣∣∣∣√nJ
n
−√ρJ

∣∣∣∣2 ≤ t2.
Hence

P [‖ŵ − v̂‖2 > t] ≤ 2` exp

(
− nt2

2`diamρ(I)2

)
. (80)

Inequality (78) with bounds (79) and (80) implies (77). �

The next proposition shows that PΛ is stable under suitable small perturbations of the partition Λ.

Proposition 7.2.4. For any η > 0

P

∫
X

∥∥∥PΛ(T̂η∪T2η)(x)− PΛ(T̂η∩Tη/2)(x)
∥∥∥2
dρ(x)

 > 0

 . (nγ + η−
2

2σ+1 ) exp(−canη2) (81a)
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and

P

∫
X

∥∥∥PΛ(T̂η∪T2η)(x)− PΛ(T̂η)(x)
∥∥∥2
dρ(x)

 > 0

 . η− 2
2σ+1 exp(−canη2). (81b)

where

ca =
1

128(a+ 1)
. (81c)

Proof. Recalling the definition of jn given by (21), set T ∗n =
⋃
j≤jn

Λj , which is a subtree with

]T ∗n ≤
jn∑
j=0

aj =
ajn+1 − 1

a− 1
. nγ , (82)

and, by construction, T̂η ⊂ T ∗n . The probability of the event in the left hand side of (81a) is
clearly bounded by the probability of the event

{T̂η ∩ Tη/2 ( T̂η ∪ T2η} =
⋃
I∈T
{I ∈ T̂η ∧ I /∈ Tη/2} ∪ {I ∈ T2η ∧ I /∈ T̂η}.

About the first term, we observe that if I ∈ T̂η ⊂ T ∗n , then there exist k ≥ 0 and J ∈ Ck(I) ∩ T ∗n
such that ε̂J ≥ η and, since I /∈ Tη/2 and J ∈ Ck(I), then εJ <

η
2 , so that⋃

I∈T ∗n

{I ∈ T̂η ∧ I /∈ Tη/2} ⊂
⋃
J∈T ∗n

{ε̂J ≥ η ∧ εJ <
η

2
} ⊂

⋃
J∈T ∗n

{|ε̂J − εJ | >
η

2
}.

By union bound and (77) with t = η/2, diamρ(I) ≤ 1 and ` ≤ a+ 1 give

P

 ⋃
I∈T ∗n

{ε̂I ≥ η ∧ εI <
η

2
}

 . ]T ∗n exp
(
−canη2

)
. nγ exp(−canη2) (83)

where the second inequality is a consequence of (82) and ca is given by (81c).

By a similar argument

{I ∈ T2η ∧ I /∈ T̂η} ⊂
⋃

J∈T2η

{|ε̂J − εJ | > η}.

By union bound and (77) with t = η and diamρ(I) ≤ 1 give

P

 ⋃
I∈T2η

{εI ≥ 2η ∧ ε̂I < η}

 . ]T2η exp
(
−canη2

)
. η−

2
2σ+1 exp(−canη2), (84)

where the second inequality is a consequence of (55a).

By (84) and (83), we get (81a). The proof of (81b) can be deduced reasoning as for (84). �
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8. Possible Improvements

In this section we review a few points in which the proofs seem to suggest that a slightly finer
analysis could reached. These improvements have not been pursued, either because we weren’t
able to work out them in full detail, or because the main result is already competitive as it is,
and further complications would only make it less readable, or because of time constraints.

8.1. Logarithmic factor in Proposition (5.1.9).

The cardinality of the subtree Tη ⊂ T is evaluated by a rough estimate which considers the tree
as it was made of a number of disjoint branches root-to-leaf, all of the same length and ignoring
their overlaps. It is clear that the logarithmic factor in the result stems from this procedure,
while an analysis taking into account the overlaps could potentially drop the logarithmic factor.
At the moment it is not clear how exactly to perform such an analysis. Since this is not the
only logarithmic factor in our main result, this change by itself would not produce a substantial
improvement.

8.2. Bounding diamρ(I) in Proposition (7.1.1).

The decay of diamρ(I) with respect to jI , as well as with respect to ρI , is determined due to
Assumption (3.3.1). Proposition (7.1.1) uses the rough estimate:

ρI

diam2
ρ(I)

≥ ρI ,

which does not exploit the decay of diamρ(I). Since the assumptions contain constants on whose
value there is no control, it is difficult to take advantage of the mentioned decay.

Again on Proposition (7.1.1), the choice to have x̂∗I possibly falling outside of I has only be
contemplated because it appears in [59], but does not make sense algorithmically, since the
outcome can only perform worse, and choosing x̂∗I ∈ I doesn’t seem to entail much computational
complexity.



CHAPTER 2

Matroidal Structures in Graph Signal-Processing

1. Problem Statement

Graph Signal Processing is a teeming scientific avenue, where a problem of practical interest
meets theoretical challenges, that pertain to branches of Mathematics as far apart as Analysis
and Combinatorics, with the further appeal of being relatively recent. A space, as simple as
the finite-dimensional vector space of signals on a finite set of vertexes, is decorated with the
relations between the vertexes given by the weighted adjacency edges of a graph. These naturally
give raise to a linear operator that to many regards resembles a Fourier transform, mirroring the
graph domain into a frequency domain. On the one hand this structure asymptotically tends
to mimic analysis on locally compact groups or manifolds, but on the other hand its discrete
nature triggers a whole new scenario of algebraic phenomena, that don’t quite have any obvious
continuous counterpart. Hints towards making sense of the laid out framework are objects that
already embody a discrete nature in continuous setting, such as measures with discrete support in
time and frequency, also called Dirac combs. While these measures are key towards formulating
sampling theorems and constructing wavelet frames in time-frequency Analysis, in the graph-
frequency setting these boil down to distinguished combinatorial objects, the so called Circuits
of a matroid, corresponding to the Fourier transform operator. In this study I strove to throw as
many bridges as I could between the Combinatorics of this matroid and the properties of graph
signals; as expressed, for instance, by Propositions 3.5.2, 3.5.4 and 3.5.5. This endeavour is, to the
best of my knowledge, unprecedented. In a particularly symmetric case, corresponding to Cayley
graphs of finite abelian groups, the Dirac combs are proven, through Theorems 5.2.7 and 5.2.11
and Corollary 5.2.12, to completely describe the so called lattice of cyclic flats, exhibiting in this
case the strong property of being atomistic, among other properties. This is a strikingly concise
description of the matroid, that opens many questions concerning how this highly regular struc-
ture relaxes into more general instances. Lastly, a related problem concerning the combinatorial
interplay between a Fourier operator and its Spectrum is described, provided with some glimmers,
namely Proposition 6.1.2 and Remark 6.2.3, towards its future development.
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2. Background

In this section I first review the recent literature about Graph Signal-Processing, focusing on the
structural aspects that motivated my attempts. In particular three fundamental branches of the
research about Graph Signal-Processing will be presented, namely Sampling theory, Uncertainty
Principles, and Bank Filters design; all of three turn out to potentially benefit from the framework
of this thesis. This sections ends with a review of the basic ideas underlying the rest of this thesis.

2.1. Graph Signal-Processing.

The term Graph Signal refers to a vector indexed by the vertices V = {1, ..., n} of a weighted
undirected graph G(V,A); A = {Aij}i,j∈V is a real symmetric matrix called adjacency matrix,
whose non-zero entry Aij defines a weighted edge between vertices i, j. Let the matrix L = D−A
be called Graph Laplacian, where D = diag({

∑
j Aij}i); let V be the vectorial space of graph

signals. Examples are ubiquitous in the applications. The vertexes of a graph may represent
any type of network, for example people in a community, brain regions in neuronal networks, or
stations in transportation networks. Data on a graph may be scalars defined on each nodes, which
form a graph signal [74]. Extending classical signal processing methods to graph signals is the
purpose of the emerging field of Graph Signal Processing [97, 96, 89]. The cornerstone of Graph
Signal Processing is using L as a surrogate for the classical Laplace operator on euclidean spaces.
This choice is usually justified by analogy with the situation of the path-graph, considered as
regular discretisation of the real line R, in which L exactly matches to the stencil approximation
of the second derivative. Indeed, on RN , using the notation H = {±hej}j=1,...,N , x ∈ RN one has

∆f(x) =
N∑
j=1

∂2

∂x2
j

f(x) = − lim
h→0

1

h2

(
2Nf(x)−

∑
h∈H

f(x+ h)
)

Given a discrete abelian group G and a symmetric subset H ⊂ G,H = −H that generates G,
the corresponding Cayley Graph has vertexes V = G and adjacency matrix:

Aij =

{
1 if j − i ∈ H
0 otherwise.

The graph Laplacian in this case takes the form:

Lf(x) = |H|f(x)−
∑
h∈H

f(x+ h) =
(
|H| −A

)
f(x),

so that the analogy is strict. More generally, there is a whole literature addressing convergence
issues of L to the Laplace-Beltrami operator for graphs defined as discretisations of manifolds
[105]. However many graphs of interest are by no means discretizations of manifolds.

The choice of L allows to define a Graph Fourier Transform U∗. Let {uk ∈ V}k∈W be an
orthonormal basis of eigenvectors of L, having ordered eigenvalues {λk}k∈W , where W = {1, ..., n}
is referred to as frequency domain, being the eigenvalues often called frequencies (whereas V is
called graph domain). Then U will be the unitary matrix having {uk}k∈W as rows, and U∗ its
adjoint.

Many processing algorithms designed for graph signals attempt to leverage intuition from time-
frequency analysis by generalizing fundamental operators and transforms to the graph setting.
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While there is still limited theory, a solid amount of empirical research shows that the framework
is beneficial in various applications.

Among the intuitions at the core of the time-frequency analysis folklore, some do extend naturally
to the graph-frequency setting, while others do not. Unlike the classical Fourier modes, which
have global support, some graph Fourier modes have the surprising potential of being localized
on very few nodes. The farther a graph is far from a regular grid, the higher is the chance to
have a few localized Fourier modes, see for example [97, 1, 71].

A remarkable mismatch is the lack of a shift-invariant notion of translation for graph signals.

2.2. Sampling.

Within Signal-Processing, a cornerstone towards conveniently handling signals is provided by
Sampling techniques, that consist in measuring a signal on a reduced subset of the domain,
carefully chosen to enable stable reconstructions. Classically, sampling a continuous signal x(t)
consists in measuring a countable sequence of its values, {x(tj)}j∈Z , that ensures recovery of the
signal x(t), under a given smoothness model [107]. Smoothness assumptions are often defined in
terms of the signal’s Fourier transform. For example, Shannon’s famous sampling theorem [94]
is classically formulated for regular sampling on 1

ωs
Z ⊂ R. This formulation requires the use of

a well defined translation operator, which is in general not available for graph signals.

Despite that, the sampling theorem still admits a natural instance in the graph signal processing
setting, by simple linear algebra arguments; these provide in fact a more general formulation than
one might expect. On the one hand, in the continuous time-frequency analysis, a signal f ∈ L2(R)
is ωs-band-limited whenever its Fourier transform F{f} is supported on an interval [−ωs/2, ωs/2]
of the frequency domain. This condition constrains the smoothness of f by preventing high-
frequency components to be allowed. On the other hand, as mentioned above, for graph signals
the smoothness intuition doesn’t necessarily carry over, and it is natural to consider a more general
notion of band-limitedness; the considered bands are any subset Ω of the frequency domain W ,
not necessarily corresponding to frequencies inside an interval. In Section 3, Proposition 3.5.2
states that, in the graph setting, Ω-bandlimited signals can be reconstructed by sampling on
S ⊂ V whenever the N column vectors {1V−S |UΩ} are linearly independent1, that is, a basis of
V. In fact any set of column vectors UΩ can be completed to a basis by adding suitable canonical
basis vectors. In [4, 22] a different point of view on the same phenomenon is provided. A
related randomized algorithm is described in [104], and, despite apparent loose pertinence, was
motivational in the early stages of this project.

Natural choices for the smoothness models build upon the graph’s adjacency. The formal analogue
of a classical time-frequency ω-signal is a k-bandlimited graph signal whose k first Fourier coef-
ficients are non-null [22, 4]. Irregular sampling of k-bandlimited graph signals has been studied
first by Pesenson [80, 81] who introduced the notion of uniqueness set associated to the subspace
of k-bandlimited graph signals. If two k-bandlimited graph signals are equal on a uniqueness
set, they are necessarily equal on the whole graph. Random sampling was described in [86]; a
probability measure on the vertexes can be built, using the graph laplacian, in such a way that
sampling k-bandlimited signals, on a random subset of the vertexes, admits stable reconstruction
with high probability. Several other sampling schemes exist in the literature, such as schemes

1or equivalently for {1S |UW−Ω}.
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based on a bipartite decomposition of the graph [72], on a decomposition via maximum spanning
trees [75, 95, 53].

On the other hand, it is useful to look at one example in which a graph signal sampling theorem
can be formulated in the same way as the classical one. To this end, I recall the classical
statement with a proof that is particularly insightful; see for example [51, page 177]. This gives
the opportunity to formally introduce the concept of Dirac comb:

Definition 2.2.1. Given the Fourier transform F , a tempered distribution X will be called Dirac
comb if both X and F{X} have uniformly discrete support.

The proof of the Shannon-Nyquist theorem that I present is based on the Poisson Summation
Formula:

Theorem 2.2.2 (Poisson Summation Formula). As tempered distributions on R:

F
{∑
n∈Z

δ(x− nT )
}

=
1

T

∑
k∈Z

δ(ν − k/T ). (85)

One immediately notices that XT =
∑

n∈Z δ(x−nT ) is an example of Dirac comb. Furthermore
supp(XT ) is not only uniformly discrete, but also a subgroup of (R; +).

Theorem 2.2.3 (Shannon-Nyquist). Let f : R→ R be a Schwartz function2, such that F{f} is
supported in [−ωs/2, ωs/2]. Then f can be exactly reconstructed from its values on 1

ωs
Z.

Proof. Let the sampled version of f be represented by the distribution f(x)
∑

n∈Z δ(x −
n/ωs). Using Theorem 2.2.2:

F
{
f(x)

∑
n∈Z

δ(x− n/ωs)
}

(ν) = F{f}(ν) ∗
∑
k∈Z

ωsδ(ν − kωs)

= ωs
∑
k∈Z

F{f}(ν − kωs).
(86)

where ∗ denotes the convolution product. Therefore, because f is band-limited:

1[−ωs/2,ωs/2](ν)F
{
f(x)

∑
n∈Z

δ(x− n/ωs)
}

(ν) = F{f}(ν).

�

Roughly speaking, the result is ensured by the existence of a sufficiently rich collection of Dirac
combs, corresponding to the sampling frequency, and being an orbit with respect to the group
of translations and the group of modulations. In fact, in some cases, similar collections can be
constructed on graphs too. This is the case, for instance, when the graph at hand is a Cayley
graph of a finite abelian group G. In this case, G has an action g ∈ G,Tg : V → V by translation,

and the group of its characters Ĝ has an action χ ∈ Ĝ,Mχ : V → V by modulation, as in the
continuous case. Furthermore, whenever the degree |G| is not prime, some functions behave
like Dirac combs. These are functions whose support is a set of scattered isolated points, on
both domains V and W . They will be essentially determined by the factors of |G|, that is,

2For the purpose of this introduction a stronger formulation is not necessary.
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corresponding to each subgroup H < G. One such Dirac comb is simply the indicator function
of each subgroup H (rescaled to have unit `2 norm):

XH =
1√
|H|

1H(g), U∗XH =
1√
|H⊥|

1H⊥(g),

where H⊥ denotes the subgroup of Ĝ of characters that are constant on H (see, for example [26]).
The rest of the Dirac comb collection is given by the TG ×MĜ-orbit of XH . These are graph
signals that have particularly small support on both the graph and frequency domains; in fact in
this case all the graph signals f ∈ V reaching the smallest possible value of ‖f‖0 + ‖U∗f‖0 can
be obtained in this way; this result is obtained by rephrasing the finite Fourier analysis results
from [69, 100] in the graph signal case. This case is further elaborated in Section 5.

Let JV ⊂ V and JW ⊂ W be the supports of a graph signal f ∈ V and of its graph Fourier
transform f̂ := U∗f respectively. As a result the following linear combination of column vectors
is null:

N∑
i=1

fiei −
N∑
i=1

f̂iui ≡ 0.

Therefore the set of column vectors {1JV , UJW } is linearly dependent.

What I have just observed is that the relevant information about sampling of graph signals is
encoded in the linear independence/dependence relationships of some subsets of columns of the
N × 2N matrix [1|U ].

Remark 2.2.4. Sampling properties of band-limited signals only depend on the eignefunctions of
L, not on the spectrum. On the other hand, smoothness properties of these band-limited signals
substantially rely on the spectrum.

2.3. Uncertainty.

Efforts have recently been spent in literature towards understanding how the classical time-
frequency uncertainty principles extend to the graph-frequency setting [79]; this is of course a
wide topic, as localization in the graph and frequency domains can be defined in a variety of
different ways. The problem is not considered well understood, albeit most studies agree in
identifying, as main issue, the possibility for some uk to be highly localized in the graph domain,
depending on the topology of the graph [86].

The expression uncertainty principle seems at first to have a sinister connotation, as a principle
showing that some things are impossible to make. On the contrary, the uncertainty principle
is essentially the reason why stable recovery from a sample of signals or images can in fact be
performed, despite a significant amount of missing information; see for example [33]. In partic-
ular, uncertainty principles can provide guarantees that if a signal has a sparse decomposition
in a dictionary of incoherent atoms, this is indeed a unique representation that can be recovered
via optimization [36]. This idea underlies the recent wave of sparse signal processing techniques,
with applications such as denoising, source separation, inpainting, and compressive sensing.

Uncertainty principles such as the ones presented in [33, 36, 45, 21] are important examples. It
is desirable that the dictionary atoms are jointly localized in time and frequency, and uncertainty
principles characterize the resolution tradeoff between these two domains.
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A first family of uncertainty principles involves a notion of measure of the support of a sig-
nal. Such notions can be either support measures counting the number of non-zero elements,
or concentration measures, such as `p-norms. An important distinction is that these sparsity
and concentration measures are not localization measures, as they disregard whether the support
is clustered in a connected region of the vertex domain or not. A graph signal is nothing but
a finite-dimensional vector; one example based on this idea is provided by the Elad-Bruckstein
uncertainty principle [36]:

‖f‖0 + ‖U∗f‖0
2

≥
√
‖f‖0‖f̂‖0 ≥

1

µG

with µG = maxik |〈δi, uk〉|, coherence. Given v ∈ V, having Fourier transform U∗v, the functional
‖v‖0 = |{i|vi 6= 0}| is called 0-norm in the literature (formally this is not a norm). An example
of ‖‖p based uncertainty principle for graph signals is [106]. These results typically depend on
the mutual coherence between the graph Laplacian eigenvectors and the canonical basis of deltas.
The bounds are global, so they might be dramatically affected by a bottleneck that is only caused
by the edges of a few vertexes.

A second family of uncertainty principles involves a notion of distance. It goes along the line of
the Heisenberg uncertainty principle in physics, see for example [39, 64]. In this case uncertainty
corresponds to how much the signal spreads around some reference point, for example measuring
the variance of the signal (seen as a measure) in each domain. The Heisenberg uncertainty
principle states that the product of variances in the time and in the Fourier domains cannot be
arbitrarily small. The generalization of this uncertainty principle to the graph setting is complex
since there does not exist a simple formula for the mean value or the variance of graph signals, in
either the vertex or the graph spectral domains. In [1] the geodesic graph distance d(·, ·) is used
to constrain the spread of a graph signal around a given reference vertex:

f(i)

‖f‖2
≤ Ce−kd(i,j), for some j ∈ V

while on the frequency domain one might use: 〈f,Lf〉/‖f‖2 which is a measure of smootheness.
While there is in fact a tradeoff, the classical idea that a signal cannot be simultaneously localized
in the time and frequency domains around any reference point does not always carry over to the
graph setting.

Remark 2.3.1. Uncertainty principles based on a measure only depend on the eignefunctions of
L, not on the spectrum. On the other hand, uncertainty principles involving a notion of distance
substantially rely on the spectrum.

Local uncertainty principles were also studied, see [79]; these aim at a robust formulation that
isn’t drastically affected by a few bottlenecks in either of the domains.

2.4. Frames.

Once a definition of localization is chosen, a problem of great relevance in practice is finding
frames of functions that are all jointly localized in the graph and frequency domains, possibly
exhibiting a hierarchical organisation resembling that of wavelet frames; this has in fact been the
main focus within the community, see for example [25, 57, 72, 48, 87, 35, 61, 75, 98, 97, 43].
The goal of these techniques is to sparsely represent different classes of graph signals or efficiently
reveal important structural properties. Again, there is a little to no general theoretic approach
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and many choices are empirically justified. In [48, 43] a form of Littlewood-Paley decomposition
of the spectrum of L is attempted. Two main questions have to be addressed. The first is if
and in which sense the resulting frame exhibits joint localization, while the second is how much
the redundancy of the frame can be eliminated without loosing the main properties. These two
questions have been addressed in [27] in the general setting of Dirichlet Spaces satisfying certain
hypotheses, possibly having a rather small overlap with the scope of my work, as the hypotheses,
translated in the graph signal processing setting, turn out to be rather artificial.

Motivated by this scenario, I’m currently investigating the functions exhibiting a certain type of
joint localization, that I’m now going to describe.

Dirac combs in time-frequency analysis, as well as signals on Cayley graphs of some groups, play
a pivotal role in the design of particularly well behaved set of signals, such as multi-scale frames
and bankfilters in general. Indeed, in presence of a cascade of sampling theorems at different
scales, corresponding to a cascade of nested bands in the frequency domain, one has the following
sequence:

L2(R) ⊃ · · · ⊃ V (Bn) ⊃ V (Bn−1) ⊃ · · · (87)

where, in the time-frequency case, one may have for example3:

Bn = [−ωn/2, ωn/2], ωn = 2nω, ∀n ∈ Z
and

V (Bn) = span
{
Tj/ωn [φn]

}
j∈Z , supp

(
F [φn]

)
⊆ Bn,

for some bandlimited {φn ∈ L2(R)}n∈Z , and Tx[f ](·) = f(· − x).

A striking result of multi-resolution analysis is that one can choose φn in such a way that4:

• φn(·) = Dj/ωn [φ1(·)] ∝ φ1(· ωnj ),

• there exists ψ1 ∈ L2(R) allowing:

V (Bn) = W (Bn)⊕ V (Bn−1), W (Bn) = span
{
Tj/ωn [ψn]

}
j∈Z ,

with ψn(·) = Dj/ωn [ψ1(·)].

were the operator D, called dilation, does nothing but stretching the support, while maintaining
the L2-norm unaltered. There follows an orthogonal decomposition L2(R) =

⊕
n∈ZW (Bn) such

that each W (Bn) is band-limited, and obtained by transforming one function ψ1 through T,D;
this result had tremendous impact in the applications, see for example [65, 28]. An example
is provided by φ1 = F−1[1B1 ], ψ1 = φ1 − φ2, called Haar wavelets. Formal similarity allows to
apply the same machinery to the case of signal processing on Cayley graphs of abelian groups.

The following remark pertains the problem of more general graphs:

Remark 2.4.1. Roughly speaking, from the proof of Theorem 2.2.3 one can notice that, in order
to establish the decomposition (87) everything one needs is: a sequence of nested bands · · · ⊃
Bn ⊃ Bn−1 ⊃ . . . and a rich enough collection of Dirac combs, ordered in nested families · · · ⊃
Xn ⊃ Xn−1 ⊃ . . . such that every Dirac comb in Xn intersects Bn in only one of its spikes,
and every point in Bn is inside the support of one Dirac comb from Xn. One should notice that,
so far, Remark 2.3.1 still holds. The eigenvalues only come into play as soon as each band Bn is

3A more general formulation is not necessary for the purpose of this introduction.
4I omitted the normalization factor in the definition of dilation, in order to lighten the notation.
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required to be neighbourhood of a reference frequency, or if spatial localization is imposed for the
functions in V (Bn), as this would rely on the adjacency notion.

An orthogonal decomposition is always possible, but its interpretation through translations and
dilations crucially relies on the specific form that the Dirac combs take; in any non-standard
scenario this is likely to get lost.

For functions on Rn, non-standard Dirac combs, properly called Fourier quasi-crystals, have
been studied extensively; see for example [58]. The corresponding possible generalizations of
multi-resolution analysis have been explored as well [29]. Concerning graph signal processing,
signals with small ‖‖0 support on both domains might be considered a generalization of Dirac
combs. The situation is non-standard in a different sense as compared to Rn, as rather than
looking for discrete supports that don’t have a group structure, the spatial domain itself has
no group structure. The vast majority of the graph signal processing community is focused on
building efficient algorithms for some specific purpose, and, with a few exceptions, comes from a
background in analysis or engineering. I’m not aware of in depths studies in this sense, from a
combinatorial point of view.

2.5. Combinatorial Framework.

To better understand the phenomena described above, I propose to consider the N -by-2N matrix

[1, U ] as a point on the Grassmannian Gr2N
N := Gr

(
N, `2(V )⊕ `2(W )

)
. The latter, as algebraic

variety, is classically stratified in toric subvarieties called Strata, whose points exhibit the same
combinatorial properties; each Stratum corresponds to a Matroid [78]. Given the set of indexes

[2N ], a matroid is defined, in several ways, by a subset of the power-set 2[2N ]. For example, a
matroidM, corresponding to a matrix M ∈ Gr2N

N , can be regarded as the collection of its circuits

CM ⊂ 2[2N ], that is, minimal dependent sets. This means that for C ∈ CM the columns of M
labelled by C are linearly dependent5 and C is minimal with respect to this property. Another
way is by BM, the set of bases, maximal independent sets. Using this terminology, I can show that
joint localization of graph signals, as in Proposition 3.5.3, boils down to the collection of circuits
of the matroid [1, U ]. In a similar way, the problem of reconstructing band-limited signals from
subsampling [86] is captured by the set of bases of the same matroid, as in Proposition 3.5.2.
To the best of my knowledge this analogy has not been exploited so far in the literature, besides
for the sporadic use of the term girth in Compressed Sensing. Furthermore, the construction of
frames of graph signals with localization properties can benefit from Propositions 3.5.4 and 3.5.5.

The matrices of the form [1, U ], with U being unitary, do not cover the entire Gr2N
N (C), but

describe a sub-variety. The latter inherits a stratification from Gr2N
N (C). I can show that the

corresponding matroids admit a combinatorial characterization as identically self-dual matroids
(ISD). These are matroids with several properties, especially regarding the lattice theoretic con-
cepts of flats and cycles, the former being intersections of hyperplanes, the latter being unions of
circuits. It turns out that, in a ISD matroid, the lattice of flats is dual to the lattice of cycles; this
makes particularly relevant the so called cyclic flats, that by definition are both flats and cycles.
Structural properties of ISD matroids are reviewed in Section 4, also offering some possibly novel
results.

5Throughout, linear dependence is meant on C.



2. BACKGROUND 59

The main technically contribution is an in depth description of the special case of Cayley graphs
of finite abelian groups, in which the Dirac combs play a pivotal role; see Section 5. This case
corresponds to a class of representable ISD matroids, which I call Abelian Matroids. They are
highly symmetrical objects, exhibiting a striking amount of properties. In particular, under one
hypothesis, the lattice of cyclic flats is atomistic, and in fact is the intersection between the union
lattice generated by the atoms, and the intersection lattice of their complements (Theorems 5.2.7
and 5.2.11 and Corollary 5.2.12).

Based on this insight, my present effort is to understand how such scenario translates in the case
of a general ISD matroid, obtained form a generic graph Fourier transform U , using structural
results about matroids their cyclic flats [15, 34].

So far I only focused on the operator U regardless the graph structure. Within this project,
another line of research pertains the spectrum of the operator L; this is covered in Section 6,
mostly conjectural at the moment. It includes a result about the existence of a nontrivial spectrum
such that U corresponds to an admissible L (Proposition 6.1.2) and an open problem about a
second stratification of the group U(N) through admissible spectra (Remark 6.2.3), possibly
related to the matroidal stratification described above.
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3. Sparsity and Matroids

In this section I present the mathematical problem corresponding to the framework outlined
in the previous section. A few known results are reported here, in order to provide a self-
consistent foundation. The main results of this section are Theorem 3.2.2, Proposition 3.5.4 and
Proposition 3.5.5, and, despite simple, seem to be novel in this context. Roughly speaking they
describe how, in principle, a combinatorial object, an identically self-dual matroid constructed
from the eigenfunctions of the graph laplacian operator, gives hints towards defining a frame
or basis of highly localized (Dirac-comb-like) graph signals. A prototypical example of such
collection is the collection of Dirac Combs, as signals on a Cayley graph of a finite abelian group.
An in depth combinatorial description of the latter is postponed to Section 5.

3.1. Graph Signals.

A graph will be referred to as {V,A}, where V := [N ] is the ordered vertex set (the order is
arbitrary but fixed), while A ∈ MV×V (R) is the edge set, being Aij weight of the edge between
vertexes i, j ∈ V ; zero weights are considered missing edges. The graph is considered undirected,
that is AT = A, and acyclic that is Aii = 0, ∀i ∈ V . Every vertex has degree di =

∑
j∈V Aij .

I call signals the elements of V := `2(V ) ≡ CV , with 〈·, ·〉 canonical hermitian inner product,
and ‖ · ‖ the `2 norm. I refer to the canonical basis of V as {ei}i∈V . Given a signal v ∈ V, its
components are v(i) := 〈v, ei〉. A matrix O ∈ MV×V (C) is a linear operator on V, with matrix
entries Oij , and O∗ its adjoint.

The operator L = D − A is called Graph Laplacian, where D = diag
(
d1, ..., dN

)
. The definition

implies L is a real symmetric matrix, diagonally dominant, with nonpositive off-diagonal entries
and positive diagonal entries. As a result it has a spectrum of real nonnegative eigenvalues,
corresponding to orthogonal eigenspaces; see for example [18].

I choose an order on the spectrum (eigenvalues with multiplicity are repeated accordingly)
{λi}i∈W , with W = [N ], such that λi ≤ λj whenever i < j, and an orthonormal basis of eigenvec-
tors {ui}i∈W . W will be called frequency domain. I introduce the space of vectors W := `2(W ),
with the canonical basis {fi}i∈W .

Remark 3.1.1. In the case an eigenvalue has multiplicity higher than one, that is λj = · · · = λj+k,
the choice of {ui}j≤i≤j+k is not unique. This problem is shared by other algebraic approaches
to graph signal processing, see for example [101]. This thesis does not address the problem,
as I mainly focus on the properties of sets of orthonormal signals {ui}i∈W rather than of the
corresponding laplacian operator. Relevance of the issue remains unclear, in particular concerning
the discussion in Section 6. A reasonable ansatz is choosing {ui}j≤i≤j+k with minimal supports6.

For all signals v ∈ V I call graph Fourier transform the linear operator U∗ : V → W, with U a
unitary matrix having {ui}i∈W as columns, so that ui = Ufi. The operator U :W → V is called
anti-Fourier transform.

I introduce the auxiliary space X := V ⊕ W. I use the notation E := V ∪W = {1, ..., N,N +
1, ..., 2N}. Unless otherwise stated, it is meant that i ≤ N points to i ∈ V , while i > N points to

6The matroids corresponding to different choices are related anyways, one being weak image of the other.
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i−N = j ∈ W . The canonical basis of X is referred to as {gi}i∈V ∪W that is {ei ⊕ 0}i∈V ∪ {0⊕
fi}i∈W .

Signals on V are considered embedded in X via J : V → X such that v 7→ v ⊕ U∗v. The image

J(V) is spanned by the orthonormal basis {
√

2
2 (ei ⊕ U∗ei)}i∈V . This linear subspace will be

denoted by SU ⊂ X .

I denote with PS : X → X the usual orthogonal projection on a linear subspace S ⊆ X , while
the application ΠS : X → X/S⊥ is the canonical projection to the quotient space. In the cases
in which S is a coordinate space, the representatives of the quotient are chosen by disregarding
the coordinates that are identically zero in S.

The function ‖‖0 is defined in X as ‖x‖0 := #{i |x(i) 6= 0}. Analogous definitions hold in V and
W, so that ‖v ⊕ U∗v‖0 = ‖v‖0 + ‖U∗v‖0.

3.2. Sparsity Classes.

I shall study the following distinguished subspaces of V:

Definition 3.2.1.
Ds := {v ∈ V | ‖v ⊕ U∗v‖0 = s}

Clearly D2N = V and D0 = {0}. Besides these trivial cases, Ds is not in general a linear subspace
of V, but rather a union of linear subspaces. Referring to multi-indexes {i1, ..., is} =: J ⊆ V ∪W ,
I have:

Ds =
⋃
|J |=s

DJ

given by vectors v ∈ V such that v ⊕ U∗v is supported on J . The classes form a Poset with
respect to the partial order given by the inclusion ⊆. Excluding {0} it may have several minimal
elements, that are classes not including any other non-empty classes, while there is only one
maximal element, being D2N . I shall discuss the importance of such minimal non-trivial elements
later.

The following few results introduce the combinatorics of representable matroids, as applied to
the classes DJ .

Theorem 3.2.2. For any multi-index J , let PJ be the orthogonal projection on SJ := span{gi}i∈J .
Consider the following 2N × 2N matrix:

O =

[
−1 U
U∗ −1

]
,

where 1 is the N ×N identity matrix. Then I have:

DJ = ΠVPJ ker
(
PJOPJ

)
(88)

Proof. Let PU denote the orthogonal projection on SU and PI on SJ . Clearly DJ = ΠV(SJ∩
SU ). It is shown in [10] that the eigenspace of eigenvalue 1 of the product PJPU is exaclty SJ∩SU
(and by symmetry the same holds for PUPJ). It follows:

SJ ∩ SU = PJ ker(PJPU − 1) = PJ ker(PUPJ − 1) = PJ ker(PJPUPJ − 1)

= PJ ker(PJ(PU − 1)PJ).
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It remains to provide en expression for PU .

The operator

[
0 U
U∗ 0

]
is unitary, self-adjoint and traceless at the same time, and as a re-

sult has eigenvalues +1,−1 both with multiplicity N ; the corresponding eigenspaces are SU =

span{
√

2
2 (ei⊕U∗ei)}i∈V and S⊥U = span{

√
2

2 (ei⊕−U∗ei)}i∈V respectively. By adding the identity
operator, I get an operator with eigenvalues +2, 0, and same eigenspaces. It follows that:

PU =
1

2

(
1 +

[
0 U
U∗ 0

])
so that O = −2P⊥U = 2(PU − 1), and the claim follows.

�

Let AIJ denote the |I| × |J |-matrix obtained from A by erasing columns not labelled by J and
rows not labelled by I.

Corollary 3.2.3. The class DJ is non empty if and only if the following holds:

det(OJJ) = 0 (89)

or, equivalently, the columns of O labelled by J are linearly dependent. In fact, this is also
equivalent to the linear dependence of the columns labelled by J of the matrix:

[1|U ] (90)

The last statement justifies the use of the letter D, as Dependent Sets. Roughly speaking, linear
dependence of the columns labelled by J means that, there is a null linear combination of the vec-
tors {ei}i∈J∩V , {uj}j∈J∩W with non-zero coefficients; in that case the coefficients of the {ei}i∈J∩V
are nothing but the values of a function in DJ ⊂ V, while the coefficients of the {uj}j∈J∩W provide
the values of its Fourier transform.

Just like in classical time-frequency analysis, sparsity, as a measure of localization on the two
domains, is bounded from below. As mentioned in Section 2 results formalizing this constraint
are called uncertainty principles. One such result is presented in Section 3.5.

I already mentioned the ordering of the sparsity classes DJ by inclusion; from a combinatorial
point of view, DJ is particularly relevant if it is non-empty and minimal:

Definition 3.2.4. A multi-index J ⊆ [2N ] is called a circuit if DJ is non empty and there is no
support J ′ ⊂ J admitting a non-empty DJ ′. The collection of circuits is denoted by CU .

The combinatorial object described by CU admits a number of equivalent descriptions, all of
interest from a different point of view.

3.3. Rank functions and Bases.

Here an alternative description is offered, introducing the notion of combinatorial rank, from the
algebraic counterpart. I follow here the historical viewpoint of [40]. A more concise language is
adopted later.

The space SU (as well as its orthogonal complement S⊥U ) can be described by a configuration,

that is a CU ∈MN×2N (C) rank-N -matrix (resp. C⊥U ). One can interpret this matrix as either a
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collection of N vectors in X that span SU (resp. S⊥U ), or as a collection of 2N vectors in X/S⊥U
(resp. X/SU ) that redundantly span such space. Namely:

CU : X → X/S⊥U , gi 7→ CUgi, i ∈ [2N ], S⊥U = ker(CU )

C⊥U : X → X/SU , gi 7→ C⊥U gi, i ∈ [2N ], SU = ker(C⊥U ).
(91)

Remark 3.3.1. The choice of configuration is clearly not unique, as the action of GL(N) by left
multiplication does not modify the subspace represented by a configuration. Instead, the action of
GL(2N) by right multiplication does modify the subspace represented by a configuration;

Definition 3.3.2. Given any J ⊂ {1, ..., 2N}, the rank functions r, r⊥, s are defined by:

r(J) := dim(span{CUgi}i∈J),

r⊥(J) := dim(span{C⊥U gi}i∈J),

s(J) := dim(DJ).

(92)

Equivalent definitions can be found in literature: r⊥(J) = dim(S⊥U /(S⊥U ∩CJ̄)) = dim(CJ/(CJ ∩
SU )), where J̄ = [2N ]− J , and equivalently r(J) = dim(SU/(SU ∩ CJ̄)) = dim(CJ/(CJ ∩ S⊥U )).

Lemma 3.3.3. For any J ⊆ [2N ], with J̄ = [2N ]− J , the following holds:

r⊥(J) = |J | − s(J), r(J) = N − s(J̄) (93)

Corollary 3.3.4. The class DJ is non-empty if and only if r⊥(J) < |J |.

The rank functions r⊥, r (or, in their modern combinatorial notation rank, rank∗) play a pivotal
role in the theory of matroids. So far, the information that U is unitary has not been used. This
in fact has a remarkable consequence for the rank functions:

Proposition 3.3.5. In the context of this section, for any J ⊆ [2N ] one has r⊥(J) = r(J).

From now on, only the notation rank(J) will be used for the rank function.

I described how the combinatorial information contained in the matrix [1|U ] is encoded in the
function rank(·), and how this in turn determines the sparsity classes DJ , and the corresponding
spaces of functions through Theorem 3.2.2.

The combinatorial information stored in the function rank(·) can be alternatively encoded in a
number of equivalent ways. An important one is the following:

Definition 3.3.6. The multi-indexes of the following collection:

BU := {J ⊂ [2N ] | |J | = rank(J) = N}
are called bases.

The terminology is self-explanatory, the columns of [1|U ] corresponding to a multi-index J ∈ BU
are linearly independent. The function rank is completely determined by the corresponding
collection of bases BU . In particular :

Lemma 3.3.7.

rank(J) = max
I∈BU

|I ∩ J |
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From now on, whenever I talk about a Matroid, I refer, equivalently, to its rank function or to its
collection of bases. The collections of circuits CU and of bases BU can be obtained one from the
other, see for example [78].

3.4. Grassmannian Strata and Polytopes.

I already mentioned that the correspondence between matrix [1|U ] and the corresponding matroid
is not 1-to-1; this observation is simple but deep. Given a field F, consider FN and a linear
subspace represented as row-space of a matrix M . The matrix can indeed be transformed in
various ways and still correspond to the same matroid; see for example [16]:

Proposition 3.4.1. Let a matroid be represented by the d×N matrix M in F,

(1) the action of GL(k,F) on M by left multiplication does not modify the row space, hence
the matroid,

(2) the action of GL(N,F) on M by right multiplication does modify the row space, but,
the Cartan subgroup H < GL(N,F) given by the diagonal matrices, acting by right
multiplication, does not modify the matroid.

(3) the action of a field automorphism of F on M does not modify the matroid.

Since I work on C the only relevant field automorphism is the complex conjugation.

Point (2) of Proposition 3.4.1 suggests to look at the orbit H · M ; its Zarisky closure H ·M
is a toric sub-variety of the Grassmannian Gk(FN ). This is in fact the algebraic object that
corresponds to the matroid, see for example [40].

Going back to the setting of the previous section, in X ≡ C2N let GN (X ) denote the set of all
N -dimensional linear subspaces of X , the Grassmannian GN (X ). A classical way to describe
Grassmannians as smooth manifolds is by defining the Plücker coordinates.

Definition 3.4.2. Given a N -dimensional linear subspace S := span{xi}i=1,...,d ⊂ X , its Plücker
coordinates are labelled by the multi-indexes J ⊂ [2N ] with |J | = N , and are given by:

pJ(S) := det
(
ΠJx1, . . . ,ΠJxN

)
In the cases of my interest I consider the subspace SU : the vectors {xi}i=1,...,N are any row-

configuration, such as span{
√

2
2 (ei ⊕ U∗ei)}i∈V .

Remark 3.4.3. I have pJ 6= 0 if and only if J ∈ BU .

These coordinates are defined up to a multiplicative constant, and they only depend on the
subspace, not on the configuration.

Definition 3.4.4. For every multi-index J , consider δJ ∈ R2N having components +1 for labels
in J and 0 otherwise. The function µ : GN (X )→ R2N taking the following values:

µ(S) :=

∑
J∈BN |pJ(S)|2δJ∑
J∈BN |pJ(S)|2

this is called Moment Map.
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The image µ
(
GN (X )

)
will be the convex hull of all the vectors δJ , |J | = N . This is a convex

polytope depending only on N and 2N . Given a subspace SU as above, there corresponds a
collection of bases BU , which in turn corresponds to a set of vertexes δJ , J ∈ BU .

Theorem 3.4.5 ([16]). Consider a matroid represented by a matrix M . The image µ
(
H ·M

)
is

the convex hull of the vectors δJ , J ∈ BM .

Roughly speaking, two matrices M1,M2 represent the same matroid if and only if they share the
same moment map image of their Zarisky closed H-orbit.

3.5. Traces of Combinatorics of Graph Signal Processing.

In this section I introduce a few results that give an idea of how graph signal processing problems
might benefit from combinatorics. The common tool provided by the matroid represented by
[1|U ] offers a common language for questions that are usually dealt with separately, such as
uncertainty principles, sampling theory and bankfilters design. None of the results presented
have direct practical application; they are mostly meant to provide an intuition. Some will be
used, later in this thesis, to prove other results.

3.5.1. Sampling.

Definition 3.5.1. Given a subset B ⊂ W , which I call band, a function v ∈ V will be called
B-bandlimited if supp(U∗v) ⊆ B.

The following result summarizes graph signal sampling theory, in its most simple form, as an-
ticipated in Section 2, by mimicking the time-frequency results about non-lossy sampling. The
result is essentially not new, but its formulation presented here takes advantage of the formalism
introduced.

Proposition 3.5.2. Let J ∈ BU be a multi-index from the collection of bases. Then any JW -
bandlimited function v is uniquely determined by its values v(J̄V ), where JW = J ∩ W and
J̄V = V − (J ∩ V ).

For any band B ⊆W there exists a multi-index J ∈ BU such that J ∩W = B.

Clearly |JW | = |J̄V |.

Proof. Since the multi-index J is a basis, that is SU ∩CJ̄ = {0}, it follows that the subspace

SU can be expressed as graph of a function f : CJ → CJ̄ .

Again, because J is a basis, the columns of CU labelled by J are linearly independent for any
equivalent choice of configuration CU . Let me choose the following configuration (written by
columns), whose restriction to J is the identity:

{{ei}i∈JV , {Ufi}i∈JW , {U
∗ei}i∈JV , {fi}i∈JW }

Since I always have V ∈ BU , the set {{ei}i∈JV , {Ufi}i∈JW } will be a (non-orthogonal) basis of
V. But then I notice that {Ufi}i∈JW is a basis for the space of LW -bandlimited functions. Since
{ei}i∈J̄V is the orthogonal complement of the remaining part of the basis (i.e. {ei}i∈JV ), it follows
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that the orthogonal projection of LW -bandlimited functions onto {ei}i∈J̄V must be injective; by
dimensional counting, this projection is also surjective, thus the first statement holds.

The final statement holds since the columns of U are orthonormal, so that any set of columns
can be completed to a basis of V by adding suitable vectors from another basis (namely from
{ei}i∈V ). �

3.5.2. Uncertainty Priciples.

Referring to the sparsity classes DJ , I anticipated that they are expected to be empty up to a
certain threshold size, where a circuit J corresponds to a minimal non-empty sparsity class. The
smallest size of a circuit of a matroid is called girth. The following result from [36] provides a
lower bound from this value in a particularly simple form:

Proposition 3.5.3.
‖v ⊕ U∗v‖0

2
≥
√
‖v‖0‖U∗v‖0 ≥

1

µ
(94)

where µ := maxi,j |〈ui, ej〉|.

Proof. If a vector v has ‖v‖2 = 1 and is supported on K components, then ‖v‖1 ≤
√
K,

and equality is attained when each of the K components has absolute value 1/
√
K. So, given

v =
∑

i aiei =
∑

j bjuj , it follows:

1 = 〈v, v〉 = 〈
∑
i

aiei,
∑
j

bjuj〉 =
∑
i,j

aibj〈ei, uj〉

≤ max
i,j
|〈ui, ej〉|

∑
i

|ai|
∑
j

|bj | ≤ µ
√
‖v‖0

√
‖U∗v‖0.

The result follows since ‖v⊕U
∗v‖0

2 and
√
‖v‖0‖U∗v‖0 are arithmetic and geometric means respec-

tively.

�

This result, despite simple, is somewhat counterintuitive: a quantity of combinatorial nature,
such as the girth of a matroid, is constrained by the maximum value of the matrix U from a
representation, which roughly speaking is the cosine of an angle. This is a typical scenario in
Compressed Sensing, see for example [6]. In one of the subsequent sections I will analyze in
details a class of matroids for which this lower bound is attained. Besides providing a lower
bound for the girth, [6] provides conditions under which a search for minimal supports can be
performed by convex optimization on the `1 norm, which is highly more efficient to handle than
a combinatorial search. Despite the affinity, the reader will notice that none of the combinatorial
terminology is ever mentioned therein.

3.5.3. Frames.

Lastly, concerning the problem of bankfilters design, the following two results suggest how one
can, in principle, build frames or bases of highly localized (Dirac-comb-like) functions on a graph,
by using circuits of the matroid [1|U ].



3. SPARSITY AND MATROIDS 67

By definition, any circuit C ⊂ [2N ] has |C| − rank(C) = 1, that is dim(DC) = 1. Therefore,
modulo an overall complex phase, there is only one function supported on C ∩ V that has unit
`2 norm, with graph Fourier transform supported on C ∩W . This function will be denoted as
f [C] ∈ V. Let f̂ [C] denote the graph Fourier transform of f [C]. The function also corresponds
to a vector in CE whose coordinates on CV are the values of f [C] and whose coordinates on CW
are the values of f̂ [C].

Proposition 3.5.4. Consider a representable ISD matroid represented by [1|U ]. Let f [C] be the
unit `2-norm element of V associated with a circuit C.

For any distinct circuits C1, C2, the functions f [C1], f [C2] are linearly independent.

Let {Ci}i=1,...,k circuits with S :=
⋂k
i=1Ci, and B ∈ B(M) such that S ∩ B = Cj ∩ B, ∀j. Then

{f [Ci]}i=1,...,k as vectors of CE have linearly independent restrictions to vectors in CS∩B.

Proof. By definition both C1, C2 have proper intersections with both V and W , and since
are distinct, either C1 ∩ V 6= C2 ∩ V or C1 ∩W 6= C2 ∩W or both. Assume the first holds. Then
f [C1], f [C2] are linearly independent because on (C1−C2)∩V or (C2−C1)∩V only one of them
has non-zero values. The same argument holds in case C1 ∩W 6= C2 ∩W .

Since the matroid is ISD, given a basis B ∈ B and a function f ∈ V as above, the values of f on
E − B are obtained from its values on B by applying a bijective linear map TB : CB → CE−B.
Consider the vectors in CE corresponding to {f [Ci]}i=1,...,k. Their restrictions to CE−B have
incomparable supports, so they are linearly independent. Because TB is bijective, the image
vectors in CB are also linearly independent, and by construction they are supported on S ∩B.

�

Proposition 3.5.5. Consider an ISD matroid on [2N ] ≡ V ∪W represented by [1|U ], with U
unitary. Let f [C] be the unit `2-norm element of V associated with a circuit C. For two distinct
circuits C1, C2 let S = C1 ∩ C2. If S ⊆ V or S ⊆ W , then f [C1], f [C2] are orthonormal as
elements of V; moreover, restricted as vectors of CS, they are orthogonal.

Proof. Assume S ⊆ V . The scalar product reads:

〈f [C1], f [C2]〉V =
∑
i∈S

f [C1](i)f∗[C2](i) =
∑
j∈W

f̂ [C1](j)f̂∗[C2](j) = 0,

where the first and the last equality hold because the common support of the two signals is S on
V and ∅ on W . If S ⊆W a similar argument holds.

�

In fact, a set of N circuits determines an orthonormal basis of V whenever they only intersect,
pair-wise, on V or on W .
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4. Identically Self-Dual Matroids

Identically Self-Dual Matroids are a rich class of matroids exhibiting a strong symmetry, the
symmetry by complementation; these matroids are required by the theory outlined in the previous
sections. They come across as soon as Duality is introduced in Matroid Theory, and therefore
have been known and studied for long. Despite that, I’m not aware of published comprehensive
accounts entirely dedicated to their notable structure. In this chapter I review many properties
of Identically Self-Dual Matroids, of interest for the purpose of this thesis. Despite most of the
material is more or less well known, the overall path, as well as some observations, might in fact
be novel.

I already introduced Linear Matroids from the stratification of Grassmannian varieties, and antic-
ipated how their combinatorial axiomatization leads to general Matroids. Following the historical
path, the axiomatization usually starts by defining Independent sets, in analogy to linear inde-
pendence in vector spaces. Once the point of view is shifted to the combinatorial setting of
general matroids, the axioms of independent sets are just one of a number of equivalent axioma-
tizations, each based on a different combinatorial object, used to describe matroids; Independent
sets, Dependent sets, Bases, Circuits, Bonds, Flats, Hyperplanes, Cycles, Rank function, and
Closure operator are the most common ones, each being more convenient in a different context.
Each of these can be independently axiomatized, or can be obtained by either of the others [109].
Because this chapter is concerned with Duality, and I particularly care about small circuits for
application purposes, I’m going to focus on the axiomatizations that are better behaved to both
these respects at the same time: namely the one based on the Bases, and the one based on the
so called Cyclic Flats.

By exchanging opinions within the Matroid Theory community, I came across the unwritten
belief that the class of ISD matroids is structurally just about as complex as the class of general
matroids. I first investigated this idea hoping to build tools useful for my problem. One of the
results I present shows a way to injectively map ISD matroids, satisfying one condition, onto a
simpler combinatorial structure. It is not clear yet how restrictive is the condition, but it seems
quite clear that the image of this map is a rather small subset of the codomain.

Lastly I add a miscellanea of observations concerning the class of Representable ISD Matroids.
Despite the fact that, for the application at hand, I’m particularly interested in representable
rather than more general ISD Matroids, the problem of representability is notoriously unman-
ageable with combinatorial tools [68], and therefore beyond the scope of this thesis.

4.1. Preliminaries.

From the point of view of the matrix representation, bases are maximal subsets of columns that
are linearly independent. Regardless, modern combinatorics define matroids, and their bases, as
abstract combinatorial objects; the representable case turns out to be a special case. Even though
I’m mostly interested in the axiomatization of matroids through cyclic flats, I present the axioms
for bases first, to have a reference for practical convenience.

Definition 4.1.1. A collection of subsets of E = [N ] is the collection of bases B(M) of a matroid
M if:

(B1) B(M) is non-empty, and
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(B2) for every B1, B2 ∈ B(M), and x ∈ B1−B2, there is an y ∈ B2−B1 such that (B1−x)∪y ∈
B(M).

It can be shown that axiom (B2) is a combinatorial version of the Laplace expansion of deter-
minants [109, Chapter 4]. An immediate property of bases is that they all have the same size,
equal to the rank of M . A subset of E is independent if and only if it is a subset of a basis.

I previously mentioned the concept of circuit of a representable matroid, as a minimal subset of
the columns that are linearly dependent. The combinatorial counterpart follows:

Definition 4.1.2. The collection of circuits C(M) of a matroid M is the collection of minimal
subsets of E such that they are not contained in any basis.

An immediate consequence is that any proper subset of a circuit is an independent set. Further-
more, they are clearly all pair-wise incomparable sets.

A quite transparent relationship between circuits and bases comes from the following definition:

Definition 4.1.3. Given a basis B ∈ B(M) and e ∈ E − B, the fundamental circuit C(B, e) is
the unique circuit contained in B ∪ e.

In fact any circuit is fundamental with respect to some (B, e). Morover, the following property
holds:

Proposition 4.1.4. Given a basis B ∈ B(M), f ∈ B and e ∈ E − B, the set (B ∪ e) − f is a
basis of M if and only if f ∈ C(B, e).

Roughly speaking, the fundamental circuits of a basis encode the exchange properties of that
basis.

Duality is very easy to describe in terms of the bases:

Proposition 4.1.5. The collection B(M∗) = {E −B | B ∈ B(M)} is the collection of bases of a
matroid M∗.

The matroid M∗ is called dual matroid of M . This section is focused on matroids such that
M = M∗, that is, identically self-dual matroids. Clearly this imply E = [2N ] and rank(M) = N .

The phenomenon described in Proposition 4.1.4, in case the matroid is ISD, becomes slightly
richer; indeed, an exchange occurring on a basis also implies an exchange on the complementary
basis. The next Proposition, despite straightforward, seems to be novel:

Proposition 4.1.6. Given an ISD matroid M , a basis B ∈ B(M), f ∈ B and e ∈ E − B, the
set (B ∪ e)− f is a basis of M if and only if f ∈ C(B, e) and e ∈ C(E −B, f). Moreover, every
pair of circuits C1, C2 with |C1 ∩ C2| = 2 corresponds to such an exchange.

In [14] a few general insights are provided about ISD matroids:

Proposition 4.1.7. ISD matroids satisfy the following:

• The only connected, graphic ISD matroid is the trivial matroid on [2] in which every
point is a basis.
• If a matroid M on [2N ] is ISD then has at least 2N bases.
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• No contraction or restriction of a ISD matroid is an ISD matroid.

In particular, the second statement suggests that the description of ISD matroids through the
set of bases is not particularly concise. This motivates looking for more compact descriptions, of
which the one presented below is an instance.

4.2. Cycles, Flats and Z.

As mentioned, any two distinct circuits are incomparable, with respect to the partial order ⊆.
This suggests to consider the set of those subsets of E that can be obtained as union of a set of
circuits (possibly empty):

Q =
{⋃

S | S ⊆ C(M)
}
.

This sets will be called cycles. Clearly C ⊂ Q. The name makes sense in the context of graphic
matroids, which are of no interest for the purpose of this thesis. Q is endowed with the natural
lattice structure of the inclusion order; given A,B ∈ Q:

• A ∨B = A ∪B
• A ∧B =

⋃
{C ∈ C : C ⊆ A ∩B}

The same can be carried out on the dual matroid M∗, obtaining the lattice of cocycles Q∗ from
the cocircuits C∗. Both the lattices Q,Q∗ are subsets of the boolean algebra 2E , so that they are
mutually partially ordered by ⊆. This suggests to consider the antitone Galois connection (f, f∗)
defined as follows7:

Definition 4.2.1.

f :Q∗ →Q
A 7→max

⊆
{C ∈ Q s.t. C ⊆ E −A}

f∗ :Q →Q∗

A 7→max
⊆
{C ∈ Q∗ s.t. C ⊆ E −A}

The Galois connection (f, f∗) identifies a distinguished lattice embedded in Q:

Definition 4.2.2. Z(M) ⊆ Q is the largest subset on which the map f ◦ f∗ is the identity map.
The elements of Z(M) are called Cyclic Flats.

Because of the definition Z inherits a lattice structure from Q; indeed, ∀A,B ∈ Z:

• A ∨B = f ◦ f∗(A ∪B) ∈ Z
• A ∧B = f∗ ◦ f(A ∩B) ∈ Z

Another consequence of the definition is that f ◦ f∗ is a closure operator; in fact, it turns out to
be the restriction to Q∪Q∗ of the closure operator cl of M . Indeed:

Proposition 4.2.3. Given a matroid M , let A ∈ Q, and suppose that rank(A) = |A| − k, with
k ≥ 1. There exists a set of circuits {C1, . . . , Ck}, such that Ci 6⊂ ∪i−1

j=1Cj and ∪kj=1Cj = A. No
larger set of circuits has the same properties.

7This way of introducing the lattice of cyclic flats seems to be original. For the usual definition, see [15].
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Proposition 4.2.4. Given a matroid M , let A ∈ Q and suppose that rankM (A) = |A| − k. Then
(E −A) is a flat of M∗, and rankM∗(E −A) = rankM (M)− k.

In the same way f∗ ◦ f is the restriction to Q∪Q∗ of the kernel operator of M , ker(A) =
⋃
{C ∈

C s.t. C ⊆ A}. Definition 4.2.1 can be rephrased in a few equivalent ways, such as using flats and
coflats rather than cycles and cocycles (still as antitone connection), or using flats and cocycle,
or cycles and coflats (monotone connection in the last cases).

Just like B, Z is particularly well behaved with respect to duality. Indeed one straightforwardly
obtains:

Proposition 4.2.5. The collection of cyclic flats of M∗, referred to as Z∗, is obtained from Z
by element-wise complementation:

Z∗ = {(E − F ) s.t. F ∈ Z} (95)

Furthermore Z∗ is a lattice, dual to Z as lattice. Indeed ∨Z ,∧Z dualize to ∧Z∗ ,∨Z∗ respectively.

On the other hand, while B provides a full description of M , Z doesn’t, unless the rank of each
cyclic flat is also known. Indeed the following result provides an independent axiomatization
based on the lattice of cyclic flats decorated with their ranks.

Theorem 4.2.6 ([15] Theorem 3.2). Let Z be a collection of subsets of a set E and let rank be
an integer valued function on Z. There is a matroid M for which Z is the collection of cyclic
flats and rank is the rank function restricted to the sets in Z if and only if:

(Z0) Z is a lattice under inclusion,
(Z1) rank(0Z) = 0,
(Z2) 0 < rank(Y )− rank(X) < |Y −X| for all sets X,Y in Z with X ( Y , and
(Z3) for all sets X,Y in Z,

rank(X) + rank(Y ) ≥ rank(X ∨ Y ) + rank(X ∧ Y ) + |(X ∩ Y )− (X ∧ Y )|.

Notice that (Z3) is nothing but a restriction of the usual sub-modularity rank(X) + rank(Y ) ≥
rank(X ∪ Y ) + rank(X ∩ Y ) to Z. Indeed rank(X ∨ Y ) = rank(X ∪ Y ) and, since X ∧ Y is a
union of circuits while X ∩ Y isn’t, rank(X ∩ Y ) = rank(X ∧ Y ) + |(X ∩ Y )− (X ∧ Y )|.

From the same source, I report here the following further result [15, (3.2.1)], that is particularly
insightful when dealing with circuits.

Proposition 4.2.7. The collection C of minimal subsets of E for which there is a set X ∈ Z with
C ⊆ X and |C| = rank(X)+1 is the collection of circuits of the matroid M for which Z = Z(M).

4.3. Cyclic Flats of ISD Matroids.

From Propositions 4.2.4, 4.2.5 and Theorem 4.2.6 one gets:

Proposition 4.3.1. A matroid M is ISD if and only if:

(1) Z(M) is closed by complementation, and
(2) rank(E − F ) = rank(F ) + rank(M)− |F |.
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The rest of this section is somewhat a disconnected digression. I show a result that I considered
on the way, but that didn’t find direct application. Nevertheless it provides some insight about
the structure of the lattice of cyclic flats of a ISD matroid. I show that if an ISD matroid M on
[2N ] has no cyclic flats F such that |F | = N , then it can be injectively mapped onto a matroid

��M on [2N ] of rank at most bN/2c. Furthermore, even if there are ciclic flats F such that |F | = N
and rank(F ) = N − 1, an injective map can still be constructed easily, using a pair of matroids,

��M and a second matroid ISD on [2N ] that is paving.

For any cyclic flat A, let Ā = E − A be its complement; since A is closed by definition, there is
no ambiguity with the bar notation for closure that is sometimes used.

Consider the lattice of cyclic flats Z of an ISD matroid M on [2N ]. Every pair of incomparable
cyclic flats A,B ∈ Z generate a sublattice containing the elements, arranged as complementary
pairs:

(∅,E)

(A ∨B, Ā ∧ B̄) (A ∨ B̄, Ā ∧B)

(A, Ā) (B, B̄)

(A ∧B, Ā ∨ B̄) (A ∧ B̄, Ā ∨B)

(96)

where some of the pairs may degenerate to (∅, E). The lattice relationships within these cyclic
flats are clear from the notation: in the non-degenerate case the corresponding Hasse diagram
looks like a rhombic dodecahedron.

Let T denote the usual truncation of matroids. Its properties are well known:

Proposition 4.3.2. [78, 7.3.10] Let M be a matroid on E of non-zero rank and let i ≤ rank(M)
be a non-negative integer. Then:

I(T i(M)) = {X ∈ I(M) | |X| ≤ r(M)− i}.
Moreover the lattice of flats of T i(M) is obtained from the lattice of flats of M by removing all
flats of rank exceeding rank(M)− i− 1, and making E the unique flat of rank rank(M)− i.

The following proposition establishes that for some ISD matroids one can truncate up to half of
the rank and still preserve all the information:

Proposition 4.3.3. Let M be an ISD matroid on [2N ] such that Z(M) doesn’t contain elements

of size N . Then, consider the matroid ��M := T b
N
2
c(M). The map M 7→��M is injective.

Proof. The equality rank(E − F ) = rank(F ) + rank(M) − |F | establishes that two com-
plementary elements can only have the same rank if they both have size N . So all the pairs of
complementary cyclic flats of M have different ranks.

Iterate the following operation on the set of cyclic flats of M with respect a growing index i,
starting from i = 1:

• For every cyclic flat F s.t. |F | = i eliminate the cyclic flat E−F ; notice that rank(F ) < i
and rank(E − F ) > rank(M)− i.

when i = bN/2c I have eliminated only the larger element of each pair of cyclic flats (F,E − F ),
and at the same time every cyclic flat with rank bigger than dN/2e.
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From Proposition 4.3.2 I know that the new circuits of ��M have size larger than dN/2e, and all
flats M of size smaller than are drank(M)/2e are still flats of ��M with unchanged ranks. For every
F returned by the iterative procedure above, F is still a flat of the same rank as in M , and E−F
is still a union of circuit as in M . Therefore F is a cyclic flat of ��M , with the same rank as in M .

�

Therefore the map T b
N
2
c is an embedding of the ISD matroids on [2N ] with no cyclic flats of size

N into the matroids on [2N ] of rank at most bN/2c.

When cyclic flats of size N are present the situation is more complicated, since the truncation
may remove both cyclic flats of such pairs, depending on the rank, and some information is
lost. If the cyclic flats of size N are circuit/hyperplanes this seems to be a minor problem, since
circuit/hyperplanes are incomparable with any other cyclic flats besides ∅, E, therefore form
disjoint sub-lattices of Z(M). Because of that one can think of a slightly different embedding
based on the same ideas, which addresses this cases as well. On the other hand, if the cyclic flats
of size N have rank smaller than N − 1 the last argument doesn’t hold anymore, and new ideas
are necessary.

One might ask how restrictive is, for a matroid M ′ on [2N ] of rank at most bN/2c, the condition

of being the image of an ISD matroid M via T b
N
2
c. The condition is in fact rather restrictive,

requiring a sort of non-local submodularity. By this I mean that the cyclic flats of M ′ have to
satisfy (Z3) from [15] not only within Z(M ′), but also with respect to the ghost complements

that have been removed by T b
N
2
c. A complete description of this phenomenon is not ready at the

moment.

Remark 4.3.4. It is worth noticing that the embedding of Proposition 4.3.3, despite not solving
the problem completely, has the advantage of preserving representability. Indeed the truncation is
a vectorial construction on C [109, Proposition 7.4.10], therefore if M is representable on C, ��M
also is.

4.4. Representable ISD Matroids.

I already used extensively a ISD matroid that is represented by the complex matrix [1|U ], where
U is unitary. This naturally poses the question: do all representable ISD matroids exhibit this
feature? The statement is proven for binary matroids [14], but, to the best of my knowledge, the
same problem on complex representations is open.

In fact, concerning a representable matroid M on [2N ] with canonical representation [1, D],
identically self duality corresponds to the fact that the two points on GN (C2N ):

[1, D], [DT ,1]

belong to the same stratum. There doesn’t seem to be a simple argument to tell whether a
non-unitary matrix D could satisfy this property as well.
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5. Abelian Matroids

In this section I define a class of ISD matroids that naturally emerges from the properties of finite
abelian groups; they are highly symmetrical objects. I’m not aware of publications addressing
their combinatorial properties8. Similar objects are studied in Code Theory, see for example [103,
Chapter 11], but the latter mainly deals with linear dependence with respect to finite fields, while
I will work on C.

Within the framework outlined in the previous sections, the abelian matroids also provide a
concise description of sparsity properties of graph signals, when the graph is a Cayley graph of a
finite abelian group, as well as allowing the construction of multi-scale frames with localization
properties.

The definition I give is based on the matrix representation, nonetheless some of the properties
that I will later describe don’t quite depend on the representation; indeed a distinctive feature of
these matroids is that their collection of circuits includes the so called (p, q)-Dirac combs, defined
below.

The main results of this section are Theorem 5.2.7, Theorem 5.2.11 and Corollary 5.2.12. The
latter essentially establishes that, under one assumption, the lattice of cyclic flats of the abelian
matroids is atomistic, determined by the prime factors of the size, and takes a distinguished
form, that corresponds to the intersection between the union lattice generated by the atoms, and
the intersection lattice generated by their complements. It’s plausible that the assumption is
artificial, but a more general proof is still unavailable.

One of the main motivations of my investigation was understanding if some of the properties of
abelian matroids are shared by a more general class of matroids. This point is unfortunately still
unclear.

5.1. Preliminaries.

Definition 5.1.1. Given a group (G,+), let S ⊂ G be a set of generators S = {s1, ..., sk}, G =<
S >. The corresponding Cayley graph ΓG,S is is a directed graph defined as follows:

• Vertex set V := G,
• Edge set E := {(u, u+ s), u ∈ V | s ∈ S}.

In what follows I always assume:

Assumption 5.1.2. G and S are such that:

(1) G is a finite abelian group.
(2) S is symmetric, that is −S = S, and e 6∈ S.

If these conditions hold (u, v) ∈ E implies (v, u) ∈ E, and I will consider them as a single
undirected edge. As a result the graph is undirected, and regular of degree d = |S|.
Example 5.1.3. On G = Zm, with S = {1,−1}, Γ is a cycle of length m. In fact whenever G is
a finite abelian group and S contains a minimal set of generators and their inverses only, Γ will
be a cartesian product of cycles (a torus). See for example [18].

8I gave the name abelian matroid for practical convenience. I’m not aware of other uses of this name.
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Definition 5.1.4. A function χ : G→ C∗ is called character if it satisfies χ(u+v) = χ(u)χ(v),∀u, v ∈
G.

The group of characters of G is denoted by Ĝ. The following results are classical (see for example
[26]):

Proposition 5.1.5. If (G,+) is a finite abelian group, there are exactly |G| characters such that
they are linearly independent as vectors in CG. Every character satisfies |χi(v)| = 1,∀i, v.

Proposition 5.1.6. Let {χi}i=1,...,|G| be the characters of G, then:

|G|∑
i=1

χi(g)

|G|
= 1Ie(g) (97)

The space of graph signals V identifies with `2(G), that is CG with the natural hermitian product:

〈f1, f2〉 =
∑
g∈G

f1(g)f̄2(g).

The space `2(Ĝ) is defined in the same way.

The graph Fourier transform corresponds in this case to the group Fourier transform:

Definition 5.1.7. Let G be a finite abelian group. If f ∈ `2(G) its Fourier transform is f̂ ∈ `2(Ĝ):

f̂(χ) =
1√
|G|

∑
g∈G

f(g)χ̄(g).

By (5.1.6), one has:

f(g) =
1√
|G|

∑
χ∈Ĝ

f̂(χ)χ(g).

Just like in classical Fourier analysis, one can define a convolution product, which has the usual
interplay with the Fourier transform:

(f1 ∗ f2)(g) :=
∑
g′

f1(g′)f2(g − g′), (f̂1 ∗ f̂2)(χ) :=
∑
χ′

f̂1(χ′)f̂2(χ− χ′),

(f̂1 ∗ f2)(χ) = f̂1(χ)f̂2(χ), (f̂1f2)(χ) = (f̂1 ∗ f̂2)(χ).

The groups G and Ĝ have a natural action on `2(G). For f ∈ `2(G) and g ∈ G,χ ∈ Ĝ:

T1g [f ](·) = f(· − g) =
∑
g′

f(g′)1g(· − g′) = (f ∗ 1g)(·),

Mχ[f ](·) = χ(·)f(·),
(98)

corresponding to the actions on `2(Ĝ):

T̂g[f ](·) = (f̂ ∗ 1g)(·) = f̂(·)1̂g(·) =: M
1̂g

[f̂ ](·),

M̂χ[f ](·) = χ̂f(·) = (χ̂ ∗ f̂)(·) =: Tχ̂[f̂ ](·),
(99)

where, for χ′ ∈ Ĝ I observe that 1̂g(χ
′) = χ̄′(g), and for g ∈ G I have χ̂(χ′) = 1χ(χ′).
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Roughly speaking G acts on the group domain, through T , in the same way as Ĝ acts on the
frequency domain through M .

The T transform is commonly called translation, and M modulation.

Proposition 5.1.8. If H is a subgroup of a finite abelian G, for every character χH of H there
are exactly |G/H| linearly independent characters of G whose restriction to H is equal to χH .

Recall the group quotient G/H is isomorphic to the set of cosets {g + H|g ∈ G} equipped with
the set-operation defined from the operation + of G. Notice that the set of cosets S +H ⊂ G/H
generate the quotient G/H. The set of cosets {g + H|g ∈ G} is formally redundant, since for
g1, g2 ∈ G one has that g1 6= g2 does not imply g1H 6= g2H whenever g2 − g1 ∈ H. It is
well known that, whenever H is a normal subgroup (hence always in the abelian case), one can

choose a set of representatives Ġ ⊂ G with |Ġ| = |G/H| = |G|/|H| such that the set of cosets

{ġ + H|ġ ∈ Ġ} is not redundant, and hence corresponds one to one with G/H. As a result, one
can make any g ∈ G correspond to a couple (gH , gG/H), gH ∈ H, gG/H ∈ G/H, having g = gH + ġ
with ġ being the representative of gG/H ≡ ġ +H. This is formalized as follows:

Definition 5.1.9. Let π : G → G/H be the map defined as g 7→ g + H; Let σ : G/H → G be the
map defined as g +H 7→ ġ.

Notice that π is a homomorphism of groups, and it is surjective but non-injective, while σ is
injective but neither surjective nor a homomorphism of groups. Also notice that g−σ ◦π(g) ∈ H,

and the decomposition above reads g ≡ (gH , gG/H) ≡
(
g − σ ◦ π(g), π(g)

)
.

The following complements Proposition 5.1.8:

Lemma 5.1.10. Let a character χH on H be fixed, and suppose χG is one of its extensions as a
character on G. The function ζ : G→ C∗ defined by:

χG(g) =: χH(gH)ζ(g) (100)

depends on ġ only.

Proof.

ζ(g) =
χG(g)

χH

(
g − σ ◦ π(g)

) =
χG(g)

χG

(
g − σ ◦ π(g)

) = χG

(
σ ◦ π(g)

)
. (101)

�

Going back to the Cayley graph of some abelian group G of cardinality n with characters
{χi}i=1,...,n, notice that, by construction:

Lemma 5.1.11. As vectors in CV , every character χi is an eigenvector of A with eigenvalue
αi =

∑
s∈S χi(s). There are no other linear independent eigenvectors of A.

Proof. Notice that:

(Aχi)(u) =
∑
v∈V

Au,vχi(v) =
∑

(u,v)∈E

χi(v) =
∑
s∈S

χi(u+ s) = χi(u)
∑
s∈S

χi(s) (102)

Exclusivity follows by counting arguments. �
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Notice that αi is real, as expected, since by construction χ(−v) = χ(v)−1 = χ(v) ( and χ(e) = 1
for every character). The characters are orthogonal by symmetry of A. From Lemma 5.1.11 it
follows that the two eigenvectors χi and χi correspond to the same eigenvalue αi, and as a result:

φi = χi + χi (103)

is an eigenvector for A as operator on RV .

5.2. Definition and properties of Abelian Matroids.

Definition 5.2.1. Given a finite abelian group G with |G| = N , let U be a matrix having
vertical indexes corresponding to elements of G, and columns corresponding to the characters of
G, normalized as unit vectors of `2(G). The matroid A(G) is the matroid on E = [2N ] ≡ G t Ĝ
represented by the matrix with values in C:

[1|U ].

The order in which the columns of U are presented is arbitrary but fixed.

In case G is cyclic, the matrix U takes the form of Vandermonde matrix, with respect to a root
of the unity: Ujl = ξ(j−1)(l−1), ξ = exp(2πi/N); the equivalent form Ujl = ξjl, ξ = exp(2πi/N) is
more practical. If G is cyclic I denote A(G) by A(N) with N = |G|.

Considering the index set V = [N ] ≡ G, Vp denotes the set of its subsets of cardinality p such
that the corresponding elements of G are in the orbit g + H, g ∈ G of some subgroup H < G
with |H| = p. Clearly, Vp is unaffected by cyclic renaming of the indexes. Similarly Wp refers to

subsets of W of the same kind, with respect to Ĝ.

Definition 5.2.2. A set F ⊂ E is called Dirac comb of type (p, q) if its intersections with V and
W are in Vp and Wq respectively.

From Proposition 3.5.5, I easily get:

Corollary 5.2.3. Consider the matroid A(N) with N = pq. Let {Ci}i=1,··· ,N be the (p, q)-Dirac
combs. Then {f [Ci]}i=1,··· ,N is an orthonormal basis of V.

I denote the collection of Dirac combs of types (p, q) with the symbols X(1, 0, 0, 1), and types
(q, p) with X(0, 1, 1, 0). It is convenient to extend this notation in the following way:

Definition 5.2.4. The symbol X(i, j, k, l) refers to the collection of subsets of E such that,
∀S ∈X(i, j, k, l):

• S ∩ V is a union of i distinct sets in Vp and j distinct sets in Vq,
• S ∩W is a union of k distinct sets in Wp and l distinct sets in Wq.

In particular X(0, 0, 0, 0) = {∅},X(q, 0, 0, p) = X(0, p, q, 0) = {E}.

By construction S ∈ X(i, 0, 0, l) implies (E − S) ∈ X(q − i, 0, 0, p − l), and S ∈ X(0, j, k, 0)
implies (E−S) ∈X(0, p− j, q−k, 0). Furthermore, for any S ∈X(i, 0, 0, l) I have |S| = ip+ lq,
and for any S ∈X(0, j, k, 0) I have |S| = jq + kp.

Proposition 5.2.5. Every element in X(1, 0, 0, 1) ∪X(0, 1, 1, 0) is a circuit. There is no other
circuit of size equal to, or smaller than, p+ q.
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Proof. By [69, page 2] every element in X(1, 0, 0, 1)∪X(0, 1, 1, 0) that is supported on the

union subgroups HV ∪HW (with HV < G,HW < Ĝ) is a circuit of A(pq). Applying a translation
and a modulation does not modify the size of the support. The statement follows. �

Therefore the elements of X(1, 0, 0, 1)∪X(0, 1, 1, 0) have rank equal to (p+q−1), and any other
circuit has strictly higher rank. Since A(pq) is ISD, the complements of circuits are hyperplanes,
therefore any element of X(q − 1, 0, 0, p− 1) or X(0, p− 1, q − 1, 0) has rank pq − 1.

Let:

X(·, 0, 0, ·) := {∅, E} ∪
⋃

1≤i<q,1≤l<p
X(i, 0, 0, l),

and similarly for X(0, ·, ·, 0).

Proposition 5.2.6. Every element of X(·, 0, 0, ·) ∪X(0, ·, ·, 0) is a cyclic flat of A(pq).

Proof. By construction, each being union of circuits from X(1, 0, 0, 1) ∪X(0, 1, 1, 0) and
complement of a union of circuits from X(1, 0, 0, 1) ∪X(0, 1, 1, 0) at the same time. The cases
X(1, 0, 0, 0),X(q−1, 0, 0, p) and similar are excluded, as clearly they are independent sets, hence
not cyclic flats. �

Since X(·, 0, 0, ·)∪X(0, ·, ·, 0) ⊂ ZA(pq) they need to have meets and joins in ZA(pq). Clearly any
pair Fi,l ∈X(i, 0, 0, l), Fi′,l′ ∈X(i′, 0, 0, l′) yields:

Fi,l ∧ Fi′,l′ =

{
Fi,l ∩ Fi′,l′ if Fi,l ∩ Fi′,l′ ∈X(·, 0, 0, ·)
∅ otherwise.

Despite that, X(·, 0, 0, ·) ∪X(0, ·, ·, 0) as a set of cyclic flats is not a lattice, as the lattice
operations ∧,∨ of ZA(pq) are not yet defined for mixed pairs Fi,l ∈X(i, 0, 0, l), Fj,k ∈X(0, j, k, 0).

Based on these facts, I am going to describe how X(·, 0, 0, ·)∪X(0, ·, ·, 0), as a set of cyclic flats,
can be completed into a lattice, in a minimal way, still satisfying all the known properties of
ZA(pq); this aims at maybe obtaining the latter, or at least a well behaved subset of it.

Mixed pairs, like (Fi,l ∈X(i, 0, 0, l), Fj,k ∈X(0, j, k, 0)) are ordered according to:

(Fi′,l′ , Fj′,k′) ⊆ (Fi,l, Fj,k) iff Fi′,l′ ⊆ Fi,l, Fj′,k′ ⊆ Fj,k.

Recall that a finite lattice L is atomistic, with respect to a set of atoms {a1, . . . , an} ⊂ L, iff
every element l ∈ L can be expressed as aj1 ∨ . . . ∨ ajk for some {j1, . . . , jk} ⊆ {1, . . . , n}. Also
recall that, given a set of incomparable atoms ∂L ⊂ 2E , the corresponding union lattice is the
set of subsets:

L = {
⋃
S | S ⊆ ∂L}

ordered by inclusion. The pointwise complementation of L can be obtained in the following way.
Let ∂L = {E −A | A ∈ ∂L}:

L = {
⋂
S | S ⊆ ∂L}.

Theorem 5.2.7. Let (q, p) be positive coprime integers. Let M be a ISD matroid on E = [2qp],
such that the subsets in X(1, 0, 0, 1)∪X(0, 1, 1, 0) are the only circuits of size q+ p, and there is
no circuit of size smaller than q+ p. Then X(·, 0, 0, ·)∪X(0, ·, ·, 0) is a proper subset of Z(M);
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Consider the set of circuits CX that are obtained from the only cyclic flats in X(·, 0, 0, ·) ∪
X(0, ·, ·, 0) following the procedure in Proposition 4.2.7 using the ranks attained by these cyclic
flats in M ;

If there exists a ISD matroid MX such that, ∀F ∈ X(·, 0, 0, ·) ∪X(0, ·, ·, 0), all the circuits of
MX contained in F are in CX, then the lattice Z(MX) in obtained in the following way;

Construct:

X⊆ = min
⊆

{
(Fi,l, Fj,k), Fi,l ∈X(i, 0, 0, l), Fj,k ∈X(0, j, k, 0) |

ij + kl ≥ min
(

rank(Fi,l), rank(Fj,k)
)

+ 1
}
,

(104)

where min⊆ returns the set of incomparable minimal pairs with respect to the pair ordering. From
this one gets the following set of distinguished subsets:

∂Z = {∅} ∪X(1, 0, 0, 1) ∪X(0, 1, 1, 0) ∪
{
F1 ∩ F2 | (F1, F2) ∈X⊆

}
,

with rank(F1 ∩ F2) = min
(

rank(F1), rank(F2)
)
; Finally, Z(MX) is the atomistic lattice:

{∪S | S ⊆ ∂Z}
⋂
{∩S | S ⊆ ∂Z},

with:

F1 ∧ F2 =
⋃
{F | F ∈ ∂Z, F ⊆ F1 ∩ F2},

F1 ∨ F2 =
⋂
{F | (E − F ) ∈ ∂Z, F ⊇ F1 ∪ F2},

for F1, F2 ∈ Z.

Proof. Any pair of subsets S1, S2 ⊂ V such that S1 ∈ Vp and S2 ∈ Vq, satisfies |S1∩S2| = 1.
In fact any element of V corresponds to such an intersection. In the same way, for any F1 ∈
X(1, 0, 0, 1) and F2 ∈ X(0, 1, 1, 0), |F1 ∩ F2| = 2 (an exchange pair, as in Proposition 4.1.6).
Hence all the elements of ∂Z are incomparable. Moreover:

|Fi,l ∩ Fj,k| = ij + kl, ∀Fi,l ∈X(i, 0, 0, l), Fj,k ∈X(0, j, k, 0).

In fact Fi,l ∩ Fj,k has non-empty intersection with all the subsets of Fi,l of type X(1, 0, 0, 1)
(intersection of size j+k), as well as with all the subsets of Fj,k of type X(0, 1, 1, 0) (intersection
of size i+ l).

On the other hand, I know from Proposition 4.2.7 that, given a cyclic flat F , each subset A ⊆ F
of size |A| = rankF + 1 is either a circuit or contains smaller circuits, and that all circuits are
obtained in this way from some cyclic flats. Clearly any subset A′ ⊆ F of size |A′| > rankF + 1
must contain a circuit, and A′ can be obtained as union of subsets of size (rankF + 1), each of
which either is a circuit itself or contains smaller circuits.

Therefore, whenever:

ij + kl ≥ min(rank(Fi,l), rank(Fj,k)) + 1 (105)

the intersection Fi,l∩Fj,k contains some circuits (because the intersection is a subset of both cyclic
flats). If equality is attained, then the intersection is itself a circuit unless it contains smaller
circuits.

Let (Fi,l, Fj,k) ∈X⊆. It follows that, for any pair (Fi′,l′ , Fj′,k′) such that

(Fi′,l′ , Fj′,k′) ⊂ (Fi,l, Fj,k), with Fi′,l′ ∈X(i′, 0, 0, l′), Fj′,k′ ∈X(0, j′, k′, 0)
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one has
Fi′,l′ ∩ Fj′,k′ ⊆ Fi,l ∩ Fj,k

because of the ordering of pairs, and

i′j′ + k′l′ < min(rank(Fi′,l′), rank(Fj′,k′)) + 1

by construction of X⊆. Therefore there are two possibilities:

• Fi,l ∩ Fj,k is a circuit, if equality is attained,
• Fi,l ∩ Fj,k is a union of circuits of size ij + kl − 1, if the strict inequality is attained.

The second statement holds because a subset of Fi,l ∩Fj,k could properly contain smaller circuits
only if the latter are subsets of another cyclic flat Fi′,l′ ⊆ Fi,l or Fj′,k′ ⊆ Fj,k. But in this case
one of the pairs (Fi′,l′ , Fj,k) or (Fi,l, Fj′,k′) would be smaller than (Fi,l, Fj,k) in the pair ordering,
and would satisfy Inequality (105), which contradicts the construction of X⊆.

By noticing that Fi,l ∩ Fj,k is a flat, I have that the intersection Fi,l ∩ Fj,k is, in both cases
above, a cyclic flat. It follows that Fi,l ∧ Fj,k = Fi,l ∩ Fj,k, and Fi′,l′ ∧ Fj′,k′ = ∅ for any pair
(Fi′,l′ , Fj′,k′) ( (Fi,l, Fj,k).

On the other hand, intersections of pairs that are higher in the pair ordering can be obtained
from smaller intersections thanks to the well known set theoretic identities:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∪ C), A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

This way, the lattice operation ∧Z is now well defined on the mixed pairs. As for the lattice
operation ∨Z , it is obtained from ∧Z by complementation.

It remains to prove that the new cyclic flats have well defined meet and join with any other cyclic
flat of the completed lattice; by again using the set theoretic identities above, all these cases can
be handled through the known ones, so that Z is indeed closed by taking meets and joins.

�

Remark 5.2.8. Theorem 5.2.7 explicitly mentions the fact that X(·, 0, 0, ·) and X(0, ·, ·, 0) are
constructed from Dirac combs of type (p, q) or (q, p). In fact the proof only uses this fact to make
sure that all elements are ciclic flats, plus that |Fi,l∩Fj,k| = ij+lk. Therefore Theorem 5.2.7 could
be formulated at a higher level of generality, for a matroid M admitting two subsets of Z(M),
each being an atomistic lattice that is closed by taking unions, intersections and complements.

If CX is not complete as set of circuits of a matroid, the construction of ∂Z given by Theorem 5.2.7
might fail. In that case, completing X(·, 0, 0, ·)∪X(0, ·, ·, 0) into an atomistic lattice is still pos-
sible, but some of the atoms might not be intersections of elements from X(·, 0, 0, ·)∪X(0, ·, ·, 0).

Remark 5.2.9. The matroids M and MX might coincide, but Theorem 5.2.7 is not enough to
conclude that. To better understand M and MX it is indeed necessary to gather more information
about the ranks of the cyclic flats, as thus far we only know the ranks of the atoms and for their
complements.

I observed in Corollary 5.2.3 that the circuits in X(1, 0, 0, 1)∪X(0, 1, 1, 0) form an orthonormal
basis of V. I also recall that, in a ISD matroid, the complement of an independent set is spanning,
and that within a spanning set A every independent subset I ⊆ A can be completed to a basis
B ⊆ A. This can be combined with Proposition 3.5.4 to obtain the following two results about
the ranks of the cyclic flats in X(·, 0, 0, ·) ∪X(0, ·, ·, 0).
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Recall that a rectangular Vandermonde matrix Vnm = vmn with vn1 6= vn2 , ∀n1, n2 has maximal
rank.

Theorem 5.2.10. For q, p positive prime integers, let M = A(G) with G cyclic, and |G| = qp.
Then cyclic flats Fi,l ∈X(i, 0, 0, l) satisfy:

if i = 1 or l = 1 then rank(Fi,l) = |Fi,l| − il,
and for Fj,k ∈X(0, j, k, 0):

if j = 1 or k = 1 then rank(Fj,k) = |Fj,k| − jk,
where |Fi,l| = ip+ lq and |Fj,k| = jq + kp.

Proof. Given V ′ ⊆ V and W ′ ⊆ W let me denote by VV ′∪W ′ the space of signals whose
support is contained in V ′, and whose Fourier transform support is contained in W ′.

Consider the independent set S ∈X(1, 0, 0, 0) (the same can be carried out with S ∈X(0, 0, 0, 1)).
There are exactly |S| Dirac combs such that their support includes S, of type X(1, 0, 0, 1), and
all intersecting V on S only; let these Dirac combs be denoted by {Cl}l=1,...,|S|. Therefore, by

Corollary 5.2.3, they are an orthonormal9 basis for the space VS∪W , and any other Dirac comb
is orthogonal to VS .

Let C1, C2 ∈ X(1, 0, 0, 1) with S = C1 ∩ C2. Let Q = (C1 ∪ C2) − S, of course Q ⊂ W . To
compute the rank of C1 ∪C2 I need to know what circuits are contained inside C1 ∪C2 = S ∪Q,
which in turn correspond to signals with minimal support. Such signals belong to the space:

VC1∪C2 = VS∪W ∩ VV ∪Q. (106)

But I observed that:

VS∪W = span{f [C1], f [C2]} ⊕ span{f [Cl]}l 6=1,2.

Let {C ′l}l be the Dirac combs such that C ′ ∩W ⊂ Q and C ′ ∩ V 6⊂ S. One has:

VV ∪Q = span{f [C1], f [C2]} ⊕ span{f [C ′l ]}l.
Notice that the two direct sums are between orthogonal spaces; this allows to rephrase (106) as
follows:

VC1∪C2 = span{f [C1], f [C2]} ⊕
(

span{f [Cl]}l 6=1,2

⋂
span{f [C ′l ]}l

)
.

For the orthogonality, the second term of the direct sum is {0}, so that VC1∪C2 = span{f [C1], f [C2]}.
Therefore I need to compute the minimal supports of linear combinations of f [C1], f [C2].

The same reasoning applies to unions of up to |S|−1 circuits {Cl}l=1,...,|S|−1, such that Cl∩Cj =
S, ∀l 6= j.

In the case of M = A(G) with G cyclic, the graph signals f [Cl] are actually known:

f [Cl] =
1√
|S|

Ml

[∑
j∈S

1j

]
.

The two modulations Ml are determined by how translated Cl ∩W is with respect to the corre-
sponding subgroup of Ĝ. Since |S| is either q or p, |S| is prime. For simplicity assume |S| = q.

9Up to one overall rescaling.
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Then, for instance, S = {pt}t=1,...,q. The f [Cl] on S are complex exponentials, for j ∈ V taking
the values:

f [Cl](j) =
1√
|S|

exp
(

2πi
jl

qp

)∑
j∈S

1j =
1√
|S|

exp
(

2πi
(j/p)l

q

)∑
j∈S

1j . (107)

Therefore, given any k signals from the collection {f [Cl]}l=1,...,|S|, the k × |S| matrix of the
corresponding values on S is a Vandermonde rectangular matrix. Since |S| is prime, this matrix
has maximal rank. This provides that the minimal support of a linear combination of k functions
from {f [Cl]}l=1,...,k is |∪l=1,...,kCl|−k+1. Furthermore every subset of such size can be obtained,
which in turn implies the claim about the rank via Proposition 4.2.3.

In the case k = 2 this property is referred to as C1, C2 being a modular pair, see for example [30].

This covers the cases (i, l) = (1, l), (i, l) = (i, 1), (j, k) = (1, k), (j, k) = (j, 1).

�

Notice that the rank functions of Theorem 5.2.10 rank(Fi,l) = |Fi,l|−il and rank(Fj,k) = |Fj,k|−jk
(proved so far only if one of the indexes is 1) actually satisfy both the sub-modularity and the
complementarity relation rank(E − F ) = rank(F ) + pq − |F |, as required. Therefore they are
candidate to hold for any indexes.

Theorem 5.2.11. For q, p distinct positive prime integers, let M = A(G) with G cyclic, and
|G| = qp. Then cyclic flats Fi,l ∈X(i, 0, 0, l) satisfy:

rank(Fi,l) = |Fi,l| − il,
and for Fj,k ∈X(0, j, k, 0):

rank(Fj,k) = |Fj,k| − jk,
where |Fi,l| = ip+ lq and |Fj,k| = jq + kp.

Proof. The first part of the proof of Theorem 5.2.10 still holds by just choosing, for instance,
S ∈X(i, 0, 0, 0), which implies S ⊂ V and |S| = ip, and Q ∈X(0, 0, 0, l), which implies Q ⊂W
and |Q| = lq (the same argument can start with S ∈X(0, 0, 0, l), or analogously in X(0, ·, ·, 0)).

Therefore, for any pair (i, l) the circuits contained in Fil are supports of linear combinations of
functions of type {f [Ch]}h for some Dirac combs Ch ⊂ Fil,∀h. It remains to understand how
small the support of these linear combination can be.

The number of distinct Dirac combs contained in Fil is clearly il, so this is also the number of
non-zero coefficients (if some coefficients are null the obtained circuit is a subset of some smaller
Fi′l′ ⊂ Fil). Since il < |S|, by Gaussian elimination one can for sure obtain a support as small as
Fil − il + 1. The claim corresponds to saying that the support cannot be any smaller than that.

One can visualize the situation with a bipartite graph, having i vertexes on the left representing
the i subsets of S from X(1, 0, 0, 0) and l vertexes on the right representing the l subsets of
Q from X(0, 0, 0, 1). Let {Sn}n=1,...,i, {Qm}m=1,...,l label these sets. Each edge of the bipartite
graph represents a Dirac comb subset of Fil, therefore one coefficient of the linear combination.
To remove h points from the support, inside some Sn (resp. Qm), one performs the Gaussian
elimination and as a result fixes some of the edges ending in Sn (resp. Qm). Those coefficients
are no longer free variables and cannot be used to perform other Gaussian eliminations at the
sets Qm on the other side of the edges (resp. Sn). Therefore it is to prove that the values of
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the coefficients cannot be valid Gaussian elimination coefficients for both ends of one edge at the
same time.

Notice that, for every Sn, the functions corresponding to the Dirac combs take, on Sn, the values
in (107), therefore being a Vandermonde matrix (resp. Qm).

Recall the following facts about Gaussian Elimination applied to Vandermonde matrices. Let V
take the form:

V =


1 v1 v2

1 . . . vn−1
1

1 v2 v2
2 . . . vn−1

2
...

...
...

. . .
...

1 vn v2
n . . . vn−1

n


Applying Gaussian elimination, one gets eventually the upper triangular matrix:

W =


w1,1 w1,2 . . . w1,n

0 w2,2 . . . w2,n
...

...
. . .

...
0 0 . . . wn,n

,
whose h-th row is a linear combination of the first h rows of V , for any h. Moreover, for
1 ≤ i ≤ j ≤ n, one has:

wi,j = Mj−i(vi−1, vi)
i−1∏
k=1

(vi − vk),

where vi−1 is an abbreviation for v1, . . . , vi−1, and Md(vi−1, vi) is the sum of the monomials of
degree d in vi−1, vi.

The Gaussian elimination is described step by step in the following way. Let ai,j be the entry of
the i-th row and j-th column of this variable matrix. Before the i-th step, the entries that belong
either to the i first rows or the i− 1 first columns have the values that they will have at the end
of Gaussian elimination, and, for i ≤ j ≤ n and i ≤ h ≤ n, one has

ah,j = Mj−i(vi−1, vh)
i−1∏
k=1

(vh − vk). (108)

This is true before the first step, and one has to prove that this remains true during Gaussian
elimination. The i-th step does not change the i first rows nor the i− 1 first columns. It changes
ah,i to zero for i ≤ h ≤ n. For i < j ≤ n and i < h ≤ n, it changes ah,j into ah,j − ai,jah,i/ai,i.
That is, the new ah,j is

ah,j = Mj−i(vi−1, vh)

i−1∏
k=1

(vh − vk)−
M0(vi−1, vh)

∏i−1
k=1(vh − vk)

M0(vi−1, vi)
∏i−1
k=1(vi − vk)

Mj−i(vi−1, vi)

i−1∏
k=1

(vi − vk)

= (Mj−i(vi−1, vh)−Mj−i(vi−1, vi))
i−1∏
k=1

(vh − vk)

= Mj−(i+1)(vi−1, vi, vh)
i∏

k=1

(vh − vk),
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where it was used that, for k > i one has Md(vi−1, vh)−Md(vi−1, vi) = (vh−vi)Md−1(vi−1, vi, vh).
This shows that the structure of the ah,j as in (108) is kept during Gaussian elimination.

In particular, the overall coefficient that each row of V takes in the linear combination representing
a row of W is of the form:

Md(vh1 , . . . )
∏
i

(vki − vk′i) (109)

for some d, {h1, . . . }, {k1, . . . }, {k′1, . . . }. This turns out to be the only necessary information for
the purpose of the present proof.

The elimination can be performed towards removing points in a different order. One can check
step by step that everything goes the same way, except one needs to keep track of the index i via
a fixed permutation σ: for instance the assignment vi = ξi becomes vi = ξσ(i). In particular, the
overall coefficient that each row of V takes in the linear combination representing a row of W is
still of the form (109) for a suitable set of indexes.

Consider these coefficients as complex numbers in polar representation, and recall that each vh
is a power of exp(2πi/p) with integer exponent (if, for instance, |Sn| = p). Clearly Md(vh1 , . . . )
is also a power of exp(2πi/p). As for the remaining factors, one has:

exp
(
2πi

j

p

)
− exp

(
2πi

k

p

)
= 2 exp

(
2πi

k + j

2p

)
cos
(
2π
j − k

2p

)
so that the overall phase factor of every coefficient is a power of exp(2πi 1

2p).

On the other hand, |Sn| = p implies |Qm| = q, and the same coefficients therein must have phase
factor that is a power of exp(2πi 1

2q ).

Clearly two complex numbers can only be equal if they have the same phase.

Since p, q are prime, this allows to conclude that coefficients of Gauss eliminations, performed
on some Sn and some Qm, can not have consistent complex phase with respect to both p and q,
unless the phase is 0 (i.e. real).

But considering the form of the vh, in a set of coefficients of a Gauss elimination performed on a
set in X(1, 0, 0, 0) (resp.X(0, 0, 0, 1)), there can be just one that is real. Therefore, going back
to the bipartite graph described above, each edge/coefficient is only valid as Gauss elimination
coefficient on one of its ends.

This proves that one can remove exactly il− 1 points form the support, using the il coefficients,
and that in fact any set of il− 1 points can be removed, as long as the resulting support is not a
subset of a smaller Fi′l′ ⊂ Fil. The claim follows.

�

Finally I can conclude the follwing:

Corollary 5.2.12. Under the hypotheses of Theorem 5.2.11, and referring to the notation of
Theorem 5.2.7, the collection of circuits CX is the entire collection of circuits of A(qp); in other
words, MX = M = A(qp) in this case.

Proof. The proof of Theorem 5.2.11 shows more than its claim. Indeed, it shows that all
the circuits contained in a cyclic flat F ∈ X(·, 0, 0, ·) ∪X(0, ·, ·, 0) have the same size unless
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they are contained in a smaller cyclic flat from X(·, 0, 0, ·) ∪X(0, ·, ·, 0), and all subsets of F of
size rank(F ) + 1 are circuits, unless they are contained in a smaller cyclic flat from X(·, 0, 0, ·)∪
X(0, ·, ·, 0). This yields the claim, via Proposition 4.2.7. �

Corollary 5.2.12 opens a number of questions. In particular:

• For a general positive integer N , Z(A(N)) contains as subset Z(A(pq)) for all pairs of
distinct prime factors of N , suggesting the possibility of a structure theorem for the
abelian matroids. Despite that the proposed proofs do not address the case p = q or the
case of more than two prime factors.
• It is still unclear what are the consequences, for a general matroid, of having a lattice

of cyclic flats with the strong structure that was proven for A(pq) for p, q distinct and
prime.
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6. Spectra

In Section 2 I informally observed how some aspects of Graph Signal Processing only depend on
the eigenfunctions of the graph laplacian operator L, while others on the contrary depend on the
eigenvalues as well. In the previous sections the focus has fully been on a set of eigenfunctions
{uj}j∈W . This last section is an attempt to address the combinatorial relationship between
eigenfunctions and eigenvalues (if any). The framework seems to be unprecedented; I don’t start
from a graph but from a matrix U . I offer a few results and, lastly, an open problem that requires
more research.

I already commented on the fact that the laplacian eigenvalues are called frequencies because of
the formal analogy with time-frequency analysis. Indeed, using the definition, I have:

λj = 〈uj ,Luj〉 = 〈uj , (D −A)uj〉 =
∑
(l,k)

Alk|uj(l)− uj(k)|2 (110)

where the last sum is over the ordered pairs of indexes. This shows that 0 is always an eigenvalue,
whose eigenfunction(s) is(are) constant on connected components. This formula also allows to
observe that each eigenvalue can be regarded as an estimate of how sharply the corresponding
eigenfunction(s) varies on the graph, motivating the name frequency referred to an eigenvalue.

6.1. Non-Trivial Spectrum Existence.

The vast majority of the available research about the Graph Laplacian focuses on the spectrum
and its properties, once the underlaying graph is fixed and known. In this thesis I take a turn on
this framework, by focusing primarily on the eigenfunctions. In fact, given U , neither the graph
nor the spectrum are determined, and this section elaborates on the set of graphs (therefore
spectra) compatible with U .

I now consider a given matrix U ∈ U(N) and investigate which spectra can arise from it. Columns
and rows of U will be labelled by indices in V and W respectively. A spectrum will be defined as
a vector with positive entries presented as a diagonal matrix Λ ∈ (R+

0 )W ↪→ MW×W (R) (it will
be clear whether Λ is considered a matrix or a vector case by case). Constraints are given by the
properties that the Graph Laplacian L must satisfy:

Definition 6.1.1. The matrices of the following set:

L = {L ∈MV×V (R) | Lij ≤ 0,Lii = −
∑
k 6=i
Lik ∀i, j ∈ V, i 6= j}

will be called admissible laplacian operators on V .

I am imposing that UΛU∗ is an admissible laplacian operator. The null spectrum always trivially
satisfies the constraints. The following statement provides necessary and sufficient conditions
for a non-trivial spectrum to exist. A partition of the set of vertexes {Vi}i=1,...,k is such that
Vi ⊆ V, Vi ∩ Vj = ∅∀i 6= j and ∪iVi = V . Partitions are partially ordered by coarseness.

Proposition 6.1.2. Given a unitary matrix U ∈ U(N), let {Vi}i=1,...,k be a maximally coarse
partition of V such that k columns of U are piece-wise constant on {Vi}i=1,...,k. If k < N then there
exists at least one non-trivial spectrum Λ = diag{λi ≥ 0}i∈V such that UΛU∗ is an admissible
laplacian operator, and has (N − k) non-zero eigenvalues. In fact any spectrum yielding an
admissible laplacian operator UΛU∗ also has k eigenvalues equal to zero.
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Proof. Let k = 1, and, without loss of generality, let u1 be the column that is constant on
V . The definition of unitary matrix reads:

l 6= j =⇒ <

(∑
i

ui(l)ūi(j)

)
= 0 = <(u1(l)ū1(j)) +

∑
i 6=1

<(ui(l)ūi(j))

since u1 is constant, and is a column of a unitary matrix, it follows that <(u1(l)ū1(j)) = 1/N
and hence: ∑

i 6=1

<(ui(l)ūi(j)) = −1/N.

Now let λ1 = 0 and λi = 1∀i 6= 1. This implies:

Llj =
∑
i

ui(l)λiūi(j) =
∑
i 6=1

<(ui(l)ūi(j)) < 0.

It remains to show that Ljj = −
∑

i 6=j Lij . Again by orthogonality:∑
i

|ui(j)|2 = 1 = |u1(j)|2 +
∑
i 6=1

|ui(j)|2

and |u1(j)|2 = 1/N so that Ljj =
∑

i |ui(j)|2λi =
∑

i 6=1 |ui(j)|2 = 1 − 1/N = (N − 1)(1/N).
Therefore the admissibility conditions hold.

Let 1 < k < N , and, without loss of generality, let u1, . . . , uk be the eigenfunctions that are
piece-wise constant on V . Being u1, . . . , uk orthonormal and piece-wise constant, for l, j ≤ k one
has:

δlj = 〈ul, uj〉 =
N∑
t=1

ul(t)ūj(t) =
k∑
i=1

|Vi|ul(ti)ūj(ti) (111)

where ti ∈ Vi is an arbitrary index in the corresponding cell. Therefore the set of k vectors in Ck
with components ũj(i) =

√
Viuj(ti) is orthonormal. As a result, the (111) holds for its columns

as well:

δlj =
k∑
i=1

|Vi|ul(ti)ūj(ti) =
k∑
i=1

√
|Vl||Vj |ui(tl)ūi(tj) (112)

Then, for any j, l:

<

(∑
n

un(l)ūn(j)

)
= 0 =

k∑
n=1

<(un(l)ūn(j)) +

N∑
n=k+1

<(un(l)ūn(j)),

let p(j) be the index of the cell containing j. Then by carefully applying (112):

k∑
n=1

<(un(l)ūn(j)) =
1√

|Vp(l)||Vp(j)|

k∑
n=1

√
|Vp(l)||Vp(j)|<(un(tp(l))ūn(tp(j))) =

1√
|Vp(l)||Vp(j)|

k∑
n=1

|Vn|<(ūp(l)(tn)up(j)(tn)) =
δp(l)p(j)√
|Vp(l)||Vp(j)|

≥ 0

(113)
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Now let λi = 0 for i = 1, . . . , k and λi = 1∀i > k. This implies, for j, l ≤ k:

Llj =
∑
n

un(l)λnūn(j) =

N∑
n=k+1

<(un(l)ūn(j)) ≤ 0.

It remains to show that Ljj = −
∑

i 6=j Lij . Again by orthogonality:

∑
n

|un(j)|2 = 1 =
k∑

n=1

|un(j)|2 +
N∑

n=k+1

|un(j)|2

and
k∑

n=1

|un(j)|2 =
1

|Vp(j)|

k∑
n=1

|Vp(j)||un(tp(j))|2 =
1

|Vp(j)|

k∑
n=1

|Vn||up(j)(tn)|2 =
1

|Vj |
,

so that Ljj =
∑

i |ui(j)|2λi =
∑N

n=k+1 |un(j)|2 = 1 − 1
|Vj | = (|Vj | − 1)(1/|Vj |). Considering the

block structure emerged in (113) the admissibility conditions hold.

The last statement is due to Equation (110) for λ = 0.

�

The last result showed that it suffices to constrain the matrix U to have a constant vector, and
this guarantees that the corresponding graphs are non-trivial. This, roughly speaking, means
working with U(N − 1). In what follows, for simplicity, I just consider a generic matrix in U(N).

6.2. Stratification of U(N) through Spectra.

Besides the existence of one spectrum, as in Proposition 6.1.2, I am now looking for a more
detailed description of the whole set of spectra that provide an admissible Laplacian operator,
with respect to a given U ∈ U(N), therefore corresponding to graphs. The content of this last
part of the thesis is fragmentary and conjectural, therefore I chose to present it briefly without
introducing too much new notation, as this would not be justified by matching technical results.

Every spectrum yields L(Λ) = UΛU∗ ∈MV×V (R) that determines A, hence a graph with vertexes
labelled by V . Equality of graphs will occur when labels and weights of all the edges coincide (I
do not consider equal graphs being only isomorphic).

Definition 6.2.1. Two graphs, that is, two adjacency matrixes, will be called equivalent if they
turn equal as soon as every nonzero weight is replaced by 1. In other words, equivalent graphs
have the same sparsity pattern of L.

From Definition 6.1.1, I see that each of the N(N − 1)/2 admissibility condition on off-diagonal
elements of L is an inequality (≤), linear with respect to the spectrum (and quadratic with re-
spect to U entries). The diagonal constraints are linear equations, that are satisfied whenever
U fulfils the hypotheses of Proposition 6.1.2. The locus of admissible spectra is a convex subset
of (R+

0 )W delimited by hyperplanes through the origin, i.e. a cone. Under the hypotheses of
this proposition, this cone is non-empty. Facets of this cone will have a certain subset of the
off-diagonal constraints active (i.e. satisfied by equality), hence will correspond to a class of
equivalent graphs. If a facet has dimension N − k corresponds to spectra such that (at least) k
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constraints are active (intersection of a facet by a hyperplane can only decrease its dimension by
one at most). An active constraint corresponds to a missing edge among the possible N(N−1)/2
of the graph described by L, so that 1-facets of the cone correspond to (locally) maximal sparsity
of the corresponding graphs.

In this way I assigned to every U ∈ U(N) a cone ∆(U) ⊂ (R+
0 )W .

Definition 6.2.2. I define an equivalence relation among the cones {∆(U) | U ∈ U(N)} by
saying that ∆ ∼ ∆′ if for every facet of ∆ there is a facet of ∆′ with the same active constraints.
The equivalence classes of ∼ divide U(N) in a discrete set of regions, that I call strata in analogy
to the ones corresponding to the matroids [1|U ].

Remark 6.2.3. The example of Abelian Matroids provides some insights:

• Eigenfunctions of the graph laplacian on any Cayley graph from a finite abelian group G
and a subset H ⊂ G do not depend on H.
• Different choices of H correspond to different spectra corresponding to the same group G

hence the same U . Therefore the corresponding spectra are in the same cone. Depending
on the sparsity induced by H they may correspond to edges of the cone ∆(U).
• Every element of H corresponds to a subgroup of G.
• Because of this I may expect a ∆(U) stratum to correspond to a M(U) stratum, as

subgroup information is encoded, on the one hand, in facets of ∆(U), on the other, in
the cyclic flats of M(U).

In particular, the last point rises the question about a plausible strong relation between the two
stratifications mentioned, having one finer than the other, or having both equivalent.

This motivates looking for a convenient representation of the stratification provided by spectra.

Let E =
(
V
2

)
, whose elements will be denoted as unordered couples of indices (i, j), i, j ∈ V .

Let O(U) ∈ MW×E(R) be a real N ×
(
N
2

)
real matrix with entries Ok,(i,j)(U) = <(uk(i)ūk(j)).

According to this notation, the off-diagonal constraints for Λ become, for each couple (i, j):∑
k

ΛkOk,(i,j)(U) ≤ 0.

Using the language of oriented matroids, the the matrix O(U) represents an oriented matroid,
and the facets of the cone ∆(U) correspond to its covectors having entries in {−, 0}. Therefore
an equivalence class in U(N)/ ∼ corresponds to a class of oriented matroids on E whose subset
of {−, 0}-supported covectors are the same, and describe ∆(U); see for example [112].

Remark 6.2.4. A strong relationship between the ∆(U) stratification and the [1|U ] stratification,
if confirmed, might have a remarkable practical relevance. Indeed the former is partly related to
the graph structure directly as is, possibly allowing to bypass the brute-forse computation of U
and of it’s matroidal counterpart.
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[52] Michael E Houle, Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Can shared-neighbor
distances defeat the curse of dimensionality? In Scientific and Statistical Database Management, pages 482–
500. Springer Berlin Heidelberg, 2010.

[53] Jeff Irion and Naoki Saito. Applied and computational harmonic analysis on graphs and networks. In Wavelets
and Sparsity XVI, volume 9597, page 95971F. International Society for Optics and Photonics, 2015.

[54] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning,
volume 112. Springer, 2013.

[55] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on scientific Computing, 20(1):359–392, 1998.

[56] Kenneth Kreutz-Delgado, Joseph F Murray, Bhaskar D Rao, Kjersti Engan, Te-Won Lee, and Terrence J
Sejnowski. Dictionary learning algorithms for sparse representation. Neural computation, 15(2):349–396, 2003.

[57] Stephane Lafon and Ann B Lee. Diffusion maps and coarse-graining: A unified framework for dimensionality
reduction, graph partitioning, and data set parameterization. IEEE transactions on pattern analysis and
machine intelligence, 28(9):1393–1403, 2006.

[58] Jeffrey C Lagarias. Mathematical quasicrystals and the problem of diffraction. Directions in mathematical
quasicrystals, 13:61–93, 2000.

[59] Wenjing Liao and Mauro Maggioni. Adaptive geometric multiscale approximations for intrinsically low-
dimensional data. J. Mach. Learn. Res., 20(98):1–83, 2019.

[60] Anna V Little, Mauro Maggioni, and Lorenzo Rosasco. Multiscale geometric methods for data sets i: Multi-
scale svd, noise and curvature. 2012.

[61] Pengfei Liu, Xiaohan Wang, and Yuantao Gu. Coarsening graph signal with spectral invariance. In 2014
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1070–1074.
IEEE, 2014.

[62] Stuart Lloyd. Least squares quantization in PCM. IEEE Trans. Inform. Theory, 28(2):129–137, 1982.
[63] Mauro Maggioni, Stanislav Minsker, and Nate Strawn. Dictionary learning and non-asymptotic bounds for

geometric multi-resolution analysis. PAMM. Proc. Appl. Math. Mech., 14(1):1013–1016, 2014.
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