
Approximation Algorithms for
Traveling Salesman Problems

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Vera Traub
aus

Freiburg im Breisgau

Bonn, November 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/322961045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

Erstgutachter: Prof. Dr. Jens Vygen
Zweitgutachter: Prof. Dr. Stephan Held

Tag der Promotion: 14.02.2020
Erscheinungsjahr: 2020

ii

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Dr. Jens Vygen for his
encouragement and support. He was always happy to spend time on discussing new
ideas and I learned a lot from working with him during the past years.

Besides Prof. Dr. Jens Vygen, I wish to thank my other collaborators Anna Köhne
and Prof. Dr. Rico Zenklusen — it was a great pleasure to work with them.

Furthermore, I would like to express my gratitude to Prof. Dr. Dr. h.c. Bernhard
Korte and Prof. Dr. Jens Vygen for providing excellent working conditions at the Re-
search Institute for Discrete Mathematics.

During the past years, I attended several workshops and visited other universities.
I am very grateful for this opportunity and I want to thank all people who made this
possible and invited me to workshops or kindly hosted me at their institutions. Some
of the research presented in this thesis results from a collaboration that was initiated
during my visit at ETH Zurich.

Finally, I would like to thank my present and former colleagues at the Research
Institute for Discrete Mathematics. I appreciated the friendly working atmosphere,
many conversations about mathematics and other topics, and our collaboration on
more applied projects. Although not directly related to this thesis, it made my time as
a doctoral student much more enjoyable.

iii

iv

Contents

1 Introduction 1
1.1 Outline and contributions of this thesis 3
1.2 State of the art . 7

2 Preliminaries 9
2.1 Notation . 9
2.2 Eulerian walks . 10
2.3 Ear-decompositions . 10
2.4 Laminar families . 11
2.5 Linear programming . 11
2.6 Matroids . 13
2.7 T -joins . 15
2.8 Network flows . 16
2.9 Steiner forest and iterative rounding . 18

I The asymmetric traveling salesman problem and its path version 21

3 ATSP and s-t-path ATSP 23
3.1 Introduction and overview of previous work 23
3.2 Structured dual LP solutions . 26

4 A (22 + ε)-approximation algorithm for ATSP 31
4.1 Outline . 31
4.2 Reducing to vertebrate pairs . 32
4.3 Computing subtour covers . 38
4.4 Algorithm for vertebrate pairs . 53
4.5 The main result . 63
4.6 Graph ATSP . 64

5 The ATSP path LP has constant integrality ratio 71
5.1 Reducing to strongly laminar instances 71
5.2 Bounding the integrality ratio for strongly laminar instances 78
5.3 Blackbox reduction to ATSP . 80

v

CONTENTS

II The symmetric traveling salesman problem and its path version 83

6 TSP and s-t-path TSP 85
6.1 Problem definitions . 85
6.2 The standard LP relaxations . 86
6.3 Christofides’ algorithm . 88
6.4 Approximation algorithms for s-t-path TSP 90
6.5 Approximation algorithms for graph TSP and s-t-path graph TSP . . . 92

7 An improved upper bound on the integrality ratio for s-t-path TSP 95
7.1 Best-of-many Christofides with lonely edge deletion 95
7.2 Outline of the new analysis . 97
7.3 Analyzing one tree . 98
7.4 Average cost . 100

8 Beating the integrality ratio for s-t-tours in graphs 105
8.1 Introduction and preliminaries . 105
8.2 Enhanced ear induction . 112
8.3 Computing the initial ear-decomposition 130
8.4 Optimizing outer ears and improving the lower bound 136
8.5 Ear-decompositions with many non-entered ears 146
8.6 Ear-decompositions with few non-entered ears 147
8.7 Instances with large integrality ratio . 150
8.8 A 1.497-approximation algorithm . 155

9 Reducing s-t-path TSP to TSP 161
9.1 Introduction . 161
9.2 Overview of our approach . 163
9.3 Finding a short Φ-tour if there is a short T -join 168
9.4 Iterative improvement via dynamic programming 171
9.5 Proof of the main theorem . 184
9.6 A 4-approximation algorithm for Φ-TSP 186

10 Conclusions and open questions 191
10.1 ATSP and its path version . 191
10.2 TSP and some generalizations . 192

Bibliography 194

Summary 203

vi

Chapter 1

Introduction

The traveling salesman problem is the probably most famous problem in combinatorial
optimization. Given a set of cities, the task is to find a shortest tour visiting all of
them. While this problem has various practical applications from logistics to genome
sequencing, our main interest comes from its important role in combinatorial optimiza-
tion. It has connections to many fundamental concepts such as T -joins, matroids, and
network flows.

Let us now give a more formal definition of the traveling salesman problem. An
instance consists of a (directed or undirected) graph G = (V,E) and nonnegative edge
cost c : E → R≥0. The task is to find a closed walk in G that visits every vertex at least
once and has minimum cost. When G is an undirected graph, we call this problem the
symmetric traveling salesman problem, often abbreviated as TSP. When G is a directed
graph, we call it the asymmetric traveling salesman problem, or in short ATSP.

An often useful equivalent definition is the following. Again, we are given a graph
G = (V,E) and edge cost c : E → R≥0. Instead of a walk, we are now looking for a
multi-set F of edges such that (V, F) is connected and Eulerian. An undirected graph
(V, F) is Eulerian if every vertex has an even number of incident edges. A directed graph
(V, F) is Eulerian if for every vertex v the number |δ−F (v)| of incoming edges equals the
number |δ+

F (v)| of outgoing edges. Via Euler’s theorem one can easily see that this
formulation is equivalent to our first definition of the traveling salesman problem.

Therefore, we can view the traveling salesman problem as a combination of connec-
tivity constraints and additional constraints on the vertex degrees. If we have only one
of these two types of constraints, the problem becomes easy: the problem of finding a
minimum cost connected subgraph of G is the minimum cost spanning tree problem.
It can be solved easily in polynomial time. We can also handle the second type of con-
straints on its own, both in the symmetric and the asymmetric case. In an undirected
graph, we can compute in polynomial time a set of edges such that every vertex degree
has a prescribed parity. This is the minimum cost T -join problem. In a directed graph,
we can compute in polynomial time a minimum cost multi-set F of edges such that
for every vertex v, the number |δ+

F (v)| − |δ−F (v)| matches a prescribed value. This is a
minimum cost flow problem.

However, combining the connectivity constraints with the constraints on the vertex
degrees makes the problem difficult. Both the symmetric and the asymmetric version
of the traveling salesman problem are well-known to be NP-hard [Kar72].

1

CHAPTER 1. INTRODUCTION

For this reason, we will focus on finding approximation algorithms. An α-approxi-
mation algorithm computes a solution of cost at most α times the cost of an optimum
tour and has polynomial runtime. We also say that the algorithm has approxima-
tion ratio α. For the symmetric TSP, Christofides’ algorithm from the 1970’s is a
3
2 -approximation algorithm [Chr76, Ser78]. Despite decades of research on TSP, this
approximation ratio has not been improved. For ATSP, there is a classical log2(n)-
approximation algorithm by Frieze, Galbiati, and Maffioli [FGM82], where n := |V | de-
notes the number of vertices. The best-known approximation ratio remained O(log(n))
until 2010, when Asadpour, Goemans, Mądry, Oveis Gharan, and Saberi gave an
O (log(n)/ log(log(n)))-approximation algorithm [AGM+17]. Only very recently Svens-
son, Tarnawski, and Végh obtained the first constant-factor approximation algorithm
for ATSP [STV18a]. They first showed an approximation ratio of 5500, which they
later optimized to 506 [STV19].

Besides finding better approximation algorithms, another important question in
the study of the traveling salesman problem is to determine the integrality ratio of the
classical linear programming relaxations. These relaxations have been introduced by
Dantzig, Fulkerson, and Johnson [DFJ54] and played a major role in the development
of both approximation algorithms and algorithms that solve large instances exactly
in practice [ABCC06]. The best known lower bounds on the integrality ratio can be
proven by a family of unit-weight instances, i.e. instances with c(e) = 1 for every edge
e ∈ E. This is one important motivation for studying these natural special cases with
c ≡ 1, called graph TSP (in undirected graphs) and graph ATSP (in directed graphs).
For these special cases, we know better approximation ratios and better upper bounds
on the integrality ratios than for the general case.

One of the best-studied generalizations of TSP and ATSP is their path version.
Here the start and end of the tour are given, but might be distinct. The special case
of identical start and end is the classical traveling salesman problem that we have
considered so far. At first glance, one might think that the generalization to the path
version does not change much. However, there are several important differences. For
example, Christofides’ algorithm yields only a 5

3 -approximation when generalized to
the path version [Hoo91]. For the symmetric unit-weight case, the integrality ratios of
the classical linear programming relaxations are known to be different [SV14]. Also in
many other cases, the best known approximation ratios and bounds on the integrality
ratio differ (see Section 1.2). In contrast to TSP, for the path version we know better
approximation algorithms than Christofides’ algorithm. The first such algorithm was
given in 2011 by An, Kleinberg, and Shmoys [AKS15].

Many other variants and special cases of the traveling salesman problem have been
studied: TSP in the Euclidean plane [Aro98, Mit99, RS93, BG13], TSP in planar or,
more generally, H-minor free graphs [Kle08, DHM10, DHK11, LWN17], TSP in cubic
or subcubic graphs [GLS05, BSvdSS14, CLS15, DL18, DKM17], orienteering [BCK+07,
BBCM04, CKP12, NR07], and many more. We will focus on the most basic variants of
the traveling salesman problem and their path versions: we will only consider general
(directed or undirected) graphs with either general nonnegative edge weights or unit
weights c ≡ 1. Our main goal is to achieve better approximation algorithms and to
obtain a better understanding of the classical linear programming relaxations and their
integrality ratios.

2

1.1. OUTLINE AND CONTRIBUTIONS OF THIS THESIS

1.1 Outline and contributions of this thesis

In Chapter 2 we introduce some basic notation and briefly summarize some well-known
facts from combinatorial optimization that we will use in later parts of this thesis.
After these preliminaries, the first main part of this thesis deals with the asymmetric
traveling salesman problem and its path version s-t-path ATSP:

Chapter 3. This chapter provides an introduction to ATSP and its path version.
First, we give an overview of prior work on this topic and introduce the classical
linear programming relaxations. In the second part of the chapter we study
the structure of dual solutions for the linear programs. We recall some known
statements, but also prove the following new result.
It is well known that there always exists a dual solution with support correspond-
ing to a laminar family L of vertex sets. This structure was exploited by Svensson,
Tarnawski, and Végh in their recent constant-factor approximation algorithm for
ATSP [STV18a]. We show that one can additionally achieve the following prop-
erty: the elements of the laminar family L induce strongly connected subgraphs
in the support graph of an optimum primal solution.
We will use this structure of dual solutions in the subsequent chapters to obtain
approximation algorithms and upper bounds on the integrality ratio.

Chapter 4. In a recent breakthrough Svensson, Tarnawski, and Végh [STV18a] gave
the first constant-factor approximation algorithm for ATSP and also showed that
its classical LP relaxation has constant integrality ratio. We present a simpler
algorithm that yields a much better approximation ratio.
While our new algorithm follows the framework of Svensson, Tarnawski, and
Végh [STV19], we make several improvements throughout the different steps of
the algorithm.
Using the structure of dual solutions obtained in Chapter 3, the first step is a
reduction to so-called vertebrate pairs via a recursive algorithm. Vertebrate pairs
are instances where we are already given a sub-tour (visiting some, but not all
vertices) with particular properties. Svensson, Tarnawski, and Végh first reduce
to what they call an irreducible instance as an intermediate step before reducing to
vertebrate pairs. We show that this intermediate step is not necessary. Our new
reduction is not only much simpler, but also leads to a much better approximation
ratio.
To solve vertebrate pairs, Svensson, Tarnawski, and Végh [STV19] combine Svens-
son’s algorithm [Sve15] with an algorithm for the Subtour Cover problem (see
Section 4.3). Their Subtour Cover algorithm computes a minimum cost circula-
tion in a certain flow network. One important step in the construction of the flow
network is the computation of a so-called witness flow. We show that one can
obtain a better approximation ratio by choosing the witness flow with a certain
minimality property.
Svensson’s algorithm [Sve15] (adapted to vertebrate pairs in [STV19]) uses a
potential fuction to measure progress. In [STV19] two different potential functions
were considered. One potential function yields a polynomial-time algorithm for

3

CHAPTER 1. INTRODUCTION

ATSP with approximation ratio 506. The other potential function yields an
algorithm that may have exponential runtime but computes a better solution:
it implies an upper bound of 319 on the integrality ratio. We present a new
potential function that leads to a polynomial runtime and simultaneously implies
the best known upper bound on the integrality ratio. This yields an improved
approximation ratio that matches the upper bound on the integrality ratio up to
an arbitrarily small ε > 0.
Overall, we obtain for every ε > 0 a (22 + ε)-approximation algorithm for ATSP,
improving on the 506-approximation algorithm from [STV19]. Moreover, we give
an upper bound of 22 on the integrality ratio of the classical LP relaxation,
improving on the upper bound of 319 from [STV19].
For graph ATSP we give a (13 + ε)-approximation algorithm for any fixed ε > 0,
improving on the (27 + ε)-approximation algorithm from [Sve15].

Chapter 5. In this chapter we study the path version of ATSP. We prove the first
constant upper bound on the integrality ratio of its classical LP relaxation: we
show an upper bound of 43 for s-t-path ATSP and an upper bound of 25 for
its unit-weight special case. Moreover, for any ε > 0 we give approximation
algorithms with approximation ratio 43 + ε for s-t-path ATSP and 25 + ε for its
unit-weight special case.
Feige and Singh [FS07] gave the following black-box reduction from s-t-path ATSP
to ATSP: if there is an α-approximation algorithm for ATSP, then for any fixed
ε > 0 there is a (2α+ ε)-approximation algorithm for its path version. We give a
similar black-box result for the integrality ratios of the classical LP relaxations:
if ρ is the integrality ratio for ATSP, then the integrality ratio for s-t-path ATSP
is at most 4ρ − 3. For unit-weight instances we obtain a better bound: if ρ is
the integrality ratio for graph ATSP, then the integrality ratio for s-t-path graph
ATSP is at most 2ρ− 1.
The main difficulty when generalizing the constant upper bound on the integrality
ratio from ATSP to its path version is the following. For ATSP one can eliminate
the dual LP variables corresponding to vertices, crucially using that ATSP solu-
tions are Eulerian. This step fails for the s-t-path ATSP. In order to apply similar
techniques as for ATSP in Chapter 4, one needs to upper bound the difference
as − at of the dual variables corresponding to the start s and the end t of the
tour. In general, this term is unbounded. However, we show that there always
exists an optimum dual solution, where as−at is at most the optimum LP value.
Using results from Chapter 4, we can then derive our constant upper bound on
the integrality ratio. To prove our black-box reduction from s-t-path ATSP to
ATSP, we combine our new bound on as−at also with techniques from Feige and
Singh [FS07].

In the second part of the thesis we consider the symmetric TSP and its path version
s-t-path TSP:

Chapter 6. This chapter provides an introduction to approximation algorithms for
TSP and its path version. We introduce the classical LP relaxations and give an
overview of previous work and known results.

4

1.1. OUTLINE AND CONTRIBUTIONS OF THIS THESIS

Chapter 7. In this chapter we prove a new upper bound on the integrality ratio of
the classical LP relaxation for the s-t-path TSP. To show this new bound, we
give an improved analysis of the Best-of-many Christofides algorithm with lonely
edge deletion, which was proposed by Sebő and van Zuylen [SvZ19].
Like the earlier work [AKS15, Seb13, Vyg16, GV18], Sebő and van Zuylen start
by writing an optimum LP solution as a convex combination of incidence vec-
tors of spanning trees. This distribution of spanning trees is the starting point
for the tour computation: from each of the trees they compute a tour and re-
turn the cheapest of them. Instead of bounding the cost of the cheapest tour
directly, in the analysis one bounds the weighted average of the cost of the tours;
in [AKS15, Seb13, Vyg16, GV18, SvZ19] the weights are the same as the weights
of the spanning trees in the convex combination. In our improved analysis of the
algorithm by Sebő and van Zuylen [SvZ19] we choose the weights differently. We
show that this yields a better bound on the approximation ratio of the algorithm
and the integrality ratio of the linear programming relaxation.

Chapter 8. In contrast to many other variants of the traveling salesman problem,
for the s-t-path graph TSP the integrality ratio 3

2 is known exactly. There is
a well-known family of instances proving that the integrality ratio is at least 3

2 .
In this chapter, we show that these classical examples are essentially the only
instances with this property (up to small local differences).
We also derive a 1.497-approximation algorithm for the s-t-path graph TSP, thus
achieving for the first time an approximation ratio below the integrality ratio of
the classical LP relaxation.
Like the current best approximation algorithm for graph TSP by Sebő and Vy-
gen [SV14], our approach uses ear-decompositions and ear-induction. The first
step of our algorithm is to compute an ear-decomposition with certain structural
properties. We introduce a new type of ear-decompositions that is optimized
using matroid intersection. A similar step was used in [SV14], but we optimize
larger parts of the ear-decomposition using laminar matroids instead of partition
matroids. From the dual of this matroid intersection problem we derive a new
lower bound for the length of an optimum s-t-tour.
Based on our optimized ear-decomposition, we apply a new kind of ear-induction
that reveals a connection to matroid union. Applying also the removable pairings
technique due to Mömke and Svensson [MS16], we obtain the following: if the
distance of the start s and the end t of the tour is relatively small, we get a tour
of length at most 1.497 times the value of an optimum LP solution. The smaller
the distance between s and t is, the better is our bound. We use this to prove
that all instances with integrality ratio close to 3

2 are very similar to the classical
examples with this property.
Combining our algorithm for the special case of small s-t-distance with a dynamic
program, we obtain a 1.497-approximation algorithm for the s-t-path graph TSP.
This dynamic programming approach will be further developed in the next chap-
ter, where we prove an even better approximation ratio.

Chapter 9. In this chapter we prove that the s-t-path TSP is not much harder to
approximate than its special case TSP. More precisely, we give the following black-

5

CHAPTER 1. INTRODUCTION

box reduction from s-t-path TSP to TSP: if there exists an α-approximation
algorithm for TSP for some α > 1, then for any ε > 0 there exists an (α + ε)-
approximation algorithm for its path version.
Our reduction also applies to the unit-weight case: any α-approximation algo-
rithm for graph TSP implies an (α + ε)-approximation algorithm for its path
version. By applying this result to the 7

5 -approximation algorithm for graph TSP
by Sebő and Vygen [SV14], we obtain a (7

5 + ε)-approximation algorithm for the
s-t-path graph TSP. This improves on the 1.497-approximation algorithm from
Chapter 8.
To prove our reduction from the path version to TSP, we proceed as follows.
We introduce a new generalization of s-t-path TSP, called Φ-TSP. For Φ-TSP
we give a 4-approximation algorithm using Jain’s iterative rounding framework
[Jai01]. By assumption we are given an α-approximation algorithm for TSP for
some α > 1. Using this, we iteratively strengthen our Φ-TSP algorithm such that
the approximation ratio improves, while the runtime increases. After a constant
number of improvement steps, we obtain an approximation ratio of (α + ε). For
a special case of Φ-TSP that includes the s-t-path TSP the overall runtime stays
polynomial.
To perform an improvement step we distinguish two cases. In one case, we use
a careful guessing of edges to reduce the problem to TSP. In the other case,
we apply dynamic programming over a laminar family of cuts. We obtain this
laminar family from the dual of a linear program for a minimum cost T -join
problem. The dynamic program allows us to guess some parts of the optimum
solution and partition the instance into several smaller instances of Φ-TSP. To
those subinstances we then recursively apply our current approximation algorithm
for Φ-TSP.

Finally, Chapter 10 contains some concluding remarks and open questions.

Chapter 7, Chapter 8, and parts of Chapter 4 are based on joint work with Jens
Vygen. Moreover, Chapter 9 is based on joint work with Jens Vygen and Rico Zenklusen
and parts of Chapter 5 are based on joint work with Anna Köhne and Jens Vygen.

6

1.2. STATE OF THE ART

1.2 State of the art

In this section we summarize the known results on the approximability and the inte-
grality ratios of the classical linear programming relaxations. Here we only state the
best known bounds. A more detailed discussion of the history and prior results will be
given in Chapter 3 for ATSP and its path version and in Chapter 6 for the symmetric
TSP and its path version.

1.2.1 Asymmetric traveling salesman problem

The following table summarizes the best upper bounds that we know on the integrality
ratio of the classical LP relaxation and the approximation ratio for (graph) ATSP and
its path version s-t-path (graph) ATSP. New bounds that we prove in this thesis are
marked in red.

upper bounds integrality ratio1 approximation ratio

ATSP 22 [Corollary 4.40] 22 + ε [Theorem 4.39]

s-t-path ATSP 43 [Corollary 5.10] 43 + ε [Theorem 5.9]

graph ATSP 13 [Sve15] 13 + ε [Theorem 4.43]

s-t-path graph ATSP 25 [Corollary 5.15] 25 + ε [Corollary 5.15]

Moreover, we have the following black-box reductions from the path version of (graph)
ATSP to (graph) ATSP.

• Let α > 1 and ε > 0. If there is an α-approximation algorithm for ATSP, then
there is a (2α+ ε)-approximation algorithm for its path version [FS07].
• Let ε > 0 and let ρ be the integrality ratio of the classical LP relaxation for
ATSP. Then the integrality ratio of the classical LP relaxation of its path version
is at most 4ρ− 3 [Theorem 5.13].
• Let ε > 0 and let ρ be the integrality ratio of the classical LP relaxation for graph

ATSP. Then the integrality ratio of the classical LP relaxation of its path version
is at most 2ρ− 1 [Theorem 5.14].

The first of the above reductions is due to Feige and Singh [FS07]. We will prove the
other two reductions in Chapter 5. The following table shows the known lower bounds
on the integrality ratio of the classical LP relaxation and lower bounds on the best
possible approximation ratio; the approximability lower bounds assume P 6= NP.

lower bounds integrality ratio1 approximation ratio

ATSP 2 [CGK06] 75
74 [KLS15]

s-t-path ATSP 2 [CGK06] 75
74 [KLS15]

graph ATSP 2 [Corollary 4.46] 685
684 [KLS15]

s-t-path graph ATSP 2 [Corollary 4.46] 685
684 [KLS15]

1The bounds on the integrality ratio refer to the classical LP relaxations (ATSP LP) for ATSP and
(ATSPP LP) for s-t-path ATSP that are defined in Chapter 3.

7

CHAPTER 1. INTRODUCTION

1.2.2 Symmetric traveling salesman problem

Now we consider the symmetric case. The best upper bounds that we know on the
integrality ratio of the classical LP relaxation and the approximation ratio for (graph)
TSP and its path version s-t-path (graph) TSP are shown in the following table, where
again new bounds that we prove in this thesis are marked in red.

upper bounds integrality ratio2 approximation ratio

TSP 3
2 [Wol80] 3

2 [Chr76, Ser78]

s-t-path TSP 1.5284 [Theorem 7.6] 3
2 [Zen19]

graph TSP 7
5 [SV14] 7

5 [SV14]

s-t-path graph TSP 3
2 [SV14] 7

5 + ε [Corollary 9.4]

In Chapter 9 we will prove the following black-box reductions from s-t-path (graph)
TSP to (graph) TSP.

• Let α > 1 and ε > 0. If there is an α-approximation algorithm for TSP, then
there is an (α+ ε)-approximation algorithm for s-t-path TSP [Corollary 9.2].
• Let α > 1 and ε > 0. If there is an α-approximation algorithm for graph TSP, then

there is an (α+ε)-approximation algorithm for s-t-path graph TSP [Corollary 9.3].

The best known lower bounds on the integrality ratio of the classical LP relaxation
and achievable approximation ratios are summarized in the following table; the lower
bounds on the approximability assume P 6= NP.

lower bounds integrality ratio2 approximation ratio

TSP 4
3

123
122 [KLS15]

s-t-path TSP 3
2

123
122 [KLS15]

graph TSP 4
3

685
684 [KLS15]

s-t-path graph TSP 3
2

685
684 [KLS15]

Concerning the approximability, the lower bounds are quite far away from the upper
bounds. The known bounds on the integrality ratio are much better, but the only case
in which the integrality ratio is known exactly is the s-t-path graph TSP. This is also
the only variant for which we know an algorithm with approximation ratio better than
the integrality ratio (see Chapter 8).

2The bounds on the integrality ratio refer to the classical LP relaxations (TSP LP) for TSP and
(TSPP LP) for s-t-path TSP that are defined in Chapter 6.

8

Chapter 2

Preliminaries

This chapter contains preliminaries on some basic concepts of combinatorial optimiza-
tion. We give a brief summary of some well-known results and basic terminology that
we will use in later parts of this thesis. For a more in-depth discussion of these topics
we refer to textbooks on combinatorial optimization, e.g. [KV18] or [Sch03].

2.1 Notation

A weighted graph is a tuple (V,E, c), where V is the vertex set, E is the edge set,
and c : E → R denotes the edge cost. We will sometimes also call c(e) the weight or
the length of the edge e. Often we abbreviate c({v, w}) or c((v, w)) by c(v, w). For a
(multi-)subset F ⊆ E we define c(F) :=

∑
e∈F c(e). Similarly, for a vector x ∈ RE we

write x(F) :=
∑
e∈F xe and c(x) :=

∑
e∈E c(e) · xe.

We denote by V (G) the vertex set of a graph G and by E(G) its edge set. For a
directed graph G = (V,E) and U ⊆ V we define

δ+(U) := {(u, v) ∈ E : u ∈ U, v ∈ V \ U}

to be the set of outgoing edges of U and δ−(U) := δ+(V \U) to be the set of incoming
edges of U . For a vertex v we also write δ+(v) := δ+ ({v}) and δ−(v) := δ− ({v}). For
any directed or undirected graph G = (V,E) and U ⊆ V we write

δ(U) := {e ∈ E : exactly one endpoint of e is contained in U}.

We also write δ(v) := δ({v}) for v ∈ V . If the graph G is not clear from the context,
we sometimes write δG, δ+

G, or δ
−
G instead of δ, δ+, or δ−. Similarly, for a (multi-)set F

of edges we also write δF (U) := {e ∈ F : exactly one endpoint of e is contained in U}.
Let G = (V,E) be a (directed or undirected) graph. For a vertex set U and an edge

set F , we denote by F [U] the set of edges in F for which both endpoints are contained
in U . Moreover, G[U] denotes the induced subgraph with vertex set U and edge set
E[U]. For a set U ⊆ V and a graph G, we denote by G/U the graph resulting from G
by contracting the vertex set U , where G/∅ := G.

For an undirected graph G = (V,E) and a multi-set F of edges, we define

odd(F) := {v ∈ V : |δ(v) ∩ F | is odd}.

9

CHAPTER 2. PRELIMINARIES

For an edge set F ⊆ E we define its incidence vector χF ∈ RE to be the vector with
χFe = 1 if e ∈ F and χFe = 0 if e ∈ E \ F . For a multi edge set F , the component χFe
of the incidence vector χF denotes the number of copies of e that are contained in F .

Finally, for two sets A and B we denote by A
.
∪ B their disjoint union and by A4B

their symmetric difference.

2.2 Eulerian walks

An Eulerian walk in a (directed or undirected) graph G is a walk that contains every
edge of G exactly once and every vertex at least once. A directed (multi-)graph G is
called Eulerian if |δ−(v)| = |δ+(v)| for all vertices v ∈ V (G). We also call a multi-set
F of directed edges Eulerian if (V (G), F) is Eulerian.

Theorem 2.1 (Euler’s theorem for directed graphs). Let G be a directed graph. There
exists a closed Eulerian walk in G if and only if G is connected and Eulerian.

Let s, t ∈ V (G) with s 6= t. Then there exists an Eulerian s-t-walk in G if and only
if G is connected, |δ−(v)| = |δ+(v)| for all vertices v ∈ V (G) \ {s, t} and |δ−(s)|+ 1 =
|δ+(s)|.

An undirected graph G is called Eulerian if |δ(v)| is even for all vertices v ∈ V (G), i.e.
odd(E(G)) = ∅. We also call a multi-set F of undirected edges Eulerian if (V (G), F)
is Eulerian.

Theorem 2.2 (Euler’s theorem for undirected graphs). Let G be an undirected graph.
There exists a closed Eulerian walk in G if and only if G is connected and Eulerian.

Let s, t ∈ V (G) with s 6= t. Then there exists an Eulerian s-t-walk in G if and only
if G is connected and odd(E(G)) = {s, t}.

Walks as in Theorem 2.1 and Theorem 2.2 can be computed in linear time.

2.3 Ear-decompositions

Let G = (V,E) be an undirected graph. Consider a sequence P0, P1, . . . , Pk of sub-
graphs of G, where P0 contains a single vertex, and Pi for i > 0 is either

• a path such that V (Pi)∩
(
V (P1)∪ · · · ∪ V (Pi−1)

)
is the set of endpoints of Pi, or

• a cycle such that
∣∣V (Pi) ∩

(
V (P0) ∪ · · · ∪ V (Pi−1)

)∣∣ = 1.

We say that P0, P1, . . . , Pk is an ear-decomposition of G if

G =
(
V (P0) ∪ · · · ∪ V (Pk), E(P1) ∪ · · · ∪ E(Pk)

)
.

We call the graphs P1, . . . , Pk ears. See Figure 2.1.

Theorem 2.3 (Whitney [Whi32]). An undirected graph has an ear-decomposition if
and only if it is 2-edge-connected.

An ear is called open if it is P1 or it is a path; otherwise it is called closed. An
ear-decomposition is called open if all its ears are open.

Theorem 2.4 (Whitney [Whi32]). An undirected graph has an open ear-decomposition
if and only if it is 2-vertex-connected.

10

2.4. LAMINAR FAMILIES

P0

P1

P2
P3

P4

Figure 2.1: An ear-decomposition with four ears P1, . . . , P4. The graph P0 consists of a
single vertex (black). The edges of the first ear P1 are shown in green. The ear P2 (blue)
is closed, P3 (red) is open, and P4 (orange) is an open ear with exactly one edge.

2.4 Laminar families

Definition 2.5. Let V be a finite set and let L be a family of subsets of V . Then we
call L a laminar family if for every two sets X,Y ∈ L, we have X ⊆ Y or Y ⊆ X or
X ∩ Y = ∅.

Let v ∈ V such that v is contained in at least one element of L. If L is a laminar
family, then there is a unique minimal set X ∈ L containing v and a unique maximal
set Y ∈ L containing v.

We will also often use the following simple observation.

Lemma 2.6. Let V be a finite set and let L be a laminar family of non-empty subsets
of V . Then |L| ≤ 2|V | − 1.

2.5 Linear programming

In linear programming we are given a matrix A ∈ Rm×n and vectors b ∈ Rm and c ∈ Rn.
The task is the following:

min
x∈Rn

cTx

s.t. Ax ≥ b

x ≥ 0.

(2.1)

We call (2.1) a linear program or LP. A linear program might also be of a different but
equivalent form; we always optimize a linear objective subject to some linear inequali-
ties. Here, we stated the form that we will use most often in the context of TSP. The
polyhedron

P := {x ∈ Rn : Ax ≥ b, x ≥ 0}

is the set of feasible solutions of the linear program (2.1). If A and b are rational, we
also call the polyhedron P rational. If P 6= ∅, we call the LP (2.1) feasible. If for
every number C ∈ R, there exists some x ∈ P with cTx < C, we call (2.1) unbounded.
Otherwise, we call it bounded.

Khachiyan [Kha79] proved that linear programming can be solved in polynomial
time for rational input A, b, c. This result requires the matrix A, the right-hand side
b, and the cost vector c to be given explicitly. Later Grötschel, Lovász, and Schri-
jver [GLS81] showed that it is sufficient if the set P of feasible solutions is given only

11

CHAPTER 2. PRELIMINARIES

implicitly via a separation oracle. A separation oracle for a rational polytope P receives
a vector x ∈ Qn as an input; then it either certifies x ∈ P or returns a vector a ∈ Qn

such that aTx > aTx′ for all x′ ∈ P . Given such a separation oracle for rational P and
the cost vector c ∈ Qn, one can solve the linear program (2.1) using only a polynomial
number of oracle calls and further operations taking polynomial time.

LP duality

The dual of the linear program (2.1) is

max
y∈Rm

bT y

s.t. AT y ≤ c

y ≥ 0.

(2.2)

We have the following relation between the primal LP (2.1) and its dual LP (2.2).

Theorem 2.7 (strong duality). Let A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. If (2.1) is
feasible and bounded, then also (2.2) is feasible and bounded. Moreover,

min
{
cTx : Ax ≥ b, x ≥ 0, x ∈ Rn

}
= max

{
bT y : AT y ≤ c, y ≥ 0, y ∈ Rm

}
.

We will also use the following properties of optimum primal and dual solutions.

Theorem 2.8 (complementary slackness). Let x ∈ Rn be a feasible solution of (2.1)
and let y ∈ Rm be a feasible solution of (2.2). Then x and y are both optimal solutions
if and only if the following two conditions hold:

• xT (c−AT y) = 0

• yT (Ax− b) = 0.

LP relaxations and integrality ratios

Suppose we consider an optimization problem in which we want to find a minimum
cost (multi-)set of edges subject to some constraints. Then we call a linear program
a relaxation if the incidence vectors of feasible solutions to the optimization problem
are feasible solutions to the linear program of the same cost. The value of the linear
program yields a lower bound on the value of an optimum solution to our optimization
problem. For a fixed optimization problem and a fixed LP relaxation, we denote by
OPT(I) the cost of an optimum solution to the optimization problem on an instance I
and we denote by LP(I) the optimum value of the LP relaxation. If the instance is clear
from the context, we sometimes simply write OPT or LP. We define the integrality
ratio to be the supremum of OPT(I)

LP(I) over all instances I where the OPT(I) is non-zero;
if for some instance I we have OPT(I) > 0 and LP(I) = 0, the integrality ratio is
defined to be ∞. Sometimes the integrality ratio is also called integrality gap. We
remark that there are also more general definitions of LP relaxations and integrality
ratios in other contexts, but the above ones are sufficient for our purpose.

12

2.6. MATROIDS

2.6 Matroids

Definition 2.9. A matroidM = (E,F) consists of a finite ground set E and a family
F of subsets of E such that the following three conditions hold:

• ∅ ∈ F .

• If B ∈ F , then A ∈ F for all A ⊆ B.

• If A,B ∈ F and |B| > |A|, then there exists some e ∈ B such that A ∪ {e} ∈ F .

A set I ∈ F is called independent. An (inclusionwise) maximal independent set is a
basis of the matroid.

One important example of matroids are graphic matroids. A graphic matroid arises
from an undirected graph G = (V,E). The ground set of the matroid is the edge set of
the graph. A set F of edges is independent if and only if it does not contain the edge
set of a cycle – in other words, (V, F) is a forest. If the graph G is connected, the bases
of this matroid correspond to the spanning trees of G.

Another important example of matroids are partition matroids. Let E be some finite
ground set and P = {E1, . . . , Ek} a partition of E. Moreover, let a1, . . . , ak ∈ Z≥0 and

F :=
{
A ⊆ E : |A ∩ Ei| ≤ ai for all i ∈ {1, . . . , k}

}
.

Then (E,F) is a partition matroid.
A generalization of partition matroids are laminar matroids. Let again E be some

finite ground set. Now let L := {E1, . . . , Ek} be a laminar family of subsets of E.
Moreover, let again a1, . . . , ak ∈ Z≥0 and

F :=
{
U ⊆ E : |U ∩ Ei| ≤ ai for all i ∈ {1, . . . , k}

}
.

Clearly, F fulfills the first two conditions of Definition 2.9. To prove the third condid-
tion, consider sets A,B ∈ F with |B| > |A|. We call a set Ei ∈ L tight if |A∩Ei| = ai.
Suppose there exists no e ∈ B such that A ∪ {e} ∈ F . Then every element of B is
contained in a tight set. We consider the family L′ of maximal tight sets in L. Since L
is a laminar family, the elements of L′ are disjoint. Therefore,

|A| ≥
∑
Ei∈L′

|A ∩ Ei| =
∑

i:Ei∈L′
ai ≥

∑
Ei∈L′

|B ∩ Ei| = |B|,

a contradiction. Hence, (E,F) is indeed a matroid. We call such a matroid a laminar
matroid.

Definition 2.10. Let M = (E,F) be a matroid. The rank function r : 2E → Z≥0 of
the matroidM is given by

r(F) := max
{
|F ′| : F ′ ⊆ F, F ′ ∈ F

}
.

Note that a set U ⊆ E is independent if and only if r(U) = |U |. The rank function of any
matroid is submodular, i.e. for any A,B ⊆ E we have r(A∩B)+r(A∪B) ≤ r(A)+r(B).

13

CHAPTER 2. PRELIMINARIES

Spanning trees and bases of matroids

Given a cost function c : E → R, a minimum cost basis of a matroid can be computed
by the matroid greedy algorithm. In particular, we can compute a minimum cost
spanning tree of a weighted graph G = (V,E, c) in polynomial time. In fact, we can
even compute a minimum cost spanning tree in time O (|E|+ |V | · log(|V |)).

The convex hull of incidence vectors of bases of a matroid is called the base polytope
of the matroid. It admits the following description.

Theorem 2.11 (Edmonds [Edm70]). LetM be a matroid with ground set E and rank
function r. Then{

x ∈ RE≥0 : x(E) = r(E), x(F) ≤ r(F) for all F ⊆ E
}

(2.3)

is the convex hull of incidence vectors of bases ofM.

A special case of this is the convex hull of incidence vectors of spanning trees of a
graph G, also called the spanning tree polytope.

Corollary 2.12. Let G = (V,E) be an undirected graph. Then{
x ∈ RE≥0 : x(E) = |V | − 1, x(E[U]) ≤ |U | − 1 for all U ⊆ V

}
(2.4)

is the convex hull of incidence vectors of spanning trees of G.

In particular, every vector x contained in the polytope (2.4) can be written as a
convex combination of incidence vectors of spanning trees.

Matroid intersection

Matroid intersection is the problem of finding a maximum cardinality common indepen-
dent set in two matroids over the same ground set. More precisely, given two matroids
M1 = (E,F1) andM2 = (E,F2), find a set I ∈ F1 ∩F2 maximizing |I|. The matroids
are given either by some polynomial-time oracle for the rank function or, equivalently,
by an independence oracle, i.e. an oracle that decides in polynomial time whether a
given set F ⊆ E is independent or not. The matroid intersection problem can be solved
in polynomial time. Moreover, we have the following characterization of the optimum
solution value.

Theorem 2.13 (Edmonds [Edm70]). Let M1 = (E,F1) be a matroid with rank func-
tion r1. LetM2 = (E,F2) be a matroid over the same ground set with rank function r2.
Then

max
{
|I| : I ∈ F1 ∩ F2

}
= min

{
r1(Q) + r2(E \Q) : Q ⊆ E

}
.

In the weighted matroid intersection problem we are given again two matroidsM1
and M2 with common ground set E, but now in addition a weight function w : E →
R≥0. Here, the task is to find a common independent set of the two matroids that has
maximum weight. Also this problem can be solved in polynomial time.

The s-t-path ATSP can be described as the problem of finding a maximum weight
independent set in three matroids. We may assume that the given directed graph
G = (V,E) is a complete graph and the edge cost c fulfill the triangle inequality; then

14

2.7. T -JOINS

we can require that a solution to the s-t-path ATSP visits every vertex exactly once; see
Chapter 3. In this formulation a solution for the s-t-path ATSP (with s 6= t) is a path
from s to t that contains every vertex. The edge set of such a path is a common basis of
three matroids whose ground set is the edge set of G. The first matroid is the graphic
matroid in which a subset of E is independent if it does not contain an undirected cycle.
The second matroid is a partition matroid in which a subset of E is independent if it
contains at most one incoming edge of every vertex in V \ {s} and no incoming edge of
s. The third matroid is again a partition matroid in which a subset of E is independent
if it contains at most one outgoing edge of every vertex in V \{t} and no outgoing edge
of t. Moreover, with the weight function is w(e) := 2·

∑
f∈E c(f)−c(e) for all e ∈ E, the

maximum weight common independent set of these three matroids correspond precisely
to the minimum cost solutions of the s-t-path ATSP. However, even finding a maximum
cardinality common independent set of three matroids is NP-hard.

Matroid union

We will also need the matroid union theorem. LetM1 = (E1,F1) andM2 = (E2,F2)
be two matroids. Then the union ofM1 andM2 is

(E1 ∪ E2, {F1 ∪ F2 : F1 ∈ F1, F2 ∈ F2}) .

This is again a matroid.

Theorem 2.14 (Nash-Williams [NW67]). Let M1 = (E1,F1) be a matroid with rank
function r1 and let M2 = (E2,F2) be a matroid with rank function r2. Then the rank
function r of the union ofM1 andM2 is given by

r(U) = min
{
|U \Q|+ r1(Q ∩ E1) + r2(Q ∩ E2) : Q ⊆ U

}
.

2.7 T -joins

Definition 2.15. Let G = (V,E) be an undirected graph and T ⊆ V with |T | even.
Then a multi-set J ⊆ E is a T -join if T = odd(J).

An undirected graph G contains a T -join if and only if every connected component
of G contains an even number of elements of T . Given such a graph G and cost
c : E → R≥0, we can compute in polynomial time a T -join of minimum cost. The
convex hull of incidence vectors of T -joins is the T -join polyhedron. It can be described
as follows.

Theorem 2.16 (Edmonds, Johnson [EJ73]). Let G = (V,E) be an undirected graph
and T ⊆ V with |T | even. Then{

x ∈ RE≥0 : x(δ(U)) ≥ 1 for all U ⊆ V with |U ∩ T | odd
}

(2.5)

is the convex hull of incidence vectors of T -joins in G.

We call a cut δ(U) with |U ∩T | odd a T -cut. Every vector in the T -join polyhedron
dominates a convex combination of simple T -joins: for every vector x contained in (2.5),

15

CHAPTER 2. PRELIMINARIES

there is a vector x′ ≤ x (componentwise) such that x′ is a convex combination of
incidence vectors of T -joins without parallel edges. For any c : E → R≥0 we have

min
{
c(J) : J is a T -join

}
= min

{
c(x) : x ∈ RE≥0, x(C) ≥ 1 for every T -cut C

}
.

We can also describe the convex hull of incident vectors of simple T -joins.

Theorem 2.17 (Edmonds, Johnson [EJ73]). Let G = (V,E) be an undirected graph
and T ⊆ V with |T | even. Then{

x ∈ [0, 1]E : |F | − x(F) + x(δ(U) \ F) ≥ 1

for all U ⊆ V and F ⊆ δ(U) with |U ∩ T |+ |F | odd
}
.

is the convex hull of incidence vectors of simple T -joins in G.

We call this the T -join polytope.

2.8 Network flows

Definition 2.18. A flow network (G, u) consists of a weighted directed graph G =
(V,E, c) and edge capacities u : E → R≥0. A flow in (G, u) is a function f : E → R≥0
with f(e) ≤ u(e) for all e ∈ E. The cost of the flow is c(f) :=

∑
e∈E f(e) · c(e).

Let b : V → R with
∑
v∈V b(v) = 0. A flow f is a b-flow if f(δ+(v))− f(δ−(v)) = b(v)

for all v ∈ V (G).

We define the support of a flow f to be the set supp(f) := {e ∈ E : f(e) > 0} of edges
with positive flow value.

The following theorem characterizes flow networks (G, u) in which a b-flow exists.

Theorem 2.19. Let (G, u) be a flow network and let b : V → R with
∑
v∈V b(v) = 0.

Then there exists a b-flow in (G, u) if and only if for every set U ⊆ V

u(δ+(U)) ≥
∑
v∈U

b(v).

A circulation is a b-flow for b ≡ 0. From Theorem 2.19 one can easily derive the
following.

Theorem 2.20 (Hoffman’s circulation theorem). Let G = (V,E, c) be a weighted di-
rected graph. Moreover, let l : E → R≥0 and let u : E → R≥0. Then a circulation
f : E → R≥0 with l(e) ≤ f(e) ≤ u(e) for all e ∈ E exists if and only if

l(δ−(U)) ≤ u(δ+(U)) (2.6)

for all U ⊆ V .

If b(v) > 0 only for one vertex s ∈ V and b(v) < 0 only for one vertex t ∈ V , we
call a b-flow f also an s-t-flow. Then we say that b(s) = −b(t) is the value of the flow
f . The following theorem characterizes the maximum value of an s-t-flow in a flow
network. It can be easily derived from Theorem 2.19 (and vice versa).

16

2.8. NETWORK FLOWS

Theorem 2.21 (max-flow-min-cut theorem). Let (G, u) be a flow network and s, t ∈
V (G). The maximum value of an s-t-flow in (G, u) equals the capacity of a minimum
s-t-cut, i.e.

max
{
γ : f an s-t-flow of value γ in (G, u)

}
= min

{
u(δ+(U)) : {s} ⊆ U ⊆ V (G) \ {t}

}
.

A maximum s-t-flow and a minimum s-t-cut can be computed in polynomial time.
In particular, a cut δ+(U) with u(δ+(U)) minimum among all ∅ 6= U (V (G) can

be computed in polynomial time. Similarly, a cut δ(U) with u(δ(U)) minimum an be
computed in polynomial time.
Theorem 2.22 (flow decomposition). Let G = (V,E) be a directed graph and let
b : V → R with

∑
v∈V b(v) = 0. Define

V + := {v ∈ V : b(v) > 0}
V − := {v ∈ V : b(v) < 0}.

Given a b-flow f : E → R≥0, we can compute in polynomial time
• a set P of paths from V + to V −,
• weights λP > 0 for P ∈ P,
• a set C of cycles, and
• weights λC > 0 for C ∈ C,

such that
f =

∑
P∈P

λP · χE(P) +
∑
C∈C

λC · χE(C).

Minimum cost flows

In the minimum cost flow problem we are given a flow network (G, u) and a function
b : V (G) → R with

∑
v∈V (G) b(v) = 0. The task is to compute a b-flow in (G, u) with

minimum cost. This problem is a special case of linear programming and therefore
solvable in polynomial time. Moreover, there are several faster algorithms specialized
for the minimum cost flow problem.

Many of these algorithms use the so-called residual graph. For a fixed flow network
(G, u) and a flow f in (G, u) we define the residual graph Gf as

Gf :=
(
V (G),

{
e ∈ E(G) : f(e) < u(e)

} .
∪
{←−e ∈ E(G) : f(e) > 0

})
,

where ←−e for an edge e = (u, v) ∈ E(G) is an edge from v to u with c (←−e) := −c(e).
Note that if E contains both an edge (u, v) and an edge (v, u), then the residual graph
might contain parallel edges even if G does not. We define the residual capacities
uf : E(Gf)→ R>0 to be

uf (e) :=

u(e)− f(e) if e ∈ E(G)

f(e′) if e =
←−
e′ for some edge e′ ∈ E(G).

17

CHAPTER 2. PRELIMINARIES

Note that all edges in Gf have a positive residual capacity. Using the residual graph,
we can give the following characterization of a minimum cost flow.

Proposition 2.23. Let (G, u) be a flow network and b : V (G)→ R with
∑
v∈V (G) b(v) =

0. Then a b-flow f in (G, u) has minimum cost if and only if the residual graph Gf
does not contain any cycle of negative cost.

It is easy to see that the condition in Proposition 2.23 is necessary: suppose there
is a cycle of negative cost in Gf . Then we can improve the flow f by augmenting along
this cycle: we can increase the value of f for every edge e ∈ E(G) that is contained in
the cycle and decrease the value for edges e ∈ E(G) for which ←−e is contained in the
cycle.

Integral flows

Consider a weighted directed graph G with integral lower bounds l(e) and upper bounds
u(e) on the flow f(e) for all e ∈ E(G). Moreover, suppose the function b : V (G) → Z
is integral. Then we can find an integral minimum cost b-flow, unless the instance is
infeasible, i.e. unless there does not even exist a fractional feasible solution.

Theorem 2.24. Let G = (V,E, c) be a weighted directed graph. Let l : E → Z≥0 and
let u : E → Z≥0. Moreover, let b : V → Z with

∑
v∈V b(v) = 0. If the linear program

min c(f)
s.t. f(δ+(v))− f(δ−(v)) = b(v) for all v ∈ V

f(e) ≥ l(e) for all e ∈ E
f(e) ≤ u(e) for all e ∈ E.

is feasible, then it has an integral optimum solution and we can find such a solution in
polynomial time.

2.9 Steiner forest and iterative rounding

An instance of the Steiner forest problem consists of a weighted graph (V,E, c), a set
R ⊆ V of terminals, and a partition C of R. A feasible solution is a set F ⊆ E such
that for every C ∈ C and every two terminals v, w ∈ C, the graph (V, F) contains a
v-w-path. So the task in the Steiner forest problem is to find such a solution F with
minimum cost c(F).

The Steiner forest problem is NP-hard, but there are 2-approximation algorithms
known [GGP+94, Jai01]. The 2-approximation algorithm by Jain even applies to the
following much more general setting. Consider a function f : 2V → Z≥0 and the linear
program

min c(x)
s.t. x(δ(U)) ≥ f(U) for all U ⊆ V

xe ≤ 1 for all e ∈ E
xe ≥ 0 for all e ∈ E.

(2.7)

Jain [Jai01] showed that one can find in polynomial time an integral solution to (2.7)
of cost at most 2 · LP if the following two conditions hold:

18

2.9. STEINER FOREST AND ITERATIVE ROUNDING

• the function f is weakly supermodular, i.e. for any two sets A,B ⊆ V we have
f(A) + f(B) ≤ f(A∪B) + f(A∩B) or f(A) + f(B) ≤ f(A \B) + f(B \A); and

• given a vector x ∈ [0, 1]E , we can in polynomial time either find a set U ⊆ V such
that f(U) > x(δ(U)) or decide that no such set exists.

To prove this, Jain developed an iterative rounding scheme. He proved that at least
one variable of every extreme point solution of (2.7) has value at least 1

2 ; then this
variable is rounded up and one can iterate on the residual problem where this variable
is fixed to 1. For the function f defined by

f(U) :=
{

1, if there exists C ∈ C such that C \ U 6= ∅ and U ∩ C 6= ∅
0, else

Jain’s iterative rounding framework yields a 2-approximation algorithm for the Steiner
forest problem.

19

CHAPTER 2. PRELIMINARIES

20

Part I

The asymmetric traveling
salesman problem and its path

version

21

Chapter 3

ATSP and s-t-path ATSP

In the first part of this chapter we introduce the classical linear programming relax-
ations for ATSP and its path version. Moreover, we provide an overview of known
approximation algorithms. In the second part of the chapter we then discuss properties
of dual LP solutions. We show that we may assume that the dual solutions have a
particular structure, strengthening a result from [STV18a].

3.1 Introduction and overview of previous work

Let us first recall the definition of the asymmetric traveling salesman problem (ATSP).
Given a directed graph G = (V,E) and nonnegative edge weights c : E → R≥0, we
want to find a minimum cost closed walk in G that visits all vertices. A closed walk in
G is a sequence v0, v1, . . . , vk with v0 = vk and (vi−1, vi) ∈ E for all i ∈ {1, . . . , k}. We
are looking for such a sequence that contains every vertex at least once and minimizes∑k
i=1 c(vi−1, vi).
In the metric closure of (G, c) we have a complete graph with vertex set V and the

costs of an edge (v, w) is defined by the length of a shortest v-w-path in (G, c); then the
edge cost c̄ fulfill the triangle inequality c̄(u, v) + c̄(v, w) ≥ c̄(u,w) for all u, v, w ∈ V .
Every walk in G also is a walk in the metric closure of at most the same cost. Moreover,
having a walk in the metric closure that visits every vertex, we get such a walk of the
same cost in G by replacing every edge (v, w) by a shortest v-w-path. Hence, we may
assume that G is complete and the triangle inequality c(u, v) + c(v, w) ≥ c(u,w) holds.
If we make these two assumptions, we may require that every vertex is visited exactly
once: whenever a vertex is visited more than once, we can shortcut the walk, i.e. skip
the second occurrence of the vertex in the sequence v0, . . . , vk−1; due to the triangle
inequality this does not increase the cost.

A subtour is a multi edge set F such that (W,F) is connected and Eulerian for
some W ⊆ V . By Euler’s theorem (Theorem 2.1), subtours are the multi edge sets of
closed walks in G. A tour in G is a multi edge set F such that (V, F) is connected and
Eulerian. Tours are the multi edge sets of closed walks that visit all vertices. Hence
ATSP is the problem of finding a minimum cost tour in G.

23

CHAPTER 3. ATSP AND S-T -PATH ATSP

Note that an instance (G, c) of ATSP has a feasible solution if and only if G is
strongly connected. The standard LP relaxation for ATSP is

min c(x)
s.t. x(δ−(v))− x(δ+(v)) = 0 for v ∈ V

x(δ(U)) ≥ 2 for ∅ 6= U (V

xe ≥ 0 for e ∈ E.

(ATSP LP)

The integral solutions of (ATSP LP) are precisely the incidence vectors of tours. Hence
they correspond to closed walks that visit all vertices. The relaxation (ATSP LP) has
a feasible solution if and only if G is strongly connected.

If G is a complete graph and the edge costs fulfill the triangle inequality, we could
also add degree constraints x(δ+(v)) = x(δ−(v)) = 1 for all vertices v ∈ V . However,
this does not change the optimum LP value as one can show by applying the directed
splitting-off technique due to Mader [Mad82] similar to Cunningham (see [MMP90])
and Goemans and Bertsimas [GB93].

Because the separation problem for (ATSP LP) can be easily reduced to a minimum
cut problem, one can solve (ATSP LP) in polynomial time. Alternatively, one can
solve (ATSP LP) using an extended formulation with only a polynomial number of
constraints.

3.1.1 Approximating ATSP

The first nontrivial approximation algorithm for ATSP was a log2(n)-approximation
algorithm due to Frieze, Galbiati and Maffioli [FGM82]; here n := |V | denotes the
number of vertices. We now consider the formulation of ATSP where G is a complete
graph and the triangle inequality holds. To compute a tour F , the algorithm of Frieze,
Galbiati and Maffioli initially sets F := ∅. Then it iteratively does the following: first,
select an arbitrary vertex from every connected component of (V, F) and denote by
V ′ the set of selected vertices. Then compute a minimum cost cycle cover C in G[V ′],
i.e. a set of cycles (with at least two edges each) such that every vertex v ∈ V ′ is
contained in exactly one of them. Computing such a set of cycles can be reduced to a
minimum weight perfect matching problem in a bipartite graph (or to a minimum cost
flow problem) and can thus be done in polynomial time. Finally, add the edges of all
the cycles in C to F and iterate until (V, F) is connected.

The result of this algorithm is clearly a feasible solution to ATSP because (V, F)
remains Eulerian throughout the algorithm and is connected at the end. The cost
of a single cycle cover C can be bounded by the length of an optimum tour: we can
shortcut every tour in G to a tour in G[V ′], which is a cycle cover consisting of a single
cycle. Due to the triangle inequality, shortcutting does not increase the length of the
tour. Moreover, since the number of connected components of (V, F) decreases in every
iteration by at least a factor of two, we have at most log2(n) iterations. This implies
that the algorithm described above is indeed a log2(n)-approximation algorithm.

One can also bound the cost of the computed tour with respect to the optimum value
LP of (ATSP LP) by proving that the cost of a single cycle cover C can be bounded
by LP. This yields an upper bound of log2(n) on the integrality ratio of (ATSP LP).
The best known lower bound on the integrality ratio of this LP relaxation is 2, which

24

3.1. INTRODUCTION AND OVERVIEW OF PREVIOUS WORK

is due to Charikar, Goemans, and Karloff [CGK06]. In Section 4.6 we show that the
integrality ratio is at least 2 even for unit-weight instances (with c ≡ 1).

The approximation ratio log2(n) was improved to 0.99 log2(n) by Bläser [Blä03], to
0.842 log2(n) by Kaplan, Lewenstein, Shafrir, and Sviridenko [KLSS05], and to 2

3 log2(n)
by Feige and Singh [FS07]. However, asymptotically the best known approximation
ratio for ATSP remained Θ(log(n)) until in 2010 Asadpour, Goemans, Mądry, Oveis
Gharan, and Saberi gave an algorithm with approximation ratio O (log(n)/ log(log(n)))
[AGM+17].

Their algorithm is based on the concept of thin trees. They show that given an
optimum solution x∗ to (ATSP LP), there exists an (arbitrarily oriented) spanning
tree (V, S) such that the cost of S can be bounded by 2 · c(x∗) and and S is α-thin for
α = 4 log(n)/ log(log(n)), i.e. |S∩C| ≤ α ·x∗(C) for every undirected cut C. Moreover,
such a spanning tree can be computed in randomized polynomial time. Having such
an oriented spanning tree, they compute a minimum cost multi-set F of edges such
that (V, S

.
∪ F) is a tour. Computing such an F is equivalent to a minimum cost flow

problem. Using the α-thinness of S one can show c(F) ≤ 2α · c(x∗), which implies
that the algorithm is an O (log(n)/ log(log(n)))-approximation algorithm with respect
to the LP relaxation (ATSP LP).

Anari and Oveis Gharan [AOG15] proved the existence of an α-thin spanning tree S
for α = log(log(n))O(1). This implies that the integrality ratio of (ATSP LP) is at most
log(log(n))O(1). However, it is not known if such a tree S can be found in polynomial
time.

Major progress towards a constant-factor approximation algorithm was made by
Svensson [Sve15]: he devised such an algorithm for the special case for node-weighted
instances. In a node-weighted instance, we have a nonnegative weight cv for every vertex
v and the cost of an edge (v, w) ∈ E is given as cv + cw. Notice that such an instance
is not necessarily symmetric since G does not need to be a complete graph. Node-
weighted instances are essentially equivalent to unit-weight instances, i.e. instances
with c(e) = 1 for all e ∈ E; see Section 4.6. The result of Svensson [Sve15] for unit-
weight instances was extended to two different edge weights by Svensson, Tarnawski,
and Végh [STV18b].

In a recent breakthrough, Svensson, Tarnawski, and Végh [STV18a] devised the first
constant-factor approximation algorithm for the general ATSP and they also proved
that its standard LP relaxation has constant integrality ratio. In Chapter 4 we will
present a variant of this algorithm by Svensson, Tarnawski and Végh that is simpler
than the original one and achieves a much better approximation ratio.

3.1.2 The path version of ATSP

We now define the path version of the asymmetric traveling salesman problem, the
s-t-path ATSP. Besides a directed graph G = (V,E) and nonnegative edge weights
c : E → R≥0, we are given a start vertex s and an end vertex t. The goal is to find a
minimum cost s-t-walk in G that contains all vertices. In other words, we are looking
for a sequence v0 = s, v1, . . . , vk = t that contains every vertex at least once, fulfills
(vi−1, vi) ∈ E for i = 1, . . . , k, and minimizes

∑k
i=1 c(vi−1, vi).

An s-t-tour in G is a multi edge set F such that (V, F) is connected and becomes
Eulerian by adding one edge (t, s) for s 6= t. In the s-t-path ATSP we are looking for a

25

CHAPTER 3. ATSP AND S-T -PATH ATSP

minimum cost s-t-tour in G. The classical linear programming relaxation is the ATSP
path LP

min c(x)

s.t. x(δ−(v))− x(δ+(v)) =

−1, if v = s and s 6= t

1, if v = t and s 6= t

0, else

x(δ(U)) ≥ 2 for ∅ 6= U ⊆ V \ {s, t}
xe ≥ 0 for e ∈ E.

(ATSPP LP)

Note that the integral solutions of (ATSPP LP) are precisely the incidence vectors of
s-t-tours. Hence they correspond to walks from s to t that visit all vertices. For s = t
the linear program (ATSPP LP) is equivalent to (ATSP LP). In this case the set of
feasible solutions and the objective function are the same for those two linear programs.

Nagarajan and Ravi [NR08] proved that the integrality ratio of (ATSPP LP) is at
most O(

√
n), where again n = |V |. This bound was improved to O(log(n)) by Friggstad,

Salavatipour, and Svitkina [FSS13] and to O(log(n)/ log(log(n))) by Friggstad, Gupta,
and Singh [FGM16]. In Chapter 5 we prove that the integrality ratio of (ATSPP LP)
is in fact constant.

Feige and Singh [FS07] showed that any α-approximation algorithm for ATSP im-
plies a (2α + ε)-approximation algorithm for s-t-path ATSP (for any ε > 0). Hence
s-t-path ATSP also has a constant-factor approximation algorithm. In Chapter 5 we
will prove a similar relation for the integrality ratios of the LP relaxations.

3.2 Structured dual LP solutions

We now study properties of the dual of the classical linear programming relaxations
of ATSP and its path version. We will use these in the next chapters to derive both
approximation algorithms and upper bounds on the integrality ratios. We consider the
dual LP of (ATSP LP):

max
∑
∅6=U(V

2yU

s.t. aw − av +
∑

U :e∈δ(U)
yU ≤ c(e) for e = (v, w) ∈ E

yU ≥ 0 for ∅ 6= U (V,

(ATSP DUAL)

and the dual LP of (ATSPP LP):

max at − as +
∑

∅6=U⊆V \{s,t}
2yU

s.t. aw − av +
∑

U :e∈δ(U)
yU ≤ c(e) for e = (v, w) ∈ E

yU ≥ 0 for ∅ 6= U ⊆ V \ {s, t}.

(ATSPP DUAL)

26

3.2. STRUCTURED DUAL LP SOLUTIONS

For s = t the linear program (ATSPP DUAL) is equivalent to (ATSP DUAL) in the
following sense. Any feasible solution to (ATSPP DUAL) can be turned into a feasible
solution for (ATSP DUAL) with the same objective value by setting yU := 0 for every
set U with s ∈ U . Moreover any feasible solution (ā, ȳ) to (ATSP DUAL) can be
turned into a feasible solution (a, y) for (ATSPP DUAL) with the same objective value
by setting a := ā and for ∅ 6= U ⊆ V \ {s, t} setting yU := ȳU + ȳV \U .

Lemma 3.1. We can in polynomial time either compute an optimum solution to
(ATSPP LP) and (ATSPP DUAL) or decide that no optimum solution exists.

Proof. We first solve the primal LP, i.e. (ATSPP LP) or (ATSPP LP), by the ellipsoid
method (using a separation oracle for the exponentially many cut constraints). We
record the sets U for which the separation oracle produced a constraint x(δ(U)) ≥ 2,
and set all y-variables of other sets to zero in the dual LP. Then the primal solution
is also optimal with respect to this subset of constraints, and hence restricting the
dual LP to these variables does not change the optimum value. But now the restricted
dual LP has a polynomial number of variables and constraints, so we can solve it in
polynomial time.

In this section we show that we can make several assumptions on the structure of
our optimum dual LP solution (a, y).

The support of y is the set of nonempty subsets U of V \ {s, t} for which yU > 0.
We denote it by supp(y). First we observe that we may assume that the support of y
is a laminar family. This is a well known result (see e.g. [STV18a]) that one can prove
using the standard technique of uncrossing.

Lemma 3.2. Let (a, y) be an optimum solution to (ATSPP DUAL). Then there is a
vector y′ such that (a, y′) is an optimum solution to (ATSPP DUAL), and L := {U :
yU > 0} is laminar. Such a vector y′ can be computed in polynomial time.

Proof. As long as there exist vertex sets A and B such that yA > 0, yB > 0, and A and
B cross, i.e. A ∩ B 6= ∅, A \ B 6= ∅, and B \ A 6= ∅, we could change y as follows. For
ε := min{yA, yB} > 0 we could decrease yA and yB by ε and increase yA\B and yB\A
by ε while maintaining dual feasibility. Karzanov [Kar96] showed that the uncrossing
as above can be performed in polynomial time if one chooses crossing sets A and B in
a suitable way.

We say that a dual LP solution as in Lemma 3.2 has laminar support.

Definition 3.3. A solution (a, y) to (ATSPP DUAL) has laminar support if for any
two sets A,B ∈ supp(y) we have A ∩B = ∅, A ⊆ B, or B ⊆ A.

Next, we show that we can assume even stronger properties of our dual LP solutions.

Definition 3.4. Let (G, c) be an instance of ATSP or (G, c, s, t) an instance of its path
version. Moreover, let (a, y) be a dual LP solution, i.e. a solution to (ATSP DUAL) or
(ATSPP DUAL), respectively. We say that y and (a, y) have strongly laminar support
if

• L := {U : yU > 0} is a laminar family, and

• for every set U ∈ L, the graph G[U] is strongly connected.

27

CHAPTER 3. ATSP AND S-T -PATH ATSP

U

S

−yU
+yU −yU

s t

Figure 3.1: Illustration of the proof of Lemma 3.5. The set U ⊆ V \{s, t} is shown in blue.
In red the vertex set S of the first strongly connected component of G[U] in a topological
order is shown. We have δ−(S) ⊆ δ−(U). We modify our dual solution by increasing the
dual variable corresponding to S, decreasing the dual variable corresponding to U , and
decreasing the variables corresponding to the vertices in U \ S (shown in green).

The following lemma allows us to assume that our optimum dual solution has
strongly laminar support. We will use this new observation to simplify the constant-
factor approximation algorithm for ATSP from [STV18a, STV19] and to obtain a
constant-factor approximation algorithm for s-t-path ATSP.

Lemma 3.5. Let (G, c, s, t) be an instance of the path version of ATSP. Moreover, let
x be an optimum solution to (ATSPP LP) and (a, y) an optimum solution to the LP
(ATSPP DUAL). Suppose that xe > 0 for all e ∈ E(G). Then we can compute in
polynomial time (a′, y′) such that

• (a′, y′) is an optimum solution of (ATSPP DUAL),

• (a′, y′) has strongly laminar support, and

• a′s = as and a′t = at.

Proof. First, we compute an optimum solution (a, y) to (ATSPP DUAL). This can
be done in polynomial time by Lemma 3.1. Then we apply Lemma 3.2 to obtain an
optimum dual solution (a, ȳ) such that the support of ȳ is a laminar family L.

As long as there is a set U with ȳU > 0, but G[U] not strongly connected, we do
the following. Let U be a minimal set with ȳU > 0 and such that G[U] is not strongly
connected. Moreover, let S be the vertex set of the first strongly connected component
of G[U] in a topological order. Then we have δ−(S) ⊆ δ−(U).

Define a dual solution (a′, y′) as follows. We set y′U := 0, y′S := ȳS + ȳU , and
y′W := ȳW for other sets W . Moreover, a′v := av − ȳU for v ∈ U \ S and a′v := av for all
other vertices v. See Figure 3.1. Because s, t /∈ U , we have a′s = as and a′t = at. The
edges from U \ S to S are the only edges e = (v, w) for which the left hand-side of the
corresponding constraint in (ATSPP DUAL) increases, i.e. a′w − a′v +

∑
U :e∈δ(U) y

′
U >

aw − av +
∑
U :e∈δ(U) ȳU . However, such edges do not exist by the choice of S. Hence,

(a′, y′) is a feasible dual solution. Since a′t − a′s +
∑
∅6=U⊆V (G)\{s,t} 2y′U = at − as +∑

∅6=U⊆V (G)\{s,t} 2ȳU , it is also optimum.
We now show that the support of y′ is laminar. Suppose there is a set W in the

support of y′ that crosses S, i.e. W \ S 6= ∅, S \W 6= ∅ and S ∩W 6= ∅. Then W must
be in the support of ȳ and hence a subset of U because the support of ȳ is laminar. By

28

3.2. STRUCTURED DUAL LP SOLUTIONS

the minimal choice of U , G[W] is strongly connected. But this implies that G contains
an edge from W \ S to W ∩ S, contradicting δ−(S) ⊆ δ−(U).

We now decreased the number of sets U in the support for which G[U] is not strongly
connected. After iterating this at most 2|V (G)| times (by Lemma 2.6) the dual solution
has the desired properties.

One advantage of this structure is the following.

Lemma 3.6. Let G = (V,E) be a strongly connected directed graph and let L be a
laminar family such that G[U] is strongly connected for every U ∈ L. Let v, w ∈ V and
let Ũ be the minimal set in L ∪ {V } with v, w ∈ Ũ .

Then there is a v-w-path in G[Ũ] that enters and leaves every set U ∈ L at most
once; we will call such a path nice. A nice v-w-path can be found in polynomial time.

Proof. Let P be a path from v to w in G[Ũ]. Now repeat the following, until P enters
and leaves every set in L at most once. Let U be a maximal set with U ∈ L that P
enters or leaves more than once. Let v′ be the first vertex that P visits in U and let w′
be the last vertex that P visits in U . Since G[U] is strongly connected, we can replace
the v′-w′-subpath of P by a path in G[U]. By Lemma 2.6, P is a nice v-w-path after
at most |L| < 2|V | iterations.

We now introduce the notion of strongly laminar instances. This captures all the
useful assumptions that we can make on the structure of our ATSP instance and the
optimum primal and dual LP solutions. We will then show that we can reduce general
ATSP instances to strongly laminar ATSP instances (see Theorem 3.8). Note however,
that this reduction will not apply to the path version of ATSP.

Definition 3.7. A strongly laminar ATSP instance is a quadruple (G,L, x, y), where

(i) G = (V,E) is a strongly connected directed graph;

(ii) L is a laminar family of subsets of V such that G[U] is strongly connected for all
U ∈ L;

(iii) x is a feasible solution to (ATSP LP) such that x(δ(U)) = 2 for all U ∈ L;

(iv) y ∈ RL≥0.

This induces the ATSP instance (G, c), where c is the induced weight function defined
by c(e) :=

∑
U∈L:e∈δ(U) yU for all e ∈ E.

A solution to a strongly laminar ATSP instance I is a solution to its induced ATSP
instance I ′ = (G, c). By complementary slackness (Theorem 2.8), x and (0, y) are
optimum solutions of (ATSP LP) and (ATSP DUAL) for (G, c), where we set yU := 0
for U /∈ L. We define LP(I) := c(x) =

∑
L∈L 2yL = LP(I ′).

We now prove that for ATSP it is sufficient to consider strongly laminar instances.
Svensson, Tarnawski, and Végh showed that it suffices to consider laminarly weighted
instances [STV18a]. The difference between laminarly weighted instances and strongly
laminar instances is that in a strongly laminar instance we require that G[U] is strongly
connected for all U ∈ L.

29

CHAPTER 3. ATSP AND S-T -PATH ATSP

Theorem 3.8. Let α ≥ 1. Suppose there is a polynomial-time algorithm that computes
for every strongly laminar ATSP instance I ′ = (G,L, x, y) a solution of cost at most
α · LP(I ′). Then there is a polynomial-time algorithm that computes for every feasible
instance I of ATSP a solution of cost at most α ·LP(I), where LP(I) denotes the cost
of an optimum solution to (ATSP LP).

Proof. Let (G, c) be an arbitrary instance of ATSP (with at least one vertex) and let
s = t ∈ V (G) arbitrary. If (ATSPP LP) is feasible, the graph G is strongly connected.
Then we compute an optimum solution x of (ATSPP LP) and an optimum solution
(a, y) of (ATSPP DUAL). By Lemma 3.1, this can be done in polynomial time. Since
(ATSP LP) and (ATSPP LP) for s = t are equivalent, x is also an optimum solution
to (ATSP LP).

Now let E′ := {e ∈ E : xe > 0} be the support of x and define G′ := (V,E′).
Let x′ be the vector x restricted to its support E′. Then we apply Lemma 3.5 to the
instance (G′, c, s, t) and the LP solutions x′ and (a, y). We obtain an optimum dual
solution (a′, y′) to (ATSPP DUAL) with strongly laminar support L := supp(y′). By
complementary slackness (Theorem 2.8) we have x′(δ(U)) = 2 for all U ∈ L.

Let y′′ be the restriction of y′ to its support L. The induced weight function of the
strongly laminar ATSP instance I ′ = (G′,L, x′, y′′) is given by

c′(e) =
∑

L∈L:e∈δ(L)
y′′U =

∑
L∈L:e∈δ(L)

y′L = c(e) + av − aw

for all e = (v, w) ∈ E′, where we used complementary slackness (Theorem 2.8) in the
last equation. Because every tour in G′ is Eulerian, it has the same cost with respect
to c and with respect to c′. Moreover, because x′(δ−(v))− x′(δ+(v)) = 0 for all v ∈ V ,
we have LP(I ′) = c′(x′) = c(x) = LP(I) and thus the theorem follows.

We would like to emphasize that the proof of Theorem 3.8 does not transfer to the
path version of ATSP. The fact that this reduction fails for the path version turns out
to be the main difficulty when generalizing the proof of the constant integrality ratio
from (ATSP LP) to (ATSPP LP).

Remark 3.9
In the definition of strongly laminar instances we could also require xe > 0 for all
e ∈ E and yL > 0 for all L ∈ L. Then the reduction in Theorem 3.8 would still work.
However, it will be useful that the statements that we will proof for strongly laminar
instances in Chapter 4 also apply to the case where yL = 0 is allowed. We will use this
in Chapter 5 where we consider the path version of ATSP.

30

Chapter 4

A (22 + ε)-approximation
algorithm for ATSP

In [STV18a] Svensson, Tarnawski, and Végh gave the first constant-factor approxi-
mation algorithm for ATSP. There they proved an approximation ratio of roughly
5500. Later, in [STV19] they optimized the approximation ratio and gave a 506-
approximation algorithm for ATSP and an upper bound of 319 on the integrality ratio.

In this chapter we present an improved and slightly simplified version of their algo-
rithm. We achieve an approximation ratio of (22 + ε) (for any fixed ε > 0) and show
that the integrality ratio of the standard LP relaxation is at most 22.

Section 4.2 and Section 4.4 of this chapter are based on joint work with Jens Vygen.
We first give a brief outline and explain where the algorithm we present here differs
from the algorithm by Svensson, Tarnawski, and Végh.

4.1 Outline

We have already seen in the previous chapter that it is sufficient to find a constant
factor approximation algorithm for strongly laminar ATSP instances (G,L, x, y); see
Theorem 3.8. Here the difference to the algorithm in [STV19] is that we can assume
that G[L] is strongly connected for all L ∈ L which simplifies the subsequent steps.

In Section 4.2 we reduce strongly laminar instances to even more structured in-
stances called vertebrate pairs. In a vertebrate pair we already have a given subtour,
called backbone, that visits not necessarily all vertices but all non-singleton elements
of the laminar family L. In contrast to the reduction to strongly laminar instances,
the reduction to vertebrate pairs causes some loss in the approximation ratio. While
Svensson, Tarnawski, and Végh also reduce to vertebrate pairs, they first reduce to
what they call an irreducible instance as an intermediate step before reducing to ver-
tebrate pairs. We show that this intermediate step is not necessary which leads to a
simpler algorithm. Moreover, the loss in the approximation ratio in this step is much
smaller. In fact, a significant part of the improvement of the overall approximation
ratio is due to the simplification of the reduction to vertebrate pairs.

Finally, in Section 4.3 and Section 4.4 we explain how to compute good solutions for
vertebrate pairs. The main algorithmic framework, essentially due to Svensson [Sve15],
follows on a very high level the cycle cover approach by Frieze, Galbiati and Maffi-

31

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

oli [FGM82]. However, in order to achieve a constant factor approximation for ATSP
the algorithm and its analysis are much more involved and need many additional ideas.

In Section 4.3 we explain a sub-routine that computes solutions for what we call
the Subtour Cover problem. This can be viewed as the analogue of the cycle cover
problem that is solved in every iteration of the log2(n)-approximation algorithm by
Frieze, Galbiati and Maffioli [FGM82]. It is very similar to what Svensson, Tarnawski,
and Végh call Subtour Partition Cover and Svensson [Sve15] calls Local Connectivity
ATSP. Svensson, Tarnawski, and Végh compute a solution for Subtour Cover by round-
ing a circulation in a certain flow network, which is constructed from the LP solution
using a so-called witness flow. By using a special witness flow with certain minimality
properties our Subtour Cover solution will obey stronger bounds.

In Section 4.4 we then explain how to compute solutions for vertebrate pairs us-
ing the algorithm for Subtour Cover as a sub-routine. The essential idea is due to
Svensson [Sve15], who considered node-weighted instances, and was later adapted to
vertebrate pairs in [STV19]. In this part we make two improvements compared to the
algorithm in [STV19].

The more important change is the following. Svensson’s algorithm uses a potential
function to measure progress, and in each of [Sve15] and [STV19] two different potential
functions are considered. One potential function is used to obtain an exponential time
algorithm that yields an upper bound on the integrality ratio of the linear programming
relaxation, and the other potential function is used to obtain a polynomial time algo-
rithm. This leads to different upper bounds on the integrality ratio of the LP and the
approximation ratio of the algorithm. We show in Section 4.4 that we can make this
discrepancy arbitrarily small by a slightly different choice of the potential function for
the polynomial time algorithm. This leads to a better approximation ratio. Moreover,
the analysis of the polynomial time algorithm then immediately implies the best upper
bound we know on the integrality ratio and there is no need anymore to consider two
different potential functions.

The second change compared to the algorithm in [STV19] is that we include an idea
that Svensson [Sve15] used for node-weighted instances. This leads to another small
improvement of the approximation guarantee.

Overall, we obtain a (22 + ε)-approximation algorithm for ATSP for every fixed
ε > 0. The algorithm computes a solution of cost at most 22 + ε times the cost of an
optimum solution to (ATSP LP) and hence the integrality ratio of (ATSP LP) is at
most 22.

4.2 Reducing to vertebrate pairs

Let L≥2 := {L ∈ L : |L| ≥ 2} be the family of all non-singleton elements of L. In
this section we show how to reduce ATSP to the case where we have already a given
subtour B, called backbone, that visits all elements of L≥2; see Figure 4.1. We call a
strongly laminar ATSP instance together with a given backbone a vertebrate pair.

Definition 4.1. A vertebrate pair consists of

• a strongly laminar ATSP instance I = (G,L, x, y) and

• a connected Eulerian multi-subgraph B of G (the backbone) such that
V (B) ∩ L 6= ∅ for all L ∈ L≥2.

32

4.2. REDUCING TO VERTEBRATE PAIRS

Figure 4.1: Example of a vertebrate pair. The laminar family L is shown in gray and a
backbone B is shown in blue.

Let κ, η ≥ 0. A (κ, η)-algorithm for vertebrate pairs is an algorithm that computes, for
any given vertebrate pair (I, B), a multi-set F of edges such that E(B)

.
∪ F is a tour

and
c(F) ≤ κ · LP(I) + η ·

∑
v∈V \V (B):{v}∈L

2y{v}

Note that this definition is slightly different to the one in [STV18a] (where G[L]
was not required to be strongly connected for L ∈ L), but this will not be relevant.

In this section we will show that a (κ, η)-algorithm for vertebrate pairs (for any
constants κ and η) implies a (3κ+ η + 2)-approximation algorithm for ATSP.

Let (G,L, x, y) be a strongly laminar ATSP instance and c the induced cost function.
In the following we fix for every u, v ∈ V a nice u-v-path Pu,v. Such paths can be
computed in polynomial time by Lemma 3.6.

Lemma 4.2. Let W ∈ L ∪ {V } and let u, v ∈W . Then

c (E (Pu,v)) ≤
∑

L∈L:L(W,L∩V (Pu,v)6=∅
2yL −

∑
L∈L:u∈L(W

yL −
∑

L∈L: v∈L(W
yL.

Proof. Since the path Pu,v is nice, it is contained in G[W]. Moreover, it leaves every
set L ∈ L at most once and enters every set L ∈ L at most once. A set L ∈ L with
u ∈ L is never entered by Pu,v and a set L ∈ L with w ∈ L is never left by Pu,v.

We define
value(W) :=

∑
L∈L:L(W

2yL.

and
DW (u, v) :=

∑
L∈L:u∈L(W

yL +
∑

L∈L: v∈L(W
yL + c(E(Pu,v))

for u, v ∈W . Note that DW (u, v) ≤ value(W) by Lemma 4.2. We write

DW := max{DW (u, v) : u, v ∈W}.

33

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

The intuitive meaning of DW in the analysis of our reduction to vertebrate pairs is the
following. On the one hand, it can be useful if DW is small: if we enter the set W
at some vertex s ∈ W and leave it at some other vertex t ∈ W , we can always find a
cheap s-t-walk inside G[W]. On the other hand, if DW is large, we can find a nice path
inside W that visits many sets L ∈ L (or more precisely, sets of high weight in the dual
solution y).

The reduction to vertebrate pairs is via a recursive algorithm. For a given set
W ∈ L ∪ {V } it constructs a tour in G[W]. See Figure 4.2 for an illustration.

Algorithm 1: Recursive algorithm to reduce to vertebrate pairs.

Input: a strongly laminar ATSP instance I = (G,L, x, y) with G = (V,E),
a set W ∈ L ∪ {V }, and
a (κ, η)-algorithm A for vertebrate pairs (for some constants κ, η ≥ 0)

Output: a tour F in G[W]

1. If W 6= V , contract V \W into a single vertex vW̄ and redefine yW := DW
2 .

2. Construct a vertebrate pair: Let u∗, v∗ ∈W such that DW (u∗, v∗) = DW .
Let B be the multi-graph corresponding to the closed walk that results from
appending Pu∗,v∗ and Pv∗,u∗ .

Let LB̄ be the set of all maximal sets L ∈ L with L (W and V (B) ∩ L = ∅.
Contract every set L ∈ LB̄ to a single vertex vL and set y{vL} := yL + DL

2 . Let
G′ be the resulting graph.

Let L′ be the laminar family of subsets of V (G′) that contains singletons {vL}
for L ∈ LB̄ and all the sets arising from L ∈ L with L ⊆W and L ∩ V (B) 6= ∅.

Let I ′ = (G′,L′, x, y) be the resulting strongly laminar instance.

3. Compute a solution for the vertebrate pair: Apply the given algorithm A
to the vertebrate pair (I ′, B). Let F ′ be the resulting Eulerian edge set.

4. Lift the solution to a subtour: Fix an Eulerian walk in every connected
component of F ′. Now uncontract every L ∈ LB̄. Whenever an Eulerian walk
passes through vL, we get two edges (u′, u) ∈ δ−(L) and (v, v′) ∈ δ+(L). To
connect u and v within L, add the path Pu,v.

Moreover, if W 6= V do the following. Whenever an Eulerian walk passes
through vW̄ using the edges (u, vW̄) and (vW̄ , v), replace them by the path Pu,v.

5. Recurse to complete to a tour of the original instance: For every set
L ∈ LB̄, apply Algorithm 1 recursively to obtain a tour FL in G[L]. Let F ′′ be
the union of F ′ and all these tours FL for L ∈ LB̄.

6. Return F := F ′′
.
∪ E(B).

34

4.2. REDUCING TO VERTEBRATE PAIRS

(a)

u∗

v∗ B

W

LB̄

(b1)

vW̄

(b2)

vW̄

(c)

Figure 4.2: Illustration of Algorithm 1. The ellipses show the laminar family L. Pic-
ture (a) shows the set W (orange), the subtour B (blue), and the elements of LB̄ (red).
The subtour B is the union of the paths Pu∗,v∗ and Pv∗,u∗ . Picture (b1) shows the resulting
vertebrate pair instance as constructed in step 2 of Algorithm 1. The vertices resulting
from the contraction of elements of LB̄ are shown in red and the vertex vW̄ that results
from the contraction of V \W is shown in orange. Picture (b2) shows in green a possible
solution to this vertebrate pair. Picture (c) illustrates step 4 of Algorithm 1: the green
edges are those that arise from the vertebrate pair solution from Picture (b2) by undoing
the contraction of the sets in LB̄ . The red edges are the paths that we add to connect
within L ∈ LB̄ when uncontracting L. The orange edges show the u-v-path in G[W]
that we add to replace the edges (u, vW̄) and (vW̄ , v) in the vertebrate pair solution from
Picture (b2).

35

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

First, we observe that Algorithm 1 indeed returns a tour in G[W].
Lemma 4.3. Let κ, η ≥ 1. Suppose we have a polynomial-time (κ, η)-algorithm A for
vertebrate pairs. Then Algorithm 1 has polynomial runtime and returns a tour in G[W]
for every strongly laminar ATSP instance I = (G,L, x, y) and every W ∈ L ∪ {V }.
Proof. We apply induction on |W |. For |W | = 1, the algorithm returns F = ∅. Now let
|W | > 1. At the end of step 3, we have that F ′ is Eulerian and F ′

.
∪ E(B) is a tour in the

instance I ′. In step 4, the set F ′ remains Eulerian and F ′
.
∪ E(B) remains connected.

Moreover, the subtour F ′
.
∪ E(B) visits all sets in LB̄, i.e. we have F ′∩ δ(L) 6= ∅ for all

L ∈ LB̄. The subtour F ′
.
∪ E(B) also visits all vertices in W that are not contained in

any set L ∈ LB̄, i.e. for these vertices v we have δ(v) ∩ (F ′ ∪ E(B)) 6= ∅. After step 4,
we have F ′ ⊆ E[W]. We conclude that the graph (W,F ′′

.
∪ E(B)) is connected and

Eulerian; here we applied the induction hypothesis to the sets L ∈ LB̄.
To see that the runtime of the algorithm is polynomially bounded we observe that

by Lemma 2.6 there are in total at most |L|+ 1 ≤ 2|V | recursive calls of the algorithm
because L is a laminar family.

Next we observe that our backbone B visits many sets L ∈ L inside W if DW is
large.
Lemma 4.4. Let I = (G,L, x, y) be a strongly laminar ATSP instance, and let W ∈
L ∪ {V }. Moreover, let B be as in step 2 of Algorithm 1. Then∑

L∈LB̄

(2yL + value(L)) ≤ value(W)−DW . (4.1)

Proof. By Lemma 4.2 and the choice of u∗ and v∗ we get

value(W)−
∑
L∈LB̄

(2yL + value(L)) =
∑

L∈L:L(W,L∩V (B) 6=∅
2yL

≥
∑

L∈L:L(W,L∩V (Pu∗,v∗)6=∅
2yL

= c(E(Pu∗,v∗)) +
∑

L∈L:u∗∈L(W
yU +

∑
L∈L: v∗∈L(W

yU

= DW (u∗, v∗)
= DW .

Now we analyze the cost of the tour F in G[W] computed by Algorithm 1.
Lemma 4.5. Let κ, η ≥ 0. Suppose we have a (κ, η)-algorithm A for vertebrate pairs.
Let I = (G,L, x, y) be a strongly laminar ATSP instance, c the induced cost function,
and W ∈ L∪{V }. Then the tour F in G[W] returned by Algorithm 1 has cost at most

c(F) ≤ (2κ+ 2) · value(W) + (κ+ η) · (value(W)−DW).

Proof. By induction on |W |. The statement is trivial for |W | = 1 since then c(F) = 0
(because F ⊆ E[W] = ∅). Let now |W | ≥ 2. By definition of DW , we have

c(E(B)) = c(Pu∗,v∗) + c(Pv∗,u∗) ≤ 2DW . (4.2)

36

4.2. REDUCING TO VERTEBRATE PAIRS

We now analyze the cost of F ′ in step 3 of Algorithm 1. Since F ′ is the output of a
(κ, η)-algorithm applied to the vertebrate pair (I ′, B), we have c(F ′) ≤ κ · LP(I ′) +
η ·
∑
L∈LB̄ 2y{vL}. Using

∑
L∈LB̄ 2y{vL} =

∑
L∈LB̄ (2yL +DL) and

LP(I ′) ≤ DW +
∑

L∈L,L(W,L∩V (B)6=∅
2yL +

∑
L∈LB̄

2y{vL},

this implies

c(F ′) ≤ κ ·DW +
∑

L∈L,L(W,L∩V (B) 6=∅
κ · 2yL +

∑
L∈LB̄

(κ+ η) · (2yL +DL) (4.3)

at the end of step 3. The lifting and all the amendments of F ′ in step 4 do not increase
the cost of F ′ by Lemma 4.2 and the choice of the values y{vL} in step 2 and yW in
step 1. (Here we use that whenever a Eulerian walk passes through vW̄ , we leave and
enter W .)

To bound the cost increase in step 5 we apply the induction hypothesis. Adding the
edges resulting from a single recursive call of Algorithm 1 in step 5 for some L ∈ LB̄
increases the cost by at most c(FL) ≤ (2κ + 2) · value(L) + (κ + η)(value(L) − DL).
Using (4.3), we obtain the following bound:

c(F ′′) ≤ κ ·DW +
∑

L∈L,L(W,L∩V (B)6=∅
κ · 2yL

+
∑
L∈LB̄

(
(2κ+ 2) · value(L) + (κ+ η) · (2yL + value(L))

)
≤ κ ·DW + κ · value(W)

+
∑
L∈LB̄

(
(κ+ 2) · value(L) + (κ+ η) · (2yL + value(L))

)
≤ κ ·DW + κ · value(W)

+ (κ+ 2) · (value(W)−DW) + (κ+ η) · (value(W)−DW)
= (2κ+ 2) · value(W)− 2 ·DW + (κ+ η) · (value(W)−DW),

where we used the definition of LB̄ for the second inequality and Lemma 4.4 for the
third inequality. Together with (4.2) this implies the claimed bound on c(F).

Now we prove the main result of this section.

Theorem 4.6. Let κ, η ≥ 0. Suppose we have a polynomial-time (κ, η)-algorithm for
vertebrate pairs. Then there is a polynomial-time algorithm that computes a solution
of cost at most

3κ+ η + 2

times the value of (ATSP LP) for any given ATSP instance.

Proof. By Theorem 3.8 it suffices to show that there is a polynomial-time algorithm
that computes a solution of cost at most (3κ + η + 2) · LP(I) for any given strongly
laminar ATSP instance I. Given such an instance, we apply Algorithm 1 to W = V .

37

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

By Lemma 4.3 and Lemma 4.5, this algorithm computes in polynomial time a tour of
cost at most

c(F) ≤ (2κ+ 2) · value(V) + (κ+ η) · (value(V)−DV)
= (2κ+ 2) · LP(I) + (κ+ η) · (LP(I)−DV)
≤ (3κ+ η + 2) · LP(I).

In the following we will present a (2, 14+ε)-algorithm for vertebrate pairs, improving
on the (2, 37 + ε)-algorithm by Svensson, Tarnawski, and Végh [STV18a]. Using their
vertebrate pair algorithm, Theorem 4.6 immediately implies a (45 + ε)-approximation
algorithm for ATSP.

Remark 4.7
One could achieve a slightly better overall approximation ratio for ATSP by the follow-
ing modifications. Change Algorithm 1 and generalize the notion of vertebrate pairs
as follows. First, in the definition of a vertebrate pair allow that the backbone is not
necessarily Eulerian but could also be an s-t-path for some s, t ∈ V . In this case the
solution for the vertebrate pair would again be an Eulerian multi-set F of edges such
that (V,E(B)

.
∪ F) is connected; then E(B)

.
∪ F is an s-t-tour. The algorithm for

vertebrate pairs that we will describe in later sections extends to this more general
version.

Then fix a constant δ ∈ [0, 1] depending on κ and η and change step 5 of Algorithm 1
as follows. If in step 4 we added a u-v-path Pu,v in G[L] with DL(u, v) ≥ (1−δ) ·DL for
a set L ∈ LB̄, then we use this path as a backbone in the recursive call of Algorithm 1
instead of constructing a new backbone. This saves the cost 2DL of the backbone in
the recursive call, but we also pay some additional cost. Because the total y-weight
of the sets in L visited by P is not DL (as with the old choice of the backbone) but
slightly less, we obtain a worse bound in Lemma 4.4. If for a set L ∈ LB̄ we did not
add a path in G[L] of length at least (1− δ) ·DL in step 4, then we do not change the
recursive call of Algorithm 1 in step 5. In this case we gain because the bound on the
cost of the edges that we added in step 4 is not tight.

Optimizing δ depending on κ and η leads to an improvement of the overall approx-
imation ratio. However, the improvement is small. We will later show that there is
a polynomial-time (2, 14 + ε)-algorithm for vertebrate pairs for any fixed ε > 0. For
κ = 2 and η > 14 the improvement is less than 0.2, and it is less than 1 for any κ and η.

4.3 Computing subtour covers

Very roughly, the algorithm that Svensson, Tarnawski, and Végh [STV19] for vertebrate
pairs follows the cycle cover approach by Frieze, Galbiati and Maffioli [FGM82]. The
algorithm by Frieze, Galbiati and Maffioli always maintains an Eulerian (multi-)set H
of edges and repeatedly computes another Eulerian (multi-)set F of edges that enters
and leaves every connected component of (V,H) at least once. Then it adds the edges
of F to H and iterates until (V,H) is connected.

In order to achieve a constant approximation ratio, the algorithm for vertebrate
pairs and its analysis are much more involved. The main algorithm is essentially due
to Svensson [Sve15], and we describe an improved version of it in Section 4.4.

38

4.3. COMPUTING SUBTOUR COVERS

In this section we discuss a sub-routine called by Svensson’s algorithm. The sub-
routine we present here is an improved version of an algorithm by Svensson, Tarnawski,
and Végh [STV18a]. It computes solutions to the Subtour Cover problem, which we
define below. One can view the Subtour Cover problem as the analogue of the cycle
cover problem that is solved in every iteration of the algorithm by Frieze, Galbiati and
Maffioli. However, we do not only require that the multi edge set F that we compute
is Eulerian and enters and leaves every connected component of (V,H), but require in
addition that every component of (V, F) that crosses the boundary of a set L ∈ L≥2 is
connected to the backbone B.

Definition 4.8. An instance of Subtour Cover consists of a vertebrate pair (I, B) with
I = (G,L, x, y) and a multi-subset H of E[V \ V (B)] such that

• (V,H) is Eulerian, and

• H ∩ δ(L) = ∅ for all L ∈ L≥2.

A solution to such an instance (I, B,H) is a multi edge set F such that the following
three conditions are fulfilled:

(i) (V \ V (B), F) is Eulerian.

(ii) δ(W) ∩ F 6= ∅ for all vertex sets W of connected components of (V \ V (B), H).

(iii) If for a connected component D of (V, F) there is a set L ∈ L≥2 with E(D) ∩
δ(L) 6= ∅, then V (D) ∩ V (B) 6= ∅.

Subtour Cover is very similar to the notions of Subtour Partition Cover from
[STV19] and Local Connectivity ATSP from [Sve15]. The difference between instances
of Subtour Cover and Subtour Partition Cover is that we require that H ∩ δ(L) = ∅ for
all L ∈ L≥2 in Definition 4.8. Moreover, a solution for Subtour Partition Cover is not
required to fulfill condition (iii). However, the instances to which Svensson, Tarnawski,
and Végh apply their algorithm for Subtour Partition Cover also fulfill the definition of
Subtour Cover and the solutions computed by this algorithm also fulfill condition (iii).
We include these properties explicitly in Definition 4.8 because we will exploit them for
some improvement in Svensson’s algorithm (see Section 4.4).

For the analysis of Svensson’s algorithm for vertebrate pairs it is not sufficient to
have only a bound on the total cost of a solution to Subtour Cover. In this section
we explain an algorithm that computes solutions to Subtour Cover that fulfill certain
“local” cost bounds. More precisely, the goal of this section is to show the following
theorem, where we write yv := y{v} if {v} ∈ L and yv := 0 otherwise.

Theorem 4.9. There is a polynomial-time algorithm for Subtour Cover that computes
for every instance (I, B,H) a solution F such that

c(F) ≤ 2 · LP(I) +
∑

v∈V \V (B)
2yv, (4.4)

and for every connected component D of (V, F) with V (D) ∩ V (B) = ∅ we have

c(E(D)) ≤ 3 ·
∑

v∈V (D)
2yv. (4.5)

39

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

G Ḡ

G01 Ḡ01

add vertices ai

add vertices a0
i , a1

i

split
graph

split
graph

x in G

z in G01

x̄ in Ḡ

z̄ in Ḡ01

x̄∗ in Ḡ

z̄∗ in Ḡ01

rerouting rounding

Figure 4.3: Overview of the different graphs and circulations occurring in the proof of
Theorem 4.9. The integral circulation x̄∗ corresponds to an Eulerian (multi-)edge set F̄
in Ḡ.

Svensson, Tarnawski, and Végh [STV18a] proved a similar statement, but instead
of (4.5) they showed the weaker bound c(E(D)) ≤ 4 ·

∑
v∈V (D) 2yv.

The reason why we need bounds on the cost of single connected components rather
than the total Subtour Cover solution is the following. When Svensson’s algorithm
computes a solution F to Subtour Cover, it does not include all edges of F in the tour
that it computes but only those edges that are part of some carefully selected connected
components of (V, F).

In the rest of this section we prove Theorem 4.9. We first give a brief outline.

4.3.1 Outline

Let W1, . . . ,Wk be the vertex sets of the connected components of (V \ V (B), H).
To find a solution F that fulfills the properties (i) and (ii) we would like to find an
integral circulation x∗ in G that satisfies x∗(δ(Wi)) ≥ 2 for i = 1, . . . , k. Note that x
is a fractional circulation with this property. However, if we include the constraints
x∗(δ(Wi)) ≥ 2 in the linear program describing a minimum cost circulation problem,
we will in general not obtain an integral optimum solution. Svensson [Sve15] suggested
the following. We can introduce new vertices ai for i = 1, . . . , k and reroute one unit of
flow going through the set Wi through the new vertex ai. Then we can add constraints
x∗(δ−(ai)) = 1 to our flow problem and maintain integrality. After solving the minimum
cost circulation problem, we can map the one unit of flow through ai back to some flow
entering and leaving Wi (with some additional cost).

The bound (4.4) is obtained by minimizing the total cost of the circulation. The
most difficult properties to achieve are (iii) and (4.5). If we have (iii), it is relatively
easy to obtain a bound of a similar form as (4.5) (with some other constant): we can
add constraints of the form x∗(δ−(v)) ≤ dx(δ−(v))e to our minimum cost circulation
problem. Because of (iii) and the definition of the induced cost function c, this implies
a bound similar to (4.5).

40

4.3. COMPUTING SUBTOUR COVERS

r(v) = 2

V = L1

L2 L3

L6

L4

L9

L5

L11 L8

L10

L7

Figure 4.4: The laminar family L ∪ {V } = {L1, . . . , L11}. In this example, the set
L2 \ (L6 ∪ L4) is the set of all vertices v with r(v) = 2; it is shown in blue.

To achieve property (iii), Svensson, Tarnawski, and Végh [STV18a] introduced the
concept of the split graph. This graph contains two copies of every vertex of the original
graph G. Every Eulerian edge set in the split graph can be projected to an Eulerian
edge set in the original graph G. The crucial property of the split graph is that every
cycle that contains an edge corresponding to e ∈ δG(L) for some L ∈ L≥2 also contains
a copy of a backbone vertex v ∈ V (B). Therefore, if we round a circulation in the
split graph (and then project the solution back to G), we will automatically fulfill
property (iii).

While every circulation in the split graph can be projected to a circulation in the
original graph G, we cannot lift any arbitrary circulation in G to a circulation in the
split graph. However, Svensson, Tarnawski, and Végh [STV18a] showed that this is
possible for every solution x to (ATSP LP). For this, they use a so-called witness flow.
We will choose the witness-flow with a certain minimality condition to achieve the
bound (4.5), improving on the Subtour Cover algorithm from [STV18a]. To obtain the
improved bound we also choose the flow that is rerouted through the auxiliary vertices
ai more carefully.

Because we cannot lift an arbitrary circulation in G to a circulation in the split
graph G01 of G, we proceed in the following order. First, we lift the circulation x to
a circulation z in the split graph G01. Then we add the auxiliary vertices ai to G and
add the two corresponding copies a0

i and a1
i to the split graph G01. In the resulting

split graph Ḡ01 we reroute flow through the new auxiliary vertices a0
i , a

1
i and round our

fractional circulation to an integral one. See Figure 4.3.
We now explain our algorithm in detail.

4.3.2 The split graph

In this section we explain the concept of the split graph due to Svensson, Tarnawski, and
Végh [STV18a]. This is an important tool for achieving property (iii) of a solution to
Subtour Cover. This property will also be crucial in the proof of (4.5). For defining the
split graph, we number the non-singleton elements of our laminar family L as follows.
Number L≥2 ∪ {V } = {L1, . . . , Lrmax} such that |V | = |L1| ≥ · · · ≥ |Lrmax | ≥ 2. Let
r(v) := max{i : v ∈ Li}, and call an edge e = (v, w) ∈ E forward if r(v) < r(w),
backward if r(v) > r(w), and neutral if r(v) = r(w). See Figure 4.4.

41

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

We will need the following simple observation.

Lemma 4.10. Let C be the edge set of a cycle. If there exists a set L ∈ L≥2 with
C ∩ δ(L) 6= ∅, then C contains a forward edge and a backward edge.

Proof. Because C is Eulerian there exists an edge e = (v, w) ∈ C∩δ+(L). By the choice
of the numbering L1, . . . , Lrmax , we have Lr(v) ⊆ L and hence w /∈ Lr(v). Therefore, the
cycle with edge set C contains vertices v, w with r(v) 6= r(w). Hence, C contains both
a forward and a backward edge.

Next we define the split graph G01 of G.

• For every vertex v ∈ V it contains two vertices v0 and v1 (on the lower and upper
level).

• For every v ∈ V it contains an edge e↓v = (v1, v0) with c(e↓v) = 0.

• For every v ∈ V (B) it also contains an edge e↑v = (v0, v1) with c(e↑v) = 0.

• For every forward edge e = (v, w) ∈ E, the split graph contains an edge e0 =
(v0, w0) with c(e0) = c(e).

• For every backward edge e = (v, w) ∈ E, the split graph contains an edge e1 =
(v1, w1) with c(e1) = c(e).

• For every neutral edge e = (v, w) ∈ E, the split graph contains edges e0 = (v0, w0)
and e1 = (v1, w1) with c(e0) = c(e1) = c(e).

We write V 0 := {v0 : v ∈ V } and call G01[V 0] the lower level of the split graph G01.
Similarly, we write V 1 := {v1 : v ∈ V } and call G01[V 1] the upper level of G01. For a set
W ⊆ V let W 01 := {vj : v ∈ W, j ∈ {0, 1}} be the vertex set of G01 that corresponds
to W .

For any subgraph of G01 we obtain a subgraph of G (its image) by replacing both v0

and v1 by v and removing loops. Then, obviously, the image of a circuit is an Eulerian
graph. The next lemma shows how we can use the split graph to achieve property (iii)
of a solution to Subtour Cover.

Lemma 4.11. If the image of a circuit in G01 contains an edge e ∈ δ(L) for some
L ∈ L≥2, it also contains a vertex of B.

Proof. Let C01 be a circuit in G01, such that its image C (an Eulerian subgraph of G)
contains an edge e ∈ δ(L) for some L ∈ L≥2. By Lemma 4.10, C contains a forward
edge and a backward edge. Therefore C visits both levels of G01 and thus contains an
edge e↑v for some v ∈ V (B).

4.3.3 Witness flows

We now want to map x to a circulation z in the split graph G01. To this end, we define
a flow f ≤ x, which we will call a witness flow. In the construction of z, we will map
the witness flow f to the lower level of G01 and map the remaining flow x − f to the
upper level of G01. See Figure 4.5.

42

4.3. COMPUTING SUBTOUR COVERS

(a)

L4 L3

L2

(b)

(c)

Figure 4.5: An example of the construction of the circulation z in G01. Picture (a) shows
the laminar family L≥2 = {L2, L3, L4} and in blue the backbone B. Picture (b) shows a
solution x to (ATSP LP) where we have xe = 1

2 for all edges; a witness flow f is shown in
red. The vertices in V (B) are shown as squares. Every cycle crossing the boundary of a set
L ∈ L≥2 contains both a green and a red edge. Picture (c) shows the resulting circulation
z in G01, where we have ze > 0 for every thick edge e and and ze = 0 for all thin edges.
The green vertices are those on the upper level of the split graph; the red vertices those
on the lower level. The flow x− f is mapped to the upper level (green) and the flow f is
mapped to the lower level (red).

43

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

Definition 4.12 (witness flow). Let x′ be a circulation in G. Then we call a flow f ′

in G a witness flow (for x′) if

(a) f ′(e) = 0 for every backward edge e;

(b) f ′(e) = x′(e) for every forward edge e;

(c) 0 ≤ f ′(e) ≤ x′(e) for every neutral edge e; and

(d) f ′(δ+(v)) ≥ f ′(δ−(v)) for all v ∈ V \ V (B).

The concept of witness flow was introduced in [STV19]. We now show that the pairs
(x′, f ′) where f ′ is a witness flow for the circulation x′ in G, correspond to circulations
in the split graph G01.

Lemma 4.13. Let z′ be a circulation in G01. Define π(z′) := (x′, f ′) where x′, f ′ are
flows in G defined by

• x′(e) := z′(e0) + z′(e1), and

• f ′(e) := z′(e0),

where we set z′(e1) := 0 for forward edges e and z′(e0) := 0 for backward edges e. Then
x′ is a circulation in G with c(x′) = c(z′) and f ′ is a witness flow for x′.

Proof. (a) holds because for a backward edge e, the graph G01 does not contain an
edge e0. Similarly, (b) holds because for a forward edge e, the graph G01 does not
contain an edge e1. Property (c) is obvious by construction and (d) holds because for
v ∈ V \ V (B) the split graph does not contain an edge e↑v.

Having a circulation x′ in G and a witness flow f ′ for x′, we can map x′ to a
circulation z′ in G01 with π(z′) = (x′, f ′) as follows:

• For every edge e0 of the lower level of G01 we set z′(e0) = f ′(e).

• For every edge e1 of the upper level of G01 we set z′(e1) = x′(e)− f ′(e).

• For every edge e↑v (for v ∈ V (B)) we set z(e↑v) = max{0, f ′(δ−(v))− f ′(δ+(v))}.

• For every edge e↓v (for v ∈ V) we set z(e↓v) = max{0, f ′(δ+(v))− f ′(δ−(v))}.

Notice that x′(e) = z′(e0) for every forward edge e and x′(e) = z′(e1) for every backward
edge e. Moreover, x′(e) = z′(e0)+z′(e1) for every neutral edge e. Furthermore, z′ indeed
defines a circulation in G01 because f ′(δ+(v)) ≥ f ′(δ−(v)) for all v ∈ V \ V (B).

The following was already proved in [STV18a]. Here we give a simpler proof.

Lemma 4.14. Let (I, B) be a vertebrate pair, with I = (G,L, x, y). Then there exists
a witness flow f for x.

Proof. Consider G′, which arises from G by adding a new vertex a and edges (a, v)
for all v ∈ V and edges (v, a) for all v ∈ V (B). Set l(e′) = 0 and u(e′) = ∞ for the
new edges. Moreover, for e ∈ E set the lower bound l(e) and the upper bound u(e)
according to the requirements from Definition 4.12, i.e. set u(e) = x(e) if e is a forward

44

4.3. COMPUTING SUBTOUR COVERS

or neutral edge and u(e) = 0 otherwise and set l(e) = x(e) if e is a forward edge and
l(e) = 0 otherwise.

Then we are looking for a circulation f ′ in G′ with l ≤ f ′ ≤ u. By Hoffman’s
circulation theorem (Theorem 2.20), this exists if

l(δ−(U)) ≤ u(δ+(U)) (4.6)

for all U ⊆ V ∪ {a}. We show that this is indeed true. Suppose not, and let U be a
minimal set violating (4.6). Since (4.6) obviously holds whenever a ∈ U or B ∩ U 6= ∅,
we have U ⊆ V \ V (B). Let i be the largest index so that U ∩ Li 6= ∅.

Case 1: U \ Li 6= ∅.
Then (by the minimality of U) we have l(δ−(U ∩ Li)) ≤ u(δ+(U ∩ Li)) and l(δ−(U \
Li)) ≤ u(δ+(U \Li)). Since all edges from U \Li to U ∩Li are forward edges and all
edges from U ∩ Li to U \ Li are backward edges, we get

l(δ−(U)) + x(δ+(U \ Li) ∩ δ−(U ∩ Li)) = l(δ−(U ∩ Li)) + l(δ−(U \ Li))
≤ u(δ+(U ∩ Li)) + u(δ+(U \ Li))
= u(δ+(U)) + x(δ+(U \ Li) ∩ δ−(U ∩ Li))

and hence (4.6).

Case 2: U ⊆ Li.
Then r(u) = i for all u ∈ U and r(w) ≥ i for all w ∈ Li. Hence l(δ−(U)) ≤ x(δ−(Li) ∩
δ−(U)) because we have l(e) > 0 only for forward edges and all edges in δ−(U)\ δ−(Li)
are neutral or backward edges. Moreover, edges in δ+(U) \ δ+(Li) are no backward
edges, implying x(δ+(U) \ δ+(Li)) = u(δ+(U) \ δ+(Li)) ≤ u(δ+(U)). Therefore,

l(δ−(U)) ≤ x(δ−(Li) ∩ δ−(U))
= x(δ−(Li)) + x(δ+(U) \ δ+(Li))− x(δ−(Li \ U))
≤ x(δ−(Li)) + u(δ+(U))− x(δ−(Li \ U)).

Since Li \ U 6= ∅ (because Li ∩ V (B) 6= ∅ = U ∩ V (B)), we have x(δ−(Li \ U)) ≥ 1.
Moreover, Li ∈ L ∪ {V } implies x(δ(Li)) ∈ {0, 2} and hence x(δ−(Li)) ≤ 1. Hence
(4.6) follows.

Working with an arbitrary witness flow f is sufficient to obtain a constant-factor
approximation for ATSP and this is essentially what Svensson, Tarnawski, and Végh
did. However, to obtain a better approximation ratio we will not work with an arbi-
trary witness flow f , but will choose f with some additional properties. Recall that
W1, . . . ,Wk are the vertex sets of the connected components of (V \ V (B), H).

Lemma 4.15. We can compute in polynomial time a witness flow f for x such that

(e) the support of f is acyclic, and

(f)
∑k
i=1 f(δ(Wi)) ≤

∑k
i=1 f

′(δ(Wi)) for every witness flow f ′ for x.

Proof. We first compute a witness flow f̃ by minimizing
∑k
i=1 f(δ(Wi)) subject to

the constraints (a) − (d) from Definition 4.12. This linear program is feasible by
Lemma 4.14. Then the flow f̃ fulfills property (f).

45

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

To compute the flow f we minimize
∑
e∈E f(e) subject to the constraints (a)− (d)

and f(e) ≤ f̃(e) for all e ∈ E. This linear program is feasible because f̃ is a feasible
solution. Then f is a witness flow for x with

∑k
i=1 f(δ(Wi)) ≤

∑k
i=1 f̃(δ(Wi)). Since

the flow f̃ fulfills property (f), the same holds for the flow f .
Suppose f does not fulfill (e), i.e. f is not acyclic. Then there is a cycle C ⊆ E

with f(e) > 0 for all e ∈ C. As f fulfills (a), the set C does not contain any backward
edge. This implies that C also contains no forward edge because C is a cycle. Let
ε := mine∈C f(e). For e ∈ E we set f ′(e) := f(e) − ε ≤ f̃(e) if e ∈ C and f ′(e) :=
f(e) ≤ f̃(e) otherwise. Because C contains neither forward nor backward edges, f ′
fulfills (a) and (b). By the choice of ε, we have f ′(e) ≥ 0 for all e ∈ E, implying
(c). Finally, f ′(δ+(v)) − f ′(δ−(v)) = f(δ+(v)) − f(δ−(v)) ≥ 0 for all v ∈ V \ V (B),
where we used that C is a cycle and f fulfills (d). This shows that f ′ is a witness flow
and f ′(e) ≤ f̃(e) for all e ∈ E, but

∑
e∈E f

′
e <

∑
e∈E fe, a contradiction to the choice

of f .

4.3.4 Rerouting and rounding

Recall that the sets W1, . . . ,Wk are the vertex sets of the connected components of
(V \ V (B), H). Thus they are pairwise disjoint subsets of V \ V (B).

Lemma 4.16. Let i ∈ {1, . . . , k} and v, w ∈Wi. Then r(v) = r(w).

Proof. For all L ∈ L≥2 we have H ∩ δ(L) = ∅ and therefore Wi ⊆ L or Wi ∩ L = ∅.
This implies r(v) = max{j : v ∈ Lj} = max{j : w ∈ Lj} = r(w).

We will now work with a flow f as in Lemma 4.15. Let Gf denote the residual graph
of the flow f and the graph G with edge capacities x. So for every edge e = (v, w) ∈ E
with f(e) < x(e), the residual graph contains an edge (v, w) with residual capacity
uf ((v, w)) = x(e) − f(e). For every edge e = (v, w) ∈ E with f(e) > 0 the residual
graph contains an edge (w, v) with residual capacity uf ((w, v)) = f(e). Parallel edges
can arise.

We will transform the graph G into another graph Ḡ. The circulation z in G01 will
be transformed into a circulation z̄ in the split graph Ḡ01 of Ḡ. We construct Ḡ from
G by doing the following for i = 1, . . . , k.

We add an auxiliary vertex ai to G and set r(ai) := r(v) for v ∈ Wi; this is
well-defined by Lemma 4.16. Let Ŵi be the vertex set of the first strongly connected
component of Gf [Wi] in some topological order. For every edge (v, w) ∈ δ−(Ŵi) we add
an edge (v, ai) of the same cost. Similarly, for every edge (v, w) ∈ δ+(Ŵi) we add an
edge (ai, w) of the same cost. Note that then a new edge is a forward/backward/neutral
edge if and only if its corresponding edge in G is forward/backward/neutral. Then the
split graph Ḡ01 of Ḡ contains new vertices a0

i and a1
i , connected by an edge e↓ai = (a1

i , a
0
i)

of cost zero. Let Ḡ the graph resulting from G by the modifications described above
and let Ḡ01 be its split graph.

We will now reroute some of the flow z going through Ŵi such that it goes through
one of the new vertices a0

i , a
1
i . See Figure 4.6.

46

4.3. COMPUTING SUBTOUR COVERS

(a) (b1)

(b2) (c) (d)

Figure 4.6: Example of the construction of the solution F from the witness flow f . On
all pictures, a set Wi (blue with white interior) and the subset Ŵi (blue and filled) is
shown. The pictures show only edges with at least one endpoint in Wi. Picture (a) shows
(parts of) a possible solution x to (ATSP LP) (green and red) and a witness flow f (red).
The edges drawn with a single line have value 1

4 , the edges drawn with a double line have
value 1

2 . Pictures (b1) and (b2) show a possible flow x̄ in Ḡ resulting from rerouting of
flow through ai (blue); the witness flow f̄ is shown in red. Picture (c) shows in orange an
possible integral flow x̄∗ in Ḡ that could result if we rerouted flow through ai as in (b2);
The orange edges are elements of the edge set F̄ with χF̄ = x̄∗. Picture (d) shows the
result of mapping F̄ back to G. In blue the path Pi in G[Wi] is shown; it completes the
orange edges to a circulation.

47

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

We need the following lemma.

Lemma 4.17. Let G′ be a directed graph graph and z′ a circulation in G′. Let U ⊆
V (G′) with z′(δ(U)) ≥ 2. Then we can compute in polynomial time a multi-set P of
paths in G′[U] and for every P ∈ P starting in s ∈ U and ending in t ∈ U

• a weight λP > 0,

• an edge ein
P = (s′, s) ∈ δ−(U), and

• an edge eout
P = (t, t′) ∈ δ+(U),

such that
∑
P∈P λP = 1 and∑

P∈P
λP ·

(
χe

in
P + χE(P) + χe

out
P

)
≤ z′.

Proof. We contract V (G′) \ U to a vertex voutside. Then z′(δ(voutside)) = z′(δ(U)) ≥ 2.
Because z′ remains a circulation, by Theorem 2.22 we can compute in polynomial time
a set C of cycles containing voutside and weights λC > 0 for C ∈ C with

∑
C∈C λC = 1

such that ∑
C∈C

λC · χE(C) ≤ z′.

After undoing the contraction, every cycle C results in an edge ein = (s′, s) ∈ δ−(U),
an edge eout = (t, t′) ∈ δ+(U), and an s-t-path P in G′[U].

We construct a circulation z̄ in Ḡ01 from z by doing the following for i = 1, . . . , k.
We apply Lemma 4.17 to the vertex set U = Ŵ 01

i . We partition the resulting set P into
sets P0 and P1 such that P0 contains the paths P ∈ P for which ein

P is contained in the
lower level of the split graph and P1 contains the paths P ∈ P for which ein

P is contained
in the upper level of the split graph. Since

∑
P∈P λP = 1, we have

∑
P∈Pq λP ≥ 1

2 for
some q ∈ {0, 1}. We can choose values 0 ≤ λ′P ≤ λP such that

∑
P∈Pq λ

′
P = 1

2 . We
now show how to construct z̄ from z. For every P ∈ Pq we do the following:

• We decrease the flow on ein
P and increase the flow on its corresponding edge in

δ−(aqi) by λ′P .

• We decrease the flow on every edge e ∈ E(P) by λ′P .

• Let p = 0 if eout
P is contained in the lower level of the split graph and p = 1

otherwise. We decrease the flow on eout
P and increase the flow on its corresponding

edge in δ+(api) by λ′P .

• Because Wi∩V (B) = ∅, the path P contains no edge from the lower to the upper
level; hence p ≤ q. If p < q, i.e. q = 1 and p = 0, we increase the flow on e↓ai by
λ′P .

Note that we maintain a circulation in the split graph Ḡ01.
Let z̄ be the circulation in Ḡ01 resulting from z. Note that c(z̄) ≤ c(z). Moreover, z̄

is a circulation such that for every i ∈ {1, . . . , k} we have z̄(δ−(a0
i)) = 1

2 or z̄(δ−(a1
i)) =

1
2 . Because we could only reroute 1

2 unit of flow through a0
i or a1

i , we consider the
circulation 2z̄.

48

4.3. COMPUTING SUBTOUR COVERS

We round 2z̄ to an integral circulation: by Theorem 2.24 there is an integral circu-
lation z̄∗ in Ḡ01 with

(A) 0 ≤ z̄∗(e) ≤ d2z̄(e)e for all e ∈ E(Ḡ01),

(B) c(z̄∗) ≤ c(2z̄),

(C) z̄∗(δ−(v1)) ≤ d2z̄(δ−(v1))e for all v ∈ V , and

(D) for every i ∈ {1, . . . , k} we have z̄∗(δ−(a0
i)) = 1 or z̄∗(δ−(a1

i)) = 1.

Let (x̄, f̄) := π(z̄) and (x̄∗, f̄∗) := π(z̄∗). Let F̄ ⊆ E(Ḡ) be the multi-set of edges
with χF̄ = x̄∗; see Figure 4.6 (c). Then F̄ is Eulerian because x̄∗ is a circulation.

We now show several properties of F̄ , before we show how to map F̄ to a solution
F for Subtour Cover in G (in Section 4.3.5). First we observe

c(F̄) = c(x̄∗) = c(z̄∗) ≤ 2 · c(z̄) ≤ 2 · c(z) = 2 · c(x) = 2 · LP(I). (4.7)

The following lemma will be used in the proof of property (ii).

Lemma 4.18. Let i ∈ {1, . . . , k}. Then |δ−
F̄

(ai)| = 1.

Proof. We have

|δ−
F̄

(ai)| = x̄∗(δ−(ai)) = z̄∗(δ−(a1
i)) + z̄∗(δ−(a0

i) \ {e↓ai})

By property (D), we have z̄∗(δ−(a0
i)) = 1 or z̄∗(δ−(a1

i)) = 1. Moreover, by property (A),
the support of the integral flow z̄∗ is contained in the support of the flow z̄. If we have
z̄∗(δ−(a1

i)) = 1, then we have by construction of z̄ that z̄∗(e) ≤ d2z̄(e)e = 0 for all
e ∈ δ−(a0

i) \ {e↓ai}), implying |δ−
F̄

(ai)| = 1. Otherwise, we have z̄∗(δ−(a0
i)) = 1 and by

construction of z̄ we have z̄(δ−(a1
i)) = 0 and z̄(e↓ai) = 0. Therefore, by property (A)

we have z̄∗(δ−(a1
i)) = 0 and z̄∗(e↓ai) = 0.

The proof of the following lemma is where we use our choice of f as in Lemma 4.15.
Here, an arbitrary witness flow is not sufficient. See Figure 4.7 (a) – (b) for an illus-
tration.

Lemma 4.19. The flows f̄ and f̄∗ have acyclic support.

Proof. Since the support of f̄∗ is contained in the support of f̄ by (A), it suffices to
show that f̄ has acyclic support. Suppose the support of f̄ contains a cycle C̄. Then
there exists i ∈ {1, . . . , k} such that ai ∈ V (C̄) because otherwise C̄ is contained in the
support of f (which is acyclic). Let ē = (ai, v) ∈ E(C̄) and let e = (u, v) ∈ δ+(Ŵi)
be the edge of G corresponding to ē. Then f(e) > 0 and hence the residual graph Gf
contains an edge (v, u) ∈ δ−Gf (Ŵi). Therefore v /∈ Wi since Ŵi is the vertex set of the
first strongly connected component of Gf [Wi]. This shows E(C̄) ∩ δ(Wi ∪ {ai}) 6= ∅.

We claim that we can map C̄ to a closed walk C in the residual graph Gf . See
Figure 4.7 (b) – (c). We first map every edge of the cycle C̄ to its corresponding edge
in G. Notice that the resulting edge set F is not necessarily a cycle: if ai ∈ V (C̄) for
some i ∈ {1, . . . , k}, then F contains an edge entering Ŵi and an edge leaving Ŵi, but
might be disconnected in between.

49

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

(a) (b)

(c) (d)

Figure 4.7: Illustration of the proof of Lemma 4.19 and the reason why choosing an
arbitrary flow f as in Lemma 4.14 is not sufficient. The three sets Wi are shown in blue
with white interior; pictures (a)–(c) also show their subsets Ŵi (blue and filled). Picture (a)
shows (parts of) a flow f as in Lemma 4.14 (red); the thick edges show forward edges. This
flow f will not be chosen by our algorithm; it does not minimize

∑k
i=1 f(δ(Wi)). Picture (b)

shows what would happen if we chose this flow anyway. We see a possible result of rerouting
this flow through the vertices ai ∈ V (Ḡ) (shown in blue). In this example, the support
of f̄ contains a cycle C̄. Picture (c) shows a corresponding closed walk C in the residual
graph Gf . The blue edges show paths inside the sets Ŵi; these exist because G[Ŵi] is
strongly connected. Picture (d) shows the flow resulting from f by augmenting along C.
The augmentation decreased

∑k
i=1 f(δ(Wi)), but did not change the flow on forward edges.

50

4.3. COMPUTING SUBTOUR COVERS

We have f(e) > 0 for every edge e ∈ F . Thus, by reversing all edges in F we obtain
edges in Gf (with positive residual capacity uf). Moreover, we can complete this edge
set to a closed walk C in Gf (with positive residual capacity uf) by adding only edges of
Gf [Ŵi] for i ∈ {1, . . . , k}; this is possible because for every i ∈ {1, . . . , k}, the subgraph
Gf [Ŵi] is strongly connected by the choice of Ŵi. We found a closed walk C in Gf .
Let i ∈ {1, . . . , k} such that E(C̄) ∩ δ(Wi ∪ {ai}) 6= ∅. Then E(C) ∩ δ(Wi) 6= ∅.

Also note that r(v) ≥ r(w) for all (v, w) ∈ E(C): every edge (v, w) ∈ E(Gf) of C
has a corresponding edge (w, v) ∈ E(G) with f(e) > 0 or it has both endpoints in the
same set Ŵi ⊆ Wi. In the first case, we can conclude that (w, v) is not a backward
edge and hence r(w) ≤ r(v). In the latter case, r(v) = r(w) by Lemma 4.16. Since C
is a closed walk we conclude that r(v) = r(w) for all v, w ∈ V (C).

This shows that augmenting f along the closed walk C changes flow only on neutral
edges. We augment by some sufficiently small but positive amount and maintain a
witness flow. We claim that this augmentation decreases

∑k
i=1 f(δ(Wi)), which is a

contradiction to our choice of f . See Figure 4.7 (d). The only edges of C contained in
a cut δ(Wi) for some i ∈ {1, . . . , k} result from mapping the edges of the cycle C̄ in Ḡ
to Gf and reversing them; for these edges the augmentation decreases the flow value.
The other edges that we added to C are contained in some Gf [Ŵi] for i ∈ {1, . . . , k}
and hence they do not cross the boundary of any set Wi. Therefore, augmenting f
along C decreases the flow value on all edges in E(C) ∩ (δ(W1) ∪ · · · ∪ δ(Wk)) and we
have already shown that this set is nonempty.

Lemma 4.20. Let D̄ be a connected component of (V, F̄) with V (D̄)∩V (B) = ∅. Then
f̄∗(E(D̄)) = 0.

Proof. Because f̄∗ is a witness flow, we have f̄∗(δ−(v)) ≤ f̄∗(δ+(v)) for every v ∈ V (D̄).
Since

f̄∗(E(D̄)) =
∑

v∈V (D̄)

f̄∗(δ−(v)) ≤
∑

v∈V (D̄)

f̄∗(δ+(v)) = f̄∗(E(D̄)),

we have f̄∗(δ−(v)) = f̄∗(δ+(v)) for every v ∈ V (D̄). In other words, f̄∗ restricted to
E(D̄) is a circulation. Because the support of f̄∗ is acyclic by Lemma 4.19, this implies
f̄∗(E(D̄)) = 0.

Lemma 4.21. Let i ∈ {1, . . . , k}. Then F̄ ∩ δ(Wi ∪ {ai}) 6= ∅.

Proof. By Lemma 4.18 there exists an edge ē = (v, ai) ∈ F̄ . If v /∈ Wi, we have
ē ∈ F̄ ∩ δ(Wi ∪ {ai})). Otherwise, the edge e of G that corresponds to ē fulfills
e ∈ E[Wi] ∩ δ−(Ŵi). Therefore, we have f(e) = x(e) as otherwise also the residual
graph Gf contained e, contradicting the choice of Ŵi. This implies

z̄∗(ē1) ≤ d2z̄(ē1)e ≤ d2z(e1)e = d2(x(e)− f(e))e = 0.

But then
f̄∗(ē) = z̄∗(ē0) = z̄∗(ē0) + z̄∗(ē1) = x̄∗(ē) ≥ 1,

because ē ∈ F̄ . By Lemma 4.20, this implies that the connected component D̄ of
(V (Ḡ), F̄) that contains ai, also contains a vertex w ∈ V (B). Since Wi ∩ V (B) = ∅,
this completes the proof.

51

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

In the proof of property (iii) we will use the following observation.

Lemma 4.22. Let D̄ be a connected component of (V, F̄) with V (D̄)∩V (B) = ∅. Then
E(D̄) contains no forward edge.

Proof. By Lemma 4.20 we have f̄∗(E(D̄)) = 0. Since f̄∗ is a witness flow for x̄∗ = χF̄ ,
this implies that E(D̄) contains no forward edge.

The following lemma will be used in the proof of (4.5).

Lemma 4.23. Let D̄ be a connected component of (V, F̄) with V (D̄)∩V (B) = ∅. Then
for every vertex v ∈ V (D̄) \ {a1, . . . , ak} with yv > 0 we have |δ−

F̄
(v)| ≤ 2.

Proof. For every vertex v ∈ V (D̄) we have

|δ−
F̄

(v)| = x̄∗(δ−(v)) = z̄∗(δ−(v1)) + z̄∗(δ−(v0) \ {e↓v})
= z̄∗(δ−(v1)) + f̄∗(δ−(v))
= z̄∗(δ−(v1)),

where we used Lemma 4.20. For all v ∈ V (D̄) \ {a1, . . . , ak} with yv > 0 we have
{v} ∈ L and hence x(δ−(v)) = 1. Therefore, by (C) we get

|δ−
F̄

(v)| = z̄∗(δ−(v1)) ≤ d2z̄(δ−(v1))e ≤ d2x(δ−(v))e ≤ 2.

4.3.5 Mapping back to G

We now transform F̄ into a solution F of the Subtour Cover problem in G. See
Figure 4.6 (c)–(d). By Lemma 4.18, every vertex ai for i ∈ {1, . . . , k} has exactly one
incoming edge in F̄ and because F̄ is Eulerian, ai also has exactly one outgoing edge. We
replace all the edges in δF̄ (ai) for i ∈ {1, . . . , k} by their corresponding edges in G. For
every i ∈ {1, . . . , k} we added one edge (v, s) ∈ δ−(Ŵi) and an edge (t, w) ∈ δ+(Ŵi); to
obtain an Eulerian edge set we add an s-t-path Pi in G[Wi]. Such a path exists because
G[Wi] is strongly connected. Let F be the resulting Eulerian multi-set of edges in
G. Note that if two vertices a, b ∈ V (G) are in the same connected component of
(V (Ḡ), F̄), then they are also in the same connected component of (V (G), F).

Lemma 4.24. Let i ∈ {1, . . . , k} and L ∈ L≥2. Then E(Pi) ∩ δ(L) = ∅.

Proof. We have H ∩ δ(L) = ∅ and the sets W1, . . . ,Wk are the vertex sets of the con-
nected components of (V \V (B), H). Now E(Pi) ⊆ E[Wi] implies E(Pi)∩δ(L) = ∅.

We claim that F is a solution to the Subtour Cover problem and fulfills (4.4)
and (4.5). Property (i) of a solution of the Subtour Cover problem holds because F is
Eulerian. Property (ii) follows from Lemma 4.21.

We now show property (iii). Let D be a connected component of (V, F) with
E(D) ∩ δ(L) 6= ∅ for some L ∈ L≥2. Because D is Eulerian it then contains a cycle C
with E(C)∩δ(L) 6= ∅. But then E(C) ⊆ E(D) contains a forward edge by Lemma 4.10.
By Lemma 4.16, the edges of the paths Pi (for i ∈ {1, . . . , k}) are neutral edges. Hence

52

4.4. ALGORITHM FOR VERTEBRATE PAIRS

Lemma 4.22 implies V (D)∩V (B) 6= ∅. This shows that F is a solution to the Subtour
Cover problem. It remains to show (4.4) and (4.5).

Lemma 4.24 implies

c(E(Pi)) =
∑

v∈V (Pi)
|E(Pi) ∩ δ(v)| · yv ≤

∑
v∈Wi

2yv.

Moreover, the setsWi for i ∈ {1, . . . , k} are pairwise disjoint. Using also V (B)∩Wi = ∅
for i ∈ {1, . . . , k}, we obtain

∑k
i=1 c(E(Pi)) ≤

∑
v∈V \V (B) 2yv. Together with (4.7), this

implies (4.4).
Finally, we prove (4.5). Let D be a connected component of (V, F) with V (D) ∩

V (B) = ∅. By property (iii), c(E(D)) =
∑
v∈V (D) |F ∩ δ−(v)| · 2yv. Because the sets

W1, . . . ,Wk are pairwise disjoint, we have |F ∩ δ−(v)| ≤ |F̄ ∩ δ−(v)|+ 1 for every vertex
v ∈ V (D). By Lemma 4.23, this implies |F ∩ δ−(v)| ≤ 3 for every vertex v ∈ V (D)
with yv > 0. This shows (4.5) and concludes the proof of Theorem 4.9.

4.4 Algorithm for vertebrate pairs

In this section we present an algorithm for vertebrate pairs. This algorithm is essentially
due to Svensson [Sve15] who used it for node-weighted ATSP instances. Later Svensson,
Tarnawski, and Végh adapted the algorithm to work with vertebrate pairs [STV19].
Here, we present an improved variant of their algorithm.

As a subroutine we will use the Subtour Cover algorithm from Theorem 4.9. In
order to exhibit the dependence of the approximation guarantee of the algorithm on
the subroutine we introduce the notion of an (α, κ, β)-algorithm for Subtour Cover.
Theorem 4.9 yields a (3, 2, 1)-algorithm for Subtour Cover.

Definition 4.25. Let α, κ, β ≥ 0. An (α, κ, β)-algorithm for Subtour Cover is a
polynomial-time algorithm that computes a solution F for every instance (I, B,H) such
that

c(F) ≤ κ · LP(I) + β ·
∑

v∈V \V (B)
2yv, (4.8)

and for every connected component D of (V, F) with V (D) ∩ V (B) = ∅ we have

c(E(D)) ≤ α ·
∑

v∈V (D)
2yv. (4.9)

Let α, κ, β ≥ 0 such that there is an (α, κ, β)-algorithm A for Subtour Cover and
let ε > 0 be a fixed constant. The goal of this section is to show that there is a
polynomial-time (κ, 4α+ β + 1 + ε)-algorithm for vertebrate pairs.

4.4.1 Outline

Let (I, B) be a vertebrate pair. Svensson’s algorithm is initialized with an Eulerian
multi-set H̃ ⊆ E[V \ V (B)] and then computes either a “better” initialization H̃ ′ or
extends H̃ to a solution H of the given vertebrate pair (I, B).

53

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

The initialization H̃ of the algorithm will always be light (see Definition 4.26). To
define what a light edge set is, we introduce a function ` : V → R≥0. For v ∈ V we set

`(v) :=

(1 + ε′) · 2α · 2yv + ε′

n ·
∑
u∈V \V (B) 2yu , if v ∈ V \ V (B)

κ·LP(I)+β·
∑

u∈V \V (B) 2yu
|V (B)| , if v ∈ V (B),

where ε′ := ε

3+4α+ 1
2α

.

Definition 4.26. Let H̃ be a (multi-)subset of E. We call H̃ light if c(E(D)) ≤
`(V (D)) for every connected component D of (V, H̃).

Note that for v ∈ V \ V (B) the first term of the definition of `(v) is proportional
to the corresponding dual variable yv. We need the additional term ε′

n ·
∑
u∈V \V (B) 2yu

to guarantee that `(v) cannot be too close to zero; see the proof of Lemma 4.34. For
vertices in V (B) we will only need that `(V (B)) = κ · LP(I) + β ·

∑
u∈V \V (B) 2yu.

To measure what a “better” initialization for Svensson’s algorithm is, we introduce
a potential function Φ. For a multi-subset H̃ of E[V \ V (B)] such that the connected
components of (V \ V (B), H̃) have vertex sets W̃1, . . . , W̃k, we write

Φ(H̃) =
k∑
i=1

`(W̃i)1+p,

where p := log1+ε′(2+ε′
ε′). The following lemma states the result of Svensson’s algorithm.

Lemma 4.27. Let α, κ, β ≥ 0 such that there is an (α, κ, β)-algorithm for Subtour
Cover and let ε > 0 be a fixed constant. Then there exists a constant C > 0 such that
the following holds.

Given a vertebrate pair (I, B) with I = (G,L, x, y) and a light Eulerian multi-subset
H̃ of E[V \ V (B)] we can compute in polynomial time

(a) a solution H for the vertebrate pair (I, B) such that

c(H) ≤ `(V (B)) + (2 + 1
2α) · `(V \ V (B)), (4.10)

or

(b) a light Eulerian multi-subset H̃ ′ of E[V \ V (B)] such that

Φ(H̃ ′)− Φ(H̃) >
(

1
C·n2 · `(V \ V (B))

)1+p
. (4.11)

From Lemma 4.27 we can derive the main result of this section.

Theorem 4.28. Let α, κ, β ≥ 0 such that there is an (α, κ, β)-algorithm for Subtour
Cover and let ε > 0 be a fixed constant.

Then there is a polynomial-time (κ, 4α+ β + 1 + ε)-algorithm for vertebrate pairs.

Proof. Define ε′ := ε

3+4α+ 1
2α

, p, ` and Φ as above. We start with H̃ = ∅ and apply

Lemma 4.27. If we obtain a set H̃ ′ as in Lemma 4.27 (b), we set H̃ := H̃ ′ and iterate,

54

4.4. ALGORITHM FOR VERTEBRATE PAIRS

i.e. we apply Lemma 4.27 again until we obtain a set H as in Lemma 4.27 (a). Since
0 ≤ Φ(H̃) ≤ `(V \ V (B))1+p, we need at most

(
C · n2)1+p iterations. At the end,

the algorithm guaranteed by Lemma 4.27 returns a solution H for the vertebrate pair
(I, B) such that

c(H) ≤ `(V (B)) +
(
2 + 1

2α

)
· `(V \ V (B))

≤ κ · LP(I) +
(
β +

(
2 + 1

2α

)
·
(
(1 + ε′) · 2α+ ε′

))
·

∑
v∈V \V (B)

2yv

= κ · LP(I) +
(
β + 4α+ 1 + 4α · ε′ + ε′ + (2 + 1

2α) · ε′
)
·

∑
v∈V \V (B)

2yv

= κ · LP(I) + (4α+ β + 1 + ε) ·
∑

v∈V \V (B)
2yv.

4.4.2 Basic properties of the function ` and algorithm A

In this section we describe the key properties of the function ` and our given (α, κ, β)-
algorithm A for Subtour Cover.

Lemma 4.29. Let A be an (α, κ, β)-algorithm for Subtour Cover. Let F be the output
of A applied to an instance (I, B,H).

(i) For every connected component D of (V, F) with V (D) ∩ V (B) = ∅ we have

c(E(D)) ≤ 1
2(1 + ε′) · `(V (D)).

(ii) Let the graph DB be the union of all connected components D of (V, F) with
V (D) ∩ V (B) 6= ∅. Then

c(E(DB)) ≤ `(V (B)).

Proof. The claimed properties follow directly from the definition of ` and the defini-
tion of an (α, κ, β)-algorithm for Subtour Cover: property (i) follows from (4.9) and
property (ii) follows from (4.8).

The next lemma will be needed to show that Svensson’s algorithm makes sufficient
progress when finding “a better initialization”. The proof will show that we could also
replace the term n2 in the statement of the lemma by n. However, the weaker bound
stated in the lemma suffices and we will exploit this later (in Section 4.6) where we
apply Svensson’s algorithm to graph ATSP.

Lemma 4.30. There exists a constant C > 0 such that for every vertex v ∈ V \ V (B)
we have

`(v) ≥ 1
C · n2 · `(V \ V (B)).

55

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

Proof. We have

`(V \ V (B)) ≤ (1 + ε′) · 2α ·
∑

u∈V \V (B)
2yu + ε′ ·

∑
u∈V \V (B)

2yu

≤
(
(1 + ε′) · 2α+ ε′

)
·

∑
u∈V \V (B)

2yu.

Therefore, for every vertex v ∈ V \ V (B) we have

`(v) ≥ ε′

n
·

∑
u∈V \V (B)

2yu ≥
ε′

((1 + ε′) · 2α+ ε′) · n · `(V \ V (B)),

which completes the proof because α and ε′ are constants.

The following property of ` is not crucial for obtaining a constant-factor approxi-
mation, but allows us to obtain a better approximation ratio.

Lemma 4.31. For every circuit C with E(C) ∩ δ(L) = ∅ for all L ∈ L≥2, we have

c(E(C)) ≤ 1
2α(1 + ε′) · `(V (C)).

Proof. Let C be a circuit with E(C) ∩ δ(L) = ∅ for all L ∈ L≥2. Then we have
c(E(C)) =

∑
v∈V (C) 2yv ≤ 1

(1+ε′)·2α · `(V (C)).

Remark 4.32
In the following sections we will only use Lemma 4.29, Lemma 4.30 and Lemma 4.31
and we will not use the precise definition of ` anymore. We will also only use that
A computes feasible solutions for instances (I, B,H) of Subtour Cover (and fulfills
Lemma 4.29). Moreover, we will not directly use the fact that I is a laminarly weighted
instance of ATSP anymore and L≥2 could be any laminar family; this is only used in the
given algorithm A for Subtour Cover that we use as a black-box here. These observa-
tions will be useful later in Section 4.6, where we will again apply Svensson’s algorithm,
but with a different definition of `, A and L≥2, to obtain a better approximation algo-
rithm for graph ATSP.

4.4.3 Finding a better initialization

In this section we discuss how Svensson’s algorithm finds in certain cases a better
initialization H̃ ′. We will need the following well-known statement about the knapsack
problem.

Lemma 4.33. Suppose we are given a finite set I of items and for every item j ∈ I a
weight wj > 0 and a profit pj ≥ 0. Moreover, let w̄ <

∑
j∈I wj be a given weight limit.

Then we can compute in polynomial time a set J ⊆ I such that

•
∑
j∈J wj ≤ w̄, and

•
∑
j∈J pj ≥ w̄∑

j∈I wj
·
∑
j∈I pj −maxj∈I pj

56

4.4. ALGORITHM FOR VERTEBRATE PAIRS

Proof. We run the following greedy algorithm. Sort the items with nonincreasing ratio
pj
wj

. Consider the items in this order and, starting with J = ∅, add items to the set J
as long as

∑
j∈J wj ≤ w̄. Then adding the next item to J would result in a set J ′ with∑

j∈J ′ wj > w̄. By the sorting of the items,

∑
j∈J ′ pj =

∑
j∈J′ pj∑
j∈J′ wj

·
∑
j∈J ′ wj ≥

∑
j∈I pj∑
j∈I wj

·
∑
j∈J ′ wj >

∑
j∈I pj∑
j∈I wj

· w̄.

Because J ′ \ J contains only one element, this implies

∑
j∈J pj ≥

∑
j∈I pj∑
j∈I wj

· w̄ −maxj∈I pj = w̄∑
j∈I wj

·
∑
j∈I pj −maxj∈I pj .

Let H̃ be a light Eulerian multi-subset of E[V \ V (B)]. Let W̃0 = V (B) and let
W̃1, . . . , W̃k be the vertex sets of the connected components of (V \ V (B), H̃), ordered
so that `(W̃1) ≥ · · · ≥ `(W̃k). For a connected multi-subgraph D of G we define the
index of D to be

ind(D) := min{j ∈ {0, . . . , k} : V (D) ∩ W̃j 6= ∅}.

The following is the main lemma that we will use to find a better initialization H̃ ′.

Lemma 4.34. Let D be a connected and Eulerian multi-subgraph of the graph G with
V (D) ∩ V (B) = ∅,

c(E(D)) ≤ 2
2 + ε′

· `(V (D)), (4.12)

and
`(V (D)) > (1 + ε′) · `(W̃ind(D)). (4.13)

Then we can compute in polynomial time a light Eulerian multi-subset H̃ ′ of E[V \V (B)]
such that (4.11) holds.

Proof. Let I := {j ∈ {0, . . . , k} : V (D) ∩ W̃j 6= ∅} and i := min I = ind(D). We have
i > 0 because V (D) ∩ V (B) = ∅. We will compute a subset J of I and replace the
components H̃[W̃j] for j ∈ I by one new component that is the union of E(D) and all
H̃[W̃j] with j ∈ J . More precisely, we set

H̃ ′ :=
⋃

h∈{1,...,k}\I
H̃[W̃h]

.
∪ E(D)

.
∪

⋃
j∈J

H̃[W̃j].

See Figure 4.8. Let D∗ be the connected component of (V, H̃ ′) with edge set

E(D)
.
∪
⋃
j∈J

H̃[W̃j].

We will choose J such that∑
j∈J

`(W̃j ∩ V (D)) ≤ ε′

2 + ε′
· `(V (D)). (4.14)

57

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

W̃1

W̃5

W̃7

W̃2

W̃3

W̃4

W̃6V (D)

Figure 4.8: Illustration of the proof of Lemma 4.34. The gray and blue rectangles show
the partition of V \ V (B) into W̃1, . . . , W̃7. In red we see the vertex set V (D) of the given
connected graph D. The rectangles with blue boundary show the sets W̃i with i ∈ I. In
this example I = {2, 3, 4, 6}. The filled areas show vertex sets of connected components of
(V \ V (B), H̃ ′). In this example we have J = {2, 3}. The connected components H̃[W̃1],
H̃[W̃5], and H̃[W̃7] remain unchanged and we get a new component D∗ with vertex set
V (D) ∪ W̃2 ∪ W̃3; we also get singleton components (without edges) for all vertices in
W̃4 \ V (D) and W̃6 \ V (D).

We first show that then c(E(D∗)) ≤ `(V (D∗)), which implies that H̃ ′ is light.
Indeed, using (4.12) in the first inequality and (4.14) in the last inequality,

c(E(D∗)) ≤ 2
2 + ε′

· `(V (D)) +
∑
j∈J

`(W̃j)

= 2
2 + ε′

· `(V (D)) +
∑
j∈J

`(W̃j \ V (D)) +
∑
j∈J

`(W̃j ∩ V (D))

≤ 2
2 + ε′

· `(V (D)) +
∑
j∈J

`(W̃j \ V (D)) + ε′

2 + ε′
· `(V (D))

= ` (V (D∗)) .

We conclude the proof by showing that we can choose J such that (4.14) and (4.11)
hold. To this end, we would like to make the new component, spanning V (D)∪

⋃
j∈J W̃j ,

as large as possible. More precisely, we want to maximize
∑
j∈J `(W̃j \ V (D)) subject

to (4.14). This is a knapsack problem: the items are indexed by I, and item j ∈ I has
weight wj = `(W̃j ∩ V (D)) and profit pj = `(W̃j \ V (D)). Since

∑
j∈I `(W̃j ∩ V (D)) =

`(V (D)), the weight limit w̄ = ε′

2+ε′ · `(V (D)) is an ε′

2+ε′ fraction of the total weight
of all items. Since any item j ∈ I has profit at most `(W̃j \ V (D)) ≤ `(W̃j) ≤ `(W̃i),
Lemma 4.33 yields a set J with (4.14) and

∑
j∈J

`(W̃j \ V (D)) ≥ ε′

2 + ε′
·
∑
j∈I

`(W̃j \ V (D)) − `(W̃i).

58

4.4. ALGORITHM FOR VERTEBRATE PAIRS

W̃0 = V (B)

W̃1

W̃2

W̃3

W̃4

W̃5

W̃6

W̃7

W̃8

W̃9

W̃10

Figure 4.9: Illustration of Lemma 4.35 and Lemma 4.36. Here the filled ellipses show
the partition W̃0, . . . , W̃10 of V . The curves show a possible solution F to some instance
(I, H) of Subtour Cover; the set H is not shown here. In red we see a subgraph D as in
Lemma 4.35: here the red curves are the graph F1 and D is the union of F1 and H̃[W̃1].
In blue we see a subgraph D as in Lemma 4.36: here D is a single connected component
of F and in this example we have ind(D) = 2.

Finally we show (4.11). Using (4.13) in the strict inequality, (1 + ε′)p = 2+ε′
ε′ in the

second equation, and `(W̃i) ≥ `(W̃j) for all j ∈ I in the last inequality, we obtain

`(V (D∗))1+p =

`(V (D)) +
∑
j∈J

`(W̃j \ V (D))

1+p

≥ `(V (D))p ·

`(V (D)) + ε′

2 + ε′

∑
j∈I

`(W̃j \ V (D))− `(W̃i)

>
(
(1 + ε′) · `(W̃i)

)p
· ε′

2 + ε′
· `(W̃i) + ε′

2 + ε′
`(V (D)) + ε′

2 + ε′

∑
j∈I

`(W̃j \ V (D))

= 2 + ε′

ε′
· `(W̃i)p ·

 ε′

2 + ε′
· `(W̃i) + ε′

2 + ε′

∑
j∈I

`(W̃j)

≥ `(W̃i)1+p +

∑
j∈I

`(W̃j)1+p.

and hence
Φ(H̃ ′)− Φ(H̃) ≥ `(V (D∗))1+p −

∑
j∈I

`(W̃j)1+p > `(W̃i)1+p.

Since W̃i contains at least one vertex, by Lemma 4.30, `(W̃i) ≥ 1
C·n2 · `(V \ V (B))

for the constant C from Lemma 4.30.

The two different ways how we obtain D during Svensson’s algorithm are described
by Lemma 4.35 and Lemma 4.36. See also Figure 4.9.

59

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

Lemma 4.35. Let A be an (α, κ, β)-algorithm for Subtour Cover. Let F be the output
of A applied to an instance (I, B,H). For i ∈ {0, . . . , k} let the graph Fi be the union
of the connected components D′ of (V, F) with ind(D′) = i.

Suppose we have c(E(Fi)) > `(W̃i) for some i ∈ {0, . . . , k}. Then the union

D :=
(
W̃i ∪ V (Fi), H̃[W̃i] ∪ E(Fi)

)
of H̃[W̃i] and Fi fulfills the conditions Lemma 4.34, i.e. D is a connected Eulerian
multi-subgraph of G with V (D) ∩ V (B) = ∅, (4.12) and (4.13).

Proof. Let i ∈ {0, . . . , k} such that c(E(Fi)) > `(W̃i). Note that i > 0 because
c(E(F0)) ≤ `(W̃0) by Lemma 4.29 (ii). This implies V (D) ∩ V (B) = ∅. Moreover,
we have

1
2 + 2ε′ · `(V (D)) ≥ 1

2 + 2ε′ · `(V (Fi)) ≥ c(E(Fi)) > `(W̃i),

where the second inequality holds by Lemma 4.29 (i). This shows (4.13) and implies

c(E(D)) = c(H̃[W̃i] ∪ E(Fi)) ≤ `(W̃i) + c(E(Fi)) ≤
2

2 + 2ε′ · `(V (D)).

Therefore also (4.12) holds.

Lemma 4.36. Let A be an (α, κ, β)-algorithm for Subtour Cover. Let F be the output
of A applied to an instance (I, B,H). Suppose (V, F) has a connected component D
with ind(D) > 0 and

l(V (D)) > (1 + ε′) · l(W̃ind(D)).

Then D fulfills the conditions Lemma 4.34, i.e. D is a connected Eulerian multi-
subgraph of G with V (D) ∩ V (B) = ∅, (4.12) and (4.13).

Proof. We have (4.13) by assumption. Moreover, V (D)∩V (B) = ∅ because ind(D) > 0.
Since D is a connected component of (V, F) that does not intersect the backbone,
Lemma 4.29 (i) implies

c(E(D)) ≤ 1
2 + 2ε′ · l(V (D)) ≤ 2

2 + ε′
· l(V (D)),

implying (4.12).

4.4.4 Svensson’s algorithm

In this section we prove Lemma 4.27. To this end we consider Algorithm 2, essentially
due to Svensson [Sve15]. We maintain an Eulerian edge set H which is initialized with
H = H̃. Then we iterate the following steps. First, we call the given algorithm for
Subtour Cover, then we try to find an improved initialization H̃ ′ as discussed in the
previous section, and finally, if we could not find a better initialization, we extend the
set H. The careful update of H in step 3 of Algorithm 2 is illustrated in Figure 4.10.

To implement step (3c), consider each edge e = (v, w) ∈ δ+(V (Z)) and compute a
shortest w-v-path P in

(
V,E \

(
∪L∈L≥2 δ(L)

))
and check if c(e)+c(P) ≤ 1

2α ·`(W̃ind(Z)).

60

4.4. ALGORITHM FOR VERTEBRATE PAIRS

Algorithm 2: Svensson’s Algorithm

Input: a vertebrate pair (I, B) with I = (G,L, x, y),
a light Eulerian multi-subset H̃ ⊆ E[V \ V (B)],
α, κ, β ≥ 0, ε > 0, and
an (α, κ, β)-algorithm A for Subtour Cover

Output: either H̃ ′ as in Lemma 4.27 (b) or H as in Lemma 4.27 (a)

Let W̃0 := V (B) and let W̃1, . . . , W̃k be the vertex sets of the connected components
of (V \ V (B), H̃) such that `(W̃1) ≥ `(W̃2) ≥ · · · ≥ `(W̃k).
Set H := H̃.

While (V,E(B) ∪H) is not connected, repeat the following:

1. Compute a solution to Subtour Cover:

(1a) Apply A to the Subtour Cover instance (I, B,H) to obtain a solution F ′.
(1b) Let F result from F ′ by deleting all edges of connected components of

(V, F ′) whose vertex sets are contained in a connected component of
(V,E(B) ∪H).

2. Try to find a better initialization H̃ ′:
For i ∈ {0, . . . , k} let the graph Fi be the union of the connected components D′
of (V, F) with ind(D′) = i.

(2a) If for some i ∈ {0, . . . , k} we have c(E(Fi)) > `(W̃i), apply Lemma 4.34 to
D = (W̃i∪V (Fi), H̃[W̃i]∪E(Fi)) to obtain an edge set H̃ ′. Then return H̃ ′.

(2b) If (V, F) has a connected component D with `(V (D)) > (1 + ε′) · `(W̃ind(D))
and ind(D) > 0, apply Lemma 4.34 to obtain an edge set H̃ ′. Then
return H̃ ′.

3. Extend H:

(3a) Set X := ∅.
(3b) Select the connected component Z of (V,H

.
∪ F

.
∪ X) for which ind(Z) is

largest.
(3c) If there is a circuit C with

• E(C) ∩ δ(V (Z)) 6= ∅,
• E(C) ∩ δ(L) = ∅ for all L ∈ L≥2, and
• c(E(C)) ≤ 1

2α · `(W̃ind(Z)),
then add E(C) to X and go to step (3b).

(3d) Add the edges of (V, F
.
∪ X)[V (Z)] to H.

Return H.

61

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

W̃0 = V (B) W̃1 W̃2 W̃3 W̃4 W̃5 W̃6 W̃7 W̃8 W̃9

Figure 4.10: An illustration of step 3 in the first iteration of Svensson’s algorithm. The
edge set F is shown in red. First the component Z with vertex set W̃7 ∪ W̃8 is considered,
with ind(Z) = 7. We may find the blue circuit C with c(E(C)) ≤ 1

2α`(W̃7). After adding
E(C) to X, the component Z with vertex set W̃3∪W̃5 is considered next, with ind(Z) = 3.
Then we may find the green circuit C ′ with c(E(C ′)) ≤ 1

2α`(W̃3). Then E(C ′) is added
to X, and now (V,H

.
∪ F

.
∪ X) has three connected components. The component Z with

vertex set W̃2 ∪ W̃3 ∪ W̃4 ∪ W̃5 ∪ W̃9 is considered next. Suppose there is no circuit C ′′
connecting it to the rest and with c(E(C ′′)) ≤ 1

2α`(W̃2). Then the edges drawn as solid
curves are added to H, concluding the first iteration.

Note that adding E(C) to X in step (3c) decreases the number of connected com-
ponents of (V,H

.
∪ F

.
∪ X), and adding edges to H in step (3d) decreases the number

of connected components of (V,H). Thus the procedure terminates after a polynomial
number of steps.

Also notice that step (1b) maintains all properties required for the output of an
(α, κ, β)-algorithm for Subtour Cover. Hence, the computation of F in step 1 (including
both step (1a) and step (1b)) is an (α, κ, β)-algorithm for Subtour Cover. Therefore,
we can apply Lemma 4.35 for step (2a) and Lemma 4.36 for step (2b) to show that the
application of Lemma 4.34 is indeed possible.

We conclude that if Algorithm 2 returns a (multi-)set H̃ ′ in step 2, then H̃ ′ is a
multi-set as in Lemma 4.27 (b).

Now suppose the algorithm does not terminate in step 2. Since H remains Eulerian
throughout the algorithm and (V,E(B) ∪H) is connected at the end of Algorithm 2,
the returned edge set H is a solution for the vertebrate pair (I, B). It remains to show
the upper bound (4.10) on the cost of H. Initially we have c(H) = c(H̃) ≤ `(V \V (B)).
We bound the cost of the X-edges and the cost of the F -edges added to H separately.

Lemma 4.37. The total cost of all X-edges that are added to H is at most

1
2α · `(V \ V (B)).

Proof. A circuit C that is selected in step (3c) and will later be added to H connects
Z with another connected component Y with ind(Y) < ind(Z). We say that it marks
ind(Z). It has cost at most 1

2α · `(W̃ind(Z)). No circuit added later can mark ind(Z)
because the new connected component of (V,H

.
∪ F

.
∪ X) containing Y ∪ Z will have

smaller index by the choice of Z. Hence the total cost of the added circuits is at most
1

2α ·
∑k
i=1 `(W̃i) = 1

2α · `(V \ V (B)).

62

4.5. THE MAIN RESULT

Lemma 4.38. The total cost of all F -edges that are added to H is at most `(V).

Proof. Let Zt denote Z at the end of iteration t of the while-loop. Let F ti be the graph
Fi in iteration t if the set of edges of Fi is nonempty and is added to H at the end of
this iteration, and let F ti = ∅ otherwise.

For i = 0, . . . , t the total cost of F ti is c(E(F ti)) ≤ `(W̃i) by step (2a). We claim that
for any i, at most one of the F ti is nonempty. Then summing over all i and t concludes
the proof.

Suppose there are t1 < t2 such that F t1i 6= ∅ and F
t2
i 6= ∅. We have i > 0 because

otherwise the algorithm would terminate after iteration t1 by the choice of Zt1 . Then
V (F t1i) ⊆ V (Zt1) and thus W̃i ⊆ V (Zt1). Moreover, F t2i contains a vertex of W̃i and
is not completely contained in Zt1 by step (1b) of the algorithm. Thus, F t2i contains a
circuit C with E(C) ∩ δ(V (Zt1)) 6= ∅. We have E(C) ∩ δ(L) ⊆ E(F t2i) ∩ δ(L) = ∅ for
all L ∈ L≥2 because V (F t2i) ∩ V (B) = ∅ (since i > 0) and F is a solution to Subtour
Cover.

If c(E(C)) ≤ 1
2α · `(W̃ind(Zt1)), due to step (3c), this is a contradiction to reaching

step (3d) in iteration t1 and adding Zt1 there. Otherwise, let D be the connected
component of F t2i containing C. Note that ind(D) = i ≥ ind(Zt1).

Since C is a circuit with E(C)∩δ(L) = ∅ for all L ∈ L≥2, we can apply Lemma 4.31
to obtain

1
(1 + ε′) · 2α · `(V (C)) ≥ c(E(C)) >

1
2α · `(W̃ind(Zt1)) ≥

1
2α · `(W̃ind(D)).

This shows
`(V (D)) ≥ `(V (C)) > (1 + ε′) · `(W̃ind(D)).

Due to step (2b), this is a contradiction to reaching step (3d) in iteration t2 and adding
F t2i there.

Using c(H̃) ≤ `(V \ V (B)), Lemma 4.37, and Lemma 4.38, we conclude that the
cost of the returned edge set H is at most

`(V (B)) +
(
2 + 1

2α

)
· `(V \ V (B)).

This concludes the proof of Lemma 4.27.

4.5 The main result

We can now combine the results of the previous sections and obtain the following.

Theorem 4.39. For every ε > 0 there is a polynomial-time algorithm that computes
for every instance (G, c) of ATSP a solution of cost at most 22 + ε times the cost of an
optimum solution to (ATSP LP).

Proof. Theorem 4.9 yields a (3, 2, 1)-algorithm for Subtour Cover and by Theorem 4.28
this implies that there is a polynomial-time (2, 14 + ε)-algorithm for vertebrate pairs.
Using Theorem 4.6 we then obtain a polynomial-time algorithm that finds a solution
of cost at most (22 + ε) · LP(I) for every ATSP instance I.

As a consequence of Theorem 4.39 we obtain the following.

63

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

Corollary 4.40. The integrality ratio of (ATSP LP) is at most 22.

Proof. Suppose there is an instance I of ATSP where OPT(I)
LP(I) > 22. Then there exists

ε > 0 such that OPT(I)
LP(I) > 22+ε. By Theorem 4.39 we can compute an integral solution

for I with cost at most (22 + ε) · LP(I) < OPT(I), a contradiction.

Using the oberservation from Remark 4.7, one could slightly improve Theorem 4.39
and Corollary 4.40, but the improvement would be less than 1.

4.6 Graph ATSP

In this section we consider graph ATSP, i.e. the special case of ATSP with c ≡ 1.
We show that for graph ATSP we can obtain a better approximation algorithm by
using again Svensson’s algorithm, but replacing the algorithm A for Subtour Cover
and choosing a different function `. This is essentially due to Svensson [Sve15], but we
obtain a better approximation ratio because we use the improved variant of Svensson’s
algorithm that we explained in the previous section. Moreover, we give a family of
instances that proves that the integrality ratio of (ATSP LP) is at least 2 also for
graph ATSP.

Parts of this section have been published in [KTV19].

4.6.1 A (13 + ε)-approximation algorithm for graph ATSP

Consider an instance I of graph ATSP. Then LP(I) ≥ n, where n denotes the number
of vertices. If LP(I) = n, the dual solution with y{v} := 1

2 for all vertices v and all
other dual variables being 0 is an optimum dual solution. Then L≥2 = ∅ and the
empty graph is a backbone B. In this case an Eulerian multi edge set F is feasible for
an instance (I, B,H) Subtour Cover if and only if it has the following property: for
every connected component D of (V,H) we have F ∩ δ(V (D)) 6= ∅.

In general, we do not have L≥2 = ∅ for every instance of graph ATSP. We will
not use the reduction from ATSP to vertebrate pairs, but directly apply Svensson’s
algorithm. In Svensson’s algorithm we will replace the algorithm A by the algorithm
from the following lemma that is due to Svensson [Sve15].

Lemma 4.41. Given a directed graph G = (V,E), a solution x to (ATSP LP), and an
Eulerian multi-subset H ⊆ E, we can compute in polynomial time an Eulerian multi-set
F of edges such that

• for every connected component D of (V,H) we have F ∩ δ(V (D)) 6= ∅, and

• for every connected component D of (V, F) we have |E(D)| ≤
∑
v∈V (D) 3·x(δ−(v)).

Proof. LetWi, . . . ,Wk be the vertex sets of the connected components of (V,H). First,
we observe that G[Wi] is strongly connected for all i ∈ {1, . . . , k} because H is an
Eulerian multi-subset of E.

For every set Wi with i ∈ {1, . . . , k} we do the following. First, we add a new
vertex ai. Then for every edge (v, w) ∈ δ−(Wi) we add an edge (v, ai) of the same cost.
Similarly, for every edge (v, w) ∈ δ+(Wi) we add an edge (ai, w) of the same cost. Now
we apply Lemma 4.17 to the set U = Wi and the circulation x. For every path P ∈ P

64

4.6. GRAPH ATSP

• we decrease the flow on ein
P and eout

P by λP and increase the flow on the corre-
sponding edges in δ(ai) by λP , and

• we decrease the flow on every edge e ∈ E(P) by λP .

Note that we maintain a circulation. Let Ḡ be the resulting graph and let x̄ denote the
resulting circulation. We have x̄(δ−(ai)) = 1 for all i ∈ {1, . . . , k}. Therefore, we can
compute an integral circulation x̄∗ in Ḡ such that x̄∗(δ−(ai)) = 1 for all i ∈ {1, . . . , k}
and x̄∗(δ−(v)) ≤ dx̄(δ−(v))e ≤ dx(δ−(v))e for all v ∈ V . Let F̄ be the multi-set of
edges with χF̄ = x̄∗.

Now we replace the edges in δF̄ (ai) for i ∈ {1, . . . , k} by their corresponding edges
in G (i.e. by the edges from which they arose in the construction of Ḡ). After this we do
not necessarily have an Eulerian multi edge set anymore, but because of x̄∗(δ+(ai)) =
x̄∗(δ−(ai)) = 1 we just added for every setWi exactly one incoming edge (v, s) ∈ δ−(Wi)
and exactly one outgoing edge (t, w) ∈ δ+(Wi). Because G[Wi] is strongly connected,
we can obtain an Eulerian multi edge set by adding an s-t-path in G[Wi]. Let F be the
resulting multi edge set. Note that we have |F ∩ δ−(v)| ≤ dx̄(δ−(v))e+ 1 for all v ∈ V
because the sets W1, . . . ,Wk are pairwise disjoint.

For i ∈ {1, . . . , k} we have F ∩ δ(Wi) 6= ∅. Moreover, for every connected com-
ponent D of (V, F) we have |E(D)| =

∑
v∈V (D) |δ−F (v)| ≤

∑
v∈V (D)(dx(δ−(v))e + 1) ≤∑

v∈V (D) 3x(δ−(v)), where we used x(δ−(v)) ≥ 1 for all v ∈ V .

We now explain how we apply Svensson’s algorithm to graph ATSP. Let ε > 0. We
define L≥2 := ∅ and choose the backbone B to be the empty graph, i.e. V (B) = ∅ and
E(B) = ∅. Moreover, we set α := 3, ε′ := ε

13 and define the function ` : V → R≥0 by

`(v) := 2α(1 + ε′) · x(δ−(v)),

where x is an optimum solution to (ATSP LP) with c ≡ 1. Then we do not necessarily
have a vertebrate pair because instances of graph ATSP do not necessarily have an
optimum dual solution y with yv > 0 only for singleton sets. Nevertheless we can run
Svensson’s algorithm (Algorithm 2), where we replace the algorithm A by the algorithm
from Lemma 4.41 and we replace the strongly laminar instance I by the graph ATSP
instance G = (V,E).

As we remarked in Section 4.4.2 (Remark 4.32), for the analysis of Svensson’s algo-
rithm we only need the following properties of the function ` and the algorithm A:

(i) For every connected component D of the output of A we have

|E(D)| ≤ 1
2(1 + ε′) · `(V (D)).

(ii) Let DB be the union of all connected components D of the output of A with
V (D) ∩ V (B) 6= ∅. Then

|E(DB)| ≤ `(V (B)).

(iii) There exists a constant C > 0 such that for every vertex v ∈ V \ V (B) we have

`(v) ≥ 1
C · n2 · `(V \ V (B)).

65

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

(iv) For every circuit C with E(C) ∩ δ(L) = ∅ for all L ∈ L≥2 we have

|E(C)| ≤ 1
2α(1 + ε′) · `(V (C)).

Property (i) follows directly from Lemma 4.41 and the definition of `. For property (ii)
there is nothing to show because B is the empty graph. Property (iv) holds because
for every cycle C we have |E(C)| = |V (C)| ≤

∑
v∈V (C) x(δ−(v)). To show (iii) we show

that for any feasible instance of graph ATSP we have LP ≤ n2.
We call an LP solution x minimal if there is no feasible solution x′ 6= x with x′ ≤ x

componentwise.

Lemma 4.42. For every minimal solution x of (ATSP LP), we have x(E(G)) ≤ n2,
where n = |V (G)|.

Proof. Choose an arbitrary root r ∈ V and let P = {y ∈ RE(G)
≥0 : y(δ−(U)) ≥ 1 for ∅ 6=

U ⊆ V \ {r}}. A vector is feasible for (ATSP LP) if and only if it is a circulation
that belongs to P . Let y ≤ x be a minimal vector in P . The minimal vectors in P
are the convex combinations of incidence vectors of spanning arborescences rooted at r
[Edm67]; hence y(E(G)) = n − 1. There are cycles Cj and edge sets Sj ⊆ Cj (j =
1, . . . , l) such that x =

∑l
j=1 λjχ

Cj and y =
∑l
j=1 λjχ

Sj for some positive coefficients λj .
Note that none of the sets Sj can be empty because otherwise x′ = x − λjχCj would
be a circulation that belongs to P , contradicting the minimality of x. We conclude
x(E(G)) =

∑l
j=1 λj |Cj | ≤

∑l
j=1 λj · n|Sj | = n · y(E(G)) = n(n− 1).

Lemma 4.42 implies LP ≤ n2. Therefore, for every vertex v ∈ V we have `(v) ≥
2α(1 + ε′) = `(V)

x(E) ≥
1
n2 · `(V). Because V (B) = ∅, this shows (iii).

We have shown (i)–(iv) and hence as we explained in Remark 4.32, applying Svens-
son’s algorithm (Algorithm 2) repeatedly as in the proof of Theorem 4.28 yields a
solution H of graph ATSP with

c(H) ≤ `(V (B)) + (2 + 1
2α) · `(V \ V (B)) = 13 · (1 + ε′) · x(E) = (13 + ε) · LP.

This implies the main result of this section.

Theorem 4.43. For every ε > 0 there is a (13 + ε)-approximation algorithm for graph
ATSP.

4.6.2 A lower bound on the integrality ratio.

In this section we give a sequence of instances of graph ATSP with integrality ratio
converging to 2. For the general ATSP such a family of instances was given by Charikar,
Goemans, and Karloff [CGK06]. Boyd and Elliott-Magwood [BEM05] gave another
such family. Although they did not note this explicitly, it is easy to see that their
examples are node-weighted, i.e. there exist non-negative node weights cv ≥ 0 for every
vertex v such that for every edge (v, w) we have c(v, w) = cv + cw. In this section
we observe that, for ATSP, node-weighted instances are not much more general than
unweighted instances. From this we derive that the instances from [BEM05] can be
turned into instances of graph ATSP with integrality ratio converging to 2.

66

4.6. GRAPH ATSP

Lemma 4.44. Let ε > 0. Let I = (G, c) be a node-weighted instance of ATSP with n
vertices. Then we can find in polynomial time a constant M > 0 and an unweighted
directed graph G′ with O(n2

ε) vertices such that

(i) LP(I) ≤M · LP(G′) ≤ (1 + ε)LP(I),

(ii) OPT(I) ≤M ·OPT(G′) ≤ (1 + ε)OPT(I), and

(iii) for every tour F ′ in the unweighted directed graph G′ there is a corresponding tour
F in G such that c(F) ≤ M · |F ′| and F can be obtained from F ′ in polynomial
time.

Proof. Let cv ≥ 0 (v ∈ V (G)) be the node weights, i.e., c(v, w) = cv+cw for all (v, w) ∈
E. Let c(V (G)) =

∑
v∈V (G) cv denote the sum of all node weights. If c(V (G)) = 0, the

instance is trivial, we can choose G′ to consist of a single vertex.
Otherwise let n = |V (G)|,M := 2ε·c(V (G))

n2 and c̄v := b2cv
M c for all v ∈ V (G). Replace

every vertex v of G with c̄v > 0 by two vertices v− and v+, such that v− inherits the
entering edges and v+ inherits the outgoing edges, and add a path Pv of c̄v edges from
v− to v+. This defines G′. Note that |V (G′)| = n+

∑
v∈V (G) c̄v ≤ n+ n2

ε .
Every solution x to (ATSP LP) for I = (G, c) corresponds to a solution x′ to

(ATSP LP) for G′, simply by setting x′e := x(δ+(v)) for all edges e of Pv. Then

x′(E(G′)) =
∑

v∈V (G)
(1 + c̄v) x(δ+(v))

=
∑

v∈V (G)

(
1 +

⌊2cv
M

⌋)
x(δ+(v))

= δ · x(E(G)) +
∑

v∈V (G)

2cv
M

x(δ+(v))

= δ · x(E(G)) + 1
M
c(x)

for some δ ∈ [0, 1]. Hence
c(x) ≤ M · x′(E(G)),

and for minimal solutions we have x(E(G)) ≤ n2 by Lemma 4.42, which implies δ ·
x(E(G)) ≤ n2 = ε2c(V (G))

M ≤ ε c(x)
M and thus

M · x′(E(G)) ≤ (1 + ε)c(x).

Because tours are integral LP solutions, and optimum LP solutions and optimum tours
can be assumed to be minimal, this completes the proof of (i) and (ii). To prove (iii),
observe that contracting the paths Pv in a tour F ′ yields a tour F as claimed.

This immediately implies:

Theorem 4.45. The integrality ratio of (ATSP LP) is the same for unweighted and for
node-weighted instances. For any constants α ≥ 1 and ε > 0, there is a polynomial-time
(α + ε)-approximation algorithm for node-weighted instances if there is a polynomial-
time α-approximation algorithm for unweighted instances.

67

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

G0 v0 = v′0 w0 = w′0

Gi Gi−1 Gi−1 Gi−1 Gi−1

v′i−1 vi−1

wi−1 w′i−1

v′i−1 vi−1

wi−1 w′i−1

v′i−1vi−1

wi−1w′i−1

v′i−1vi−1

wi−1w′i−1

vi

v′i

wi

w′i

Figure 4.11: Constructing a family of directed graphs with integrality ratio arbitrarily
close to 2 for graph ATSP. For a fixed even number l ≥ 4 we define graphs G0, G1,
The graph G0 consists of a bidirected path of length l. Then we construct Gi from Gi−1 as
in the picture. The picture shows the construction for l = 4; in general, there are l copies
of the graph Gi−1 (shown in green). The blue wiggly paths indicate paths of length di,
where d0 = 0 and di = li − di−1 − 2. Let G′i be the graph arising from Gi by identifying
the blue vi-v′i-path with the blue wi-w′i-path. Then for i→∞, the integrality ratio of G′i
converges to 2− 2

l (Boyd and Elliott-Magwood [BEM05]).

Figure 4.12: The graph G′1 for l = 6. An optimum LP solution has value 1 on the blue
edges and value 1

2 on all other edges and hence we have LP = |V (G′1)|.

68

4.6. GRAPH ATSP

Proof. The equality of the integrality ratio for unweighted and for node-weighted in-
stances follows from Lemma 4.44 (i) and (ii). Now suppose we have a polynomial-time
α-approximation algorithm for unweighted instances. Then for a node-weighted in-
stance I = (G, c) we apply Lemma 4.44 with ε′ = ε

α and apply our α-approximation
algorithm to the resulting directed graph G′. Let F ′ be the resulting tour in G′. By
(iii) of Lemma 4.44, this tour corresponds to a tour F in G such that

c(F) ≤ M · |F ′| ≤ α ·M ·OPT(G′) ≤ (1 + ε′)α ·OPT(I) = (α+ ε) ·OPT(I).

In particular, this implies that the node-weighted instances from [BEM05] can be
transformed to unweighted instances whose integrality ratio tends to 2. For convenience
we show these instances in Figure 4.11 and Figure 4.12. Figure 4.11 shows the general
construction of the family of instances, Figure 4.12 a concrete example. To obtain
these instances we have replaced every vertex v in the node-weighted instances with
node-weight cv by a path of length 2cv − 1 similar to the proof of Lemma 4.44. So,
contracting the blue paths of length di in Figure 4.11 and setting the node-weight of the
resulting vertex to di+1

2 and node-weights in G0 to 1
2 results in the instances from Boyd

and Elliott-Magwood [BEM05]. Then, LP solutions (and tours) in the node-weighted
instance correspond to LP solutions (and tours) of the same cost in the unweighted
instance. It seems that previously only unweighted instances with integrality ratio at
most 3

2 were known (see e.g. [Got13]).
By splitting an arbitrary vertex into two copies s and t, both inheriting all incident

edges, this also yields a family of instances of s-t-path graph ATSP whose integrality
ratio tends to 2. We summarize:

Corollary 4.46. The integrality ratio for instances with c ≡ 1 is at least 2, both for
(ATSP LP) and (ATSPP LP).

69

CHAPTER 4. A (22 + ε)-APPROXIMATION ALGORITHM FOR ATSP

70

Chapter 5

The ATSP path LP has constant
integrality ratio

In this chapter we prove that the integrality ratio of (ATSPP LP) is constant. In
Section 5.1, we reduce s-t-path ATSP to strongly laminar s-t-path ATSP. In contrast
to ATSP, here we lose a factor of two in the approximation ratio and integrality ratio.
Then in Section 5.2 we use this to prove that we can compute in polynomial time a
solution of cost at most 43 + ε times the optimum value of (ATSPP LP) (for every
fixed ε > 0). In particular, the integrality ratio of (ATSPP LP) is at most 43.

Feige and Singh [FS07] showed that any α-approximation algorithm for ATSP im-
plies a (2α+ ε)-approximation algorithm for s-t-path ATSP (for every fixed ε > 0). In
Section 5.3 we give a similar result for the integrality ratio: if ρ is the integrality ratio
of (ATSP LP), then the integrality ratio of (ATSPP LP) is at most 4ρ− 3.

Section 5.3 is based on joint work with Anna Köhne and Jens Vygen. Parts of this
chapter have been published in [KTV19].

5.1 Reducing to strongly laminar instances

Similar to ATSP, we now also define strongly laminar instances of s-t-path ATSP.

Definition 5.1. A strongly laminar s-t-path ATSP instance is a tuple (G, s, t,L, x, y),
where

(i) G = (V,E) is a directed graph;

(ii) s, t ∈ V ;

(iii) L is a laminar family of subsets of V \ {s, t} such that G[U] is strongly connected
for all U ∈ L;

(iv) x is a feasible solution to (ATSPP LP) such that x(δ(U)) = 2 for all U ∈ L;

(v) y : L → R≥0.

This induces the s-t-path ATSP instance (G, c, s, t), where c is the induced weight func-
tion defined by c(e) :=

∑
U∈L:e∈δ(U) yU (e ∈ E).

A solution to a strongly laminar s-t-path ATSP instance I is a solution to its
induced s-t-path ATSP instance I ′ = (G, c, s, t). Note that for the induced instance

71

CHAPTER 5. ATSP PATH LP

by complementary slackness (Theorem 2.8) x is an optimum solution to (ATSPP LP)
and (0, y) is an optimum solution to (ATSPP DUAL). We define LP(I) := c(x) =∑
L∈L 2yL = LP(I ′) (by Theorem 2.7).
The goal of this section is to give a reduction of general instances of s-t-path ATSP

to strongly laminar ones. However, in contrast to ATSP, this reduction will lose a
factor 2 in the approximation guarantees and integrality ratios. More precisely, we
show the following.

Theorem 5.2. Let α ≥ 1. Suppose there is a polynomial-time algorithm that com-
putes a solution of cost at most α · LP(I ′) for every strongly laminar s-t-path ATSP
instance I ′. Then there is a polynomial-time algorithm that computes a solution of cost
at most (2α− 1) · LP(I) times the optimum value of (ATSPP LP) for any instance I
of s-t-path ATSP.

If ρ is the integrality ratio of (ATSPP LP) restricted to strongly laminar instances,
then the integrality ratio of (ATSPP LP) (for general instances) is at most 2ρ− 1.

For a graph G = (V,E) and a vector x ∈ RE , the support graph of x is the graph
(V, {e : xe > 0}). The following is the main lemma that we need to prove Theorem 5.2.

Lemma 5.3. Let I = (G, c, s, t) be an instance of s-t-path ATSP, where G is the
support graph of an optimum solution to (ATSPP LP). Then there is an optimum
solution (a, y) of (ATSPP DUAL) with strongly laminar support and as − at ≤ LP.

Before proving Lemma 5.3 we show that it implies Theorem 5.2.

Proof of Theorem 5.2. Given an instance I = (G, c, s, t) of s-t-path ATSP and an op-
timum solution x∗ to (ATSPP LP), we may assume that the given graph G = (V,E) is
the support graph of x∗; so x∗e > 0 for all e ∈ E. (This is because omitting edges e with
x∗e = 0 does not change the optimum LP value and can only increase the cost of an op-
timum integral solution.) Moreover, let y be an optimum solution to (ATSPP DUAL)
with strongly laminar support L and as − at ≤ LP(I); this is guaranteed to exist by
Lemma 5.3.

Since x∗e > 0 for all e = (v, w) ∈ E, we have c(e) =
∑
U :e∈δ(U) yU − av + aw

by complementary slackness (Theorem 2.8). Then I ′ = (G, s, t,L, x∗, y) is a strongly
laminar s-t-path ATSP instance with the induced cost function cy, where for e =
(v, w) ∈ E we have cy(e) =

∑
U :e∈δ(U) yU = c(v, w) + av − aw.

Now, for every feasible solution x to (ATSPP LP), we have

c(x) =
∑
e∈E

xe · c(e) =
∑

e=(v,w)∈E
xe · (cy(e)− av + aw) = cy(x)− as + at,

where we used that x is an s-t-flow of value 1. Now let γ ≥ 1 and let x and x′ be
feasible solutions to (ATSPP LP) such that cy(x′) ≤ γ · cy(x). Then

c(x′) = cy(x′)− as + at

≤ γ · cy(x)− as + at

= γ · (c(x) + as − at)− as + at

≤ γ · c(x) + (γ − 1) · (as − at)
≤ γ · c(x) + (γ − 1) · LP(I).

72

5.1. REDUCING TO STRONGLY LAMINAR INSTANCES

s t
c = 0 c = 0

y{v} = 1

1 0 -1

Figure 5.1: Example of an instance with LP = 0 and an optimum dual solution with
as − at = 2. The blue numbers below the vertices show the dual variables as = 1, av = 0
and at = −1. Of course, this instance has a different optimum dual solution in which all
variables are zero.

This now implies the theorem as follows. For γ = α, x = x∗ an optimum solution of
(ATSPP LP) for I, and x′ the incidence vector of an integral solution to the strongly
laminar instance I ′ with cy(x′) ≤ α · cy(x), we obtain the claimed bound on the ap-
proximation ratio with respect to (ATSPP LP).

Moreover, for γ = ρ, x = x∗, and x′ an optimum integral solution to the strongly
laminar instance I ′, we obtain the claimed bound on the integrality ratio.

Figure 5.1 shows that we cannot bound as−at by LP for an arbitrary optimum dual
solution (a, y). Thus, we will work with an optimum dual solution (a, y) with as − at
minimum. Note that this minimum is attained because for every feasible dual solution
(a, y) we have as − at ≥ −LP.

First, we give an equivalent characterization of the minimum value of as−at in any
optimum dual solution. This will not be needed to prove Lemma 5.3, but might help
to get some intuition.

Lemma 5.4. Let I = (G, c, s, t) be an instance of s-t-path ATSP and let ∆ ≥ 0.
Now consider the instance I ′ = (G + e′, c, s, t), where we add an edge e′ = (t, s) with
c(e′) := ∆. Then LP(I) ≥ LP(I ′). Moreover, LP(I) = LP(I ′) if and only if there exists
an optimum solution (a, y) of (ATSPP DUAL) for the instance I with as − at ≤ ∆.

Proof. Every feasible solution x of (ATSPP LP) for I can be extended to a feasible
solution of (ATSPP LP) for I ′ by setting xe′ := 0. This shows LP(I) ≥ LP(I ′).

The dual LPs for the two instances are identical, except for the constraint corre-
sponding to e′, which is

∆ = c(e′) ≥ as − at +
∑

∅6=U⊆V \{s,t},e′∈δ(U)
yU = as − at. (5.1)

Suppose LP(I) = LP(I ′). Let (a, y) be an optimum dual solution for I ′. Then,
(5.1) is satisfied and (a, y) is also feasible for the dual LP for the instance I. Moreover,
since LP(I) = LP(I ′), the dual solution (a, y) is also optimum for the instance I.

For the reverse direction, let (a, y) be an optimum solution to (ATSPP DUAL) for
the instance I with as − at ≤ ∆. Then (a, y) satisfies (5.1) and thus is also feasible for
(ATSPP DUAL) for I ′. Hence, LP(I ′) ≥ LP(I).

The next lemma describes an important property of optimum dual LP solutions
with minimum as − at. We will later show that this property implies as − at ≤ LP.

73

CHAPTER 5. ATSP PATH LP

R Ū V \ (R ∪ Ū)

−ε

−ε +ε

s t

Figure 5.2: Modifying the dual solution in the proof of Lemma 5.5. The green and blue
numbers in the bottom indicate the change of the dual node variables. In red the decrease
of the variable yŪ is indicated. There is no edge from R to V \ (R ∪ Ū).

Lemma 5.5. Let (G, c, s, t) be an instance of s-t-path ATSP, where G is the support
graph of an optimum solution to (ATSPP LP). Moreover, let (a, y) be an optimum
solution of (ATSPP DUAL) such that as − at is minimum. Let Ū ⊆ V \ {s, t} such
that every s-t-path in G enters (and leaves) Ū at least once. Then yŪ = 0.

Proof. Suppose yŪ > 0 and let ε := yŪ . Let R be the set of vertices reachable from s
in G− Ū . We define a dual solution (ā, ȳ) as follows:

ȳ(U) :=
{
yU − ε if U = Ū

yU else

āv :=

av − ε if v ∈ R
av if v ∈ Ū
av + ε else.

See Figure 5.2 for an illustration. We claim that (ā, ȳ) is an optimum (and feasible)
solution to (ATSPP DUAL). Note that t ∈ V \

(
R ∪ Ū

)
and thus āt = at + ε. Since

s ∈ R, we have ās − āt < as − at. Thus, if (ā, ȳ) is indeed optimum (and feasible), we
obtain a contradiction to our choice of the dual solution (a, y).

First, we observe that (ā, ȳ) and (a, y) have the same objective value since

āt − ās +
∑

∅6=U⊆V \{s,t}
2ȳU = (at + ε)− (as − ε) +

∑
∅6=U⊆V \{s,t}

2yU − 2ε.

By our choice of ε, the vector ȳ will be nonnegative. Now consider an edge e = (v, w) ∈
E(G). We need to show that

āw − āv +
∑

U :e∈δ(U)
ȳU ≤ c(e). (5.2)

To prove this we will show that

āw − aw − āv + av +
∑

U :e∈δ(U)
(ȳU − yU) ≤ 0. (5.3)

74

5.1. REDUCING TO STRONGLY LAMINAR INSTANCES

Since (a, y) is a feasible dual solution, this will imply (5.2). We have

āw − aw :=

−ε if w ∈ R
0 if w ∈ Ū
ε else,

−āv + āv :=

ε if v ∈ R
0 if v ∈ Ū
−ε else,

∑
U :e∈δ(U)

(ȳU − yU) :=
{
−ε if (v, w) ∈ δ(Ū)
0 else.

Since āw − aw ≤ ε and
∑̄
U :e∈δ(U) (ȳU − yU) ≤ 0, it suffices to consider the cases v ∈ R

and v ∈ Ū . If v ∈ R, we have by definition of R, either w ∈ R or w ∈ Ū . In both
cases (5.3) holds, because if w ∈ Ū , we have (v, w) ∈ δ(Ū). Now let v ∈ Ū . Then if
(v, w) ∈ δ(Ū), we have

∑
U :e∈δ(U) (ȳU − yU) = −ε, implying (5.3). Otherwise, w ∈ Ū

and āw − aw − āv + av = 0.
This shows that (ā, ȳ) is an optimum dual solution and ās − āt < as − at, a contra-

diction. Hence, yŪ = 0.

We will need the following variant of Menger’s Theorem.

Lemma 5.6. Let G be a directed graph and s, t ∈ V (G) such that t is reachable from s
in G. Let U ⊆ V (G) \ {s, t} such that for every vertex u ∈ U , there exists an s-t-path
in G− u. Then there exist two s-t-paths P1 and P2 in G such that no vertex u ∈ U is
contained in both P1 and P2.

Proof. We construct a graph G′ that arises from G as follows. We split every vertex
u ∈ U into two vertices u− and u+ that are connected by an edge eu := (u−, u+).
Every edge (v, u) is replaced by an edge (v, u−) and every edge (u, v) is replaced by an
edge (u+, v). In the graph G′ we now define integral edge capacities. Every edge eu
for u ∈ U has capacity one. All other edges, i.e. all edges corresponding to edges of G,
have infinite capacity.

Since for every vertex u ∈ U there exists an s-t-path in G − u, for every u ∈ U
there exists an s-t-path in G′ − eu. Thus, the minimum capacity of an s-t-cut in G′ is
at least two. Hence, by Theorem 2.21 there exists an integral s-t-flow of value two in
G′ with the defined edge capacities. This flow can be decomposed into two s-t-paths
P ′1 and P ′2 and possibly some cycles. By the choice of the edge capacities, no edge eu
for u ∈ U occurs in both paths. Since this edge eu is the only outgoing edge of u− and
the only incoming edge of u+, an s-t-path containing u− or u+ must contain eu, and
at most one of P ′1 and P ′2 can do so.

Hence, contracting the edges eu (for u ∈ U) yields two s-t-paths P1 and P2 in G
such that no vertex u ∈ U is contained in both P1 and P2.

We will now continue to work with a dual solution (a, y) that minimizes as−at. By
Lemma 3.5, we can assume in addition that (a, y) has strongly laminar support. For
an illustration of the following lemma, see Figure 5.3.

75

CHAPTER 5. ATSP PATH LP

s t
P1

P2

Figure 5.3: The paths P1 and P2 as in Lemma 5.7. In black the vertex sets U ∈ supp(y)
are shown. The paths P1 and P2 are not necesarily disjoint but they never both cross the
same set U with yU > 0.

Lemma 5.7. Let (G, c, s, t) be an instance of s-t-path ATSP, where G is the support
graph of an optimum solution to (ATSPP LP). Moreover, let (a, y) be an optimum
solution to (ATSPP DUAL) such that y has strongly laminar support and as − at is
minimum.

Then G contains two s-t-paths P1 and P2 such that for every set U ∈ supp(y) we
have |E(P1) ∩ δ(U)|+ |E(P2) ∩ δ(U)| ≤ 2.

Proof. By Lemma 5.5, for every set U ∈ supp(y) there is an s-t-path in G that visits no
vertex in U . We contract all maximal sets U ∈ supp(y). Using Lemma 5.6, we can find
two s-t-paths such that each vertex arising from the contraction of a set U ∈ supp(y)
is visited by at most one of the two paths.

Now we revert the contraction of the sets U ∈ supp(y). We complete the edge sets
of the two s-t-paths we found before (which are not necessarily connected anymore
after undoing the contraction), to paths P1 and P2 with the desired properties. To see
that this is possible, let v be the end vertex of the edge ein entering a contracted set
U ∈ supp(y) and let w be the start vertex of the edge eout leaving U . By Lemma 3.6
there is a nice v-w-path Pv,w. This path is completely contained in G[U] and enters
and leaves every set U ′ ∈ supp(y) with U ′ (U at most once. Moreover, if ein ∈ δ−(U ′)
for U ′ ∈ supp(y), then v ∈ U ′ and the nice v-u-path Pv,w does not enter U ′. Similarly
if eout ∈ δ+(U ′) for U ′ ∈ supp(y), then w ∈ U ′ and Pv,w never leaves U ′ (and enters it
at most once).

We finally show the main lemma of this section, which we restate here for conve-
nience. Proving this lemma will conclude the reduction to strongly laminar instances
(Theorem 5.2).

Lemma 5.3. Let I = (G, c, s, t) be an instance of s-t-path ATSP, where G is the
support graph of an optimum solution to (ATSPP LP). Then there is an optimum
solution (a, y) of (ATSPP DUAL) with strongly laminar support and as − at ≤ LP.

Proof. Let (a, y) be an optimum solution to (ATSPP DUAL) that has strongly laminar
support and minimum as − at. Note that such an optimum dual solution exists by
Lemma 3.5.

76

5.1. REDUCING TO STRONGLY LAMINAR INSTANCES

0 0

00

1s t

Figure 5.4: Example with no optimum dual solutions with as − at < LP: The numbers
next to the arcs denote their cost. For this instance we have LP = 1. However adding an
edge (t, s) with cost γ < 1 would result in an instance with LP = γ. By Lemma 5.4 there
cannot be an optimum dual solution where as − at < 1 = LP.

We define the cy cost of an edge e = (v, w) to be

cy(e) =
∑

U :e∈δ(U)
yU = c(e) + av − aw. (5.4)

By Lemma 5.7, G contains two s-t-paths P1 and P2 such that

cy(E(P1)) + cy(E(P2)) ≤
∑

∅6=U⊆V \{s,t}
2yU .

Then, using (5.4),

0 ≤ c(E(P1)) + c(E(P2))

=
∑

e=(v,w)∈E(P1)
(cy(e) + aw − av) +

∑
e=(v,w)∈E(P2)

(cy(e) + aw − av)

= cy(E(P1))− (as − at) + cy(E(P2))− (as − at)

≤
∑

∅6=U⊆V \{s,t}
2yU − 2(as − at),

implying
as − at ≤

∑
∅6=U⊆V \{s,t}

2yU − (as − at) = LP.

We remark (although we will not need it) that Lemma 5.3 also holds for general
instances of s-t-path ATSP. To adapt the proof, work with the subgraph G′ of G that
contains all edges of G for which the dual constraint is tight. Now G′ plays the role of
G in the proof, and by choosing ε small enough in the proof of Lemma 5.5 we maintain
dual feasibility also for the edges that are not in G′.

By Lemma 5.4, this also shows that adding an edge (t, s) of cost equal to the LP
value does not change the value of an optimum LP solution.

The instance in Figure 5.4 shows that the bound as − at ≤ LP is tight. Note that
the bound is also tight for the instance in Figure 5.5 in which x∗e > 0 for all edges e, and
in which the integrality ratio is arbitrarily close to the best known lower bound of 2.

77

CHAPTER 5. ATSP PATH LP

s t
4(= k)

2(= k/2)

2(= k/2)

1.5

1.5

1

1

0.5

0.5

0

0

0

Figure 5.5: Example due to Friggstad, Gupta, and Singh [FGM16] with integrality ratio
approaching 2 as the number of vertices increases. Setting xe := 1

2 for all shown edges
defines a feasible solution of (ATSPP LP). If the 2k curved edges have cost 1 and the
dotted edges have cost 0, we have LP = c(x) = k, but any s-t-tour costs at least 2k − 1.
(In the figure, k = 4.) Setting yU = 1

2 for the vertex sets indicated by the ellipses and av
as shown in blue defines an optimum solution of (ATSPP DUAL).

5.2 Bounding the integrality ratio for strongly laminar
instances

In this section we show that the integrality ratio of (ATSPP LP) is at most 43. The
following lemma describes the structure of the strongly connected components of the
support graph G of an optimum solution to (ATSPP LP).

Lemma 5.8. Let (G, c, s, t) be an instance of s-t-path ATSP, where G is the support
graph of an optimum solution x∗ to (ATSPP LP). Let (a, y) be an optimum solution
of (ATSPP DUAL).

Then the strongly connected components of V can be numbered V1, . . . , Vl such that

• s ∈ V1 and t ∈ Vl,

• ∅ = δ−(V1) = δ+(Vl), and

• δ+(Vi) = δ−(Vi+1) and x∗(δ+(Vi)) = 1 for all i ∈ {1, . . . , l − 1}.

Proof. Let V1, . . . , Vl be a topological order of the strongly connected components of
G. Then ∅ = δ−(V1) = δ+(Vl). Moreover, we have s ∈ V1 and t ∈ Vl because for every
vertex v in G, v is reachable from s, and t is reachable from v.

We now show δ+(Vi) = δ−(Vi+1) and x∗(δ+(Vi)) = 1 for i = 1, . . . , l−1 by induction
on i. For i = 1, we have x∗(δ+(Vi)) = 1, because δ−(V1) = ∅, s ∈ V1, and t /∈ V1. This
implies 1 ≤ x∗(δ−(V2)) ≤ x∗(δ+(V1)) = 1. Since, G is the support graph of x∗, this
implies δ+(V1) = δ−(V2).

Now let i ∈ {2, . . . , l − 1}. We have δ−(Vi+1) ⊆ δ+(V1) ∪ · · · ∪ δ+(Vi) because
V1, . . . , Vl is a topological order. Since, by induction, we have δ+(Vj) = δ−(Vj+1) for
j = 1, . . . , i− 1, this implies δ−(Vi+1) ⊆ δ+(Vi). Then

1 = x∗(δ+(Vi−1)) = x∗(δ−(Vi)) = x∗(δ+(Vi)) ≥ x∗(δ−(Vi+1)) ≥ 1,

78

5.2. STRONGLY LAMINAR S-T -PATH ATSP

where we used x∗(δ−(Vi)) = x∗(δ+(Vi)) because Vi contains neither s nor t. Thus,
x∗(δ+(Vi)) = x∗(δ−(Vi+1)) = 1 and, since G is the support graph of x∗, this also
implies δ+(Vi) = δ−(Vi+1).

Theorem 5.9. For every ε > 0 there is a polynomial-time algorithm that computes for
every instance (G, c, s, t) of s-t-path ATSP a solution of cost at most 43 + ε times the
cost of an optimum solution to (ATSPP LP).
Proof. We show that for every ε > 0 there is a polynomial-time algorithm that computes
for every strongly laminar instance I = (G, s, t,L, x, y) of s-t-path ATSP a solution of
cost at most (22 + ε) · LP(I). This is sufficient by Theorem 5.2.

We define a strongly laminar ATSP instance I ′ = (G′,L′, x′, y′). Let G′ arise from G
by adding a new vertex v and two edges (t, v) and (v, s). Then we set x′(t,v) = x′(v,s) = 1
and x′e = xe for all e ∈ E(G). Then x′ is a feasible solution to (ATSP LP). Let
V1, . . . , Vl be the vertex sets of the strongly connected components of G numbered as in
Lemma 5.8. We define L′ = L∪ {V1, . . . , Vl}. Then we set y′Vi = 0 for all i ∈ {1, . . . , l}.
For L ∈ L we set y′L = yL.

We claim that I ′ is a strongly laminar ATSP instance. First we observe that G′[L]
is strongly connected for all L ∈ L′ by construction and G′ is strongly connected by
Lemma 5.8. Moreover, by Lemma 5.8 we have x′(δ(Vi)) = 2 for all i ∈ {1, . . . , l}.
Furthermore, for L ∈ L we have s, t /∈ L and hence x′(δ(L)) = x(δ(L)) = 2. It remains
to show that L′ is a laminar family. We have that L is a laminar family and the sets
V1, . . . , Vl are pairwise disjoint. Suppose L′ is not a laminar family. Then there is a
set L ∈ L and an index i ∈ {1, . . . , l} such that L \ Vi 6= ∅, Vi \ L 6= ∅ and Vi ∩ L 6= ∅.
Let u ∈ Vi ∩ L and w ∈ L \ Vi. Because G[L] is strongly connected, G contains both a
u-w-path and a w-u-path, contradicting the fact that Vi is the vertex set of a strongly
connected component of G. This shows that I ′ is a strongly laminar ATSP instance.

Theorem 4.9 yields a (3, 2, 1)-algorithm for Subtour Cover and by Theorem 4.28
this implies that there is a polynomial-time (2, 14 + ε)-algorithm for vertebrate pairs.
By Lemma 4.3 and Lemma 4.5, we can compute in polynomial time a tour Fi in G[Vi]
of cost at most

c(Fi) ≤ 6 · value(Vi) + (16 + ε) · (value(Vi)−DVi). (5.5)

for every i ∈ {1, . . . , l}. By Lemma 5.8, any s-t-path inG visits every strongly connected
component G[Vi] of G exactly once. Hence, the union of the edge set a shortest s-t-path
P and F1

.
∪ . . . ,

.
∪ Fl is an s-t-tour F . Using the definition of DVi (see Section 4.2), we

get c(E(P)) ≤
∑l
i=1DVi . Therefore, using (5.5) we obtain

c(F) ≤
l∑

i=1
(DVi + 6 · value(Vi) + (16 + ε) · (value(Vi)−DVi))

≤
l∑

i=1
(22 + ε) · value(Vi)

= (22 + ε) · LP(I).

Here we used that I is a strongly laminar s-t-path ATSP instance, implying that
(0, y) is an optimum solution to (ATSPP DUAL) and hence LP(I) =

∑
L∈L 2yL =∑l

i=1 value(Vi).

79

CHAPTER 5. ATSP PATH LP

Corollary 5.10. The integrality ratio of (ATSPP LP) is at most 43.

Proof. Suppose there is an instance I of s-t-path ATSP where OPT(I)
LP(I) > 43. Then there

exists ε > 0 such that OPT(I)
LP(I) > 43 + ε. By Theorem 5.9 we can compute an integral

solution for I with cost at most (43 + ε) · LP(I) < OPT(I), a contradiction.

5.3 Blackbox reduction to ATSP

We first transform an instance and a solution to (ATSPP LP) to an instance and a
solution to (ATSP LP) and work with an integral solution of this ATSP instance. The
following lemma is essentially due to Feige and Singh [FS07]. For completeness, we
prove it here again for our setting.

Lemma 5.11. Let ρ be the integrality ratio of (ATSP LP). Suppose the following
condition holds for every strongly laminar instance I = (G, s, t,L, x, y) of s-t-path
ATSP: if there are two s-t-walks P1 and P2 of total cost L in G, there is a single
s-t-walk P in G which has cost c(P) ≤ L+ LP and contains all vertices of P1 and P2.

Then the integrality ratio of (ATSPP LP) restricted to strongly laminar instances
is at most 2ρ− 1.

Proof. Let I = (G, s, t,L, x, y) be a strongly laminar instance of s-t-path ATSP. Con-
sider the strongly laminar instance I ′ = (G′,L′, x, y) of ATSP that arises from I
as follows. We add a new vertex v to G and two edges (t, v) and (v, s); we set
x(t,v) = x(v,s) = 1. Moreover we add the set {v} to L and set y{v} = 1

2 · LP(I).
Then LP(I ′) = 2 · LP(I). Hence there is an ATSP solution for I ′ with cost at most
2ρ · LP(I). Let R be such a solution. Then R has to use (t, v) and (v, s) at least once,
since it has to visit v. By deleting all copies of (t, v) and (v, s) from R, we get k > 0
s-t-walks in G with total cost at most 2ρ ·LP(I)−k ·LP(I) such that every vertex of G
is visited by at least one of them. As long as k > 1, by our assumption we can replace
two of the s-t-walks by a single one, increasing the cost by at most LP(I) and decreas-
ing k by one. We end up with a single s-t-walk P with cost c(P) ≤ 2ρ ·LP(I)−LP(I)
in G, which contains every vertex of G. This walk is an s-t-path ATSP solution for I
and thus the integrality ratio of (ATSPP LP) restricted to strongly laminar instances
is at most 2ρ− 1 as proposed.

The following procedure is similar to one step (“inducing on a tight set”) of the
approximation algorithm for ATSP by Svensson, Tarnavski, and Végh [STV18a].

Lemma 5.12. Let (G, s, t,L, x, y) be a strongly laminar instance of s-t-path ATSP.
Let P1 and P2 be s-t-walks in G with total cost L. Then there is a single s-t-walk P in
G which contains every vertex of P1 and P2 and has cost at most L+ LP.

Proof. Let V1, . . . , Vl be the vertex sets of the strongly connected components of G in
their topological order, which is unique by Lemma 5.8. Let P ji be the section of Pi
that visits vertices in Vj (for i = 1, 2 and j = 1, . . . , l). By Lemma 5.8, none of these
sections of Pi is empty. (Such a section might consist of a single vertex and no edges,
but it has to contain at least one vertex.)

Because G[L] is strongly connected for every L ∈ L and the sets Vi for i ∈ {1, . . . , l}
are the vertex sets of the strongly connected components of G, we have that L′ :=

80

5.3. BLACKBOX REDUCTION TO ATSP

s t

Figure 5.6: Construction of P . The s-t-walks P1 and P2 are shown with solid and dotted
lines. (Here, P1 is the upper red walk and P2 is shown in blue at the bottom.) The vertex
sets V1, . . . , Vl of the strongly connected components are indicated by the green ellipses.
The red and blue solid edges of the walks Pi that are those that are used in the walk P .
The dashed black arrows indicate the paths Rj .

L∪{V1, . . . , Vl} is a laminar family. Moreover, G[L] is strongly connected for every set
L ∈ L′. Therefore, we can apply Lemma 3.6 to the laminar family L′.

We consider nice paths Rj in G for j = 1, . . . , l that we will use to connect the
walks P j1 and P j2 to a single walk visiting all vertices in Vj . See Figure 5.6. If j is odd,
let Rj be a nice path from the last vertex of P j1 to the first vertex of P j2 . If j is even,
let Rj be a nice path from the last vertex of P j2 to the first vertex of P j1 . (Such paths
exist by Lemma 3.6.)

We now construct our s-t-walk P that will visit every vertex of P1 and P2. We start
by setting P = s and then add for j = 1, . . . , l all the vertices in Vj to P as follows.
If j is odd, we append P j1 and Rj and then P j2 . If j is even, we append P j2 and Rj

and then P j1 . Note that when moving from one connected component Vj to the next
component Vj+1, we use an edge from either P1 (if j is even) or P2 (if j is odd). Then
P is, indeed, an s-t-walk in G and contains every vertex of P1 and P2.

We now bound the cost of the walk P . It is constructed from pieces of P1 and P2
and the paths Rj . Each of the paths Rj can only contain vertices of Vj . Two paths
Rj and Rj

′ , such that j 6= j′, can never both enter or both leave the same element
of the laminar family L: otherwise they would contain vertices of the same strongly
connected component of G. Thus every element of L is entered at most once and left at
most once on all the paths Rj used in the construction of P , and the total cost of these
paths is at most

∑
U 2yU = LP. Consequently, we have c(P) ≤ L+ LP as claimed.

We will now prove the main result of this section.

Theorem 5.13. Let ρ be the integrality ratio of (ATSP LP). Then the integrality ratio
of (ATSPP LP) is at most 4ρ− 3.

Proof. By Lemma 5.12, the condition of Lemma 5.11 is satisfied. Hence, the integrality
ratio of (ATSPP LP) restricted to strongly laminar s-t-path ATSP instances is at most
2ρ − 1. By Theorem 5.2 this implies that the integrality ratio of (ATSPP LP) is at
most 4ρ− 3.

Finally, we will prove a better bound for unit-weight instances.

81

CHAPTER 5. ATSP PATH LP

Theorem 5.14. Let ρ be the integrality ratio of (ATSP LP) for graph ATSP. Then
the integrality ratio of (ATSPP LP) for s-t-path graph ATSP is at most 2ρ− 1.

Suppose there exists an α-approximation algorithm for graph ATSP. Then there is
an (2α− 1)-approximation algorithm for s-t-path graph ATSP.

Proof. First we show how to modify the proof of Lemma 5.11 for unit-weighted in-
stances. For an instance I = (G, s, t) of s-t-path graph ATSP, let the instance I ′ = G′

of graph ATSP result from I by adding a t-s-path of length n − 1, where all inner
vertices of this path are new vertices not contained in G; here n := |V (G)|. Then
LP(I ′) ≤ LP(I) + (n− 1) and OPT(I ′) ≤ OPT(I) + (n− 1). Continuing with the in-
stance I ′ as in the proof of Lemma 5.11 yields the following: It suffices to show that for
instances of s-t-path graph ATSP, we can merge any two s-t-walks to a single s-t-walk
P as in Lemma 5.12, but with c(P) ≤ L+ (n− 1).

We construct P as in the proof of Lemma 5.12, where we choose the paths Rj to be
shortest paths in G[Vj]. Again we first bound the cost of the paths Rj . For 1 ≤ j ≤ l
each vertex in Vj can only be contained in the path Rj (and not in a path Rj

′ for
j′ 6= j). Hence every vertex can be used in at most one path Rj . Therefore, the total
cost of all paths Rj can be bounded from above by n−1. This shows c(P) ≤ L+(n−1)
and completes the proof.

Corollary 5.15. The integrality ratio of (ATSPP LP) for s-t-path graph ATSP is at
most 25. For every ε > 0 there is a (25 + ε)-approximation algorithm for the s-t-path
graph ATSP.

Proof. By Theorem 4.43, there is a (13 + ε
2)-approximation algorithm for graph ATSP.

Moreover, Svensson [Sve15] showed that the integrality ratio of (ATSP LP) for graph
ATSP is at most 13. Applying Theorem 5.14 completes the proof.

82

Part II

The symmetric traveling
salesman problem and its path

version

83

Chapter 6

TSP and s-t-path TSP

In this chapter we provide an introduction to TSP and s-t-path TSP and their unit-
weight special cases graph TSP and s-t-path graph TSP. We introduce the classical LP
relaxations and give an overview of prior work and known approximation algorithms.

6.1 Problem definitions

An instance of TSP consists of a connected undirected graph G = (V,E) and non-
negative edge costs c : E → R≥0. The task is to find a closed walk in G that visits
every vertex at least once and has minimum cost. A closed walk in G is a sequence
v0, v1, . . . , vk with v0 = vk and {vi−1, vi} ∈ E for all i ∈ {1, . . . , k}. We are looking for
such a sequence that contains every vertex at least once and minimizes

∑k
i=1 c(vi−1, vi).

Equivalently, we can require that the sequence contains every vertex exactly once, as-
sume that G is a complete graph, and assume that the edge costs c fulfill the triangle
inequality, i.e. c(u, v) + c(v, w) ≥ c(u,w) for all u, v, w ∈ V .

To see that this is equivalent, we consider the metric closure of (G, c). In the metric
closure, we have a complete graph and the edge cost fulfill the triangle inequality.
Every closed walk in G is a closed walk in the metric closure of at most the same cost.
Moreover, having a closed walk in the metric closure that visits every vertex at least
once, we can replace every edge by a shortest path between its endpoints to obtain
such a walk in G without increasing the cost. In the metric closure, we can require
that every vertex is visited at exactly once because we can otherwise shortcut the tour,
i.e. we can skip all but one of the visits; due to the triangle inequality this does not
increase the cost.

Another equivalent definition of TSP is the following. Given a connected undirected
graph G = (V,E) and nonnegative edge cost c : E → R≥0, find a minimum cost multi-
set F of edges such that (V, F) is connected and Eulerian, i.e. |δF (v)| is even for every
vertex v ∈ V . We call such a multi-set F a tour. Clearly, if F is the multi-set of edges
of a closed walk that visits all vertices, then (V, F) is connected and Eulerian. On
the other hand, if F is a tour, we can find a closed Eulerian walk in (V, F) that visits
all vertices by Theorem 2.2. Therefore, this is indeed an equivalent definition of TSP,
which is often more convenient when designing approximation algorithms for TSP.

The s-t-path TSP is the generalization of TSP where the start and the end of
the tour are given, but are not necessarily identical. More precisely, we are given a
connected undirected graph G = (V,E), nonnegative edge cost c : E → R≥0, a start

85

CHAPTER 6. TSP AND S-T -PATH TSP

vertex s ∈ V and an end vertex t ∈ V . The task is to find an s-t-walk that visits
all the vertices and has minimum cost. In other words, we want to find a sequence
v0, v1, . . . , vk with s = v0, t = vk, and {vi−1, vi} ∈ E for all i ∈ {1, . . . , k} such that
every vertex appears at least once in this sequence and we minimize

∑k
i=1 c(vi−1, vi).

TSP is the special case where s = t.
Similar to TSP, we can also in the path version assume that G is the complete graph

on the vertex set V and that the edge costs fulfill the triangle inequality; then we can
require the sequence to visit every vertex exactly once. Another equivalent formulation
is to ask for a multi-set F of edges of the (not necessarily complete) graph G such
that (V, F) is connected and all vertex degrees have “the correct parity”, i.e. for s 6= t
the vertices s and t should have odd degree while all other vertices should have even
degree. We call such a multi-set F where (V, F) is connected and odd(F) = {s} 4 {t}
an s-t-tour.

6.2 The standard LP relaxations

The standard LP relaxation for TSP is the following:

min c(x)
s.t. x(δ(U)) ≥ 2 for ∅ 6= U (V

xe ≥ 0 for e ∈ E.
(TSP LP)

If we consider the formulation of TSP where G is a complete graph and the edge cost
fulfill the triangle inequality (which we can always achieve by taking the metric closure),
we can also add degree constraints for all the vertices:

min c(x)
s.t. x(δ(v)) = 2 for v ∈ V

x(δ(U)) ≥ 2 for ∅ 6= U (V

xe ≥ 0 for e ∈ E =
(V

2
)
.

(6.1)

However, adding degree constraints does not strengthen the relaxation. Using the
splitting-off technique due to Lovász’ [Lov76], one can show that the LP (6.1) is equiv-
alent to (TSP LP) in the following sense. For every feasible solution x of (TSP LP),
there is a feasible solution x′ of (6.1) with c(x′) ≤ c(x). Of course, every feasible so-
lution of (6.1) is also feasible for (TSP LP). Hence, optimum solutions of (TSP LP)
and (6.1) have the same cost and both linear programs have the same integrality ra-
tio. These observations are due to Cunningham [MMP90] and Goemans and Bertsimas
[GB93].

The linear programming relaxation (6.1) was first proposed by Dantzig, Fulkerson,
and Johnson [DFJ54] and is often called Subtour Elimination LP or Held-Karp relax-
ation. Despite the exponential number of constraints (TSP LP) and (6.1) can be solved
in polynomial time. This can be done either via an extended formulation of polynomial
size or by using that the separation problem is equivalent to a minimum-cut problem.

The best known lower bound on the integrality ratio of (TSP LP) is 4
3 . Figure 6.1

shows a well-known family of instances with integrality ratio arbitrarily close to 4
3 . In

86

6.2. THE STANDARD LP RELAXATIONS

. . .

. . .

. . .

Figure 6.1: A family of instances showing that the integrality ratio of (TSP LP) is at
least 4

3 : here the cost of every edge is one. In an optimum LP solution we have xe = 1
for every black edge e and xe = 1

2 for every green edge e. Then LP = n := |V |, but an
optimum tour has 4

3n− 2 edges.

. . .

. . .

s t

Figure 6.2: A family of instances showing that the integrality ratio of (TSPP LP) is at
least 3

2 : here the cost of every edge is one. In an optimum LP solution we have xe = 1 for
every black edge e and xe = 1

2 for every green edge e. Then LP = n− 1, but an optimum
s-t-tour has 3

2n− 4 edges.

these instances the edges have unit weights, i.e. c(e) = 1 for all e ∈ E. This is one
important reason for studying the unit-weight special case of TSP, the graph TSP.

For the s-t-path TSP the standard LP relaxation is the following:

min c(x)
s.t. x(δ(U)) ≥ 2 for ∅ 6= U ⊆ V \ {s, t}

x(δ(U)) ≥ 1 for {s} ⊆ U ⊆ V \ {t}
xe ≥ 0 for e ∈ E

(TSPP LP)

We can solve this LP in polynomial time similar to (TSP LP). If G is a complete graph
and c fulfills the triangle inequality, we can add degree constraints:

min c(x)

s.t. x(δ(v)) =
{

1, if v ∈ {s, t} and s 6= t

2, if v ∈ V \ {s, t} or v = s = t

x(δ(U)) ≥ 2 for ∅ 6= U ⊆ V \ {s, t}
x(δ(U)) ≥ 1 for {s} ⊆ U ⊆ V \ {t}

xe ≥ 0 for e ∈ E =
(V

2
)
.

(6.2)

However, as for (TSP LP) adding degree constraints does not lead to a stronger relax-
ation.

87

CHAPTER 6. TSP AND S-T -PATH TSP

The best known lower bound on the integrality ratio of (TSPP LP) is 3
2 , which can

be shown by the well-known family of examples shown in Figure 6.2. In this family
of instances we have c(e) = 1 for every edge e ∈ E. This raised attention also for the
unit-weight special case of the s-t-path TSP, the s-t-path graph TSP.

6.3 Christofides’ algorithm

The best known approximation algorithm for TSP is Christofides’ algorithm [Chr76]
from 1976, which was independently found by Serdjukov [Ser78]. The algorithm works
as follows. First we compute a minimum cost spanning tree (V, S). Now let TS :=
odd(S) be the set of vertices whose degree in S is odd and therefore has the wrong
parity. To correct these parities, we compute a minimum cost TS-join J , i.e. a set J
such that TS = odd(J). Then (V, S

.
∪ J) is connected and Eulerian. Hence we can find

a closed Eulerian walk that visits all vertices.
This algorithm has approximation ratio 3

2 . In fact it computes a solution of cost at
most 3

2 times the value of (TSP LP), or equivalently the value of (6.1) in the metric
closure, as shown by Wolsey [Wol80].

Theorem 6.1. For every instance (G, c) of TSP, Christofides’ algorithm computes a
solution of cost at most 3

2 times the value of (TSP LP). In particular, the integrality
ratio of (TSP LP) is at most 3

2 .

Proof. Consider an optimum solution x∗ of the linear program (6.1) in the metric
closure. We first bound the cost of the spanning tree S. Let G = (V,E) and let n := |V |
denote the number of vertices. The vector n−1

n · x
∗ is contained in the spanning tree

polytope of the complete graph (V, Ē){
x ∈ RĒ≥0 : x(Ē) = n− 1, x(Ē[U]) ≤ |U | − 1 for ∅ 6= U ⊆ V

}
(6.3)

because for every set ∅ 6= U (V ,

2 · x∗(Ē[U]) =
∑
v∈U

x∗(δ(v))− x∗(δ(U)) = 2|U | − x∗(δ(U)) ≤ 2(|U | − 1)

and similarly x∗(Ē) = n, implying n−1
n · x

∗(Ē) = n− 1. Therefore, n−1
n · x

∗ is a convex
combination of incidence vectors of spanning trees (in the complete graph (V, Ē)),
implying c(S) ≤ n−1

n · c(x
∗) ≤ c(x∗). Here we used that a minimum cost spanning tree

in G also is a minimum cost spanning tree in the metric closure.
To bound the cost of the TS-join J , we observe that the vector 1

2x
∗ is contained in

the TS-join polyhedron{
x ∈ RĒ≥0 : x(δ(U)) ≥ 1 for U ⊆ V with |U ∩ TS | odd

}
; (6.4)

see Theorem 2.16. Therefore, we have c(J) ≤ 1
2c(x

∗), where we used that every mini-
mum cost T -join in G also is a minimum cost T -join in the metric closure.

We conclude that the cost of the tour computed by Christofides’ algorithm is at
most c(S) + c(J) ≤ 3

2 · c(x
∗). Because the two LP relaxations with and without degree

constraints are equivalent, c(x∗) is the optimum value of (TSP LP).

88

6.3. CHRISTOFIDES’ ALGORITHM

. . .
s t

Figure 6.3: A family of instances due to Hoogeveen [Hoo91] showing that the approx-
imation ratio of Christofides’ algorithm for the s-t-path TSP is no better than 5

3 . The
instances have unit weights, i.e. c(e) = 1 for every edge e. The thick red edges show a
minimum spanning tree S of cost n − 1. Squares show the set TS . Then the cost of a
minimum TS-join is 2

3 (n−1). Therefore, the solution computed by Christofides’ algorithm
has cost 5

3 (n− 1), whereas an optimum s-t-tour has cost n− 1.

See [SW90] for an alternate proof of Theorem 6.1.
Christofides’ algorithm can be generalized to the s-t-path TSP as follows. We again

compute a minimum spanning tree (V, S) and denote by TS the set of vertices whose
degree has the “wrong parity”. More precisely, for s 6= t we set TS := odd(S) 4
{s, t}. Then we compute a cheapest TS-join J and we can find an Eulerian s-t-walk
in (V, S

.
∪ J) that visits all vertices. Hoogeveen [Hoo91] showed that this algorithm

has approximation ratio 5
3 . In fact it computes a solution of cost at most 5

3 times the
optimum value of (TSPP LP) as shown by An, Kleinberg, and Shmoys [AKS15].

Theorem 6.2. For very instance (G, c, s, t) of the s-t-path TSP, Christofides’ algorithm
computes a solution of cost at most 5

3 times the value of (TSPP LP). In particular,
the integrality ratio of (TSPP LP) is at most 5

3 .

Proof. We may assume s 6= t. Otherwise, the claimed statement follows from Theo-
rem 6.1. Let x∗ be an optimum solution of (6.2) in the metric closure.

Then x∗ is contained in the spanning tree polytope (6.3) of the complete graph
(V, Ē). To see this consider a set ∅ 6= U (V . Then 2 · x∗(Ē[U]) =

∑
v∈U x

∗(δ(v)) −
x∗(δ(U)). If δ(U) is an s-t-cut, we have

∑
v∈U x

∗(δ(v)) = 2|U | − 1 and x∗(δ(U)) ≥
1. Otherwise,

∑
v∈U x

∗(δ(v)) ≤ 2|U | and x∗(δ(U)) ≥ 2. In any case we conclude
x∗(Ē[U]) ≤ |U | − 1. Moreover, x∗(E) = n − 1. Therefore x∗ is contained in the
spanning tree polytope of the complete graph (V, Ē). This implies that a cheapest
spanning tree in the metric closure, and hence also in G, has cost at most c(x∗). So
c(S) ≤ c(x∗).

To bound the cost of the TS-join J , we show that the vector y := 1
3 · x

∗ + 1
3 · χ

S

is contained in the TS-join polyhedron (6.4). Then the cost of the tour computed by
Christofides’ algorithm is c(S) + c(J) ≤ c(S) + c(y) ≤ 4

3c(S) + 1
3 · c(x

∗) ≤ 5
3c(x

∗).
Since c(x∗) is the value of (6.2) in the metric closure and therefore also the value of
(TSPP LP), this implies the statement of the theorem.

It remains to show that the vector y is contained in the TS-join polyhedron. To
prove this let ∅ 6= U (V with y(δ(U)) < 1. We show that |TS ∩ U | is even. Since
|S ∩ δ(U)| ≥ 1 and x∗(δ(U)) ≥ 1, we have |S ∩ δ(U)| = 1 and x∗(δ(U)) < 2. Therefore,∑
v∈U |S ∩ δ(v)| = 2|S[U]|+ |S ∩ δ(U)| is odd, which implies that |odd(S) ∩ U | is odd.

Moreover, δ(U) is an s-t-cut because x∗(δ(U)) < 2. Hence, |TS ∩ U | = |(odd(S) 4
{s, t}) ∩ U | is even.

Figure 6.3 shows a family of instances that prove that the approximation ratio of
Christofides’ algorithm is no better than 5

3 . In particular, Christofides’ algorithm has
a worse approximation ratio for the s-t-path TSP than for its special case TSP.

89

CHAPTER 6. TSP AND S-T -PATH TSP

Until 2010 Christofides’ algorithm remained to be the best known approximation
algorithm for TSP, graph TSP, s-t-path TSP, and s-t-path graph TSP. While for TSP
we still don’t know how to achieve any better approximation ratio, a lot of progress
has been made for s-t-path TSP, graph TSP, and s-t-path graph TSP. See Figure 6.4
and the following sections.

6.4 Approximation algorithms for s-t-path TSP

The first improvement over Christofides’ algorithm for the s-t-path TSP was the Best-
of-many Christofides algorithm by An, Kleinberg, and Shmoys [AKS15]. For s 6= t, they
start by computing an optimum solution x∗ to the linear program (6.2). Then they write
x∗ as a convex combination of incidence vectors of spanning trees (V, S1), . . . , (V, Sk),
i.e. x∗ =

∑k
i=1 pi · χSi for some coefficients p1, . . . , pk > 0 with

∑k
i=1 pi = 1. This is

possible because x∗ is contained in the spanning tree polytope (6.3) as shown above.
Now they apply parity correction as in Christofides’ algorithm to each of the span-

ning trees in the convex combination, i.e. for each i ∈ {1, . . . , k} they compute a
cheapest TSi-join Ji. Finally, they simply return the cheapest of the resulting s-t-tours
S1

.
∪ J1, . . . , Sk

.
∪ Jk. An, Kleinberg, and Shmoys proved that this algorithm is a

1+
√

5
2 -approximation algorithm [AKS15]. Sebő [Seb13] gave an improved analysis and

showed that the Best-of-many Christofides algorithm is a 1.6-approximation algorithm
for the s-t-path TSP.

Vygen [Vyg16] introduced the idea to work not with an arbitrary decomposition of
the LP solution x∗ into incidence vectors of spanning trees, but one with particular prop-
erties. He gave a 1.599-approximation algorithm. Then Gottschalk and Vygen [GV18]
showed how to find a decomposition of x∗ into spanning trees that provides a lot more
structure (see Theorem 7.1). They showed that proceeding as in the Best-of-many
Christofides algorithm, but starting from their structured decomposition of x∗ into
spanning trees instead of an arbitrary one, yields a 1.566-approximation algorithm.

Sebő and van Zuylen [SvZ19] proposed the Best-of-many Christofides algorithm
with lonely edge deletion. They start with the same decomposition of x∗ into incidence
vectors of spanning trees as Gottschalk and Vygen [GV18], but then they delete some
edges of these trees before doing parity correction on the resulting forest. In the end
two copies of some of the edges are added to ensure connectivity. The main idea is
that parity correction will often help connectivity; so one saves more by deleting edges
than one pays for reconnection at the end. Sebő and van Zuylen [SvZ19] proved that
their algorithm yields a (3

2 + 1
34)-approximation. We will discuss this algorithm in more

detail in Chapter 7 and give an improved analysis.
All approximation algorithms for s-t-path TSP that we mentioned so far have been

analyzed with respect to the optimum value of (TSPP LP). Thus their analysis also
yields an upper bound on the integrality ratio of (TSPP LP). In fact the best known
upper bound of 1.5284 on the integrality ratio results from the improved analysis of
the algorithm by Sebő and van Zuylen [SvZ19] that we will present in Chapter 7.

The approximation ratio however has been improved further. Traub and Vy-
gen [TV19a] gave a (3

2 + ε)-approximation algorithm for every fixed ε > 0. They
used a different approach than the previous algorithms, based on dynamic program-
ming. Zenklusen [Zen19] simplified their algorithm and improved the approximation
ratio to 3

2 , matching the best known approximation ratio for the special case TSP.

90

6.4. APPROXIMATION ALGORITHMS FOR S-T-PATH TSP

[C
hr

76
, Se

r78
]

[O
SS

11
]

[M
uc

14
]

[SV
14

]

[V
yg

16
]

[Sv
Z19

]

[T
V18

]

[T
VZ19

]

[H
oo

91
]

[M
S1

6]

[A
KS1

5]

[Se
b1

3]

[G
V18

]

[T
V19

a]

[Zen
19

]

4
3

3
2

5
3

TSP
s-t-path TSP

graph TSP

s-t-path graph TSP

3
2

3
2−4 · 10−52

1.461
13
9

7
5

5
3

1.586
19
12 +ε

1+
√

5
2

1.578

3
2

1.6
1.599

1.566

3
2 + 1

34

3
2 +ε

1.497
3
2

7
5 +ε

Figure 6.4: Development of the approximation ratios obtained for TSP, graph TSP and
their path versions.
The circles show improved approximation ratios proved in the publications indicated at
the bottom (from left to right in the order of discovery). Blue points refer to (graph) TSP
and red points to the more general s-t-path (graph) TSP. Filled circles show results that
apply to the weighted case, whereas circles with white interior indicate results that apply
only to the graph case (with unit weights). The solid lines indicate the development of the
approximation ratios for TSP (blue) and s-t-path TSP (red); the dashed lines refer to the
graph versions.
Until 2011 Christofides’ algorithm remained the best known approximation algorithm for
all four of these variants of TSP. By now, there is a 3

2 -approximation algorithm for the
s-t-path TSP, matching the approximation ratio of 3

2 that Christofides’ algorithm yields
for TSP. Moreover, we have a 7

5 -approximation algorithm for graph TSP and a (7
5 + ε)-

approximation algorithms for its path version (for any fixed ε > 0). Only for TSP the
approximation ratio achieved by Christofides’ algorithm has not been improved.

91

CHAPTER 6. TSP AND S-T -PATH TSP

Therefore, currently the best known approximation ratios for TSP and s-t-path TSP
are the same, but the 3

2 -approximation algorithm for the s-t-path TSP by Zenklusen
was found only very recently, more than 40 years after Christofides’ 3

2 -approximation
algorithm for TSP. In Chapter 9 we show that the s-t-path TSP is not much harder to
approximate than TSP: we show that the existence of an α-approximation algorithm
for TSP implies that there is an (α+ ε)-approximation algorithm for the s-t-path TSP
(for any fixed ε > 0). This result avoids future differences between the approximation
ratios for TSP and s-t-path TSP up to an arbitrarily small ε > 0.

6.5 Approximation algorithms for graph TSP and
s-t-path graph TSP

The graph TSP and the s-t-path graph TSP are the unit-weight special cases of TSP
and s-t-path TSP, respectively where we have c(e) = 1 for all e ∈ E, i.e. the objective
is to minimize the number of edges of our tour. One reason for studying these natural
special cases is that the well-known examples that yield the best known lower bounds
for the integrality ratio are graph instances (see Figure 6.1 and Figure 6.2). Another
motivation is that some techniques developed for the graph case led to progress for
general weights later on. For example the algorithm by Gottschalk and Vygen [GV18]
used ideas from Gao’s [Gao13] 3

2 -approximation algorithm for the s-t-path graph TSP.
The standard LP relaxations for graph TSP and its path version are

min x(E)

s.t. x(δ(U)) ≥ 2 for ∅ 6= U (V

xe ≥ 0 for e ∈ E
(Graph TSP LP)

for the graph TSP, and

min x(E)

s.t. x(δ(U)) ≥ 2 for ∅ 6= U ⊆ V \ {s, t}
x(δ(U)) ≥ 1 for {s} ⊆ U ⊆ V \ {t}

xe ≥ 0 for e ∈ E

(Graph TSPP LP)

for the s-t-path graph TSP.
In contrast to the more general TSP, for graph TSP we know how to achieve a

better approximation ratio than 3
2 . The first improvement over Christofides’ algorithm

for graph TSP was achieved by Oveis Gharan, Saberi, and Singh [OSS11]. They gave
a (3

2 − ε)-approximation for some very small ε > 0.
Next, Mömke and Svensson [MS16] improved the approximation ratio for graph TSP

to 1.461. They also gave a 1.586-approximation for s-t-path graph TSP, improving
on the approximation ratio of 5

3 achieved by Christofides’ algorithm [Hoo91]. They
introduced the so-called removable-pairings technique. We will see an application of this
technique in Section 8.6. Mucha [Muc14] gave an improved analysis of the algorithm
by Mömke and Svensson and improved the approximation ratios to 13

9 for graph TSP
and 19

12 + ε for the path version.

92

6.5. GRAPH TSP AND S-T -PATH GRAPH TSP

The next improvement was by An, Kleinberg, and Shmoys [AKS15] who gave a
1.578-approximation algorithm for s-t-path graph TSP. Then Sebő and Vygen [SV14]
improved the approximation ratios to 7

5 for graph TSP and to 3
2 for the s-t-path graph

TSP. Their algorithm uses ear-decompositions that have particular properties and are
optimized using matroid intersection. We will describe their approach in more detail
in Section 8.1.4.

Because the algorithms we mentioned so far were all analyzed with respect to the
values of (Graph TSP LP) and (Graph TSPP LP), the results also imply upper bounds
on the integrality ratio of these LP relaxations. In particular, the analysis of the 3

2 -
approximation algorithm for s-t-path graph TSP by Sebő and Vygen [SV14] implies
that the integrality ratio of (Graph TSPP LP) is equal to 3

2 . Later Gao [Gao13] gave
a simpler proof of this result. Among all the variants of TSP and its path version that
we discuss here, the s-t-path graph TSP is the only variant for which we know the
integrality ratio of the standard LP relaxation exactly.

If one analyzes an algorithm solely with respect to the value of (Graph TSPP LP),
one cannot achieve an approximation ratio better than 3

2 for the s-t-path graph TSP.
However, in Chapter 8 we present an algorithm that gets below this threshold and
achieves an approximation ratio of 1.497. We also show that the instances from Fig-
ure 6.2 are essentially “the only examples” (up to small local differences) where the
integrality ratio converges to 3

2 .
The most recent improvement for the s-t-path graph TSP is a black-box reduction

to graph TSP that we will present in Chapter 9: if there exists an α-approximation
algorithm for graph TSP for some α > 1, then there is an (α + ε)-approximation
algorithm for the s-t-path graph TSP for any fixed ε > 0. Applying this result to the
7
5 -approximation algorithm by Sebő and Vygen [SV14], yields a (7

5 + ε)-approximation
algorithm for the s-t-path graph TSP for any fixed ε > 0.

93

CHAPTER 6. TSP AND S-T -PATH TSP

94

Chapter 7

An improved upper bound on the
integrality ratio for s-t-path TSP

In this chapter we give an improved analysis of the Best-of-many Christofides algorithm
with lonely edge deletion that was proposed by Sebő and van Zuylen [SvZ19]. Our
analysis implies a better upper bound on the integrality ratio of the standard LP
relaxation (TSPP LP) for the s-t-path TSP. This chapter is based on [TV19b], which
is joint work with Jens Vygen.

7.1 Best-of-many Christofides with lonely edge deletion

In this section we explain the algorithm by Sebő and van Zuylen [SvZ19] that we will
analyze. To simplify notation, we will only consider instances of the s-t-path TSP with
s 6= t. If s = t, Christofides’ algorithm already yields a 3

2 -approximation with respect
to the value of (TSP LP), which is equivalent to (TSPP LP) for s = t. We use the
formulation of the s-t-path TSP in which G = (V,E) is a complete graph, the edge
costs c fulfill the triangle inequality, and we are required to compute an s-t-tour that
visits every vertex exactly once.

First, recall the Best-of-many Christofides algorithm that was proposed and an-
alyzed by An, Kleinberg and Shmoys [AKS15]: it starts by computing an optimum
solution x∗ to the LP

min c(x)
s.t. x(δ(U)) ≥ 2 for ∅ (U ⊆ V \ {s, t},

x(δ(U)) ≥ 1 for {s} ⊆ U ⊆ V \ {t},

x(δ(v)) = 2 for v ∈ V \ {s, t},

x(δ(v)) = 1 for v ∈ {s, t},

x(e) ≥ 0 for e ∈ E.

(7.1)

We write x∗ as a convex combination of incidence vectors of spanning trees, i.e. x∗ =∑k
j=1 pjχ

Sj for spanning trees (V, S1), . . . , (V, Sk) and nonnegative coefficients p1, . . . , pk
with

∑k
j=1 pj = 1. Then parity correction as in Christofides’ algorithm is applied to

each of the k spanning trees; finally the best of the resulting s-t-tours is selected.

95

CHAPTER 7. INTEGRALITY RATIO FOR S-T -PATH TSP

A key observation of An, Kleinberg and Shmoys [AKS15], used in all subsequent
works, was that the set N := {δ(U) : {s} ⊆ U ⊆ V \ {t}, x∗(δ(U)) < 2} of narrow cuts
is induced by a chain.

The algorithm can be further improved by using a convex combination with certain
properties [Vyg16, GV18]. In particular, Gottschalk and Vygen [GV18] showed:

Theorem 7.1. Let x∗ be an optimum solution to the LP (7.1) and N the set of narrow
cuts. Then there exist spanning trees (V, S1), . . . , (V, Sk) and nonnegative coefficients
p1, . . . , pk with

∑k
j=1 pj = 1 such that

• x∗ =
∑k
j=1 pjχ

Sj and

• for every C ∈ N there exists an r ∈ {1, . . . , k} with
∑r
j=1 pj = 2 − x∗(C) and

|C ∩ Sj | = 1 for all j = 1, . . . , r.

Schalekamp et al. [SSTvZ18] found a simpler proof of this theorem. We will work
with such a convex combination henceforth.

Sebő and van Zuylen [SvZ19] had the brilliant idea to delete some of the edges in
each spanning tree and do parity correction on the resulting forest. This can save cost
because parity correction will often reconnect the connected components of the forest
anyway.

Call an edge e and a cut C ∈ N lonely in tree Sj if {e} = C ∩ Sj and
∑j
i=1 pi ≤

2− x∗(C). Then we also say that e is lonely at C. We denote the lonely cuts in Sj by
L(Sj). Let Fj be the edge set of the forest that results from Sj by deleting its lonely
edges. The algorithm by Sebő and van Zuylen [SvZ19] does parity correction on each
forest (V, Fj). Let Tj := odd(Fj)4 {s, t} denote the set of vertices whose degree in Fj
has the wrong parity.

Every Tj-join J must contain an edge (in fact, an odd number of edges) in every
lonely cut of Sj (because they are all Tj-cuts, i.e. cuts δ(U) for a vertex set U with
|U ∩ Tj | odd). However, this does not imply that Fj

.
∪ J is connected, because an edge

of J can belong to several lonely cuts of Sj . In this case we can, for all but one of these
cuts, add two copies of the lonely edge of Sj in this cut (to ensure connectivity without
changing parities).

If we choose a Tj-join J for parity correction, we will pay a total of at most∑
e∈J c

j(e), where

cj(e) := c(e) +
∑

C∈L(Sj), e∈C
2c(C ∩ Sj) − max

{
0, max

C∈L(Sj), e∈C
2c(C ∩ Sj)

}
;

here the second and third terms account for the reconnection cost.

Algorithm 3 formally describes the Best-of-many Christofides algorithm with lonely
edge deletion due to Sebő and van Zuylen [SvZ19]. This is the algorithm that we will
analyze.

96

7.2. OUTLINE OF THE NEW ANALYSIS

Algorithm 3: Best-of-many Christofides algorithm with lonely edge deletion

1. Compute an optimum solution x∗ to the LP (7.1).

2. Compute x∗ =
∑k
j=1 pjχ

Sj as in Theorem 7.1

3. Do the following for each j = 1, . . . , k:

(a) Compute a Tj-join Jj with minimum cj-cost.
(b) Compute a minimum c-cost subset Rj ⊆ Sj \ Fj of the lonely edges such

that Fj
.
∪ Jj

.
∪ Rj is connected.

(c) Find an Eulerian s-t-walk in Hj := Fj
.
∪ Jj

.
∪ Rj

.
∪ Rj and shortcut

whenever a vertex is visited more than once.

4. Return the cheapest of these k s-t-tours.

7.2 Outline of the new analysis

Let us first outline the main ideas of our new analysis. In Section 7.3 and Section 7.4
we will then give a formal analysis of Algorithm 3 and prove our new upper bound on
the integrality ratio of (TSPP LP).

By definition of cj , the cost of the tour Hj is at most c(Fj) + cj(Jj). The cost of
the Tj-join Jj is the minimum cost of a vector y in the Tj-join polyhedron{

y ∈ RE≥0 : y(δ(U)) ≥ 1 for U ⊆ V with |U ∩ Tj | odd
}

; (7.2)

see Theorem 2.16. We call a vector y in (7.2) a parity correction vector. Note that
every parity correction vector yields an upper bound on the cost of Jj . A first attempt
to design a parity correction vector could be the vector βx∗ + (1 − 2β)χSj for some
0 ≤ β ≤ 1

2 . This vector has value at least one on all cuts except the narrow cuts. The
narrow cuts can be repaired by adding fractions of incidence vectors of lonely edges
(not necessarily from the same tree). We will pay all this and the reconnection cost by
what we gain by deleting the lonely edges. Then our total cost is

k
min
j=1

c(Hj) ≤
k∑
j=1

pj · c(Hj)

≤
k∑
j=1

pj ·
(
c(Sj) + βc(x∗) + (1− 2β)c(Sj)

)
= (2− β) · c(x∗).

(7.3)

Hence we would like to choose β as large as possible. Unfortunately, for β = 1
2 we need

too much from the lonely edges. By reducing β, we can increase the value of βx∗ +
(1− 2β)χSj on the narrow cuts and thus decrease the required amount of lonely edges.
Choosing β = 8

17 is sufficient and this is essentially what Sebő and van Zuylen did.

97

CHAPTER 7. INTEGRALITY RATIO FOR S-T -PATH TSP

In our parity correction vector for a forest Fj we will use lonely edges of Sj and of
earlier trees (i.e. from trees Si with i ≤ j). If we increase β for the early trees and
decrease β for the late trees, we need more from the lonely edges in the early trees, but
less in the late trees. This will improve our bound if the late trees are cheaper (and
this is indeed true in the worst case).

The algorithm computes k tours H1, . . . ,Hk. All previous analyses, like (7.3), com-
puted an upper bound on

∑k
j=1 pjc(Hj). Instead, we will compute a weighted average

with different weights qj , giving a higher weight to tours resulting from early trees.
We choose values βj ∈ [0, 1

2] and weights qj > 0 with
∑
j qj = 1 and such that

qj · (2 − 2βj) = M · pj for some constant M > 0. Such a choice allows to bound the
cost of our tour against the LP value c(x∗):

k∑
j=1

qj · c(Hj) ≤
k∑
j=1

qj ·
(
βjc(x∗) + (2− 2βj)c(Sj)

)
=

 k∑
j=1

qjβj +M

 c(x∗).
Intuitively, choosing qj

pj
(and thus βj) larger for the early trees is good, because for the

early trees we delete more lonely edges (cf. Theorem 7.1). This allows us to choose the
average value of β larger and thus improves our upper bound.

We first analyze the cost of a tour resulting from a single tree Sj . Later, we will
take a weighted average.

7.3 Analyzing one tree

Let j ∈ {1, . . . , k}. To bound the cost of parity correction of the forest Fj , we follow
Wolsey’s approach [Wol80] and use a vector in the Tj-join polyhedron (7.2).

Let 0 ≤ β ≤ 1
2 and α := 1−2β ≥ 0. Moreover, for C ∈ N , let vC ∈ RE≥0 be a vector

with vC(C) = 1 and vC(e) = 0 unless e is lonely at C in some tree (not necessarily in
Sj). We will choose vC later. We define

yjβ := βx∗+αχSj +
∑

C∈L(Sj)
β(2−x∗(C))χSj∩C+

∑
C∈N\L(Sj)

max
{
0, β(2− x∗(C))− α

}
vC .

The first sum is the contribution from lonely edges of the tree Sj itself, in order to
repair the lonely cuts of Sj . The second sum is the contribution from lonely edges of
earlier trees, in order to repair the other narrow cuts.

Obviously, yjβ is a nonnegative vector. We show that yjβ is a parity correction vector,
i.e. a vector in (7.2).

Lemma 7.2. For every Tj-cut C we have yjβ(C) ≥ 1.

Proof. Let C = δ(U) be a Tj-cut. Since |U ∩odd(Fj)| is odd if and only if |Fj ∩δ(U)| is
odd, we conclude that |U ∩ {s, t}|+ |Fj ∩C| is odd. We now distinguish several cases.

Case 1: |U ∩ {s, t}| is odd (i.e., C is an s-t-cut).
Then |Fj ∩ C| is even. We now consider two subcases.

Case 1a: C ∈ L(Sj).
Then yjβ(C) ≥ βx∗(C) + α+ β(2− x∗(C)) = α+ 2β = 1.

98

7.3. ANALYZING ONE TREE

Case 1b: C /∈ L(Sj).
Since |Fj ∩C| is even, we have |Sj ∩C| ≥ |Fj ∩C| ≥ 2 or |Fj ∩C| = 0. Since C /∈ L(Sj),
if Fj∩C is empty, the cut C must contain at least two edges that are lonely in Sj . So we
have also in this case |Sj∩C| ≥ 2. Thus yjβ(C) ≥ βx∗(C)+2α+max{0, β(2−x∗(C))−α}
(note that the last term is zero if C /∈ N). We conclude yjβ(C) ≥ βx∗(C) + 2α+ β(2−
x∗(C))− α = α+ 2β = 1.

Case 2: |U ∩ {s, t}| is even.
Then x∗(C) ≥ 2. Hence, yjβ(C) ≥ βx∗(C) + α ≥ 2β + α = 1.

Moreover,we have yjβ ≥ 0. Thus yjβ is contained in the Tj-join polyhedron (7.2),
and so min{cj(J) : J a Tj-join} ≤ cj(yjβ).

A key observation of Sebő and van Zuylen [SvZ19] was that the need for reconnection
is unlikely. Only bad edges can result in reconnection, where an edge is called bad (for
Sj) if it is contained in more than one lonely cut. The edges in Sj are never bad for
Sj , nor are the lonely edges of trees that come earlier in the list S1, . . . , Sr. Therefore,
an edge e with vC(e) > 0 for some C ∈ N \ L(Sj) is not bad for Sj . At this point we
use the particular choice of the decomposition of x∗ into incidence vectors of spanning
trees. For every edge e that is not bad we have cj(e) = c(e). Hence

cj(yjβ) = β cj(x∗) + α c(Sj) +
∑

C∈L(Sj)
β(2− x∗(C)) c(Sj ∩ C)

+
∑

C∈N\L(Sj)
max

{
0, β(2− x∗(C))− α

}
c(vC).

Moreover, Sebő and van Zuylen [SvZ19] showed:

Lemma 7.3.
cj(x∗) ≤ c(x∗) +

∑
C∈L(Sj)

2(x∗(C)− 1)c(Sj ∩ C).

Proof. We consider a directed auxiliary graph with vertex set E
.
∪ L(Sj) and edge set

{(e, C) : e ∈ C, C ∈ L(Sj)}. We show that there exists a flow f in this auxiliary graph
with f(δ+(e)) ≤ x∗e for all e ∈ E and f(δ−(C)) ≥ 1 for all C ∈ L(Sj). Then

cj(x∗)− c(x∗) ≤
∑
e∈E

 ∑
C∈L(Sj), e∈C

(x∗e − f(e, C)) · 2 · c(C ∩ Sj)

≤

∑
C∈L(Sj)

2 · c(C ∩ Sj)
∑
e∈C

(x∗e − f(e, C))

≤
∑

C∈L(Sj)
2 · c(C ∩ Sj) · (x∗(C)− 1).

99

CHAPTER 7. INTEGRALITY RATIO FOR S-T -PATH TSP

To show that a flow f as above exists, we need to show that for every set L′ ⊆ L(Sj)
we have x∗ (∪C∈L′C) ≥ |L′|. Let {s} ⊆ L1 ⊆ · · · ⊆ Lk ⊆ V \ {t} such that L′ =
{δ(L1), . . . , δ(Lk)}. Then

2 · x∗ (∪C∈L′C) = x∗(δ(L1)) + x∗(δ(Lk)) +
k−1∑
i=1

x∗(δ(Li+1 \ Li))

≥ 1 + 1 + 2 · (k − 1) = 2 · |L′|.

Therefore, the cost of the tour that results from the tree Sj is at most

c(Fj) + min{cj(J) : J a Tj-join}

≤ c(Sj)−
∑

C∈L(Sj)
c(Sj ∩ C) + cj(yjβ)

≤ (1 + α)c(Sj) + βc(x∗) +
∑

C∈L(Sj)

(
2β(x∗(C)− 1)− 1 + β(2− x∗(C))

)
c(Sj ∩ C)

+
∑

C∈N\L(Sj)
max

{
0, β(2− x∗(C))− α

}
c(vC)

= (1 + α)c(Sj) + βc(x∗)−
∑

C∈L(Sj)

(
α+ β(2− x∗(C))

)
c(Sj ∩ C)

+
∑

C∈N\L(Sj)
max

{
0, β(2− x∗(C))− α

}
c(vC), (7.4)

since α = 1− 2β.

7.4 Average cost

It will be useful to index the trees by a continuum and define Sσ for all 0 < σ ≤ 1,
where Sσ = Sj if

∑j−1
i=1 pi < σ ≤

∑j
i=1 pi.

Let h : [0, 1]→ [0, 1] be an integrable function to be chosen later. The weight of the
tour resulting from Sσ will be proportional to 1 + h(σ). Also α and β depend on σ,
namely as follows:

ασ = 1− h(σ)
1 + h(σ) and βσ = h(σ)

1 + h(σ) .

Note that indeed 0 ≤ βσ ≤ 1
2 and ασ + 2βσ = 1 for all σ.

Moreover, we set

vC := 1∫ z
0
(
1− h(σ) + zh(σ)

)
dσ

∫ z

0

(
1− h(σ) + zh(σ)

)
· χSσ∩C dσ,

where we abbreviated z := 2 − x∗(C). Then indeed vC(C) = 1 for all C ∈ N , and
vC(e) = 0 unless e is lonely at C.

We will now show under which condition the last two terms in (7.4) vanish:

100

7.4. AVERAGE COST

Lemma 7.4. Suppose∫ 1

z
max

{
0, h(σ)− 1 + zh(σ)

}
dσ +

∫ z

0

(
h(σ)− 1− zh(σ)

)
dσ ≤ 0 (7.5)

for all z ∈ [0, 1]. Then

∫ 1

0
(1 + h(σ))

(
−

∑
C∈L(Sσ)

(
ασ + βσ(2− x∗(C))

)
c(Sσ ∩ C)

+
∑

C∈N\L(Sj)
max

{
0, βσ(2− x∗(C))− ασ

}
c(vC)

)
dσ

(7.6)

is nonpositive.

Proof. Again writing z := 2− x∗(C), using

(1 + h(σ))
(
ασ + βσ(2− x∗(C))

)
= 1− h(σ) + zh(σ)

and

(1 + h(σ)) max
{
0, βσ(2− x∗(C))− ασ

}
= max

{
0, h(σ)− 1 + zh(σ)

}
,

and changing the order of summation, we can rewrite (7.6) as

−
∑
C∈N

∫ z

0

(
1− h(σ) + zh(σ)

)
c(Sσ ∩ C)dσ

+
∑
C∈N

∫ 1

z
max

{
0, h(σ)− 1 + zh(σ)

}
c(vC)dσ.

Hence (plugging in the definition of vC) and using 1−h(σ) + z ·h(σ) > 0, it suffices
to show that, for every z ∈ (0, 1],

−1 + 1∫ z
0
(
1− h(σ) + zh(σ)

)
dσ

∫ 1

z
max

{
0, h(σ)− 1 + zh(σ)

}
dσ ≤ 0.

which follows directly from (7.5).

Lemma 7.5. Let h : [0, 1]→ [0, 1] be an integrable function with (7.5) for all z ∈ [0, 1].
Then the Best-of-many Christofides algorithm with lonely edge deletion computes a
solution of cost at most ρ∗ · c(x∗), where

ρ∗ = 1 + 1
1 +

∫ 1
0 h(σ) dσ

.

101

CHAPTER 7. INTEGRALITY RATIO FOR S-T -PATH TSP

Proof. Combining (7.4) and Lemma 7.4, we get the following upper bound on the total
cost of the Best-of-many Christofides algorithm with lonely edge deletion:

1∫ 1
0 (1+h(σ)) dσ

∫ 1

0
(1 + h(σ))

(
βσc(x∗) + (1 + ασ)c(Sσ)

)
dσ

= 1∫ 1
0 (1+h(σ)) dσ

∫ 1

0

(
h(σ)c(x∗) + 2c(Sσ)

)
dσ

= 1∫ 1
0 (1+h(σ)) dσ

(∫ 1

0
h(σ)dσ + 2

)
c(x∗)

= 1∫ 1
0 (1+h(σ)) dσ

(∫ 1

0
(1 + h(σ))dσ + 1

)
c(x∗)

=
(

1 + 1
1+
∫ 1

0 h(σ) dσ

)
c(x∗)

Now we can prove the main result:

Theorem 7.6. Let
ρ∗ := 1 + 1

1 + 4 ln(5
4)
.

Then the Best-of-many Christofides algorithm with lonely edge deletion computes a
solution of cost at most ρ∗ · c(x∗).

Proof. We set h(σ) = 4
4+σ for 0 ≤ σ ≤ 1. Then

∫ 1
0

4
4+σ dσ = 4 ln(5

4). We need to check
(7.5).

Note that h(σ)−1 + zh(σ) > 0 if and only if 4
4+σ = h(σ) > 1

1+z , i.e., σ < 4z. Hence
to prove (7.5) it suffices to show∫ 4z

z

(
h(σ)− 1 + zh(σ)

)
dσ +

∫ z

0

(
h(σ)− 1− zh(σ)

)
dσ ≤ 0

The left-hand side is

4(1 + z)(ln(4z + 4)− ln(z + 4)) + 4(1− z)(ln(z + 4)− ln(4))− 4z,

so (dividing by 4) we need to check

(1 + z) ln 4z+4
z+4 + (1− z) ln z+4

4 − z ≤ 0.

This is true for z = 0, moreover the derivative of the left-hand side is

ln 16(z+1)
(z+4)2 − 2z

z+4 .

Using ln x ≤ x− 1 for all x > 0 this is at most

16(z+1)
(z+4)2 − 1− 2z

z+4 = 16(z+1)−(z+4)2−2z(z+4)
(z+4)2 = −3z2

(z+4)2 ≤ 0.

102

7.4. AVERAGE COST

Theorem 7.6 immediately implies that the integrality ratio of (7.1) is at most ρ∗.
Because the LP relaxations with and without degree constraints are equivalent, also
the integrality ratio of (TSPP LP) is at most ρ∗. Note that ρ∗ < 1.5284, which is
strictly less than the bound 3

2 + 1
34 of Sebő and van Zuylen [SvZ19]. We see that (7.5)

is tight only for z = 0 with our choice of h. A better choice would lead to a better
upper bound on the integrality ratio. However, we do not know how to find the best
h. Numerical computations indicate that the best value that can be obtained in this
way is approximately 1.5273.

103

CHAPTER 7. INTEGRALITY RATIO FOR S-T -PATH TSP

104

Chapter 8

Beating the integrality ratio for
s-t-tours in graphs

In this chapter, we characterize instances of the s-t-path TSP (with many vertices)
where the ratio OPT

LP of the length OPT of an optimum s-t-tour and the optimum value
LP of (Graph TSPP LP) is close to the integrality ratio 3

2 . We show that the classical
example of such a worst case instance is “essentially the only such example”.

Moreover, we prove that the s-t-path graph TSP has a 1.497-approximation algo-
rithm, achieving for the first time an approximation ratio below the integrality ratio
of (Graph TSPP LP).

Most parts of this chapter have been previously published in [TV18], which is joint
work with Jens Vygen.

8.1 Introduction and preliminaries

Almost all the algorithms for the graph TSP, the ATSP and their path versions work
with the classical linear programming relaxations, with an LP solution as starting point
of the algorithm or at least for the analysis. Although these LPs have been studied
intensively for decades, both for the symmetric and the asymmetric TSP, we still do
not know their integrality ratios. For the (symmetric) s-t-path TSP we are quite close:
the integrality ratio is between 1.5 and 1.5284 (cf. Chapter 7), and in the s-t-path
graph TSP, it is indeed 3

2 , and an approximation guarantee matching the integrality
ratio is known [SV14].

In this chapter we go below this threshold: we show that there is a 1.497-approxi-
mation algorithm for the s-t-path TSP. Moreover, we show that all instances with OPT

LP
close to 3

2 (and many vertices) are very similar to the classical examples (Figure 6.2).
Our proof is based on the 3

2 -approximation algorithm by Sebő and Vygen [SV14], but
we introduce several new techniques. These include a new type of ear-decomposition,
an enhanced ear induction that reveals a novel connection to matroid union, and a
stronger lower bound.

We give an upper bound on the integrality ratio that depends on the distance of
the vertices s and t. This upper bound is equal to 3

2 only if the distance of s and t
equals half the length of an optimum s-t-tour and decreases for smaller s-t-distance.
Also if the distance of s and t is larger half the length of an optimum s-t-tour, the

105

CHAPTER 8. S-T -PATH GRAPH TSP

integrality ratio is less than 3
2 . This is much easier to prove and can show by a well-

known argument; see Section 8.7. Our proof of the upper bound on the integrality ratio
also yields a polynomial-time algorithm that computes an s-t-tour with significantly less
than 3

2OPT edges if the distance of s and t is relatively small.
In order to handle instances with large distance of s and t, we use a result from

[Tra17] that reduces the s-t-path graph TSP to the special case where s and t have
distance at most

(
1
3 + ε

)
·OPT. We prove this reduction via a dynamic programming

technique that will be further developed in Chapter 9, where we will prove an even
better approximation ratio for the s-t-path graph TSP.

The rest of this section is organized as follows. We start with some short prelim-
inaries on T -tours (Section 8.1.1) and ear-decompositions (Section 8.1.2). Then we
explain a simple way of constructing s-t-tours from ear-decompositions using a tech-
nique called ear-induction (Section 8.1.3) and give an overview of the approach by
Sebő and Vygen [SV14] (Section 8.1.4). In Section 8.1.5, we introduce the new notion
of well-oriented ear-decompositions. Finally, in Section 8.1.6 we provide an overview of
our new algorithm and outline the remaining part of this chapter.

8.1.1 Preliminaries on T -tours

A T -tour in an undirected graph G is a T -join J ⊆ 2E(G) such that (V (G), J) is
connected; here 2E(G) denotes the multi-set of edges containing two copies of every
edge of G. We allow taking two copies of an edge, but more than two are never
useful. Henceforth we speak of edge sets and graphs even if they contain parallel edges.
Moreover, in this chapter we will only consider undirected graphs and do not state this
explicitly.

The notion of T -tours generalizes s-t-tours: an s-t-tour is a T -tour for T = {s}4{t}.
It is easy to see that a T -tour exists if and only if G is connected and |T | is even. As
an obvious lower bound, note that every T -tour has at least n − 1 edges (for any T);
here and throughout this chapter we denote n := |V (G)|.

The T -tour problem (in graphs or in general) has been introduced by Sebő and
Vygen [SV14]; they gave a 3

2 -approximation algorithm for finding a smallest T -tour in
a graph, and a 7

5 -approximation algorithm if T = ∅. Sebő [Seb13] showed an approx-
imation ratio of 8

5 for finding a minimum-weight T -tour in a weighted graph. These
approximation ratios have not been improved since then. Section 8.2 of this chapter
works for general T -tours, but later parts do not seem to extend beyond constant |T |.
In particular, the reduction technique in Section 8.8 fails to generalize.

For a graph G and a set T ⊆ V (G) with |T | even and a setW ⊆ V (G), let (G,T)/W
be the instance of the T -tour problem arising by contraction of W . More precisely, we
define (G,T)/W to be the instance of the T -tour problem where we are looking for
a T ′-tour in the graph G/W and T ′ contains all elements of T \W and contains in
addition the vertex arising from the contraction if |T ∩W | is odd.

Without loss of generality we may assume that the input graph is 2-vertex-connected
because if G = G[W1]∪G[W2], where W1 and W2 share a single vertex, then it suffices
to solve the instances (G,T)/W1 and (G,T)/W2 (cf. [SV14]).

106

8.1. INTRODUCTION AND PRELIMINARIES

8.1.2 Preliminaries on ear-decompositions

For a finite sequence P0, P1, . . . , Pl of graphs, let Vi = V (P0) ∪ V (P1) ∪ · · · ∪ V (Pi)
and Gi = (Vi, E(P1) ∪ · · · ∪ E(Pi)). If P0 has a single vertex, and each Pi is either a
circuit with |V (Pi)∩Vi−1| = 1 or a path such that exactly its endpoints belong to Vi−1
(i = 1, . . . , l), then P0, P1, . . . , Pl is an ear-decomposition of Gl.

The graphs P1, . . . , Pl are called ears. The vertices of V (Pi) ∩ Vi−1 are called end-
points of Pi, the other vertices of Pi are its internal vertices. We denote the set of
internal vertices of Pi by in(Pi). We always have |in(Pi)| = |E(Pi)| − 1. An ear is
open if it is P1 or it is a path. Other ears are closed. If all ears are open, the ear-
decomposition is open. An ear is called an r-ear if it has exactly r edges. We denote
the number of r-ears of a fixed ear-decomposition by kr. The 1-ears are also called
trivial ears; they have no internal vertices. A short ear is a 2-ear or 3-ear. Ears with
more than three edges are called long. An ear is odd if the number of its edges is odd,
otherwise even.

Figure 8.1(a) shows an ear-decomposition with P0 colored black, a 6-ear P1 colored
brown, a closed 6-ear P2 colored blue, an open 5-ear P3 colored green, an open 6-ear
colored cyan, and four 2-ears (gray, dotted). Every vertex is an internal vertex of
exactly one ear (except for the vertex of P0) and is colored accordingly in this figure.

We say that an ear P is attached to an ear Q (at v) if v is an internal vertex of Q
and an endpoint of P . A vertex is pendant if it is not an endpoint of any nontrivial
ear, and an ear is pendant if it is nontrivial and all its internal vertices are pendant.
Having a fixed vertex set T , we call an ear P clean if it is short and |T ∩ in(P)| = ∅,
i.e. none of its internal vertices is contained in T .

8.1.3 Simple ear induction

The following lemma tells how to construct a T -tour by considering the nontrivial
ears in reverse order. For any nontrivial ear Pi, note that Gi/Vi−1 is a circuit with
|E(Gi/Vi−1)| = |E(Pi)|.

Lemma 8.1 (Sebő and Vygen [SV14]). Let P be a circuit and TP ⊆ V (P) with |TP |
even. Then there exists a TP -join F ⊆ 2E(P) such that the graph (V (P), F) is con-
nected and

|F | ≤ 3
2(|E(P)| − 1)− 1

2 + γ, (8.1)

where γ = 1 if |E(P)| ≤ 3 and TP = ∅, and γ = 0 otherwise.

Proof. If TP = ∅, then F = E(P) does the job because |E(P)| − 1 ≥ 3 or γ = 1.
Let now TP 6= ∅. The vertices of TP subdivide P into subpaths. Color these paths

alternatingly red and blue. Let ER and EB denote the set of edges of red and blue
subpaths, respectively. Without loss of generality |ER| ≤ |EB|. Then we take two
copies of each edge in ER and one copy of each edge in EB. Note that ER 6= ∅, and
remove one pair of parallel edges. This yields F ⊆ 2E(P) with

|F | = |EB|+ 2|ER| − 2 ≤ 3
2 |E(P)| − 2 = 3

2(|E(P)| − 1)− 1
2 .

This can be used to construct a T -tour as follows (see Figure 8.1 (b)). Let P1, . . . , Pl
be the nontrivial ears of an ear-decomposition of G (trivial ears can be deleted before-
hand). Starting with Tl := T and F := ∅, we do the following for i = l, . . . , 1. Apply

107

CHAPTER 8. S-T -PATH GRAPH TSP

(a)

P0

P1

P2 P3

P4 (b)

(c) (d)

Figure 8.1: (a) An ear-decomposition with four non-pendant long ears P1, . . . , P4 and
four pendant 2-ears (gray, dotted). No trivial ears are shown in this picture. (b) Simple
ear induction for T = ∅: for the four pendant ears we can just take all their edges. Then we
deal with P4, for this we contract the gray set and require odd parity at the middle vertex
of P4. One possible solution is shown in cyan. The set T3 of vertices of vertices whose
degree has the wrong parity after this step is indicated by circles; they are all contained
in the gray set. (c) A spanning tree S containing the forest of short ears. Circles denote
the set TS of vertices whose degree has the wrong parity in S. (d) Parity correction by ear
induction in the long ears constructs a TS-join. The disjoint union of the edge sets in (c)
and (d) is a tour.

108

8.1. INTRODUCTION AND PRELIMINARIES

Lemma 8.1 to (Gi, Ti)/Vi−1 and obtain a set Fi ⊆ 2E(Pi). Set F := F ∪ Fi and
Ti−1 := Ti 4 odd(Fi). Then the union of Fi and any Ti−1-tour in Gi−1 is a Ti-tour in
Gi. By induction, F1

.
∪ . . .

.
∪ Fl is a T -tour in G. Since

|Fi| ≤ 3
2(|E(Pi)| − 1)− 1

2 + γi = 3
2 |in(Pi)| − 1

2 + γi,

this T -tour has at most 3
2(n− 1) edges if γi = 0 for at least half of the nontrivial ears,

in particular if most ears are long.

8.1.4 Outline of the Sebő–Vygen algorithm

The previously best approximation algorithm for the s-t-path graph TSP, due to Sebő
and Vygen [SV14], is the basis of our work. Let us briefly review this algorithm before
we explain how to improve on it. The previous section shows already why short ears
(of length 2 and 3) need special attention.

The first step is to compute a nice ear-decomposition: one with minimum number
of even ears, in which all short ears are pendant, and internal vertices of distinct short
ears are non-adjacent. We will present a strengthening of this in Section 8.3.

The second step is to re-design the short ears so that as many of them as possible are
part of a forest (i.e., help connecting vertices that are not internal vertices of short ears).
Re-designing a short ear means changing its endpoints by replacing its first and/or last
edge by an edge of a trivial ear. This can be reduced to a matroid intersection problem
(with a graphic matroid and a partition matroid). For every short ear that is not part
of this forest, we can raise the lower bound. We will present a refinement of this step
in Section 8.4.

Finally, two simple algorithms are applied to the resulting ear-decomposition. If
at least half of the nontrivial ears are long, simple ear induction (Lemma 8.1) yields a
short tour. Otherwise one can obtain a cheap tour by a similar approach as Christofides’
algorithm, computing a spanning tree and doing parity correction: first the forest of
short ears is completed to a spanning tree without using trivial ears; see Figure 8.1 (c).
Then the internal vertices of short ears in the forest (which are pendant) have still degree
two. Therefore it is sufficient to do parity correction in the subgraph consisting of the
other non-trivial ears. If the forest contains many short ears, this subgraph is relatively
small. One can show that then parity correction is cheap, using a similar ear induction
as in Section 8.1.3 (but without the connectivity requirement); see Figure 8.1 (d).

In this chapter we will combine the two algorithms in the last step to a single new
step, which will be described in Section 8.2.

The critical case, when the Sebő–Vygen algorithm has no better approximation
ratio than 3

2 , is when (essentially) all ears are even (note that we save 1
2 more for odd

ears in (8.1) by rounding down the right-hand side), half of the ears are 2-ears, and the
2-ears form a forest.

8.1.5 Well-oriented ear-decompositions

Given an ear-decomposition, let F be a subset of the pendant ears that form a forest.
Let ear(v) denote the index of the ear that contains v as an internal vertex. A rooted
orientation of F is an orientation of the edges of the ears in F such that each connected
component is an arborescence whose root is a vertex v with ear(v) minimum. Then

109

CHAPTER 8. S-T -PATH GRAPH TSP

every ear of F is a directed path. A well-oriented ear-decomposition consists of an
ear-decomposition and a rooted orientation of a subset of pendant ears that form a
forest. See Figure 8.4 (a) for an example; the dotted, gray 2-ears are pendant and have
a rooted orientation.

We denote by r(w) the root of the connected component of the branching of oriented
edges that contains w. We say that an ear Q enters another ear P if Q ∈ F and there
is an oriented edge (v, w) of Q such that w ∈ in(P). If any ear enters P , we call P
entered; other nontrivial ears are called non-entered. In particular, all oriented ears are
pendant and hence non-entered.

8.1.6 Summary of new techniques and structure of this chapter

First, we will show that we can compute an s-t-tour that is short with respect to the
LP value in the case where the distance of the vertices s and t is relatively small; this
proof will constitute most of this chapter (Section 8.2 – Section 8.6). Then we use
this to characterize instances with OPT

LP close to 3
2 (Section 8.7). Finally, we reduce the

s-t-path graph TSP to the special case where the distance of s and t is relatively small
and obtain a 1.497-approximation algorithm (Section 8.8).

Although our proof can be viewed as a refined version of [SV14], we need many new
ideas, some of which may be of independent interest or have further applications.

In Section 8.2, we describe a more sophisticated ear induction, and we assume that
we have a well-oriented ear-decomposition in which the oriented ears are precisely the
short ears. In particular, we assume the short ears to be pendant and form a forest.
If we take all edges of the short ears before doing ear-induction on the long ears, some
internal vertices of the long ears will already be connected via short ears. To use
this connectivity service of the short ears, we exploit their orientation and reveal a
novel connection to matroid union (Section 8.2.2). This saves in many cases but does
not always help. Therefore, we also propose a second new way to benefit from the
2-ears: instead of taking a 2-ear as it is, one can also double one edge and discard
the other, changing the parity at the endpoints of the 2-ear. Combining those two
different possibilities of exploiting the short ears, either for connectivity or for parity,
we obtain the main result of Section 8.2. Our ear induction algorithm saves at least
1
26 for every non-entered ear, compared to 3

2(n − 1), unless most of the long ears are
4-ears (Theorem 8.22).

Therefore, in addition to the properties of short ears, we need an ear-decomposition
with extra properties of 4-ears. In Section 8.3 we show that one can always obtain such
an ear-decomposition in polynomial time. In particular there will be only four types of
4-ears: pendant, blocked (with a closed ear attached to it), horizontal, or vertical (to
be defined later), and at most one third of the long ears can be blocked 4-ears.

Then, in Section 8.4 we re-design short ears but also vertical 4-ears. Again we can
use matroid intersection: one matroid is again graphic, but the other one is now a
laminar matroid (instead of a partition matroid as in [SV14]). We can raise the lower
bound not only for short ears that are not part of the forest, but also for horizontal
and vertical 4-ears.

By this we remove the assumptions that the short ears form a forest and there are
not too many 4-ears. See Section 8.5. We are done unless there are only few non-entered
ears. Then there are few nontrivial ears at all because every entered ear is entered by
a non-entered (short) ear. But then it is quite easy to obtain a better approximation

110

8.1. INTRODUCTION AND PRELIMINARIES

ratio than 3
2 if in addition there is a short s-t-path P in G. To see this, let G′ result from

G by deleting the trivial ears (note that |E(G′)| is n− 1 plus the number of nontrivial
ears), and let the vector x ∈ RE(G) be the sum of the incidence vectors of P and G′,
both multiplied by 1

3 . Then one can easily show that x is in the convex hull of T -joins
for T = {s} 4 {t} 4 odd(E(G′)), and hence adding a minimum T -join to G′ results in
an s-t-tour with 4

3 |E(G′)| + 1
3 |E(P)| edges. One can do a bit better by applying the

removable-pairing technique of Mömke and Svensson [MS16] in a slightly novel way;
see Section 8.6. We prove a variant of their lemma for well-oriented ear-decompositions
that works without the 2-vertex-connectivity assumption.

At this point we have an algorithm that has an approximation ratio better than 3
2

if the distance of s and t is relatively small compared to the length OPT of an optimum
s-t-tour. Moreover, our algorithm computes a solution of cost significantly less that
3
2 · LP if the distance of s and t is small not only compared to OPT, but also to LP.
We use this to prove necessary conditions for instances with a large integrality ratio
OPT
LP ; see Section 8.7.

In order to obtain our 1.497-approximation algorithm, the only remaining case is
when the distance from s to t in G is large, i.e. close to OPT

2 . To handle this case we
use the following general statement from [Tra17] about approximation algorithms for
the s-t-path TSP, not only applying to the graph case: for finding an α-approximation
algorithm for some constant α > 1, it is sufficient to consider the special case where the
distance of the vertices s and t is at most 1

3 + ε times the cost of an optimum solution
for some arbitrary constant ε > 0. The proof of this reduction uses recursive dynamic
programming similar to Blum et al. [BCK+07] and Traub and Vygen [TV19a].

The case in which our ear-decomposition has only very few non-entered ears is the
only case in which we do not compare our solution to the optimum LP value but to
the optimum s-t-tour. Here, the dynamic programming algorithm allows us to bound
the number of edges of our s-t-tour with respect to OPT (rather than the LP value),
which we need to obtain an approximation ratio below the integrality ratio of the LP.

The different sections of this chapter can be read mostly independently of each other.
Later sections make use only of the main result of previous sections; summarized in one
theorem each: Theorem 8.22 states the result of our ear induction algorithm described
in Section 8.2, Theorem 8.24 states the properties of the initial ear-decomposition that
we construct in Section 8.3, and Theorem 8.34 gives the optimized and well-oriented
ear-decomposition and the raised lower bound, as shown in Section 8.4. The rest of
the chapter will be relatively short. In Section 8.5 we combine the previous sections
to obtain a good bound if we have many non-entered ears in our well-oriented ear-
decomposition (Theorem 8.35). In Section 8.6 we use the removable-pairing technique
for the case where there are few non-entered ears and the distance of s and t is small.
Combining these results we then obtain a 1.497-approximation on instances in which
the distance of s and t is small (Theorem 8.38).

In Section 8.7, we characterize instances with integrality ratio close to 3
2 (and many

vertices). Finally, in Section 8.8, we give a 1.497-approximation for the general case
of the s-t-path graph TSP. Here we use dynamic programming to reduce to the case
where the distance of s and t is small (Theorem 8.42).

Let us review the overall 1.497-approximation algorithm: first use the reduction
to the case where s and t have small distance (Theorem 8.42). To solve this case,

111

CHAPTER 8. S-T -PATH GRAPH TSP

first compute an initial ear-decomposition as in Theorem 8.24. Based on this, compute
an optimized and well-oriented ear-decomposition as in Theorem 8.34. If there are
many non-entered ears, we get a short tour by enhanced ear induction (Theorem 8.22).
If there are few non-entered ears, we obtain a short tour by the removable-pairing
technique; see Lemma 8.37. Our presentation follows a different order because each
section is motivated by the previous ones.

8.2 Enhanced ear induction

8.2.1 Outline of our ear induction algorithm

In this section we describe an ear induction algorithm that computes a T -tour, where
T ⊆ V (G) is a given even-cardinality set. Our goal is to obtain an upper bound on the
number of edges where we gain some constant amount per non-entered ear, compared
to 3

2(n− 1).
Recall that the clean ears are the short ears P with in(P) ∩ T = ∅. For the entire

Section 8.2 we will assume that we are given a well-oriented ear-decomposition in which
all short ears are clean and the oriented ears are precisely the clean ears. In particular,
the clean ears are all pendant and form a forest. Later (in Section 8.4) we consider the
general case.

Let Gγ = (V (G), Eγ) be the spanning subgraph of G that contains only the edges
of clean ears. Due to the rooted orientation this is a branching. Every connected
component of Gγ will be used either for connectivity or for parity correction. If we
use a connected component of Gγ for connectivity, we add all edges of the component
to our T -tour. However, we can instead use a component C of Gγ consisting of only
2-ears for parity correction as follows. Let T ′ be a set of vertices that are contained in
the component C, but are not internal vertices of short ears (see Figure 8.2). If |T ′|
is even, we can change the parity of exactly the vertices in T ′ by “flipping” the 2-ears
that are part of a T ′-join in C, i.e. we take two copies of one edge instead of one copy
of each of the edges of the “flipped” 2-ears (see Figure 8.2). As a consequence, we can
choose the parity of all vertices that have an entering clean ear in C and then fix the
parity at the root of the component C such that the set T ′ of vertices where we need to
change the parity of the degree has even cardinality. We can also flip 3-ears, but then
we need four instead of three edges.

If we could bound the number of edges that we need during ear induction (as in
Section 8.1.3) for every ear P by 3

2 |in(P)|, we would obtain a T -tour with at most
3
2(n−1) edges. Lemma 8.1 yields an even better bound for long ears (of length at least
four); so we can gain some constant amount per long ear. However, for (clean) 2-ears
we need two edges, which is 1

2 more than 3
2 |in(P)|, and also for (clean) 3-ears we can

not improve over 3
2 |in(P)| = 3. To make up for this, we would like to improve over

3
2 |in(P)| for long ears by some constant amount for each short (oriented) ear entering
the ear P . In order to gain from a short ear entering P at some vertex w, we then
either exploit that the clean ears connect w to the root r(w) (if the component of Gγ
containing w is used for connectivity) or make use of the fact that we can choose the
parity of the vertex w (by possibly changing the parity at r(w)).

112

8.2. ENHANCED EAR INDUCTION

Figure 8.2: Using 2-ears for parity correction: The filled squares denote internal vertices
of long ears, the circles internal vertices of 2-ears. Edges of long ears and the orientation of
short ears are not shown here. The vertex set T ′ is shown in green with frames. The thick
blue edges (in the left picture) show a T ′-join in this component of Gγ . The right picture
shows the same component after “flipping” the T ′-join. Compared to the left picture, the
parity of the degree is changed precisely for the vertices in T ′ .

8.2.2 Using clean ears for connectivity via matroid union

In this section we use the matroid union theorem (Theorem 2.14) to prove our main
lemma for enhanced ear induction. We obtain a better bound than Lemma 8.1 in many
cases by making use of the contribution of the clean ears to connectivity. In the proof
we will need a statement about matroids that follows from the matroid union theorem.
Recall the contraction operation in matroids: ifM = (E,F) is a matroid and F ∈ F
is an independent set, thenM/F := (E \ F, {Z ⊆ E \ F : Z ∪ F ∈ F}) is well-known
to be a matroid.

Lemma 8.2. LetM = (E,F) be a matroid with rank function r, and a partition of E
into sets R, B, and U (red, blue, and uncolored). Then there is a partition of U into
sets X and Y such that r(R ∪X) + r(B ∪ Y) ≥ r(R ∪B) + r(U). Such a partition can
be found in polynomial time.

Proof. Let R′ ⊆ R, B′ ⊆ B, and U ′ ⊆ U such that r(R ∪ B) = r(R′ ∪ B′) = |R′ ∪ B′|
and r(U) = r(U ′) = |U ′|.

For every S ⊆ U ′ we have

|U ′ \ S|+ rM/R′(S) + rM/B′(S) = |U ′ \ S|+ r(S ∪R′)− |R′|+ r(S ∪B′)− |B′|

≥ |U ′| − |S|+ r(S) + r(S ∪R′ ∪B′)− |R′| − |B′|

= |U ′|+ r(S ∪R′ ∪B′)− |R′ ∪B′|

≥ |U ′|.

We used submodularity of r in the first inequality. By the matroid union theorem
([Edm68], Theorem 2.14), the minimum of the left-hand side over all S ⊆ U ′ is the
rank of U ′ in the union of M/R′ and M/B′ (which is also a matroid). Hence there
is a partition U ′ = X ′

.
∪ Y ′ such that X ′ is independent in M/R′ and Y ′ is indepen-

dent in M/B′. Such a partition can be found by a matroid union algorithm; see e.g.
Section 42.3 in Schrijver’s book [Sch03].

113

CHAPTER 8. S-T -PATH GRAPH TSP

Then any partition U = X
.
∪ Y with X ′ ⊆ X and Y ′ ⊆ Y satisfies

r(R ∪X) + r(B ∪ Y) ≥ r(R′ ∪X ′) + r(B′ ∪ Y ′)
= |X ′|+ |R′|+ |Y ′|+ |B′|
= |R′ ∪B′|+ |U ′|
= r(R ∪B) + r(U).

The special case when R ∪ B and U are bases of M is a well-known theorem by
Brylawski [Bry73], Greene [Gre73], and Woodall [Woo74]; see (42.13) in Schrijver’s
book [Sch03].

We apply the lemma in the following context:

Lemma 8.3. Let (V,E) be a graph (possibly with parallel edges) and a partition of E
into nonempty sets R,B,U such that (V,U) is a forest and (V,R∪B) is a circuit. Then
there is a partition of U into sets UR, UB, and Z such that (V,R ∪ UR) is a forest,
(V,B ∪ UB) is a forest, and Z contains at most one element. Such a partition can be
found in polynomial time.

Proof. Apply Lemma 8.2 to the cycle matroid of (V,E); for its rank function r we
have r(R ∪ B) + r(U) = |R| + |B| + |U | − 1. We get a partition U = X

.
∪ Y with

r(R ∪X) + r(B ∪ Y) ≥ |R ∪X|+ |B ∪ Y | − 1.
If r(R ∪ X) = |R ∪ X|, set UR := X. If r(R ∪ X) = |R ∪ X| − 1, there is an

element z ∈ X such that R ∪ (X \ {z}) is independent because (V,R) is a forest; then
set UR := X \ {z}.

Set UB analogously, and Z := U \ (UR ∪ UB).

An antipodal pair in a circuit P is a set of two vertices of P that have distance
|E(P)|

2 in P . Obviously, only even circuits have antipodal pairs. We use the following
lemma to exploit the connectivity service of clean ears during ear induction. The clean
ears entering P are represented by the edge set U in this lemma. A subset C of U will
be used for connectivity.

Lemma 8.4. Let P be a circuit with at least four edges and TP ⊆ V (P) with |TP | even.
Let (V (P), U) be a forest. Then one of the following is true:

(i) |E(P)| = 4 and |U | = 1 and TP = ∅;

(ii) TP is an antipodal pair, and U consists of a single edge with endpoints TP ;

(iii) There exists a TP -join F ⊆ 2E(P) and a subset C ⊆ U such that the graph
(V (P), F ∪ C) is connected,

|F | ≤ 3
2(|E(P)| − 1)− 1

2 |U | −
1
2 max{1, |U | − 1}, (8.2)

and |C| ≤ 2
(

3
2(|E(P)| − 1)− 1

2 |U | − |F |
)
. Such an F can be found in polynomial

time.

114

8.2. ENHANCED EAR INDUCTION

(a) (b) (c) (d)

Figure 8.3: Enhanced ear induction in Lemma 8.4: (a) ear P is drawn with solid lines,
dotted lines indicate the edges in U , black squares are elements of V (P) \TP ; black circles
are elements of TP ; (b) coloring the edges of U red and blue; one edge remains uncolored;
(c) the red solution FR; (d) the blue solution FB .

Proof. Similarly to the proof of Lemma 8.1, we distinguish two cases.

Case 1: TP 6= ∅.

The vertices of TP subdivide P into subpaths, alternatingly colored red and blue. Let
ER and EB denote the set of edges of red and blue subpaths, respectively. Let TR :=
odd(ER) and TB := odd(EB) be the set of vertices having odd degree in (V (P), ER)
and (V (P), EB), respectively. Note that {ER, EB} is a partition of E(P), both sets
are nonempty, and TR = TB = TP . Color the edges in U red and blue according to
Lemma 8.3; one edge may remain uncolored. Let C be the set of colored edges in U .
See Figure 8.3.

We consider two solutions: To construct FR, we take ER plus two copies of some
edges of EB. Since ER plus the red elements of U form a forest, the number of blue
edges needed for connectivity (with two copies each) is at most |EB| − 1 minus the
number of red elements of U . To construct FB, we exchange the roles of red and blue.

The smaller of the two has at most

1
2(3|E(P)| − 4− 2|C|) ≤ 1

2(3|E(P)| − 4− (|U | − 1)− |C|)

= 3
2(|E(P)| − 1)− 1

2 |U | −
1
2 |C|

edges. Since |C| ≥ |U | − 1, we are done if |U | > 1 or |U | = |C| = 1.
Now let |U | ≤ 1. If U = ∅, then the smaller of the sets FB and FR has size at most

1
2(3|E(P)| − 4) = 3

2(|E(P)| − 1)− 1
2 .

Now consider the remaining case that |U | = 1 and C = ∅, i.e., the only edge in U
cannot be colored. This means that the endpoints of this edge are connected by a path
in ER and a path in EB, and hence TP consists of exactly these two elements. If (ii)
does not hold, TP is not an antipodal pair, and hence |ER| 6= |EB|. Then the smaller
of the sets FB and FR has size at most

|E(P)|+ min{|ER|, |EB|} − 2 ≤ 3
2 |E(P)| − 1

2 − 2

= 3
2(|E(P)| − 1)− 1

2 |U | −
1
2 .

115

CHAPTER 8. S-T -PATH GRAPH TSP

Case 2: TP = ∅.

We can set F = E(P) and C = ∅, but instead we can also set C = U and take all but
|U |+ 1 edges, each with two copies, making 2(|E(P)| − |U | − 1) edges. The smaller of
the two choices for F has at most

1
2(3|E(P)| − 2|U | − 2) = 3

2(|E(P)| − 1)− 1
2 |U | −

1
2(|U | − 1)

edges. If |U | > 1, this implies (8.2). If |U | > 1 and both solutions have the same
number of edges, F = E(P) and C = ∅ fulfills (iii). If |U | > 1 and one of the two
solutions for F has fewer edges, the smaller of the two choices for F has at most

1
2(3|E(P)| − 2|U | − 3) = 3

2(|E(P)| − 1)− 1
2 |U | −

1
2 |U |

edges. Then we also have

|C| ≤ |U | = 2
(

3
2(|E(P)| − 1)− 1

2 |U | − |F |
)
.

If |U | ≤ 1, we have (i) or |E(P)| − 1 ≥ 3 + |U |. In the latter case,

|E(P)| ≤ 3
2(|E(P)| − 1)− 1

2 |U | −
1
2 .

Hence, we can set F = E(P) and C = ∅.

8.2.3 Bad, special, and good ears

In this section we describe our ear induction algorithm that makes use of the short ears
for connectivity. We may assume that the short ears come last in the ear-decomposition
because they are all pendant. Let P1, . . . , Pl be the long ears of our ear-decomposition,
i.e., the ears of length at least four. Recall that Gi is the graph composed of the first i
ears, and Vi denotes its vertex set.

Roughly speaking, a long ear is good if we can apply Lemma 8.4 (iii) to it. Let us
consider the exceptions. We again refer to our orientation of the clean ears.

Definition 8.5. Call a pair (P, TP) for an ear P and a set TP ⊆ in(P) a bad pair
if exactly one clean ear Q enters P , |E(P)| is even and P fulfills one of the following
properties:

(a) |E(P)| = 4 and TP = ∅,

(b) |E(P)| > 4, Q enters P at its middle internal vertex w, TP = {w}, and r(w) is
not an internal vertex of P .

Definition 8.6. Let P be an even ear with at least six edges such that exactly one clean
ear Q enters P . Denote by w the internal vertex of P where Q enters P . If r(w) ∈ in(P)
and if r(w) and w have distance |E(P)|

2 in P , we call the pair (P, {r(w), w}) special.
Call a pair (P, TP) for a long ear P and a set TP ⊆ in(P) a good pair if it is neither

bad nor special.

We now describe an algorithm that computes a short T -tour if we have many ears
that are good or special. To this end we first use ear induction to obtain a short T -tour

116

8.2. ENHANCED EAR INDUCTION

if many ears are good and we can thus apply Lemma 8.4 (iii) often. We then show that
we can afterwards improve the resulting T -tour if there are many special ears (cf. the
proof of Lemma 8.11).

For a long ear Pi (with i ∈ {1, . . . , l}) let hi denote the number of clean ears entering
Pi. For a multi-set F ⊆ 2E(Pi) let

gaini(F) := 3
2 |in(Pi)| − 1

2hi − |F |.

Lemma 8.7. Let Fi ⊆ 2E(Pi) be a multi-set for every i = 1, . . . l. Then

|Eγ |+
l∑

i=1
|Fi| = 3

2(n− 1)− 1
2k3 −

l∑
i=1

gaini(Fi).

Proof.

|Eγ |+
l∑

i=1
|Fi| = 2 · k2 + 3 · k3 +

l∑
i=1
|Fi|

= 2 · k2 + 3 · k3 +
l∑

i=1

(
3
2 |in(Pi)| − 1

2hi − gaini(Fi)
)

=
∑

P short ear

3
2 |in(P)|+ 1

2k2 +
l∑

i=1

(
3
2 |in(Pi)| − 1

2hi
)
−

l∑
i=1

gaini(Fi)

= 3
2(n− 1)− 1

2k3 −
l∑

i=1
gaini(Fi).

For a subset C of the clean ears, let Vγ(C) and Eγ(C) be the union of the vertex
sets and edge sets, respectively, of all connected components of Gγ that contain a clean
ear in C. Let Tl := T 4 odd(Eγ) ⊆ Vl. If we take all the edges of clean ears, then Tl
is the set of vertices for which we still need an odd number of incident edges to obtain
a T -tour. We consider the long ears in reverse order, starting from Pl and apply the
following lemma to obtain a multi-set Fi ⊆ 2E(Pi) and a set Ci of clean ears. The set
Ci contains those clean ears whose connectivity service we use.

Lemma 8.8. Given a set Ti ⊆ Vi with |Ti| even, we can construct a multi-set Fi ⊆
2E(Pi) and a set Ci of clean ears such that

(i) odd(Fi) ∩ in(Pi) = Ti ∩ in(Pi), and

(ii) (Vi ∪ Vγ(Ci), Fi ∪ Eγ(Ci))/Vi−1 is connected, and

(iii) gaini(Fi) ≥ 0, and

(iv) |Ci| ≤ 2 · gaini(Fi).

(v) Moreover, we have:

• if (Pi, Ti ∩ in(Pi)) is good, then gaini(Fi) ≥ 1
2 max{1, hi − 1};

• if (Pi, Ti ∩ in(Pi)) is special, then gaini(Fi) = 0, Ci = ∅, and the two edges
of Pi incident to an endpoint of Pi are contained exactly once in Fi.

117

CHAPTER 8. S-T -PATH GRAPH TSP

With such an Fi we define

Ti−1 := Ti 4 odd(Fi).

Note that Ti−1 ⊆ Vi−1 due to (i). Moreover, since the symmetric difference of two
even-cardinality sets is even, |Ti−1| is even. We call an ear Pi good/special/bad if
(Pi, Ti ∩ in(Pi)) is a good/special/bad pair.

We keep track of the clean ears Ci used for connectivity, since we will later make
other use of the connected components of Gγ that we did not use for connectivity. Some
of those components can be used to help parity correction and save edges in special
ears. This will happen in a post-processing step after ear induction, in the proof of
Lemma 8.11.

Proof of Lemma 8.8: If (Pi, Ti ∩ in(Pi)) is a bad pair, we set Ci := ∅. To obtain Fi we
then apply Lemma 8.1 to (Gi, Ti)/Vi−1. (Then the circuit P is Gi/Vi−1.)

If (Pi, Ti∩ in(Pi)) is special, Ti∩ in(Pi) contains exactly two vertices w, r which have
distance |E(Pi)|

2 in Pi. To construct Fi we take E(Pi), double all edges of the w-r-path in
Pi and remove both copies of one duplicated edge. If Pi is closed, we take the w-r-path
that does not contain the endpoint of Pi. Then |Fi| = 3

2 |in(Pi)| − 1
2 = 3

2 |in(Pi)| − 1
2hi,

implying gaini(Fi) = 0. See the brown ear in Figure 8.4 (b) for an example.
If (Pi, Ti ∩ in(Pi)) is good, we will apply Lemma 8.4. To this end, let (P, TP) be the

instance (Gi, Ti)/Vi−1. (Then again, the circuit P is Gi/Vi−1.) We now define the set
U : Let Q1, . . . , Qh be the clean ears entering internal vertices w1, . . . , wh of Pi.

We then set U to be the set of edges resulting from {{r(w1), w1}, . . . , {r(wh), wh}}
by contracting Vi−1. Note that the vertex set of the circuit P consists of in(Pi) and
the vertex arising from the contraction of Vi−1. Since the vertices r(w1), . . . , r(wh) are
all contained in Vi (by choice of the orientation of Gγ), all endpoints of the edges in U
are vertices of P = Gi/Vi−1. See Figure 8.4 (c) for an example.

In order to apply Lemma 8.4, we need that (V (P), U) is a forest. We orient every
edge in U resulting from {r(wj), wj} from r(wj) to wj . Since all vertices wj for j ∈
{1, . . . , h} are internal vertices of the ear Pi, the vertex in P arising from the contraction
of Vi−1 has no incoming edge. Since Gγ is a branching, no vertex in P = Gi/Vi−1
has more than one incoming edge in the oriented edge set U . Now suppose (V (P), U)
contains an undirected circuit. Since every vertex in (V (P), U) has at most one entering
(directed) edge, the undirected circuit in (V (P), U) must be also a directed circuit.

Now note that for j, j′ ∈ {1, . . . , h}, the vertex wj ∈ in(Pi) can not be the root
r(wj′) of the connected component of Gγ containing wj′ since wj has an entering clean
ear Qj in Gγ . Thus, a vertex in (V (P), U) that has an entering (directed) edge cannot
have an outgoing edge. This contradicts the fact that (V (P), U) contains a directed
circuit. Hence, (V (P), U) must be a forest and we can apply Lemma 8.4 to obtain a
set F ⊆ 2E(P) = 2E(Pi) and a set C ⊆ U .

We set Fi := F and set Ci := {Qj : {r(wj), wj} ∈ C}. Then by Lemma 8.4, we
have

• odd(Fi) ∩ in(Pi) = Ti ∩ in(Pi),

• gaini(Fi) ≥ 1
2 max{1, hi − 1}, and

• |Ci| = |C| ≤ 2
(

3
2(|E(P)| − 1)− 1

2hi − |Fi|
)

= 2 · gaini(Fi).

118

8.2. ENHANCED EAR INDUCTION

(a) (b)

(c)

(c1) (c2)

(d)

Figure 8.4: An example with T = ∅. (a): ears with oriented short ears (gray, dotted).
(b): result of enhanced ear induction, using short ears for connectivity. The cyan ear is
bad, the green ear is good, the blue ear is bad, and with the choices made as in the figure,
the brown ear is special. (c): Applying Lemma 8.4 to the good (green) ear. (c1) and
(c2) show two different ways to color the edges in U . In (c2) one edge remains uncolored
(although it would be possible to color it). (d): The T -tour after applying the modification
described in the proof of Lemma 8.11 if the coloring as in (c2) is chosen. If the coloring
of the set U is the one shown in (c1), the algorithm described in the proof of Lemma 8.11
won’t modify the T -tour.

119

CHAPTER 8. S-T -PATH GRAPH TSP

It remains to prove that (Vi ∪ Vγ(Ci), Fi ∪ Eγ(Ci))/Vi−1 is connected. Recall that
Vγ(Ci) and Eγ(Ci) contain the vertex set and the edge set, respectively, of all connected
components of Gγ that contain a clean ear in Ci. Hence, for every edge {r(wj), wj} ∈ C,
the set Eγ(Ci) contains the edge set of the r(wj)-wj-path in Gγ . Since by Lemma 8.4,
(V (P), F ∪ C) is connected, also (Vi ∪ Vγ(Ci), Fi ∪ Eγ(Ci))/Vi−1 is connected.

Lemma 8.9. Eγ
.
∪ F1

.
∪ . . .

.
∪ Fl is a T -join.

Proof. The set Ti−1 is defined such that Fi is a (Ti4 Ti−1)-join. By induction on l− i,
the set Fi

.
∪ . . .

.
∪ Fl is a (Ti−1 4 Tl)-join. For i = 1, this implies that F1

.
∪ . . .

.
∪ Fl is

a (T0 4 Tl)-join. As Fi is constructed such that Ti ⊆ Vi−1 for all i ∈ {1, . . . , l + 1}, we
have T0 ⊆ V0.

The set T04 Tl contains an even number of vertices (since a (T04 Tl)-join exists),
and |Tl| is even. Hence, |T0| must be even. Since V0 has exactly one element, T0 has at
most one element. As |T0| is even, T0 = ∅ and F1

.
∪ . . .

.
∪ Fl is a Tl-join. By definition

of Tl, adding the edges Eγ to F1
.
∪ . . .

.
∪ Fl results in a T -join.

Lemma 8.10. Let

V̄γ :=
l⋃

i=1
Vγ(Ci) and Ēγ :=

l⋃
i=1

Eγ(Ci).

Then
(
Vl ∪ V̄γ , F1

.
∪ . . .

.
∪ Fl

.
∪ Ēγ

)
is connected.

Proof. We prove by induction on l− i that for every i = 1, . . . , l+1, the graph resulting
from (Vl ∪ V̄γ , Fi

.
∪ . . .

.
∪ Fl

.
∪ Ēγ) by contracting Vi−1 is connected. For i = 1 the set

Vi−1 = V0 contains only one element, hence this completes the proof.
For i = l + 1 the set Vi−1 = Vl contains the roots of all connected components

of Gγ , hence (Vl ∪ V̄γ , Ēγ)/Vl is connected. Now let i ≤ l. By induction hypothesis,
for every vertex v′ ∈ Vl \ Vi the set Fi+1 ∪ · · · ∪ Fl ∪ Ēγ contains the edge set of a
v′-w′-path for some w′ ∈ Vi. Hence, it suffices to show that for every v ∈ in(Pi) the set
Fi

.
∪ . . .

.
∪ Fl

.
∪ Ēγ contains a path from v to a vertex in Vi−1. This is the case since

the graph (Vi ∪ Vγ(Ci), Fi ∪ Eγ(Ci))/Vi−1 is connected by Lemma 8.8 (ii).

We now describe a post-processing step that deals with special ears. Let P be a
special ear. If the connected component of Gγ that contains the clean ear entering P
at w has not been used for connectivity, we will use it to save edges in P by “flipping”
the r(w)-w-path in Gγ . See Figure 8.5.

Lemma 8.11. Given a well-oriented ear-decomposition with long ears P1, . . . , Pl where
all short ears are clean and the oriented ears are precisely the clean ears, we can compute
a T -tour with at most

3
2(n− 1)− 1

2k3 −
l∑

i=1
gaini(Fi)−max

{
0, kspecial − k3 −

l∑
i=1

2 · gaini(Fi)
}

edges, where kspecial denotes the number of special pairs (Pi, Ti ∩ in(Pi)).

120

8.2. ENHANCED EAR INDUCTION

w

r(w)

w

r(w)

Figure 8.5: Modifying the T -tour for special ears as in the proof of Lemma 8.11. The
edges shown in black are edges in E(Pi), the colored edges are edges of (pendant) 2-ears
that are part of the r(w)-w-path. The edges of different 2-ears are shown in different colors.
The filled vertices are internal vertices of long ears, i.e. these vertices are contained in Vl.
The non-filled vertices are internal vertices of (pendant) 2-ears. The left picture shows the
edges of E(P) and the r(w)-w-path used in the T -tour before modifying it, and the right
picture shows the used edges after the modification.

Proof. By Lemma 8.9 and Lemma 8.10, Eγ
.
∪ F1

.
∪ . . .

.
∪ Fl is a T -tour and by

Lemma 8.7 we can bound the number of edges by

|Eγ |+
l∑

i=1
|Fi| = 3

2(n− 1)− 1
2k3 −

l∑
i=1

gaini(Fi).

Note, that for any special ear P and vertex w ∈ in(P), the root r(w) of the connected
component of Gγ containing w is contained in in(P). (This follows from the definition
of a special ear.) Thus, any connected component of Gγ contains internal vertices of
at most one special ear.

We now modify the T -tour for every special ear Pi as follows: The ear Pi has exactly
one entering clean ear Q. Let w be the internal vertex of Pi where Q enters Pi. By
the definition of a special ear, we have r(w) ∈ in(Pi) and w and r(w) have distance
|E(Pi)|

2 in Pi. The connected component of Gγ containing w (and r(w)) contains no
internal vertex of any special ear distinct from Pi since any connected component of
Gγ contains internal vertices of at most one special ear. If the connected component of
Gγ containing w (and r(w)) contains neither an edge in Ēγ nor the edge set of a 3-ear,
we modify our T -tour by replacing Fi by E(Pi) and replacing the r(w)-w-path in Eγ
by two copies of every second edge on this path. Note that the edge set of this path is
the union of edge sets of 2-ears. (See Figure 8.5.)

We now show that modifying the tour results in a T -tour with at least one edge less
than before. Replacing the r(w)-w-path inGγ by two copies of every second edge on this
path does not change the parity of the vertex degrees at internal vertices of this path,
but changes the parity of the vertex degrees of r(w) and w. Recall that we constructed
Fi such that the edges incident to endpoints of Pi are contained exactly once. Thus,
replacing Fi by E(Pi) does not change the parity of the degree of vertices not in in(Pi).
By definition of a special ear Ti∩in(Pi) = {w, r(w)}, hence odd(Fi)∩in(Pi) = {w, r(w)}.
This shows that replacing Fi by E(Pi) changes the parity of the vertex degree exactly at
the vertices r(w) and w. After replacing both Fi and the r(w)-w-path inGγ the parity of
all vertex degrees is the same as before, hence the resulting (multi-)edge set is a T -join.

121

CHAPTER 8. S-T -PATH GRAPH TSP

Using Lemma 8.10, we thus get that after replacing the r(w)-w-path in Gγ all ver-
tices in Vl ∪ V̄γ are still part of the same connected component. Moreover, we use at
least one edge from every 2-ear and all edges from every 3-ear. Thus, we have indeed
constructed a T -tour.

Note that replacing the r(w)-w-path in Gγ as described above does not change
the total number of edges used from 2Eγ . But we replaced Fi by E(Pi), and since
|Fi| = 3

2 |in(Pi)| − 1
2 (as we had gaini(Fi) = 0) and |E(Pi)| ≥ 6 (because Pi is special),

we decreased the number of edges by at least one.
This shows that we can decrease the number of edges of the T -tour by one for the

special ear Pi, unless the connected component of Gγ containing w contains a 3-ear or
an edge from Ēγ . Since every connected component of Gγ contains internal vertices of
at most one special ear, we can modify our T -tour (in the way described above) for at
least kspecial − k3 −

∑l
i=1 |Ci| special ears, where kspecial denotes the number of special

ears. Thus, we obtain a T -tour with at most

3
2(n− 1)− 1

2k3 −
l∑

i=1
gaini(Fi)−max

{
0, kspecial − k3 −

l∑
i=1
|Ci|

}

≤ 3
2(n− 1)− 1

2k3 −
l∑

i=1
gaini(Fi)−max

{
0, kspecial − k3 −

l∑
i=1

2 · gaini(Fi)
}

edges; here we used Lemma 8.8 (iv).

Lemma 8.12. Given a well-oriented ear-decomposition with long ears P1, . . . , Pl where
all short ears are clean and the oriented ears are precisely the clean ears, we can compute
a T -tour with at most

3
2(n− 1)− 7

20k3 −
∑
i∈I

max
{

7
20(hi − 1), 3

20

}
edges, where I := {i ∈ {1, . . . , l} : (Pi, Ti ∩ in(Pi)) is good or special}.

Proof.

1
2k3 +

l∑
i=1

gaini(Fi) + max
{

0, kspecial − k3 −
l∑

i=1
2 · gaini(Fi)

}

≥ 7
10

(
1
2k3 +

l∑
i=1

gaini(Fi)
)

+ 3
20

(
k3 +

l∑
i=1

2 · gaini(Fi)
)

+ 3
20 max

{
0, kspecial − k3 −

l∑
i=1

2 · gaini(Fi)
}

≥ 7
10

(
1
2k3 +

l∑
i=1

gaini(Fi)
)

+ 3
20kspecial

≥ 7
20k3 +

∑
i∈I

max
{

7
20(hi − 1), 3

20

}
,

122

8.2. ENHANCED EAR INDUCTION

where we used gaini(Fi) ≥ max{1, hi − 1} if (Pi, Ti ∩ in(Pi)) is good and hi = 1 if
(Pi, Ti∩ in(Pi)) is special. Together with Lemma 8.11, this implies that we can compute
a T -tour with at most

3
2(n− 1)− 7

20k3 −
∑
i∈I

max
{

7
20(hi − 1), 3

20

}
edges.

Compared to 3
2(n − 1), we have now gained for every good and special ear. More

precisely, the resulting T -tour is short if there are many clean ears entering good or
special ears (or many non-entered long ears; these are good ears). Next, we will deal
with the bad ears.

8.2.4 Using clean ears for parity correction

If there are many bad ears, the T -tour resulting from Section 8.2.3 has too many edges.
To deal with this case we compute a second T -tour, by a different kind of ear induction.
In contrast to the ear induction in Section 8.2.3, we now use all components of Gγ for
parity correction. We will gain a constant amount for every clean ear entering a bad ear
of length at least six. Taking the better of the two T -tours constructed in the previous
section and in this section, we will improve upon 3

2(n − 1) by 1
26 per non-entered ear,

unless a large fraction of the long ears are 4-ears (remember that all bad ears are even
and hence there are no bad 5-ears).

We now describe a new kind of ear induction. For 4-ears, good and special ears we
essentially use Lemma 8.1. For bad long ears, however, we will now gain something by
using the only entering clean ear in a different way: if this clean ear enters at w, we can
“flip” all clean ears on the path from r(w) to w, changing the parity at w and at r(w),
similar to the treatment of special ears above. This flexibility allows to save something
for each bad ear of length at least six.

We again consider the long ears in reverse order, starting from Pl. Let T ′l := Tl =
T 4 odd(Eγ) and T γl := ∅. The sets T γi record the vertices whose parity we will change
by flipping clean ears (see the green framed vertices in Figure 8.2), and T ′i contains the
vertices requiring odd degree in the first i (long) ears after these flips.

If (Pi, Ti∩in(Pi)) is a bad pair and Pi is not a 4-ear, Pi has exactly one entering clean
ear Q that enters Pi at the middle vertex w (and r(w) ∈ Vi−1); then let Wi := {w}.
Otherwise let Wi := ∅. We construct a multi-set F ′i ⊆ 2E(Pi) such that all internal
vertices except possibly w have the correct parity, i.e.,

odd(F ′i) ∩ (in(Pi) \Wi) = T ′i ∩ (in(Pi) \Wi) (8.3)

and (Vi, F ′i)/Vi−1 is connected. (We will later describe in detail how we construct F ′i ;
see Lemma 8.20.) If Wi = {w} and w ∈ (in(Pi) ∩ odd(F ′i))4 T ′i , we define

T ′i−1 := T ′i 4 odd(F ′i)4 {w, r(w)}

and T γi−1 := T γi 4 {w, r(w)}; this is because we will later correct the parity at w by
flipping the clean ears on the r(w)-w-path in Gγ . Otherwise, let T γi−1 := T γi and

T ′i−1 := T ′i 4 odd(F ′i).

123

CHAPTER 8. S-T -PATH GRAPH TSP

We have T ′i−1 ⊆ Vi−1 by (8.3) and since r(w) ∈ Vi−1 in the first case. Note that |Ti−1|
is even because both |T ′i | and |odd(F ′i)| are even.

Lemma 8.13. (Vl, F ′1
.
∪ . . .

.
∪ F ′l) is connected.

Proof. Since (Vi, F ′i)/Vi−1 is connected for every i ∈ {1, . . . , l}, the multi-set F ′i contains
the edge set of a path from every internal vertex of Pi to a vertex in Vi−1. By induction
this implies that for every i ∈ {1, . . . , l} the multi-set F ′1

.
∪ . . .

.
∪ F ′i contains the edge

set of a path from every internal vertex of Pi to the unique element of V0. This proves
that (Vl, F ′1

.
∪ . . .

.
∪ F ′l) is connected.

Lemma 8.14. For every i ∈ {1, . . . , l+1} the multi-set F ′i
.
∪ . . .

.
∪ F ′l is a (Tl4T γi−14

T ′i−1)-join.

Proof. We prove this by induction on l − i. For i = l + 1 we have Tl = T ′l and T
γ
l = ∅.

Hence, Tl4T γi−14T ′i−1 = ∅. Now let i ≤ l. By induction hypothesis F ′i+1
.
∪ . . .

.
∪ F ′l is

a (Tl 4 T γi 4 T ′i)-join. Thus, proving that F ′i
.
∪ . . .

.
∪ F ′l is a (Tl 4 T γi−1 4 T ′i−1)-join is

equivalent to proving that F ′i is a ((Tl4 T γi 4 T ′i)4 (Tl4 T γi−14 T ′i−1))-join. We have
either

• T ′i−1 := T ′i 4 odd(F ′i)4 {w, r(w)} and T γi−1 := T γi 4 {w, r(w)}, or

• T ′i−1 := T ′i 4 odd(F ′i) and T γi−1 := T γi .

In any of the two cases we have(
Tl 4 T γi 4 T ′i

)
4
(
Tl 4 T γi−1 4 T ′i−1

)
=
(
T γi 4 T γi−1

)
4
(
T ′i 4 T ′i−1

)
= odd(F ′i).

Lemma 8.15. For every i ∈ {0, . . . , l} the edge set Eγ contains a T γi -join.

Proof. We again use induction on l − i. For i = l, we have T γi = ∅ and the statement
clearly holds. Let now i < l. We either have T γi = T γi+1 or T γi = T γi+1 4 {w, r(w)} for
some vertex w. If T γi = T γi+1, the set Eγ contains a T γi -join by induction hypothesis.
If T γi = T γi+1 4 {w, r(w)}, the set Eγ contains the edge set of a w-r(w)-path since
r(w) is the root of the connected component of Gγ = (V,Eγ). Moreover, by induction
hypothesis, Eγ contains a T γi+1-join. The symmetric difference of such a T γi+1-join and
a w-r(w)-path in Gγ is a T γi -join.

For i ∈ {1, . . . , l} and a multi-set F ⊆ 2E(Pi) let

gain′i(F) := 3
2 |in(Pi)| − |F |.

Lemma 8.16. We can construct a T -tour in G with at most

3
2(n− 1) + 1

2k2 + k3 −
l∑

i=1
gain′i(F ′i)

edges.

124

8.2. ENHANCED EAR INDUCTION

Proof. By Lemma 8.15 the edge set Eγ contains a T γ0 -join J . Note that we never add
any internal vertex of a short ear to a set T γi for any i. Hence, T γ0 contains no internal
vertex of any short ear. This shows that for every short ear Q either all edges of Q are
contained in J or none of these edges. We now define an edge set H ⊆ 2Eγ . If the edge
set of a short ear Q is contained in J , we add two copies of all elements of E(Q) except
one to H. Otherwise, we have E(Q) ∩ J = ∅ and we add E(Q) to H. See Figure 8.2.

Since H and Eγ4J are identical up to pairs of parallel edges, |δH(v)| is odd if and
only if |δEγ4J(v)| is odd for every vertex v, and this holds if and only if |δEγ (v)|+ |{v}∩
T γ0 | is odd. Recall that Tl = T 4 odd(Eγ) ⊆ Vl and thus T γ0 4 odd(Eγ) = Tl4T 4T γ0 .
Hence, H is a (T 4 Tl 4 T γ0)-join and we have |H| ≤ 2k2 + 4k3. Moreover, for every
short ear Q and every vertex v ∈ in(Q), the edge set of some path from v to a vertex in
Vl is contained in H. Together with Lemma 8.13 this shows that (V,H

.
∪ F ′1

.
∪ . . .

.
∪ F ′l)

is connected.
Since |T ′i | is even for every i ∈ {0, . . . , l}, T ′0 ⊆ V0 ,and |V0| = 1, we have T ′0 = ∅.

Hence, by Lemma 8.14, F ′1
.
∪ . . .

.
∪ F ′l is a (Tl4T γ0)-join. As H is a (T 4Tl4T γ0)-join,

H
.
∪ F ′1

.
∪ . . .

.
∪ F ′l is a T -join and thus a T -tour with

|H|+
l∑

i=1
|F ′i | ≤ 2k2 + 4k3 +

l∑
i=1
|F ′i |

edges. By definition of gain′i we have |F ′i | = 3
2 |in(Pi)|−gain′i(F ′i). Moreover, the number

of internal vertices of short ears is k2 + 2k3.

We aim at gain′i(F ′i) ≥ 1 for the ears Pi that were bad in the previous section.
This will be easy to achieve if (Pi, T ′i ∩ in(Pi)) is a bad pair and Pi has at least six
edges. However, Ti (from the ear induction in Section 8.2.3) and T ′i are not always the
same. Hence (Pi, T ′i ∩ in(Pi)) is not necessarily a bad pair even if (Pi, Ti ∩ in(Pi)) is.
Therefore we also aim at minimizing |Ti4T ′i | whenever we have the choice between two
solutions with the same number of edges. This will allow us to achieve a sufficiently
large gain′i(F ′i) on average.

Lemma 8.17. Let i ∈ {1, . . . , l + 1}. Then for every v ∈ Ti−1 4 T ′i−1 we have one of
the following three properties:

(a) The vertex v is contained in (Ti 4 T ′i) ∩ Vi−1.

(b) v is an endpoint of Pi and |δFi(v)|+ |δF ′i (v)| is odd.

(c) We have hi = 1 and the unique clean ear entering Pi enters Pi at a vertex w with
v = r(w). Moreover, |δFi(w)|+ |δF ′i (w)| is odd.

Proof. We have by construction of the sets Ti−1 and T ′i−1 that both of these sets are
subsets of Vi−1. Now let v ∈ Ti−1 4 T ′i−1 such that v fulfills neither (a) nor (c). Then
we have either v ∈ Ti 4 Ti−1 or v ∈ T ′i 4 T ′i−1. If v ∈ Ti 4 Ti−1 but v /∈ T ′i 4 T ′i−1, we
have |δFi(v)| odd and |δF ′i (v)| even. Similarly, if v ∈ T ′i 4 T ′i−1 but v /∈ Ti 4 Ti−1, we
have |δF ′i (v)| odd and |δFi(v)| even. In any of the two cases (b) holds.

For i ∈ {1, . . . , l} let

∆i := |Ti−1 4 T ′i−1| − |Ti 4 T ′i |.

125

CHAPTER 8. S-T -PATH GRAPH TSP

(a) (b)

Figure 8.6: The example from Figure 8.4 with T = ∅. (a): ears with oriented short ears
(gray, dotted). (b): result of using short ears for parity.

Lemma 8.18. For every i ∈ {1, . . . , l}, we have ∆i ≤ 2 and ∆i is even.

Proof. By Lemma 8.17, |Ti−14T ′i−1| ≤ |Ti4T ′i |+3. As the symmetric difference of two
even-cardinality sets has always even cardinality, we have ∆i even and |Ti−14 T ′i−1| ≤
|Ti 4 T ′i |+ 2.

We now show how to construct the F ′i . For good or special ears we can simply apply
Lemma 8.1, but we will need a slightly refined version: in case the bound is tight, we
want the parity at the endpoints to match the previous construction.

Lemma 8.19. Let P be a circuit with at least four edges and TP ⊆ V (P) with |TP | even.
Then there exists a TP -join F ⊆ 2E(P) such that the graph (V (P), F) is connected and

|F | ≤ 3
2(|E(P)| − 1)− 1

2 . (8.4)

Moreover, if this bound is tight and |E(P)| + |TP | ≥ 5, then there is another TP -join
F ′ ⊆ 2E(P) such that the graph (V (P), F ′) is connected and |F ′| = |F | and the number
of copies of any edge in F

.
∪ F ′ is odd.

Proof. If TP = ∅, then F = E(P) does the job because |E(P)| ≤ 3
2 |E(P)| − 2, and the

bound is tight only if |E(P)| = 4.
Let now TP 6= ∅. The vertices of TP subdivide P into subpaths. Color these paths

alternatingly red and blue. Let ER and EB denote the set of edges of red and blue
subpaths, respectively. We define two TP -joins, FR and FB. For the red solution FR,
take two copies of each edge in ER and one copy of each edge in EB. Note that ER 6= ∅,
and remove one pair of parallel edges. FB is formed by switching the roles of red and
blue. This yields FR, FB ⊆ 2E(P) with

1
2 (|FR|+ |FB|) = 1

2 (3|EB|+ 3|ER| − 4) ≤ 1
2 (3|E(P)| − 4) = 3

2(|E(P)| − 1)− 1
2 .

126

8.2. ENHANCED EAR INDUCTION

Note that the number of copies of any edge in FR
.
∪ FB is odd. Moreover, |FR| = |FB|

or the smaller one has fewer than 3
2(|E(P)| − 1)− 1

2 edges.

Recall that Wi = ∅ unless (Pi, Ti ∩ in(Pi)) is a bad pair and Pi is not a 4-ear. If
Wi 6= ∅, the ear Pi has exactly one entering clean ear, entering Pi at w and r(w) ∈ Vi−1;
then Wi = {w}.
Lemma 8.20. Let i ∈ {1, . . . , l} and Ti ⊆ Vi with |Ti| even. Then we can construct a
multi-set F ′i ⊆ 2E(Pi) such that
• odd(F ′i) ∩ (in(Pi) \Wi) = T ′i ∩ (in(Pi) \Wi),

• (Vi, F ′i)/Vi−1 is connected, and

gain′i(F ′i)− 1
4∆i ≥

1 if |E(Pi)| ≥ 5 and (Pi, Ti ∩ in(Pi)) is bad
1
2 if either |E(Pi)| ≥ 5 or (Pi, Ti ∩ in(Pi)) is bad
0 if |E(Pi)| = 4 and (Pi, Ti ∩ in(Pi)) is not bad

(a)
(b)
(c)

Proof. (a) The vertices of in(Pi)∩T ′i subdivide Pi into subpaths, alternatingly colored
red and blue. Let ER and EB denote the set of edges of red and blue subpaths,
respectively. Let Q be the unique clean ear entering Pi at w ∈ in(Pi). Let E1, E2
be the edge sets of the two paths in Pi from w to an endpoint of Pi. Then
E(Pi) = E1

.
∪ E2. By definition of a bad pair, |E1| = |E2| and r(w) /∈ in(Pi).

Hence, by the choice of the orientation of Gγ , we have r(w) ∈ Vi−1. Note that
Wi = {w}. We now distinguish two cases:

Case 1: |ER ∩ E1| 6= |EB ∩ E1| or |ER ∩ E2| 6= |EB ∩ E2|

Without loss of generality we may assume |ER ∩ E1| < |EB ∩ E1|. Then, we
construct F ′i from E(P) by adding a second copy of ER∩E1, adding a second copy
of the edges in the smaller of the two sets |ER∩E2| and |EB∩E2|, and removing one
arbitrary duplicated edge, if it exists. Then |F ′i | ≤ |E(P)| ≤ 3

2 |in(Pi)|− 3
2 if there

was no duplicated edge; otherwise |F ′i | ≤ |E(Pi)|+ b1
2(|E1| − 1)c+ b1

2 |E2|c − 2 ≤
3
2 |E(Pi)| − 3 ≤ 3

2 |in(Pi)| − 3
2 . Thus, in both cases, gain′i(F ′i) ≥ 3

2 and ∆i ≤ 2.

Case 2: |ER ∩ E1| = |EB ∩ E1| and |ER ∩ E2| = |EB ∩ E2|

By the definition of a bad pair, we have in(Pi) ∩ Ti = {w}, and w is the middle
internal vertex of Pi. If in addition |in(Pi) ∩ (T ′i 4 Ti)| ≤ 1, ER ∩ E1, EB ∩ E1,
ER ∩ E2, or EB ∩ E2 must be empty, contradicting |ER ∩ E1| = |EB ∩ E1| and
|ER ∩E2| = |EB ∩E2|. Hence, we may assume that |in(Pi)∩ (T ′i 4Ti)| is at least
two.
Similar to Case 1, we construct F ′i from E(Pi) by adding a second copy of either
ER ∩ E1 or EB ∩ E1, adding a second copy of the edges of one the two sets
ER ∩E2 and EB ∩E2, and removing both copies of an arbitrary duplicated edge.
We choose between ER∩E1 and EB ∩E1 and between ER∩E2 and EB ∩E2 such
that the endpoints of Pi have the same parity of degree in F ′i and in Fi. Then
|F ′i | = 3

2 |E(P)| − 2 = 3
2 |in(Pi)| − 1

2 , so gain′i(F ′i) = 1
2 .

Moreover, we get from Lemma 8.17 that |Ti−1 4 T ′i−1| ≤ |Ti 4 T ′i | + 1 − |(Ti 4
T ′i)∩ in(Pi)|. Since |in(Pi)∩ (T ′i+14Ti+1)| is at least two, we have |Ti−14T ′i−1| ≤
|Ti 4 T ′i | − 1. As by Lemma 8.18 the number ∆i must be even, ∆i ≤ −2.

127

CHAPTER 8. S-T -PATH GRAPH TSP

(b) First suppose that |E(Pi)| ≥ 5 or T ′i 6= ∅. Then we apply Lemma 8.19 to
(Gi, T ′i)/Vi−1. We get a set F ′i with gain′i(F ′i) ≥ 1

2 . If Pi is a circuit, we get
from Lemma 8.17 that ∆i ≤ 1. If Pi is a path, we get from Lemma 8.19 that one
of the following holds:

• We have gain′i(F ′i) ≥ 1.
• For one endpoint of Pi we can choose the parity of its degree in F ′i , implying

∆i ≤ 1 by Lemma 8.17.

Using Lemma 8.18 this implies that (gain′i(F ′i) ≥ 1 and ∆i ≤ 2) or (gain′i(F ′i) ≥ 1
2

and ∆i ≤ 0). In both cases we get gain′i(F ′i)− 1
4∆i ≥ 1

2 .
Now suppose that |E(Pi)| = 4 and T ′i = ∅ and (Pi, Ti ∩ in(Pi)) is bad; so Ti = ∅.
Then we set F ′i := Fi. Then we have Ti−14 T ′i−1 = Ti4 T ′i and thus ∆i = 0. By
Lemma 8.8, we have |F ′i | = |Fi| ≤ 3

2 |in(Pi)| − 1
2 . Hence, gain

′
i(F ′i) ≥ 1

2 .

(c) We apply Lemma 8.1 to (Gi, T ′i)/Vi−1 to obtain a multi-set F ′i with gain′i(F ′i) ≥ 1
2 .

By Lemma 8.18, we always have ∆i ≤ 2. Hence, gain′i(F ′i)− 1
4∆i ≥ 0.

Lemma 8.21. Given a well-oriented ear-decomposition with long ears P1, . . . , Pl where
all short ears are clean and the oriented ears are precisely the clean ears, we can compute
a T -tour with at most

3
2(n− 1) + 1

2(k2 + k3 − k≥5) + 1
2k3 − 1

2kbad

edges, where kbad is the number of bad pairs (Pi, in(Pi) ∩ Ti).

Proof. Since Tl = T ′l and T0 = T ′0 = ∅, we have

l∑
i=1

∆i =
l∑

i=1

(
|Ti−1 4 T ′i−1| − |Ti 4 T ′i |

)
= |T0 4 T ′0| − |Tl 4 T ′l | = 0. (8.5)

By construction of the sets F ′i we have

l∑
i=1

(
gain′i(F ′i)− 1

4∆i

)
≥ 1

2k≥5 + 1
2kbad.

Using (8.5), this implies
l∑

i=1
gain′i(F ′i) ≥ 1

2k≥5 + 1
2kbad.

By Lemma 8.16 we can construct a T -tour in G with at most

3
2(n− 1) + 1

2k2 + k3 −
l∑

i=1
gain′i(F ′i)

≤ 3
2(n− 1) + 1

2k2 + k3 − 1
2k≥5 − 1

2kbad

= 3
2(n− 1) + 1

2(k2 + k3 − k≥5) + 1
2k3 − 1

2kbad.

edges.

128

8.2. ENHANCED EAR INDUCTION

We now combine Lemma 8.12 and Lemma 8.21 to prove a bound on the number
of edges of the better of the two T -tours resulting from the two different kinds of ear
induction.

Theorem 8.22. Let G be a graph and T ⊆ V (G) with |T | even. Given a well-oriented
ear-decomposition of G where all short ears are clean and the oriented ears are precisely
the clean ears, we can compute a T -tour in G with at most

3
2(n− 1)− 1

26π + 1
26(k4 − 2k≥5)

edges, where π is the number of non-entered ears.

Proof. We apply Lemma 8.12 and Lemma 8.21 and take the shorter of the two T -tours.
This yields a T -tour with at most the following number of edges:

min
{

3
2(n− 1)− 7

20k3 −
∑
i∈I

max
{

7
20(hi − 1), 3

20

}
,

3
2(n− 1) + 1

2(k2 + k3 − k≥5) + 1
2k3 − 1

2kbad

}
,

where I = {i ∈ {1, . . . , l} : (Pi, Ti ∩ in(Pi)) is good or special}. Taking 10
13 of the first

term and 3
13 of the second term, we can bound it by

3
2(n− 1)− 7

26k3 −
∑
i∈I

max
{

7
26(hi − 1), 3

26

}
+ 3

26(k2 + k3 − k≥5) + 3
26k3 − 3

26kbad

= 3
2(n− 1)− 4

26k3 − 1
26

l∑
i=1

max{7(hi − 1), 3}+ 3
26(k2 + k3)− 3

26k≥5,

where we used i /∈ I if and only if (Pi, Ti ∩ in(Pi)) is bad, and this implies hi = 1. We
get the following upper bound on the number of edges of our tour:

3
2(n− 1)− 1

26

l∑
i=1

max{7(hi − 1), 3}+ 3
26(k2 + k3)− 3

26k≥5

≤ 3
2(n− 1)− 1

26

l∑
i=1

max{4hi − 1, 0}+ 3
26(k2 + k3)− 3

26k≥5

= 3
2(n− 1)− 1

26

l∑
i=1

max{4hi, 1}+ 3
26(k2 + k3) + 1

26(k4 − 2k≥5)

= 3
2(n− 1)− 1

26

l∑
i=1

max{hi, 1}+ 1
26(k4 − 2k≥5)

= 3
2(n− 1)− 1

26π + 1
26(k4 − 2k≥5).

In the last inequality we used that every non-entered ear is a short ear or a long ear
with hi = 0.

129

CHAPTER 8. S-T -PATH GRAPH TSP

8.3 Computing the initial ear-decomposition

Previous papers that used ear-decompositions for approximation algorithms include
[CSS01], [SV14], and [HV17]. They all exploit a theorem of Frank [Fra93]: one can
compute an ear-decomposition with minimum number of even ears in polynomial time.
This minimum is denoted by ϕ(G). Our ear-decompositions will also have only ϕ(G)
even ears, although (in contrast to the above-mentioned papers) we exploit this property
only during the construction of the ear-decomposition. The ear-decompositions in the
above papers also have certain properties of 2-ears and 3-ears; we will additionally deal
with 4-ears. As in [SV14] we will compute a nice ear-decomposition. In particular, we
make all short ears pendant.

We have seen in Theorem 8.22 that non-entered ears are cheap but 4-ears are expen-
sive. For pendant 4-ears we can apply Lemma 8.1 beforehand and apply Theorem 8.22
to the rest. Ideally, we would like to make all 4-ears pendant, but this is not always
possible.

We distinguish four kinds of 4-ears: pendant, blocked, vertical, and horizontal (we
will compute an ear-decomposition in which every ear is of exactly one of these kinds);
see Figure 8.7:

(a)

(d)

(b)

(c)

Figure 8.7: (a) blocked 4-ears, (b) vertical 4-ear, (c) horizontal 4-ears, (d) pendant 4-ear.
Filled circles denote arbitrary vertices, unfilled circles denote pendant vertices, unfilled
squares denote degree-2 vertices. The endpoints of the 4-ears and endpoints of 2-ears that
are not internal vertices of these 4-ears are shown at the bottom (black filled circles); some
of these can be identical. Curves denote closed ears. Dotted edges are possible trivial ears
connecting colored vertices.

Definition 8.23. A 4-ear is called

• blocked if a closed ear is attached to it.

• vertical if it is nonpendant, its internal vertices are v1, v2, v3 in this order, v1 and
v3 are pendant and not adjacent, and the only nontrivial ears attached to v2 are
2-ears whose middle vertex is not adjacent to v1 or v3.

• horizontal if it is nonpendant, its internal vertices are v1, v2, v3 in this order, v2
has degree 2, and all nontrivial ears attached to it are 2-ears with vertices v1, x, v3,
where x is a degree-2 vertex.

130

8.3. COMPUTING THE INITIAL EAR-DECOMPOSITION

Call an ear outer if it is a 2-ear, 3-ear, pendant 4-ear, vertical 4-ear, or horizontal
4-ear. Call an ear inner if it is a blocked 4-ear or has length at least 5.

Later we will show that there are only few blocked 4-ears (Lemma 8.33). Moreover,
in Section 8.4 we make as many vertical 4-ears pendant as possible and raise the lower
bound for every 2-ear that is still attached to a vertical or horizontal 4-ear.

In this section, we prove the following:

Theorem 8.24. For any 2-vertex-connected graph G we can in polynomial time con-
struct an ear-decomposition that satisfies the following conditions:

(a) All short ears are open and pendant.

(b) Each 4-ear is blocked or pendant or vertical or horizontal; no closed 4-ear is
attached to any closed 4-ear.

(c) If there is an edge {v, w} such that v is an internal vertex of an outer ear P and
w is an internal vertex of another outer ear Q, then

• P is attached to Q at w, or
• Q is attached to P at v, or
• P and Q are 4-ears, and v and w are their middle vertices.

No 2-ear is attached to two outer 4-ears.

For the proof, we will start with the following, which is a strengthening of Frank’s
theorem [Fra93] because it also yields that all ears are open.

Lemma 8.25 (Cheriyan, Sebő, and Szigeti [CSS01]). For any given 2-vertex-connected
graph G, one can compute an open ear-decomposition with ϕ(G) even ears in polynomial
time.

We will maintain the following invariants at all times.

(d) All short ears are open.

(e) No closed ears are attached to short ears.

(f) No closed 4-ears or nonpendant 3-ears are attached to any closed 4-ear.

(g) The number of even ears is ϕ(G).

Note that the result of Lemma 8.25 satisfies these invariants because all its ears are
open, including the first ear (which is always open by definition). Now we apply a
certain set of operations as long as possible. Each of them maintains these invariants
and decreases the following potential function: we lexicographically

1. maximize the number of trivial ears,

2. minimize the number of 4-ears, and

3. minimize the number of trivial ears that are incident to middle vertices of outer
4-ears.

131

CHAPTER 8. S-T -PATH GRAPH TSP

Thus after fewer than n4 steps none of the operations can be applied (where we use
that the number of trivial ears is always at least |E(G)| − 2n and at most |E(G)| − n).
Then the properties (a), (b), and (c) will hold. At any stage we put pendant ears at the
end of the ear-decomposition in an order of nonincreasing length (in particular pendant
3-ears before pendant 2-ears), followed only by trivial ears.

Lemma 8.26. Given an ear-decomposition with (d)–(g) but not (a), we can compute
an ear-decomposition with more trivial ears and (d)–(g) in polynomial time.

(O1)

→

(O2)

→

(O3)

→

Figure 8.8: Removing nonpendant short ears. (O1): removing a nonpendant 2-ear;
(O2),(O3): removing a nonpendant 3-ear. The blue curve in the left picture of (O1), (O2),
(O3) denotes a non-trivial ear attached to a red short ear. New trivial ears are dotted.

Proof. The following set of operations removes a nonpendant 2-ear or 3-ear and is
illustrated in Figure 8.8. Each operation increases the number of trivial ears and does
not increase the number of even ears.

(O1) If there is a nonpendant 2-ear P , let Q be the first nontrivial ear attached to P .
Note that Q is open by (e). We extend Q by one of the edges of P so that the
resulting ear is open; P vanishes; the other edge of P becomes a trivial ear.

Note that Q must be odd because otherwise (O1) would reduce the number of even
ears, contradicting (g). Since Q is not a 2-ear, the new ear is not short, and (f) is
maintained.

If all 2-ears but not all 3-ears are pendant, let P be the first nonpendant 3-ear, and
let v0, v1, v2, v3 be the vertices of P in this order. Note that P is open by (d). Let Q be
the first nontrivial ear attached to P , and without loss of generality v1 is an endpoint
of Q. Note that Q is open by (e). There are two cases.

(O2) If Q has endpoints v1 and v2, we replace the middle edge of P by the edges of Q,
creating a new open ear with at least four edges and a trivial ear.

(O3) If v2 is not an endpoint of Q, we extend Q by the v1-v3-path in P ; the remaining
edge of P becomes a trivial ear.

The operation (O3) might create a closed ear of length at least 4, but then it is
not attached to a short ear because P was the first nonpendant short ear, and it is
not attached to a closed 4-ear because P was not attached to a closed 4-ear by (f).
Moreover, if the new ear is a closed 4-ear, then Q was a pendant 2-ear, and (by the
choice of Q and the order of the ear-decomposition) only pendant 2-ears are attached
to the new closed 4-ear. Therefore (f) is maintained.

132

8.3. COMPUTING THE INITIAL EAR-DECOMPOSITION

(O4)

→

(O5)

→

(O6)

→

(O7)

→

Figure 8.9: (O4)–(O7): excluding 4-ears that are neither pendant nor vertical nor hori-
zontal.

Before we get to condition (b), let us show a sufficient condition for 4-ears to be
pendant or vertical or horizontal:

Lemma 8.27. Let P be a 4-ear in an ear-decomposition satisfying (a) and (g). Let
v0, v1, v2, v3, v4 be the vertices of P in this order (where v0 and v4 can be identical).
Then P is pendant or vertical or horizontal if and only if every nontrivial ear attached
to P is a 2-ear that is attached to P at v1 and v3 or only at v2.

Proof. Necessity follows directly from Definition 8.23, so we prove sufficiency. So let P
be a 4-ear in an ear-decomposition satisfying (a) and (g) such that every nontrivial ear
attached to P is a (pendant) 2-ear that is attached to P at v1 and v3 or only at v2.

First suppose that a 2-ear Q with endpoints v1 and v3 exists. Let w be the middle
vertex of Q. If P is not horizontal, at least one of the following two operations must
apply:

(O4) If there is an edge connecting w and v2, we replace P by a 5-ear, formed by the
edges {v0, v1}, {v2, v3} and {v3, v4} of P , the edge {v1, w} of Q, and the edge
{w, v2}.

(O5) If any (possibly trivial) ear R has endpoints x and y, where x ∈ {v2, w} and
y /∈ {w, v1, v2, v3}, we replace P by an ear of length at least 5, formed by R and
all but two of the edges of P and Q; the remaining two edges become trivial ears.

Each of (O4) and (O5) decreases the number of even ears, and therefore this cannot
happen. It remains to consider the case when all ears attached to P are 2-ears attached
to P only at v2. If P is not pendant, there is at least one such a 2-ear attached to P .

If P also not vertical, this means that v1 and v3 are adjacent or the middle vertex w
of a 2-ear attached to v2 is adjacent to v1 or v3. Then we can apply one of the following
operations:

(O6) If w is adjacent to v1, we can replace P by a 5-ear with edges {v0, v1}, {v1, w},
{w, v2}, {v2, v3} and {v3, v4}. (By renumbering the vertices of P , the same oper-
ation applies if w is adjacent to v3.)

133

CHAPTER 8. S-T -PATH GRAPH TSP

(O7) If v1 and v3 are adjacent, we can replace P by a 5-ear formed by a 2-ear attached
to P at v2 and the edges {v0, v1}, {v1, v3}, {v3, v2}.

Both (O6) and (O7) replace P and an attached 2-ear by a 5-ear, again contradicting (g).

Lemma 8.28. Given an ear-decomposition with (d)–(g) but not (b), we can compute
an ear-decomposition with (d)–(g) in polynomial time that either has more trivial ears
or has the same number of trivial ears but fewer 4-ears.

(O8)

→ →

(O9)

→

(O10)

→

Figure 8.10: Making sure that every 4-ear is blocked or pendant or vertical or horizontal.
(O8): removing nontrivial ears attached to a 4-ear either at v1 or at v3; (O9): removing
ears of length at least 3 attached to a 4-ear at v1 and v3; (O10): removing ears of length
at least 3 attached to a 4-ear only at v2;

Proof. We may assume that (a) holds; otherwise we are done by Lemma 8.26. We have
(f) but not (b), so let P be a 4-ear that is neither blocked nor pendant nor vertical nor
horizontal. Let v0, v1, v2, v3, v4 be the vertices of P in this order (where v0 and v4 can
be identical), and let Q be the first ear attached to P . As P is neither pendant nor
blocked, Q is nontrivial and open.

(O8) If either v1 or v3 is an endpoint of Q, we can replace one edge of P by Q; this
edge becomes a trivial ear. The new nontrivial ear has length at least 5.

Note that if Q has endpoints v0 and v3, or v1 and v4, this creates a closed ear. Since
all short ears were pendant, neither v0 nor v4 can be an internal vertex of a short ear,
so (e) is maintained.

(O9) If Q has endpoints v1 and v3 and is not a 2-ear, we replace P by an ear of length
at least 5, formed by the edges {v0, v1} and {v3, v4} of P and the edges of Q; in
addition we replace Q by a 2-ear that consists of the remaining edges of P .

(O10) If Q is attached to P only at v2 and is not a 2-ear, we replace P by an ear of
length at least 5, formed by the edges {v0, v1} and {v1, v2} of P and the edges of
Q; in addition we replace Q by a 2-ear with the remaining edges of P .

134

8.3. COMPUTING THE INITIAL EAR-DECOMPOSITION

Operations (O9) and (O10) do not change the number of trivial ears, but each of
them decreases the number of 4-ears.

If none of the above operations apply, every nontrivial ear attached to P is a pendant
2-ear, attached to P at v1 and v3 or only at v2. Then we are done by Lemma 8.27.

Lemma 8.29. Given an ear-decomposition with (d)–(g) but not (c), we can compute
an ear-decomposition with (d)–(g) in polynomial time that either has more trivial ears,
or has the same number of trivial ears but fewer 4-ears, or has the same number of
trivial ears and the same number of 4-ears but fewer trivial ears that are incident to
middle vertices of outer 4-ears.

(O11)

→

(O12)

→

(O12)

→

(O13)
→

Figure 8.11: Ensuring condition (c). (O11): removing 3-ears whose middle vertices are
adjacent; (O12): removing 4-ears whose middle vertices are both adjacent to the middle
vertex of a 2-ear; (O13): an internal vertex of an outer ear (red) that is adjacent to an
endpoint of this ear and to an internal vertex of a different outer ear (blue, 2-ear or 4-ear).

Proof. We may assume that (a) and (b) hold; otherwise Lemma 8.26 or Lemma 8.28
does the job. First we consider adjacent 3-ears:

(O11) If internal vertices of two (pendant) 3-ears are adjacent, we replace these ears by
a pendant 5-ear. One trivial ear vanishes, but there are two new trivial ears.

135

CHAPTER 8. S-T -PATH GRAPH TSP

Next we consider 2-ears adjacent to 4-ears:

(O12) If the middle vertices of two outer 4-ears are both adjacent to the middle vertex
of a 2-ear, we replace these three ears by a 6-ear and two pendant 2-ears.

(O12) does not change the number of trivial ears but removes two 4-ears. Note that
the new 5-ear or 6-ear in (O11) and (O12) can be closed, but then its endpoint was an
endpoint of nontrivial ears before. Due to (a) this means that (e) is preserved.

Now we may assume that (a) and (b) hold and neither (O11) nor (O12) applies.
Since (c) is violated, there are internal vertices v of an outer ears P and w of an outer
ear Q that are adjacent, but P is not attached to Q at w, Q is not attached to P at
v, and the vertices v and w are not both the middle vertex of a 4-ear. Thus, after
possibly exchanging the roles of P and Q and of v and w, the vertex v is adjacent to an
endpoint x of P . Since (O11) does not apply, P and Q cannot both be 3-ears. As all
internal vertices of 3-ears are adjacent to an endpoint of the ear, we can assume that
Q is not a 3-ear. (Otherwise, exchange the roles of P and Q and of v and w.) Hence,
the final case is covered by the following operation:

(O13) If there are two outer ears P and Q none of which is attached to the other, and
two internal vertices v of P and w of Q that are adjacent, and v is adjacent to
an endpoint x of P , and Q is not a 3-ear, then we replace the edge {v, x} by the
edge {v, w} in P so that then P is attached to Q. If this violates (a) or (b), we
then apply Lemma 8.26 or Lemma 8.28.

Note that we avoid generating nonpendant 3-ears in order to maintain (f). If (a)
and (b) are not violated by (O13), this does not change the number of trivial ears or
4-ears. In this case, P is a 2-ear, Q is an outer 4-ear, and w is the middle vertex of Q.
Moreover, v is not adjacent to the middle vertex of any other outer 4-ear since (O12)
does not apply. Therefore the new trivial ear is not incident to a middle internal vertex
of an outer 4-ear and thus the operation (O13) reduces the number of trivial ears that
are incident to middle vertices of outer 4-ears.

Lemma 8.25, 8.26, 8.28, and 8.29 imply Theorem 8.24.

8.4 Optimizing outer ears and improving the lower bound

The ear-decomposition from Theorem 8.24 is the starting point for optimizing the outer
ears. While we do not touch pendant or horizontal 4-ears, we will change short ears
and vertical 4-ears. Like in [SV14], our goal is that as many short ears as possible
form a forest. Because 2-ears entering 4-ears are not always useful, we will in addition
try to make the vertical 4-ears pendant, by re-designing the 2-ears attached to them.
The two subpaths of a 4-ear from the middle vertex to an endpoint will be part of this
optimization, and might be replaced by attached 2-ears. See Figure 8.12.

For every 2-ear that will not be part of the forest or remains attached to an outer
4-ear, we will raise the lower bound. This includes in particular 2-ears attached to
horizontal ears, which cannot be optimized.

136

8.4. OPTIMIZING OUTER EARS AND IMPROVING THE LOWER BOUND

Vin

M

A

Vin

M

A

Figure 8.12: The upper picture shows the outer ears in an ear-decomposition as in
Theorem 8.24. We see (clockwise) a pendant 4-ear, a vertical 4-ear with two attached
2-ears, a horizontal 4-ear with two attached 2-ears, a 2-ear, and a 3-ear. Dashed edges
show trivial ears. The picture also shows the sets in M (red) and the set A (blue), in this
case a singleton. The lower picture shows the optimized ear-decomposition, resulting from
the green set of paths that is independent in both matroids. Note that not only short ears,
but also the vertical 4-ear changes.

137

CHAPTER 8. S-T -PATH GRAPH TSP

8.4.1 Matroid intersection

Given an ear-decomposition as in Theorem 8.24, let

M :=
{
in(P) : P short ear not attached to a horizontal 4-ear

} .
∪{

{v} : v a non-middle internal vertex of a vertical 4-ear
}
.

Moreover, let A denote the set of middle vertices of vertical 4-ears and for a ∈ A let

M(a) :=
{
{v} ∈M : {v, a} ∈ E(G)

}
.

Note that |M(a)| − 2 is the number of 2-ears attached to a. Let

Vin :=
{
v ∈ V (P) : P an inner ear

}
.

The sets A, Vin and the elements of M are pairwise disjoint. Moreover, the vertices of
G not contained in any of these sets are precisely the internal vertices of pendant or
horizontal 4-ears and the internal vertices of 2-ears attached to horizontal 4-ears. See
Figure 8.12.

Now let Pf for f ∈M denote the set of paths in G with the following two properties:

• The set of internal vertices of the path is f .

• The endpoints of the path are both contained in Vin.

We now define two matroids on the ground set
⋃
f∈M Pf .

The independent sets of the first matroid M1 are given by all sets I ⊆
⋃
f∈M Pf

such that (V (G),
⋃
I∈I E(I)) is a forest. It is clear thatM1 is a graphic matroid (every

path can be represented by an edge connecting its endpoints).
In the second matroidM2 a set I ⊆

⋃
f∈M Pf is independent if and only if it fulfills

the following two conditions:

(i) |I ∩ Pf | ≤ 1 for all f ∈M

(ii) For every a ∈ A we have∣∣∣∣∣∣
⋃

f∈M(a)
Pf ∩ I

∣∣∣∣∣∣ ≤ |M(a)| − 2.

Note that (i) and (ii) characterize the independent sets of a laminar matroid (see
Section 2.6).

We compute a maximum cardinality set I ⊆
⋃
f∈M Pf such that I is an independent

set in both matroids defined above.
The idea is that we want to choose as many short ears as possible to form a forest

but leave two elements of each M(a) unused; they will form the 4-ear with middle
vertex a. Thus the vertical 4-ears can also change. We will formally describe how the
new ear-decomposition is formed in the proof of Theorem 8.34. The paths in I will
end up exactly as the forest of clean ears. In this forest we will not include clean ears
that are attached to outer 4-ears.

138

8.4. OPTIMIZING OUTER EARS AND IMPROVING THE LOWER BOUND

8.4.2 Improving the lower bound

In this section we use the matroid intersection theorem (Theorem 2.13) to derive a
lower bound on LP and hence on OPT. If I is smaller than the number of short ears,
we will not be able to include all short ears of our optimized ear-decomposition into
the forest of clean ears. We will make up for this by a larger lower bound.

For f ∈M let Uf ⊆ Vin be the set containing all neighbors of elements of f in Vin.
If Pf 6= ∅, this is the set of endpoints of paths in Pf . If Pf = ∅, then Uf has a single
element. In particular, we have Uf 6= ∅ for all f ∈M .

For a set W ⊆ Vin let

sur(W) := |{f ∈M : Uf ⊆W}| − (|W | − 1)

be the surplus of W . For a partition W of Vin and a vertex a ∈ A, let

sur(a,W) := 2−
∑
W∈W

|{f ∈M(a) : Uf ⊆W}| .

Finally, for A′ ⊆ A let

µ(W, A′) :=
∑
W∈W

sur(W) +
∑
a∈A′

sur(a,W).

Lemma 8.30. For a maximum cardinality set I that is independent in both matroids,

|I| = |M | −max
{
µ(W, A′) : A′ ⊆ A, W partition of Vin

}
.

Proof. For any partition W of Vin and any A′ ⊆ A we set

QW :=
{
P ∈

⋃
f∈M
Pf : ∃W ∈ W s.t. both endpoints of P belong to W

}
. (8.6)

and
M ′W,A′ :=

⋃
a∈A′

M(a) ∪
{
f ∈M : Pf ⊆ QW

}
.

Then, using the definitions of µ and sur:

µ(W, A′) = |{f ∈M : Pf ⊆ QW}| −
∑
W∈W

(|W | − 1)

+
∑
a∈A′

(
2− |{f ∈M(a) : Pf ⊆ QW}|

)
= |M ′W,A′ | −

∑
a∈A′

(|M(a)| − 2)−
∑
W∈W

(|W | − 1).

(8.7)

Moreover, every set I that is independent in both matroids has at most
∑
W∈W(|W |−1)

elements of QW (due to M1), at most |M(a)| − 2 elements of any
⋃
f∈M(a) Pf (due

toM2), and thus

|I| ≤
∑
W∈W

(|W | − 1) +
∑
a∈A′

(|M(a)| − 2) + |M \M ′W,A′ |.

This shows “≤”.

139

CHAPTER 8. S-T -PATH GRAPH TSP

Now let r1 denote the rank function of the matroidM1 and r2 the rank function of
the matroidM2. By the matroid intersection theorem ([Edm70], Theorem 2.13),

|I| = min
{
r1
(
Q
)

+ r2
(⋃

f∈M Pf \ Q
)

: Q ⊆
⋃
f∈M Pf

}
. (8.8)

Let Q be a set attaining the minimum, and among these a maximal one. Let W
contain the intersections of Vin with the vertex sets of the connected components of
the graph GQ :=

(
Vin ∪

⋃
P∈Q V (P),

⋃
P∈QE(P)

)
. Then Q = QW by the maximality

assumption.
The rank of Q in the graphic matroidM1 is

r1(Q) =
∑
W∈W

(|W | − 1). (8.9)

Now let
A′ :=

{
a ∈ A : |{f ∈M(a) : Pf 6⊆ Q}| > |M(a)| − 2

}
.

Then the rank of
⋃
f∈M Pf \ Q in the laminar matroidM2 is given by

r2
(⋃

f∈M Pf \ Q
)

= |M \M ′W,A′ |+
∑
a∈A′

(|M(a)| − 2). (8.10)

(8.8), (8.9), (8.10), and (8.7) yield

|I| =
∑
W∈W

(|W | − 1) + |M \M ′W,A′ |+
∑
a∈A′

(|M(a)| − 2) = |M | − µ(W, A′).

We denote by LP the value of the standard linear programming relaxation

min x(E(G))
s.t. x(δ(U)) ≥ 2 for ∅ (U (V (G) with |U ∩ ({s} 4 {t})| even,

x(δ(U)) ≥ 1 for U (V (G) with |U ∩ ({s} 4 {t})| odd,
xe ≥ 0 for e ∈ E(G).

(8.11)

We now construct a dual solution to the LP (8.11). The dual is given by

max
∑

∅(U(V (G)
2y(U)−

∑
U :|U∩({s}4{t})| odd

y(U)

s.t.
∑

U :e∈δ(U)
y(U) ≤ 1 for e ∈ E(G)

y(U) ≥ 0 for ∅ (U (V (G).

(8.12)

Let W be a partition of Vin and A′ ⊆ A such that

|I| = |M | − µ(W, A′). (8.13)

(Such sets W and A′ exist by Lemma 8.30.) Let M̄ ⊆M be the set of all f ∈M that
have the following two properties:

140

8.4. OPTIMIZING OUTER EARS AND IMPROVING THE LOWER BOUND

A′

A \ A′

Vin

M̄

{W ′ : W ∈ W}

Figure 8.13: The dual solution y′ is shown in green, blue and red. Every red, blue or
green line around a set U indicates an (additional) value of 1

4 of the corresponding dual
variable y′(U). Edges of the graph with both endpoints in Vin are not shown.

• Uf ⊆W for some W ∈ W

• For every a ∈ A′ we have f 6∈M(a).

Let Vhor be the union of the set of internal vertices of horizontal 4-ears and of 2-ears
attached to horizontal 4-ears. We first define a vector y′ that is a feasible solution to
the dual LP (8.12) if Vhor = ∅. (This is a fact that we will prove later, in Lemma 8.31).

• For every vertex v ∈ V (G) \ Vhor we set

y′({v}) :=

0, if v ∈ A \A′
1
4 , if v ∈ Vin
1
2 , else.

(8.14)

(green in Figure 8.13)

• For every set W ∈ W we define

W ′ := W ∪ {v ∈ f : f ∈ M̄, Uf ⊆W}

and set y′(W ′) := 1
4 . If |W

′| = 1, we instead increase y′(W ′) by 1
4 (from 1

4 to 1
2).

(blue in Figure 8.13)

• We set y′(f) := 1
4 for f ∈ M̄ . If |f | = 1, we instead increase y′(f) by 1

4 (from 1
2

to 3
4). (red in Figure 8.13)

141

CHAPTER 8. S-T -PATH GRAPH TSP

Vin

Figure 8.14: The dual solution yhor for a horizontal 4-ear with one 2-ear attached to
it. Every blue or green line around a set U indicates an (additional) value of 1

4 of the
corresponding dual variable yhor(U).

All other dual variables y′(U) (for ∅ (U (V (G)) are set to zero.
To construct a feasible dual solution also if Vhor 6= ∅, we define a vector yhor and

set y := y′ + yhor. To define yhor we define for every horizontal 4-ear dual variables as
follows: Let w be the middle vertex of P and let Q1, . . . , Qh be the 2-ears attached to
P . Then we set

yhor({w}) := 1
yhor(in(Qi)) := 1 (for i = 1, . . . , h)

yhor(V (P) ∪ V (Q1) ∪ · · · ∪ V (Qh)) := 1
2 .

See Figure 8.14. All other dual variables yhor(U) (for ∅ (U (V (G)) are set to zero.

Lemma 8.31. The vector y = y′ + yhor is a feasible solution to the dual LP (8.12) of
the LP (8.11).

Proof. We clearly have y(U) ≥ 0 for ∅ (U (V (G). Moreover, we have for every
vertex v that is contained neither in Vhor nor in f ∈ M̄ , that∑

U :v∈U
y(U) ≤ 1

2 . (8.15)

Now let e be an edge of G.

Case 1: At least one of the endpoints of e is contained in Vhor.

If both endpoints of e are contained in Vhor, one endpoint v of e is a non-middle internal
vertex of a horizontal 4-ear P , and the other endpoint w of e is the middle vertex of
either P or a 2-ear attached to P at v. (This follows from Theorem 8.24 and the
definitions of a horizontal 4-ear and Vhor.) Then,

∑
U :e∈δ(U) y(U) = y({w}) = 1. It

remains to consider the case e ∈ δ(Vhor) and without loss of generality w ∈ Vhor. By
Theorem 8.24, this implies that v ∈ Vin. Moreover, by definition of horizontal 4-ears, w

142

8.4. OPTIMIZING OUTER EARS AND IMPROVING THE LOWER BOUND

is a non-middle internal vertex of a horizontal 4-ear. (Otherwise, the edge {v, w} could
not exist.) Using (8.15), this implies∑

U :e∈δ(U)
y(U) ≤

∑
U :w∈U

yhor(U) +
∑

U :v∈U
y(U) ≤ 1

2 + 1
2 = 1.

Case 2: None of the endpoints of e is contained in Vhor.

If none of the two endpoints of e is contained in
⋃
f∈M̄ f , we have by (8.15), that∑

U :e∈δ(U) y(U) ≤ 1. So we may assume that e = {v, w} with w ∈ f ∈ M̄ . Then∑
U :v∈U y(U) = 1. By Theorem 8.24, either

• v ∈ A and w = f ∈M(v), or

• v ∈ Vin, or

• v ∈ f and f = {v, w} is the set of internal vertices of a 3-ear.

If v ∈ A, by definition of M̄ , we have v ∈ A \A′, since f ∈ M̄ . Then
∑
U :v∈U y(U) = 0

and thus ∑
U :e∈δ(U)

y(U) ≤
∑

U :w∈U
y(U) = 1.

As w ∈ f ∈ M̄ , there exists a (unique) set W ∈ W with Uf ⊆ W and w ∈ W ′. If
v ∈ Vin, we have v ∈ Uf ⊆W ⊆W ′. Hence,∑

U :e∈δ(U)
y(U) ≤

∑
U :w∈U

y(U) +
∑

U :v∈U
y(U)− 2y(W ′) ≤ 1 + 1

2 −
1
2 = 1.

Finally, if v ∈ f and f = {v, w} is the set of internal vertices of a 3-ear, we have∑
U :e∈δ(U)

y(U) = y({v}) + y({w}) = 1
2 + 1

2 = 1.

Theorem 8.32. If I is a maximum cardinality set that is independent in both matroids,
then

LP ≥ n− 3 + 1
2(k2 + k3 − |I|).

Proof. By Lemma 8.31, the vector y = y′ + yhor is a feasible solution to the dual of
(8.11). Hence,

LP ≥
∑

∅(U(V (G)
2y(U)−

∑
U :|U∩({s}4{t})| odd

y(U).

Using the definitions of sur and M̄ , we get∑
a∈A′

sur(a,W) =
∑
a∈A′

(
2− |{f ∈M(a) : Uf ⊆W,W ∈ W}|

)
= 2|A′| − |{f ∈M \ M̄ : Uf ⊆W,W ∈ W}|

143

CHAPTER 8. S-T -PATH GRAPH TSP

and ∑
W∈W

sur(W) =
∑
W∈W

(
|{f ∈M : Uf ⊆W}| − (|W | − 1)

)
= |M̄ |+ |{f ∈M \ M̄ : Uf ⊆W,W ∈ W}| − |Vin|+ |W|,

which together with (8.13) implies

1
2(|M | − I|) = 1

2µ(W, A′) = |A′|+ 1
2 |M̄ | −

1
2 |Vin|+ 1

2 |W|. (8.16)

By construction of y′, we have∑
∅(U(V (G)

2y′(U) = |V (G) \ Vhor| − |A \A′| − 1
2 |Vin|+ 1

2 |W|+
1
2 |M̄ |

= |V (G) \ Vhor| − |A|+ 1
2(|M | − |I|),

(8.17)

where we used (8.16) in the second equality.

Furthermore, for a horizontal 4-ear P with middle vertex w and 2-ears Q1, . . . , Qh
attached to P , we have |V (P) ∪ V (Q1) ∪ · · · ∪ V (Qh)| = 3 + h and thus

yhor({w}) +
h∑
i=1

yhor(in(Qi)) + yhor(V (P) ∪ V (Q1) ∪ · · · ∪ V (Qh))

= 1 + h+ 1
2

= 1
2 |V (P) ∪ V (Q1) ∪ · · · ∪ V (Qh)|+ 1

2h.

This implies∑
∅(U(V (G)

2yhor(U) = |Vhor|+ |{Q : Q 2-ear attached to a horizontal 4-ear}|. (8.18)

Combining (8.17) and (8.18), we get∑
∅(U(V (G)

2y(U) = n− |A|+ 1
2(|M | − |I|)

+ |{Q : Q 2-ear attached to a horizontal 4-ear}|.

Finally, we observe that we defined the dual solution y such that for every vertex v
we have

∑
U :v∈U y(U) ≤ 3

2 . In particular,∑
U :|U∩({s}4{t})| odd

y(U) ≤
∑
U :s∈U

y(U) +
∑
U :t∈U

y(U) ≤ 3.

This shows

LP ≥
∑

∅(U(V (G)
2y(U)−

∑
U :|U∩({s}4{t})| odd

y(U)

≥ n− |A|+ 1
2(|M | − |I|) + |{Q : Q 2-ear attached to a horizontal 4-ear}| − 3

144

8.4. OPTIMIZING OUTER EARS AND IMPROVING THE LOWER BOUND

= n− 3− |A|+ 1
2(2|A|+ k2 + k3 − |I|)

+ 1
2 |{Q : Q 2-ear attached to a horizontal 4-ear}|

≥ n− 3 + 1
2(k2 + k3 − |I|)

8.4.3 Optimizing outer ears

After optimizing the outer ears via the matroid intersection approach described above,
we will distinguish between primary ears (those that were inner ears, plus clean ears
that form a forest) and secondary ears. For secondary ears we will apply Lemma 8.1,
and for secondary short ears we raise the lower bound using Theorem 8.32. For primary
ears we will apply Theorem 8.22. Hence we need to bound the number of primary 4-
ears, which correspond exactly to the blocked 4-ears before optimization. Their number
can be bounded easily as follows.

Lemma 8.33. Given an ear-decomposition as in Theorem 8.24, denote by k4, blocked
and k4,non-blocked the number of blocked and non-blocked 4-ears, respectively. Then

k4, blocked ≤ 2k≥5 + k4,non-blocked.

Proof. Recall that a 4-ear is blocked if a closed ear is attached to it. Since all short
ears are open and no closed 4-ear is attached to any closed 4-ear, the only closed ears
attached to a 4-ear can be ears of length at least five, non-blocked 4-ears, and 4-ears
to which a closed ear of length at least five is attached. Using that every closed ear is
attached to exactly one ear, we get the result.

We now describe in detail how we optimize the outer ears and summarize the results
of this section in the following theorem.

Theorem 8.34. Given a 2-vertex-connected graph G and s, t ∈ V (G), we can compute
a well-oriented ear-decomposition P1, . . . , Pl of G and an index p ≤ l with the following
properties in polynomial time. Call P1, . . . , Pp the primary ears and Pp+1, . . . , Pl the
secondary ears. Then:

• The primary short ears are clean; an ear is oriented if and only if it is short and
primary.

• k4, primary − 2k≥5, primary ≤ k4, secondary

• LP ≥ n− 3 + 1
2kclean, secondary

where k4, primary is the number of primary 4-ears, k4, secondary is the number of sec-
ondary 4-ears, k≥5, primary is the number of primary ears with at least five edges, and
kclean, secondary is the number of secondary clean ears.

Proof. We first compute an ear-decomposition as in Theorem 8.24. Then we compute
a maximum independent set I in both matroidsM1 andM2 by a matroid intersection
algorithm. Then we modify the outer ears of our ear-decomposition as follows:

145

CHAPTER 8. S-T -PATH GRAPH TSP

• For every short ear Q such that no internal vertex of Q is adjacent to an internal
vertex of an outer 4-ear and I ∩ Pin(Q) 6= ∅, we replace Q by the unique element
of I ∩ Pin(Q).

• Let a ∈ A and let {u}, {u′} be two distinct elements of M(a) such that both
I ∩P{u} and I ∩P{u′} are empty. Then we replace the vertical 4-ear with middle
vertex a and the 2-ears attached to it as follows. We choose a 4-ear with internal
vertices u, a, u′ and with endpoints in Vin. For every {v} ∈M(a) \ {{u}, {u′}} we
choose a 2-ear with internal vertex v: if I ∩ P{v} 6= ∅, we choose the 2-ear to be
the unique element of I ∩ P{v}; otherwise, we choose the 2-ear to consist of the
edge {a, v} and an arbitrary edge from v to a vertex in Vin.

This modification of the ear-decomposition does not change any inner ear. It does
not change the total number of 4-ears. Moreover, all short ears are still pendant, and
the (short) ears in I form a forest. We orient the clean ears in I so that we have a
well-oriented ear-decomposition.

We declare an ear as primary if all its vertices belong to Vin or if it is a clean ear
in I. Other ears are secondary; their internal vertices do not belong to Vin. Since I
contains only paths with both endpoints in Vin, we can reorder the ears so that the first
ears P1, . . . , Pp are the primary ears (for some p).

Note that all ears of length at least five are primary, and the primary 4-ears are ex-
actly those that were blocked before the optimization. Hence k4,primary−2k≥5,primary ≤
k4,secondary follows from Lemma 8.33.

Finally, we have by Theorem 8.32 that

LP ≥ n− 3 + 1
2(k2 + k3 − |I|)

≥ n− 3 + 1
2kclean, secondary,

where the last inequality follows since clean secondary ears do not belong to I.

8.5 Ear-decompositions with many non-entered ears

Now we apply our ear induction to the optimized ear-decomposition, combining Theo-
rem 8.34 and Theorem 8.22.

Theorem 8.35. Given a graph G and s, t ∈ V (G), we can compute a well-oriented
ear-decomposition of G with π non-entered ears, and an s-t-tour with at most(

3
2 −

1
26 ·

π
n−1

)
LP + 3

edges in polynomial time.

Proof. We compute a well-oriented ear-decomposition of a graph G as in Theorem 8.34.
Let π be the number of non-entered ears and Vprimary the union of the vertex sets of
all primary ears. We apply Lemma 8.1 to all nontrivial secondary ears (in reverse
order). This yields a set F ′ ⊆

⋃
P secondary 2E(P) which is a T ′-join for some T ′ with

T ′ 4 {s} 4 {t} ⊆ Vprimary such that (V (G), F ′)/Vprimary is connected and

|F ′| ≤ 3
2
(
n− |Vprimary|

)
− 1

2knontrivial, secondary + kclean, secondary.

146

8.6. EAR-DECOMPOSITIONS WITH FEW NON-ENTERED EARS

Now let T := T ′4 {s} 4 {t}, and we can apply Theorem 8.22 to the primary ears.
We get a T -join F such that (Vprimary, F) is connected and

|F | ≤ 3
2
(
|Vprimary| − 1

)
− 1

26knon-entered, primary + 1
26(k4, primary − 2k≥5, primary)

≤ 3
2
(
|Vprimary| − 1

)
− 1

26knon-entered, primary + 1
26k4, secondary.

Then F ′
.
∪ F is an s-t-tour in G with at most

3
2(n− 1)− 1

2knontrivial, secondary + kclean, secondary

− 1
26knon-entered, primary + 1

26k4, secondary

≤ 3
2(n− 1)− 1

26
(
knontrivial, secondary + knon-entered, primary

)
+
(

1
2 + 1

26

)
kclean, secondary

= 3
2(n− 1)− 1

26π +
(

1
2 + 1

26

)
kclean, secondary

edges.
By Theorem 8.34 we have LP ≥ (n−1) + 1

2kclean, secondary−2. Thus, we have (using
π ≤ n− 1)(

3
2 −

1
26 ·

π
n−1

)
LP ≥ 3

2(n− 1)− 1
26π +

(
3
2 −

1
26

π
n−1

)
·
(

1
2kclean, secondary − 2

)
≥ 3

2(n− 1)− 1
26π + (3

4 −
1
52)kclean, secondary − 3.

Hence we can bound the number of edges of our s-t-tour F ′
.
∪ F by(

3
2 −

1
26 ·

π
n−1

)
LP + 3.

8.6 Ear-decompositions with few non-entered ears

In this section we show how to compute a cheap s-t-tour if our well-oriented ear-
decomposition has only few non-entered ears and s and t have small distance. As
mentioned in Section 8.1.6, this is easy if we just want to achieve an approximation
ratio smaller than 3

2 :

Lemma 8.36. Let G be a graph with a well-oriented ear-decomposition, and s, t ∈
V (G). Let π be the number of non-entered ears. Then we can compute an s-t-tour with
at most

4
3(n− 1) + 8

3π + 1
3dist(s, t)

edges in polynomial time, where dist(s, t) denotes the distance of s and t in G.

Proof. Let G′ result from G by deleting the trivial ears. Then G′ is still 2-edge-
connected. The number of non-trivial ears is at most 2π because every entered ear
is entered by a clean (and hence pendant and in particular non-entered) ear. Thus
|E(G′)| ≤ n − 1 + 2π. We obtain an s-t-tour by adding a shortest T -join J to E(G′),
where T = {s}4{t}4{v : v has odd degree in G′}. Let P be a shortest s-t-path, and

147

CHAPTER 8. S-T -PATH GRAPH TSP

let the vector x ∈ RE(G) be the sum of the incidence vectors of E(P) and E(G′), both
multiplied by 1

3 . We claim that x belongs to the T -join polyhedron{
x ∈ [0, 1]E(G) : x(δG(U)) ≥ 1 for all U ⊆ V (G) with |U ∩ T | odd

}
, (8.19)

which implies |J | ≤ x(E(G)) = 1
3 |E(G′)| + 1

3dist(s, t). To see that x is in the T -join
polyhedron (8.19), let ∅ 6= U (V (G). Notice that x(δG(U)) < 1 only if |δG′(U)| = 2
and δ(U) does not separate s and t; but then |U ∩ T | is even.

By applying the removable-pairing technique of Mömke and Svensson [MS16], we
will get a better bound. The following lemma shows a new way to apply the removable-
pairing technique to ear-decompositions. In contrast to Sebő and Vygen [SV14], we do
not require the graph after deleting the trivial ears to be 2-vertex-connected. This
requires a slight modification of their proof.

Lemma 8.37. Let G be a graph with a well-oriented ear-decomposition, and s, t ∈
V (G). Let π be the number of non-entered ears. Then we can compute an s-t-tour with
at most

4
3(n− 1) + 2

3π + 1
3dist(s, t)

edges in polynomial time, where dist(s, t) denotes the distance of s and t in G.

Proof. Let E′ be the set of edges of nontrivial ears. Note that (V (G), E′) is 2-edge-
connected, but in general not 2-vertex-connected.

For every non-entered ear choose one arbitrary edge of the ear and declare it remov-
able. For every entered ear Q let v ∈ in(Q) such that there is an oriented ear entering
Q at v; declare the two edges of Q that are incident to v a removable pair.

Let R be the set of all removable edges (including those in removable pairs), and
let P be the set of removable pairs. We have |E′| − (n− 1) nontrivial ears and

|R| = 2(|E′| − (n− 1))− π. (8.20)

Note that (V (G), E′ \ R′) is connected for every subset R′ ⊆ R that contains at
most one element of each removable pair. (Mömke and Svensson [MS16] called (R,P)
a removable pairing.)

We construct a 2-edge-connected auxiliary graph G′ with edge weights c as follows.
We begin with (V (G), E′), and initially all removable edges have weight −1 and all
other edges have weight 1. Now consider the nontrivial ears in reverse order. Let Pi be
the current ear. If Pi is non-entered, we do nothing. Otherwise there is a removable
pair with edges {u, v} and {v, w} of Pi (then v ∈ in(Pi)). We insert a new vertex v′ and
a new edge {v, v′} with weight 0, and replace the edges {u, v} and {v, w} by {u, v′} and
{v′, w}, both with weight −1. Note that the subgraph of oriented ears never changes.

To show that the graph remains 2-edge-connected we have to prove the new edge
{v, v′} is not a bridge (because contracting this edge results in the previous graph,
which was 2-edge-connected by induction).

To prove that the new edge {v, v′} is not a bridge, we construct paths from v to
r and from v′ to r, both not using this edge; here r denotes the initial vertex of the
ear-decomposition (the vertex of P0). From v′ we follow the edge {v′, w} and then edges
of Pi to an endpoint x of Pi. Since x ∈ Vi−1, there is a path from x to r in Gi−1 (which

148

8.6. EAR-DECOMPOSITIONS WITH FEW NON-ENTERED EARS

is a subgraph that we haven’t changed yet). From v we follow the entering oriented
ear (backwards) until we reach the root r(v) of the connected component of oriented
ears. This root belongs to Vi \ {v}. If r(v) ∈ in(Pi) \ {v}, we follow edges of Pi to an
endpoint of Pi without visiting v. Then we reach a vertex in Vi−1 and again have path
to r within Gi−1 from there.

The result is a 2-edge-connected weighted graph G′, for which the contraction of
the zero-weight edges would result in (V (G), E′). The removable edges have weight
−1, other edges have weight 1. Finally, if s 6= t, we add a new edge d with endpoints
s and t and weight dist(s, t) to G′ (possibly adding a parallel edge). We call the result
G′′. Let T ′′ := {v ∈ V (G′′) : |δG′′(v)| odd}.

Consider the vector x ∈ RE(G′′) whose entries are all 1
3 . We claim that x is in the

T ′′-join polytope{
x ∈ [0, 1]E(G′′) : |F | − x(F) + x(δG′′(U) \ F) ≥ 1 for all U ⊆ V (G′′) and

F ⊆ δG′′(U)with |U ∩ T ′′|+ |F | odd
}
,

(8.21)

which is the convex hull of incidence vectors of simple T ′′-joins (by simple we mean that
no edge is used twice); see Theorem 2.17. To see that x is in (8.21), let U (V (G′′) and
F ⊆ δG′′(U) with |U∩T ′′|+ |F | odd. If |δG′′(U)| ≥ 3, the inequality holds because every
edge of δG′′(U) contributes at least 1

3 to the left-hand side. Otherwise |δG′′(U)| = 2
because G′′ is 2-edge-connected. Hence |U ∩ T ′′| is even by definition of T ′′. Then |F |
is odd, so |F | = 1. Then |F | − x(F) + x(δG′′(U) \ F) = 1− 1

3 + 1
3 = 1.

We conclude that x is in (8.21), and in fact in the face of this integral polytope
defined by x(δ(v′)) = 1 for every new vertex v′ (they have degree three). Faces of
integral polytopes are integral, so x is in the convex hull of simple T ′′-joins that contain
exactly one edge incident to each new vertex.

Hence there exists a simple T ′′-join J ′′ in G′′ that contains exactly one edge incident
to each new vertex, and with

c(J ′′) ≤ c(x) = 1
3 |E

′| − 2
3 |R|+

1
3dist(s, t).

Such a J ′′ can be computed in polynomial time (using a standard reduction to weighted
matching; see [SV14]).

Let D be the edge set of a shortest s-t-path if d ∈ J ′′, and D = ∅ otherwise. Let
T := odd(E′)4{s}4{t}. After contracting the zero-weight edges of G′′, J ′′ corresponds
to a simple T -join J in (V (G), E′

.
∪ {d}) with

|J ∩ (E′ \R)| − |J ∩R|+ |D| = c(J ′′) ≤ 1
3 |E

′| − 2
3 |R|+

1
3dist(s, t),

not containing both edges of any removable pair. Then (E′\(J∩R))
.
∪ (J∩(E′\R))

.
∪ D

is an s-t-tour with at most |E′|+ c(J ′′) edges. The result now follows from (8.20).

Theorem 8.38. Given an instance of the s-t-path graph TSP with a 2-vertex-connected
graph in which s and t have distance at most 0.3334 OPT, where OPT denotes the
number of edges in the optimum solution, we can compute an s-t-tour with at most
1.497 OPT edges in polynomial time.

149

CHAPTER 8. S-T -PATH GRAPH TSP

4
3

7
5

3
2

0 1
4

1
2

d
1
3

Figure 8.15: Lower bound (red) and upper bounds (green and blue) on the integrality
ratio depending on d = dist(s,t)

n (for n large enough). Section 8.8 shows that it suffices to
consider instances with d ≤ 1

3 + δ for arbitrary small δ > 0.

Proof. We apply Theorem 8.35 and obtain a well-oriented ear-decomposition and an
s-t-tour. If the number of non-entered ears is at least 13

165(n− 1), then this s-t-tour has
at most (3

2 −
1

330)LP + 3 edges. If n > 99000, this is at most 1.497 LP ≤ 1.497 OPT
since LP ≥ n− 1. For n ≤ 99000 we can solve the instance by complete enumeration.

If the number of non-entered ears is at most 13
165(n− 1), then Lemma 8.37 yields an

s-t-tour with at most (4
3 + 26

495)(n− 1) + 0.3334
3 OPT < 1.497 OPT edges.

8.7 Instances with large integrality ratio

The analysis of our algorithm allows us to give necessary and sufficient conditions for
OPT
LP being close to the integrality ratio 3

2 : we will show that the classical family of
examples proving the lower bound of 3

2 (see Figure 6.2) is “essentially the only such
family of examples” (with large n).

First we analyze how the integrality ratio depends on the distance of s and t. For
every d ∈ [0, 1

2], let ρ(d, n) denote the integrality ratio for 2-vertex-connected instances
with at least n vertices and dist(s, t) ≤ d · n. Let ρ(d) = limn→∞ ρ(d, n). The proof
of Theorem 8.38 shows that ρ(d) < 3

2 for all d < 1
2 , and the bound improves as d

decreases. More precisely, we get:

Lemma 8.39. For all d ∈ [0, 1
2] and every integer n ≥ 2 we have ρ(d, n) ≤ 82+d

55 + 3
n−1 .

Proof. We compute a well-oriented ear-decomposition as in Theorem 8.34 and consider
two different bounds. Lemma 8.37 yields an s-t-tour with at most 4

3(n− 1) + 2
3π+ 1

3dn
edges. Theorem 8.35 yields an s-t-tour with at most (3

2−
1
26

π
n−1)LP+3 edges. Taking 3

55
times the first bound and 52

55 times the second bound yields the upper bound 82+d
55 LP+3.

This shows ρ(d, n) ≤ 82+d
55 + 3

n−1 .

150

8.7. INSTANCES WITH LARGE INTEGRALITY RATIO

s= t=v
n
3 + 1

n
3

n
3

w

s

t

v w

dn
2

dn
2

n
3 −

dn
6

n
3 −

dn
6

1 + n
3 −

2dn
3

s

t

v w

n
4

n
4

n
4

n
4

1

Figure 8.16: Middle picture: Instances with dist(s, t) = dn whose integrality ratio tends
to 4+d

3 as n → ∞. Every dashed line represents a path with the indicated number of
edges. The left picture shows instances with d = 0 whose integrality ratio tends to 4

3
as n → ∞; the right picture instances with d = n

2 whose integrality ratio tends to 3
2 as

n → ∞. These two extreme cases are almost identical to the well-known examples that
are the worst known for s = t (left) and s 6= t (right).

We can also give a lower bound and for very small d we can derive a better upper
bound from [SV14] (cf. Figure 8.15):

Theorem 8.40. For all d ∈ [0, 1
2] we have 4+d

3 ≤ ρ(d) ≤ min
{82+d

55 , 7+2d
5
}
.

Proof. The first upper bound (green in Figure 8.15) follows from Lemma 8.39. If the
distance from s to t is very small (d < 5

21), a better upper bound ρ(d) ≤ 7+2d
5 (blue in

Figure 8.15) can be derived from [SV14]; see Theorem 45 in the appendix of [TV18].
For the lower bound (red in Figure 8.15), we first observe that it suffices to prove

the bound for rational numbers d ∈ [0, 1
2]. Then there are infinitely many integers n

for which dn
6 and n

3 are integers. We construct a graph G with n vertices (four of which
are called s, t, v, w) and n + 1 edges as follows: join s and v by a path of length dn

2 ,
join t and v by a path of length dn

2 , join s and w by a path of length n
3 −

dn
6 , join t and

w by a path of length n
3 −

dn
6 , and join v and w by a path of length 1 + n

3 −
2dn

3 . See
Figure 8.16, and observe that this graph indeed has n vertices.

For this instance of the s-t-path TSP we have LP ≤ n + 1 because setting xe = 1
for all e ∈ E(G) is a feasible solution. However, any s-t-tour contains all but two
edges, and some with two copies. Since the minimum ({s}4{t}4{v}4{w})-join has
min{dn2 + dn

2 + 1 + n
3 −

2dn
3 , dn2 + n

3 −
dn
6 } = dn

3 + n
3 edges, any s-t-tour has at least

(4+d)n
3 − 3 edges. For n→∞, the ratio converges to 4+d

3 .

Next, we show that for 2-vertex-connected instances with many vertices, we have
that OPT

LP is close to 3
2 if and only if the length of every s-t-path in G is close to n

2 .
The proof of Theorem 8.41 shows that such instances are very similar to the classical
examples; see Figure 8.17.

Theorem 8.41. Let (G, s, t) be an instance of the s-t-path graph TSP where G is
2-vertex-connected. Then for 0 < ε < 0.001 we have:

(a) If OPT
LP ≥

3
2 − ε, then the length of every s-t-path in G

is between (1
2 − 55 · ε) · (n− 1)− 330 and (1

2 + ε) · (n− 1).

151

CHAPTER 8. S-T -PATH GRAPH TSP

(b) If the length of every s-t-path in G is between (1
2 − ε) · n and (1

2 + ε) · n,
then we have OPT

LP ≥
3
2 ·

1−9ε
1+2ε −

3
n .

Proof. Statement (a) is trivial if n = 1; so we may assume n ≥ 2. Let (G, s, t) be
an instance of the s-t-path graph TSP and let P be an s-t-path in G. Then we can
construct an s-t-tour from P that has 2(n − 1) − |E(P)| edges: we complete P to a
spanning tree S by adding n−1−|E(P)| edges; then E(P)

.
∪ 2(S \E(P)) is an s-t-tour.

Thus, if G contains an s-t-path P with |E(P)| > (1
2 + ε) · (n− 1), we have

OPT
LP ≤ 2(n− 1)− |E(P)|

n− 1 < 2−
(1

2 + ε

)
= 3

2 − ε.

If G contains an s-t-path with at most (1
2 − 55ε) · (n− 1)− 330 edges, i.e. dist(s, t) ≤

(1
2 − 55ε) · (n− 1)− 330, then we can apply Lemma 8.39 to obtain

OPT
LP ≤ 82

55 +
(1

2 − 55ε) · (n− 1)− 330
55n + 3

n− 1 <
3
2 − ε,

where we used n
n−1 ≤ 2 and 55ε ≤ 1

2 in the last inequality. This completes the proof
of (a).

To prove (b), suppose that every s-t-path in G has between (1
2 − ε) · n and (1

2 + ε) · n
many edges. First, we give an upper bound on the optimum LP value. Because G is
2-vertex-connected, it contains two vertex disjoint s-t-paths P1 and P2. Let S ⊆ E(G)
be a minimal subset of edges such that (V,E(P1) ∪ E(P2) ∪ S) is connected. Since
E(P1)

.
∪ E(P2) is the edge set of a cycle of length at least (1 − 2ε) · n, we have

|S| = n− |E(P1) ∪ E(P2)| ≤ 2ε · n. Moreover,

xe :=

1 , if e ∈ E(P1) ∪ E(P2)
2 , if e ∈ S
0 , else

is a feasible solution to (Graph TSPP LP), implying LP ≤ x(E) ≤ (1 + 2ε) · n. Before
giving a lower bound on OPT, we first prove thatG has a lot of structure and, informally
speaking, looks essentially like the classical examples with integrality ratio close to 3

2 .
For i ∈ {0, . . . ,dist(s, t)− 1}, let Ui := {v ∈ V : dist(s, v) = i} be the set of vertices

with distance i from s. Moreover, for k := dist(s, t) ≤ (1
2 + ε) · n, let Uk := {v ∈ V :

dist(s, v) ≥ k}; then V = U0
.
∪ U1

.
∪ . . . ,

.
∪ Uk. Notice that then every edge of G has

either both endpoints in the same set Ui or has endpoints in two consecutive sets Ui−1
and Ui. Moreover, the paths P1 and P2 both contain at least one vertex in each of
the sets U0, U1, . . . , Uk. Let v0 = w0 = s and vk = wk = t. For i ∈ {1, . . . , k − 1} let
vi be the first vertex that P1 visits in Ui and wi the first vertex that P2 visits in Ui;
then the vertices v0, v1, . . . , vk are visited by P1 in this order and similarly the vertices
w0, w1, . . . , wk are visited by P2 in this order. For i ∈ {1, . . . , k − 1} we have vi 6= wi
because P1 and P2 are vertex disjoint. We call a set Ui with Ui) {vi, wi} large and a
set Ui with Ui = {vi, wi} small. We have

|{s, t, v1, . . . , vk−1, w1, . . . , wk−1}| = 2k ≥ (1− 2ε) · n.

152

8.7. INSTANCES WITH LARGE INTEGRALITY RATIO

v1

w1

v2

w2

v3

w3

v4

w4

v5

w5

v6

w6

v8

w8

v9

w9

v10

w10

v11

w11

v12

w12

s = v0

= w0

t

Figure 8.17: Illustration of the proof of Theorem 8.41 (b): an instance of the s-t-path
graph TSP in which every s-t-path has length close to n

2 . The vertical blue lines show
the cuts δ(U0 ∪ U1 ∪ · · · ∪ Ui) with 0 ≤ i < k. The white area shows sets Ui with
i ∈ {1, . . . , k − 1} \ I, whereas the gray areas show sets Ui with i ∈ I ∪ {0, k}; in this
example k = dist(s, t) = 13. The black lines show edges with at least one endpoint in a
white set, i.e. a set Ui with i ∈ {1, . . . , k − 1} \ I. The figure shows only vertices that are
endpoints of these edges and it shows s and t; the gray sets Ui with i ∈ I ∪ {0, k} might
contain further vertices and edges. However, the gray sets constitute only a small fraction
of the overall graph: they contain only O(εn) many vertices.

Therefore, at most 2ε·n sets Ui are large. Note that the small sets Ui are visited exactly
once by each of the paths P1 and P2 and they are visited in an order of increasing index i.

If there exists an edge {v, w} ∈ E(G) with v ∈ V (P1)\{s, t} and w ∈ V (P2)\{s, t},
we call the vertices v and w bad. Let I be the set of all i ∈ {0, . . . , k} such that Ui−1,
Ui or Ui+1 is large, or Ui contains a bad vertex. Now we observe that by definition
of I, every set Ui with i ∈ {1, . . . , k − 1} \ I has exactly two elements and these are
the vertices vi and wi. Moreover, both of these vertices have degree 2 and we have
δ(vi) = {{vi−1, vi}, {vi, vi+1}} ⊆ E(P1) and δ(wi) = {{wi−1, wi}, {wi, wi+1}} ⊆ E(P2);
see Figure 8.17.

Claim 1. We have |I| ≤ 12ε · n.

Proof. Recall that there are at most 2ε · n large sets Ui. Therefore there are at most
6ε ·n sets Ui such that Ui−1, Ui or Ui+1 is large. Now suppose there are more than 6ε ·n
other sets Ui that contain a bad vertex. Then there exist edges e1 = {vi1 , wj1}, . . . el =
{vil , wjl} for some l > 2ε · n such that 1 < i1 < i2 < · · · < il < k and 1 < j1 <
j2 < · · · < jl < k; see Figure 8.18. Here we used that every edge of G has either both
endpoints in the same set Ui or has endpoints in two consecutive sets Ui−1 and Ui.

We will show that then G contains an s-t-path of length at least l + (1
2 − ε) · n,

contradicting the fact that every s-t-path has length at most (1
2 + ε) · n. For 0 ≤ i ≤

j ≤ k, let P ij1 denote the subpath of P1 from vi to vj and let P ij2 denote the subpath
of P2 from wi to wj . Then we can construct two s-t-paths Q1 and Q2 as follows. We
obtain Q1 by appending

P 0i1
1 , e1, P

j1j2
2 , e2, P

i2i3
1 , e3, P

j3j4
2 , e4, . . .

and we obtain Q2 by appending

P 0j1
2 , e1, P

i1i2
1 , e2, P

j2j3
2 , e3, P

i3i4
1 , e4, . . . ;

153

CHAPTER 8. S-T -PATH GRAPH TSP

s t

Figure 8.18: The vertical thin lines indicate the boundaries between the sets Ui for
different i. The thick solid edges show the two vertex disjoint s-t-paths P1 (upper half of
the picture) and P2 (lower half of the picture). The green dashed edges are e1, . . . , el. (The
graph G might also contain further vertices and edges not shown in the picture.) The edge
set of the path Q1 is the union of the blue and the green edges; the edge set of the path
Q2 is the union of the red and green edges.

see Figure 8.18. Then every edge of E(P1)
.
∪ E(P2) is contained in exactly one of the

two paths Q1 and Q2 and the edges e1, . . . , el are contained in both paths. The longer
of these paths has length at least

1
2(|E(P1)|+ |E(P2)|+ 2l) ≥ l + (1

2 − ε) · n > (1
2 + ε) · n,

a contradiction.
(proof of Claim 1)

Finally, we give a lower bound on the length OPT of an optimum s-t-tour. To this
end we will show that such a tour needs to contain at least k − |I| − 2 parallel edges.
Because the s-t-tour needs to be connected, this implies

OPT ≥ n− 1 + k − |I| − 2 ≥
(

3
2 − 13ε

)
n− 3.

Therefore,
OPT
LP ≥

(
3
2 − 13ε

)
· n− 3

(1 + 2ε) · n ≥ 3
2 ·

1− 9ε
1 + 2ε −

3
n
.

It remains to show that every s-t-tour in G contains at least k − |I| − 2 parallel edges.
To prove this, consider any arbitrary, but fixed s-t-tour F . Now consider indices 0 <
imin ≤ imax < k such that for imin ≤ i ≤ imax we have i /∈ I. Then the edges incident
to vertices in Uimin , Uimin+1 . . . , Uimax are precisely the edges of the two vertex disjoint
paths with vertices vimin−1, vimin , . . . , vimax , vimax+1 and wimin−1, wimin , . . . , wimax , wimax+1
(visited in this order); see Figure 8.17. Because the s-t-tour F is connected and because
G contains no edge from a set Ui with i < imin to a set Uj with j > imax, all of the
edges of these two paths but one must be part of F . Moreover, we have s ∈ U0 and
t ∈ Uk and therefore every cut of the form δ(U0 ∪ U1 ∪ · · · ∪ Ui) with 0 ≤ i < k must
contain an odd number of edges of F . Using this for i = imin − 1, imin, . . . , imax, we
obtain that imax − imin + 1 of the edges incident to a vertex in Uimin ∪ · · · ∪Uimax must
be contained twice in the s-t-tour F .

Applying the above argument to every maximal set {imin, imin + 1, . . . , imax} of
consecutive indices that are not contained in I ∪ {0, k}, yields that F contains at least
k − |I| − 2 parallel edges.

154

8.8. A 1.497-APPROXIMATION ALGORITHM

We remark that Theorem 8.41 can also be generalized to instances where the graph
G is not 2-vertex-connected by applying Theorem 8.41 to every 2-vertex-connected
component of G (as explained in Section 8.1.1). Our goal was to show that the instances
with integrality ratio close to 3

2 look “essentially like the classical examples” and we
did not optimize the constants in the bounds in Theorem 8.41.

8.8 A 1.497-approximation algorithm

We have shown that there is a 1.497-approximation algorithm for instances of the
s-t-path graph TSP with dist(s, t) ≤

(
1
3 + ε

)
·OPT for some ε > 0 (Theorem 8.38). In

this section we prove a result from [Tra17] that implies that this is sufficient in order
to obtain a 1.497-approximation algorithm for the s-t-path graph TSP without any
restriction on the distance of s and t.

Theorem 8.42. Let ε > 0 and α > 1 be constants. Assume there exists a polynomial-
time algorithm that computes a solution with at most α ·OPT edges for instances of the
s-t-path graph TSP with a 2-vertex-connected graph G and dist(s, t) ≤ (1

3 + ε) · OPT.
Then there exists an α-approximation algorithm for the s-t-path graph TSP.

Theorem 8.42 and Theorem 8.38 directly imply the following result:

Theorem 8.43. There is a 1.497-approximation algorithm for the s-t-path graph TSP.

This shows that one can achieve an approximation ratio below the integrality ratio,
even while using the LP in the analysis. We did not attempt to optimize the running
time or the approximation ratio of this algorithm and in Chapter 9 we will give a
different algorithm achieving a better approximation ratio.

We now give a proof of Theorem 8.42 for completeness, but also because the algo-
rithm that we will present in Chapter 9 uses ideas from this proof.

8.8.1 Outline

Let us first sketch the main idea of the proof, which is inspired by an algorithm for
the orienteering problem by Blum, Chawla, Karger, Lane, Meyerson, and Minkoff
[BCK+07]. We consider the sets Li := {v ∈ V : dist(s, v) ≤ i} for i = 0, . . . ,dist(s, t)−
1. Then the cuts δ(Li) induced by these sets are disjoint. If now dist(s, t) >

(
1
3 + ε

)
·

OPT, then the average number of edges in a cut δ(Li) is significantly less than 3. Be-
cause s ∈ Li ⊆ V \ {t} for all i ∈ {0, . . . ,dist(s, t)− 1}, all these cuts δ(Li) contain an
odd number of edges of every s-t-tour. Therefore, a fixed optimum s-t-tour F ∗ must
intersect a constant fraction of the cuts δ(Li) exactly in one edge, i.e. |F ∗ ∩ δ(Li)| = 1.
Let us call such a cut a 1-cut. The 1-cuts separate the instance into several instances
of the s-t-path graph TSP; see Figure 8.19.

We will show that we can guess the 1-cuts and the edges of F ∗ that are contained in
them (blue in Figure 8.19) by dynamic programming. If we know these cuts and edges,
we can proceed as follows. We apply some constant-factor approximation algorithm for
the s-t-path graph TSP (e.g. Christofides’ algorithm with approximation ratio β = 5

3)
to each of the sub-instances between two consecutive 1-cuts. If dist(s, t) > (1

3 +ε)·OPT,
then this yields an approximation ratio β′ < β. Otherwise, we can apply the given α-
approximation algorithm for the case where the distance of s and t is relatively small.

155

CHAPTER 8. S-T -PATH GRAPH TSP

L1 L3 L5

s t

L0 L2 L4

Figure 8.19: An optimum s-t-tour F ∗. The dashed vertical lines show the chain L. The
family LF∗ ⊆ L of 1-cuts is shown in blue. The thick blue edges are those edges of F ∗ that
are contained in a 1-cut. The 1-cuts separate the instance into several smaller instances of
the s-t-path TSP. In this example there are 4 such subinstances, where the first instance
is trivial and consists only of the vertex s.

For β > α, we therefore obtained an approximation ratio of min{β′, α} < β. Then we
iterate this procedure of strengthening our β-approximation algorithm until we obtain
an α-approximation algorithm.

Our proof of Theorem 8.42 also applies to the more general weighted version of the
s-t-path TSP. More precisely, we will also show the following.

Theorem 8.44. Let ε > 0 and α > 1 be constants. Assume there exists a polynomial-
time algorithm that computes a solution of cost at most α · OPT for instances of the
s-t-path TSP with a 2-vertex-connected graph G and dist(s, t) = c(s, t) ≤ (1

3 + ε) ·OPT.
Then there exists an α-approximation algorithm for the s-t-path TSP.

8.8.2 Strengthening a constant-factor approximation

We now consider the s-t-path TSP with general nonnegative edge weights c. In this
section we will prove the following lemma.

Lemma 8.45. Let ε > 0 and α > 1. Let A be a polynomial-time algorithm for the
s-t-path TSP that computes for every instance with dist(s, t) = c(s, t) ≤ (1

3 + ε) ·OPT
a solution of cost at most α ·OPT. Moreover, let β > 1 and let B be a polynomial-time
β-approximation algorithm for the s-t-path TSP.

Then there is a polynomial-time algorithm for the s-t-path TSP with approximation
ratio

max
{
α, β − 3

2ε · (α− 1)
}
.

This algorithm when called on an instance (G, c, s, t), uses A and B only for instances
(G′, c′, s′, t) where (G′, c′) is an induced subgraph of the original graph (G, c).

Because we need to call A and B only on sub-instances of the original instance, we
can apply Lemma 8.45 not only to the weighted case, but also to the graph version.

We now describe our algorithm to prove Lemma 8.45. If β ≤ α, the statement
is trivial and we can simply apply the given β-approximation. So we may assume
β > α > 1. First, we sort the vertices V = {v1, . . . , vn} such that dist(s, v1) ≤
dist(s, v2) ≤ · · · ≤ dist(s, vn). We now consider the chain

L :=
{
{v1, . . . , vi} : dist(s, vi) < dist(s, t), 1 ≤ i < n

}
.

156

8.8. A 1.497-APPROXIMATION ALGORITHM

Let k := |L| and for i ∈ {1, . . . , k} let Li := {v1, . . . , vi}. Note that then {s} ⊆ L1 ⊆
· · · ⊆ Lk ⊆ V \ {t}. We also define values

yLi := dist(s, vi+1)− dist(s, vi) ≥ 0

for i ∈ {1, . . . , k} and we set yi := 0 for i = k + 1, . . . n − 1. The following lemma
describes the key property of the chain L that we will need for the analysis of our
dynamic programming algorithm.

Lemma 8.46. Let F be an s-t-tour and let LF := {L ∈ L : |F ∩ δ(L)| = 1}. Then we
have

c

F ∩ ⋃
L∈LF

δ(L)

 ≥ 1
2 · (3 · dist(s, t)− c(F)) .

Proof. We have
∑k
i=1 yLi = dist(s, t). Moreover, for every edge e = {vi, vj} ∈ F with

i < j we have

c(e) ≥ dist(s, vj)−dist(s, vi) =
j−1∑
l=1

yLl −
i−1∑
l=1

yLl =
j−1∑
l=i

yLl =
∑

L∈L:e∈δ(L)
yL. (8.22)

By the definition of LF and by (8.22), we have

c

F ∩ ⋃
L∈LF

δ(L)

 ≥ ∑
e∈F

∑
L∈LF :e∈δ(L)

yL =
∑
L∈LF

yL. (8.23)

Because F is an s-t-tour, |F ∩δ(L)| is odd for every L ∈ L; here we used s ∈ L ⊆ V \{t}.
Therefore, using (8.22), we get

c(F) =
∑
e∈F

c(e) ≥
∑
e∈F

∑
L∈L:e∈δ(L)

yL =
∑
L∈L
|F ∩ δ(L)| · yL

≥
∑
L∈LF

yL +
∑

L∈L\LF
3 · yL = 3 ·

∑
L∈L

yL − 2 ·
∑
L∈LF

yL

= 3 · dist(s, t)− 2 ·
∑
L∈LF

yL.

Combining this with (8.23) completes the proof.

Our dynamic programming algorithm works as follows. We compute for every set
L ∈ L ∪ {V } and every vertex v ∈ L an s-v-tour FL,v in G[L]. For this we consider
the sets L ∈ L ∪ {V } in an order of increasing cardinality. Then for every vertex
v we enumerate all pairs (L′, {v′, w′}) with L′ ∈ L, L′ (L, {v′, w′} ∈ δ(L′) \ δ(L),
and v′ ∈ L′; see Figure 8.20. Since we consider the elements of L ∪ {V } in an order
of increasing cardinality, we have already computed an s-v′-tour FL′,v′ in G[L′]. We
apply the given β-approximation algorithm B to to obtain a w′-v-tour F ′ in G[L \ L′].
Then FL′,v′

.
∪ {{v′, w′}}

.
∪ F ′ is an s-v-tour in G[L]. Finally, we choose FL,v to be the

cheapest such tour that results from any choice of (L′, {v′, w′}) or from applying the
algorithm B to obtain an s-v-tour in G[L].

157

CHAPTER 8. S-T -PATH GRAPH TSP

s t

v

v′
w′

FL′,v′
L′ L

Figure 8.20: Illustration of the dynamic programming algorithm. The dashed vertical
lines show the chain L. Possible sets L and L′ and an edge {v′, w′} ∈ δ(L′) \ δ(L) are
shown in blue. The gray edges show the s-v′-tour FL′,v′ in G[L′] and the green edges show
the w′-v-tour in G[L \L′] computed by the algorithm B. The union of these two tours and
the edge {v′, w′} is an s-v-tour in G[L] and is a possible choice of FL,v.

Lemma 8.47. Let F be an s-t-tour and let LF := {L ∈ L : |F ∩ δ(L)| = 1}. Moreover,
let L ∈ LF ∪{V }. Let v ∈ L be the unique vertex such that F [L] is an s-v-tour in G[L].
Then

c (FL,v) ≤ β · c (F [L])− (β − 1) · c

F [L] ∩
⋃

U∈LF
δ(U)

 .
Proof. We prove the statement for sets L ∈ LF ∪ {V } in an order of increasing cardi-
nality. So let L ∈ LF ∪ {V } and suppose Lemma 8.47 holds for every set L′ ∈ LF with
L′ (L. If L is the minimal set in LF ∪ {V }, then F [L] ∩

⋃
U∈LF δ(U) = ∅. Because

F [L] is an s-v-tour in G[L], applying the β-approximation algorithm B to compute such
a tour yields an s-v-tour of cost at most β · c(F [L]). Hence, c(FL,v) ≤ β · c(F [L]) as
claimed.

Otherwise, if L is not minimal in LF , consider a maximal set L′ (L with L′ ∈ LF .
Let e = {v′, w′} be the unique edge in F ∩ δ(L′) with v′ ∈ L′. Then e /∈ δ(L) because
otherwise we have e /∈ F ∩ δ(L \ L′) ⊆ δ(L) ∪ δ(L′) = {e} by definition of LF and
therefore L \ L′ is not visited by the s-t-tour F . Hence our dynamic programming
algorithm considers the pair (L′, {v′, w′}).

Because L′ is the maximal subset of L with L′ ∈ LF , we have

F [L] ∩
⋃
U∈LF δ(U) =

{
{v′, w′}

} .
∪
(
F [L′] ∩

⋃
U∈LF δ(U)

)
and

F [L] = F [L′]
.
∪
{
{v′, w′}

} .
∪ F [L \ L′].

Moreover, F [L \ L′] is a w′-v-tour in G[L \ L′]. Thus, the s-v-tour resulting from the
pair (L′, {v′, w′}) has cost at most

c(FL′,v′) + c({v′, w′}) + β · c(F [L \ L′])

≤ β · c (F [L′])− (β − 1) · c
(
F [L′] ∩

⋃
U∈LF δ(U)

)
+ c({v′, w′}) + β · c(F [L \ L′])

= β · c (F [L])− (β − 1) · c
(
F [L] ∩

⋃
U∈LF δ(U)

)
.

158

8.8. A 1.497-APPROXIMATION ALGORITHM

The running time of the dynamic programming algorithm we described in this
section is dominated by O(n4) calls to algorithm B. Combining Lemma 8.47 for L = V
and Lemma 8.46 for an optimum s-t-tour F shows that FV,t has cost at most (β − 3

2ε ·
(β − 1)) · OPT ≤ (β − 3

2ε · (α − 1)) · OPT if dist(s, t) ≥
(

1
3 + ε

)
· OPT. Otherwise,

the output of algorithm A has cost at most α · OPT. Taking the better of these two
s-t-tours yields a max{α, β − 3

2ε · (α− 1)}-approximation. This completes the proof of
Lemma 8.45.

8.8.3 Proof of Theorem 8.42 and Theorem 8.44

We now show that an iterative application of Lemma 8.45 implies Theorem 8.42 and
Theorem 8.44. To this end, we define a sequence Bi of approximation algorithms with
approximation ratio βi. We define B0 to be Christofides’ algorithm and set β0 = 5

3 .
For i ∈ N, the algorithm Bi results from Bi−1 by applying Lemma 8.45 to the given
polynomial-time algorithm A that computes an α-approximation if the distance of s
and t is at most (1

3 + ε) ·OPT and the algorithm B := Bi−1 with approximation ratio
βi−1. For βi := max{α, βi−1 − 3

2ε · (α− 1)} we get by induction on i that for any fixed
i ∈ N the algorithm Bi is a βi-approximation algorithm. The running time of Bi is
O(n4i) times the running time of B0.

We claim that for
imax :=

⌈
2(5

3 − α)
3ε · (α− 1)

⌉
we have βimax = α. Proving this completes the proof of Theorem 8.42 and Theorem 8.44
because imax is a constant.

By induction on i we have βi = max{α, β0− i · 3
2ε · (α− 1)} for all i ∈ N. Therefore,

βimax = max
{
α, β0 −

⌈
2(5

3 − α)
3ε · (α− 1)

⌉
· 3

2ε · (α− 1)
}

≤ max
{
α, 5

3 −
(

5
3 − α

)}
= α.

This shows βimax = α and completes the proof.

159

CHAPTER 8. S-T -PATH GRAPH TSP

160

Chapter 9

Reducing s-t-path TSP to TSP

In this chapter we give a black-box reduction from the s-t-path (graph) TSP to (graph)
TSP. As a corollary, we obtain a (1.4 + ε)-approximation algorithm for the s-t-path
graph TSP for any fixed ε > 0. This chapter is based on [TVZ19], which is joint work
with Jens Vygen and Rico Zenklusen.

9.1 Introduction

We have seen in Chapter 6 that Christofides’ algorithm for the s-t-path TSP has an
approximation ratio of only 5

3 , while for TSP it has approximation ratio 3
2 . Moreover,

the integrality ratios of the classical LP relaxations are widely believed to differ between
TSP and its path version. For the unit-weight special cases we know that this is the
case: Sebő and Vygen [SV14] showed that the integrality ratio for graph TSP is at
most 1.4, while for the s-t-path TSP it is at least 3

2 (see Figure 6.2). The fact that
the integrality ratios for graph TSP and s-t-path graph TSP are different can also be
seen from the upper bound on the integrality ratio for the s-t-path graph TSP that we
gave in the previous chapter (Lemma 8.39): our bound is about 3

2 for instances where
the distance of s and t is close to 1

2 · OPT, but better if the distance is smaller. In
particular, for graph TSP the distance between s and t is zero and hence our upper
bound is less than 3

2 .
In the previous chapter we also gave a 1.497-approximation algorithm for the s-t-

path graph TSP, achieving an approximation ratio below the integrality ratio of the
classical LP relaxations. Therefore, one might hope that s-t-path graph TSP is actually
no harder than graph TSP although the integrality ratios differ.

This leads to the following general question regarding the relation between the
approximability of s-t-path TSP and TSP, which we address in this chapter:

Is s-t-path (graph) TSP substantially harder to approximate than
its well-known special case (graph) TSP?

The answer is no. The main result of this chapter is to show in a constructive way that
the s-t-path TSP can be approximated equally well as TSP (up to an arbitrarily small
error), by presenting a black-box reduction that transforms approximation algorithms
for TSP into ones for s-t-path TSP.

161

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

9.1.1 Our results

The main consequence of our reduction can be summarized as follows.

Theorem 9.1. Let A be an α-approximation algorithm for TSP. Then, for any ε > 0,
there is an (α + ε)-approximation algorithm for s-t-path TSP that, for any instance
(G, c, s, t), calls A a polynomial number of times on TSP instances defined on subgraphs
of (G, c), and performs further operations taking polynomial time.

The following two statements are immediate consequences of the above theorem.

Corollary 9.2. Let ε > 0 and α > 1. If there is an α-approximation algorithm for
TSP, then there is an (α+ ε)-approximation algorithm for s-t-path TSP.

Corollary 9.3. Let ε > 0 and α > 1. If there is an α-approximation algorithm for
graph TSP, then there is an (α+ ε)-approximation algorithm for s-t-path graph TSP.

The above statements create a strong link between the approximability of s-t-path
TSP and TSP, as well as its graph versions. More precisely, Theorem 9.1 implies that
such a link exists for any class of TSP instances that is closed under taking instances on
subgraphs of the original instance (without changing the edge lengths). In particular,
any potential future progress on the approximability of (graph) TSP will immediately
carry over to s-t-path (graph) TSP.

Moreover, Corollary 9.3 allows us to make significant progress on the previously
best approximation ratio of 1.497 for s-t-path graph TSP (Chapter 8, [TV18]), through
a black-box reduction to the 1.4-approximation algorithm for graph TSP by Sebő and
Vygen [SV14].

Corollary 9.4. For any ε > 0, there is a (1.4+ε)-approximation algorithm for s-t-path
graph TSP.

Our reduction technique is quite versatile. In particular, it applies to a pretty
general problem class (the Φ-tour problem with interfaces of bounded size; see Def-
inition 9.6 and Theorem 9.23). This includes the T -tour problem for bounded |T |
(see Section 8.1.1 for a definition) and certain uncapacitated vehicle routing problems
such as the one with a fixed number of depots studied in [XR15].

9.1.2 Organization of this chapter

After some brief preliminaries in Section 9.1.3, we provide an overview of our approach
in Section 9.2. Here, we first focus on some key aspects of our approach, which is
based on a new way to employ dynamic programming by using a well-chosen auxiliary
problem, which we call Φ-TSP. Moreover, we break down the problem of finding a
short solution to Φ-TSP into two cases. Combining the two cases, applying the same
algorithm recursively, and using a constant-factor approximation algorithm for Φ-TSP
on the final recursion level will imply our main reduction result, Theorem 9.1.

For one case, we show in Section 9.3 how to reduce the problem to TSP. For the other
case, we show in Section 9.4 how to guess a constant fraction of an optimum solution
via dynamic programming. The detailed proof of Theorem 9.1 is in Section 9.5. Finally,
Section 9.6 contains a 4-approximation algorithm for Φ-TSP.

162

9.2. OVERVIEW OF OUR APPROACH

9.1.3 Preliminaries

In this chapter we only consider undirected graphs with nonnegative edge lengths and
do not always state this explicitly. Also we assume that a weighted graph (V,E, c) has
no loops or parallel edges. We often deal with multi-sets of edges. Although E does not
contain parallel edges, when we write F ⊆ E, we mean a multi-set F that can contain
several copies of the same edge.

We will work with the formulation of (s-t-path) TSP where we do not assume that
the cost function c fulfills the triangle inequality, but allow the tour to visit vertices
more than once. So a solution to (graph) TSP is a multi edge set F such that (V, F)
is connected and odd(F) = ∅ and a solution to s-t-path (graph) TSP (with s 6= t) is a
multi edge set F such that (V, F) is connected and odd(F) = {s, t}.

We say that an algorithm computes an α-approximate solution for a minimization
problem if it computes a solution of cost at most α · OPT(I) for every instance I. In
contrast to an α-approximation algorithm, we do not require the algorithm to have
polynomial runtime.

In the interest of clarity and simplicity of the presentation, we did not try to optimize
the running times of our procedures. Consequently, we often opt for weaker constants
that are easier to obtain.

9.2 Overview of our approach

A key novelty of our approach is a new way to set up a dynamic program to successively
strengthen a basic algorithm by combining it with a stronger algorithm for TSP. Every
time we apply our dynamic program to obtain a stronger algorithm, we end up with
a more difficult problem, slowly approaching problem settings for which it is very
challenging to find strong approximation algorithms. However, as we show, by guessing
a well-chosen set of edges through the dynamic program, we can limit the recursion
depth by a constant, which allows us to stay in a regime where our approach runs
efficiently.

9.2.1 Key challenges and high-level approach

Assume we are given an α-approximation algorithm A for TSP. Then finding a short
s-t-tour using A as an oracle would be easy if the distance dist(s, t) between the start s
and the end t was short compared to OPT, i.e. the length of a shortest s-t-tour. Indeed,
in this case the length of a shortest TSP tour and a shortest s-t-tour do not differ by
much because any solution of one problem can be converted to a solution of the other
one by adding a shortest s-t-path. Hence, one can simply compute an α-approximate
TSP tour F and a shortest s-t-path P and return F

.
∪ P .

Consequently, a canonical plan would be to try to transform the s-t-path TSP
instance to another one with small s-t-distance. It turns out that if the distance between
s and t is very large, then such a reduction is indeed possible by using a technique based
on dynamic programming. We have seen this in the previous chapter (in Section 8.8).
There we showed that we can reduce to s-t-path TSP instances where the distance
between s and t is at most (1

3 + ε) ·OPT, for some arbitrarily small constant ε > 0.
Notice that if dist(s, t) ≤ 1

3 ·OPT, it might happen that every cut in the chain L of
s-t-cuts considered by the dynamic program contains more than one edge of an optimum

163

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

L2L0 L1 L3

s

t

Figure 9.1: Illustration for guessing edges in cuts δ(Li) that contain at most five F ∗-
edges. In this example, δ(L0), δ(L1), and δ(L3) are these cuts and the edges crossing them
are highlighted as thick blue edges. We now define a sub-problem in G[L3 \ L1]. We call
the endpoints of the thick blue edges interface vertices (red). The gray sets show the
connectivity requirements on the interfaces vertices in this sub-problem: in a solution of
the sub-problem, vertices in the same gray set must be in the same connected component.
Interface vertices shown as squares must have odd degree; all other vertices must have even
degree.

s-t-tour. Then no decomposition into smaller s-t-path TSP instances is possible. This
is the reason why we reduced the start-to-end distance only to about a third of OPT.

If we could guess not only 1-cuts (containing only one edge of an optimum s-t-
tour), but also cuts with a larger constant number of F ∗-edges, say up to 5, then we
could handle instances with an s-t-distance below 1

3 · OPT. (This idea is inspired by
a recent dynamic programming approach in [NZ19] in the context of chain-constrained
spanning trees.) Our approach aims at realizing this high-level plan. However, this
ostensibly simple algorithmic idea comes with several significant technical hurdles. Most
importantly, if we guess more than one edge, the resulting sub-problems are not s-t-path
TSP problems anymore. More precisely, if we guess 5 edges in each of two consecutive
5-cuts, then we have up to 10 interface vertices, i.e., endpoints of guessed edges. See
Figure 9.1 for an example.

The optimum s-t-tour F ∗ is not necessarily connected inside the vertex set of a
sub-problem but every connected component must contain at least one interface vertex.
Moreover, F ∗ needs to connect some of the interface vertices to each other. This induces
connectivity constraints for the sub-problem, shown as gray sets in Figure 9.1. They
can also be guessed since the number of interface vertices is constant. Note, however,
that we cannot guess the entire connected components, as there are exponentially many
options.

Clearly, these sub-problems become significantly more difficult than the original
s-t-path TSP problem. Moreover, if we try to apply such a procedure recursively, then
the sub-problems can become more complex with each recursion step, because of an
increase in the number of interface vertices per sub-problem. Another important issue
in a recursive application to our more complex sub-problem is to identify good cuts

164

9.2. OVERVIEW OF OUR APPROACH

: T

C1

C2

C3

C4

Figure 9.2: Example of an interface Φ = (I, T, C) and a Φ-tour. The partition C =
{C1, C2, C3, C4} of I is highlighted as gray sets. Hence, I = ∪4

i=1Ci. Moreover, the
vertices in T are drawn as red rectangles. This defines a Φ-TSP instance that results as a
sub-problem in Figure 9.1. The shown edges F are a Φ-tour.

in which we should guess edges of F ∗. Our cuts will result from the dual of a T -join
problem. They will no longer form a chain. However, as we will see later, they will
have a laminar structure that can be used to design a dynamic programming approach.

Moreover, it is not obvious how to reduce the problem to TSP in the case when we
cannot guess edges by dynamic programming, and this will involve a careful guessing
of further edges of F ∗.

We will now describe our approach in detail. We start by defining the Φ-TSP
problem, a new problem class around which our method is centered and which captures
the type of sub-problems we face when guessing many edges.

9.2.2 Φ-TSP
As described above, when guessing edges, the endpoints of those edges play a special
role in terms of how we have to connect things. We capture this through the notion of
an interface. We define this notion for a general graph G below and will typically use
it for subgraphs of the instance we are interested in.

Definition 9.5 (interface). An interface Φ of a graph G = (V,E) is a triple Φ =
(I, T, C) with

(i) T ⊆ I ⊆ V , where |T | is even, and

(ii) C ⊆ 2I is a partition of I.

For an interface Φ of G, we denote by (IΦ, TΦ, CΦ) its corresponding triple and call |IΦ|
its size.

For a given interface, we are interested in finding what we call Φ-tours, which are
defined as follows.

Definition 9.6 (Φ-tour). Let G = (V,E) be a graph. Let Φ = (I, T, C) be an interface
of G. A Φ-tour in G is a multi-set F ⊆ E with

165

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

(i) T = odd(F), i.e. F is a T -join,

(ii) (V, F)/I is connected, and

(iii) for any C ∈ C, the vertices in C lie in the same connected component of (V, F).

Figure 9.2 exemplifies the notion of an interface Φ and a Φ-tour.
The problem we focus on in the following, which we call Φ-TSP, seeks to find a

shortest Φ-tour.

Definition 9.7 (Φ-TSP). Given a weighted graph G = (V,E, c) and an interface Φ of
G, compute a shortest Φ-tour in G or decide that none exists. In short,

min {c(F) : F is a Φ-tour in G} . (Φ-TSP)

Note that for any distinct s, t ∈ V , by choosing the interface Φ = (I, T, C) with
I = T = {s, t} and {C} = {{s, t}}, we have that Φ-tours correspond to solutions to s-t-
path TSP. Analogously, for larger sets T , one captures the T -tour problem (see [SV14,
CFG15, Seb13]). Another special case is the uncapacitated vehicle routing problem with
a fixed number of depots, for which Xu and Rodrigues [XR15] gave a 3

2 -approximation
algorithm. Here, I is the set of depots, T = ∅, and C is the partition into singletons.

Depending on the structure of the graph G and the interface Φ, it may be that no
Φ-tour exists. We call an interface Φ of G feasible if G admits a Φ-tour. The existence
of a Φ-tour admits the following easy characterization, which can be checked in linear
time.

Lemma 9.8. Let G = (V,E, c) be a weighted graph. Let Φ = (I, T, C) be an interface
of G. Then G admits a Φ-tour if and only if all of the following conditions hold.

(i) Each connected component of G contains an even number of vertices in T ,

(ii) G/I is connected, and

(iii) for every C ∈ C, the vertices in C lie in the same connected component of G.

Proof. The three mentioned conditions are clearly necessary for G to admit a Φ-tour.
Moreover, if they are satisfied then, due to (i), there exists a T -join J ⊆ E, and
points (ii) and (iii) guarantee that E

.
∪ (E \ J) is a Φ-tour in G.

It is crucial for our approach to start with a constant-factor approximation algo-
rithm, which we will successively strengthen as discussed in the following.

A 7-approximation algorithm for Φ-TSP can be obtained easily as follows. Com-
pute a minimum cost edge set F1 satisfying (i) (T -join), a minimum cost edge set
F2 satisfying (ii) (spanning tree in G/I), and a 2-approximation F3 of a minimum
cost edge set satisfying (iii) (Steiner forest; see Section 2.9). Then the disjoint union
F1

.
∪ F2

.
∪ F2

.
∪ F3

.
∪ F3 is a 7-approximation.

With a little more care we can obtain a 4-approximation algorithm, using Jain’s
iterative rounding framework [Jai01]:

Theorem 9.9. There is a 4-approximation algorithm for Φ-TSP.

We defer the proof to Section 9.6. In the rest of this chapter, we will derive an (α+ε)-
approximation algorithm for Φ-TSP instances with bounded interface size, where α is
the approximation ratio for TSP; see Theorem 9.23.

166

9.2. OVERVIEW OF OUR APPROACH

9.2.3 Iterative improvement of basic algorithm

For a TSP algorithm A, we denote for every weighted graph G by fA(G) the maximum
runtime of algorithm A on any subgraph of G. Similarly, for a Φ-TSP algorithm B, we
denote for every weighted graph G and any k ∈ R≥0 by fB(G, k) the maximum runtime
of algorithm B on any instance (G′,Φ), where G′ is a subgraph of G and |IΦ| ≤ k.

Our plan is to start with the 4-approximation algorithm for Φ-TSP guaranteed by
Theorem 9.9, and successively improve it through a TSP algorithm with an approxi-
mation ratio α. The following Boosting Theorem is the main technical result towards
this goal and quantifies the improvement in terms of approximation ratio that we are
able to obtain in one improvement step.

Theorem 9.10 (Boosting Theorem). Let α, β > 1. Suppose we are given:

(a) an algorithm A that computes α-approximate solutions for TSP, and
(b) an algorithm B that computes β-approximate solutions for Φ-TSP.

Then there is an algorithm that, for any ε ∈ (0, 1], any weighted graph G = (V,E, c),
and any feasible interface Φ = (I, T, C) of G, returns a Φ-tour F in G of length

c(F) ≤ max
{

(1 + ε)α, β − ε

8(β − 1)
}
·OPT (9.1)

in time |V |O
(|I|
ε

)
·
(
fA(G) + fB

(
G, 9|I|

ε

))
, where OPT is the length of a shortest Φ-tour

in G. In particular, the algorithm makes calls to B only on instances with interfaces of
size bounded by 9|I|

ε .

To prove Theorem 9.1, we start with β = 4 (Theorem 9.9) and apply Theorem 9.10
repeatedly, but only a constant number of times. The approximation ratio β decreases
until it reaches (1 + ε)α. All interfaces will have constant size. We defer the details to
Section 9.5.

9.2.4 Proof outline of the Boosting Theorem (Theorem 9.10)

Theorem 9.10 is obtained by designing two algorithms to obtain a Φ-tour and then
returning the better of the Φ-tours computed by these algorithms. Each of the following
two theorems summarizes the guarantee we obtain with one of the two algorithms. After
that, Algorithm 4, described below, combines these two sub-procedures to obtain an
algorithm that implies Theorem 9.10.

The following theorem yields a short Φ-tour if the length of a minimum TΦ-join is
small.

Theorem 9.11. Let α > 1. Assume we are given an algorithm A that computes α-
approximate solutions for TSP. Then, for any δ > 0, any weighted graph G = (V,E, c),
and any feasible interface Φ = (I, T, C) of G, one can determine a Φ-tour F in G with

c(F) ≤ (1 + δ) · α ·OPT + (α+ 1) · c(J)

in time |V |O
(|I|
δ

)
· fA(G), where J is a shortest T -join in G and OPT is the length of

a shortest Φ-tour in G.

167

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

We will give the proof in Section 9.3. The next theorem, proven in Section 9.4,
states that we also obtain a short Φ-tour if the length of a minimum T -join is large.

Theorem 9.12. Let β > 1. Assume we are given an algorithm A that computes α-
approximate solutions for TSP. Then, for any δ > 0, any weighted graph G = (V,E, c),
and any feasible interface Φ = (I, T, C) of G, one can determine a Φ-tour F in G with

c(F) ≤
(
β + δ · (β − 1)

)
·OPT− (β − 1) · c(J)

in time |V |O
(
|I|+ |T |

δ

)
· fB

(
G, |I|+ |T |

δ

)
, where J is a shortest T -join in G and OPT is

the length of a shortest Φ-tour in G.

Algorithm 4: Approximation algorithm for Φ-TSP to prove Theorem 9.10

1. Run algorithm guaranteed by Theorem 9.11 with δ = ε
2 to obtain Φ-tour F1.

2. Run algorithm guaranteed by Theorem 9.12 with δ = ε
8 to obtain Φ-tour F2.

3. Return the shorter Φ-tour among F1 and F2.

Lemma 9.13. Given a weighted graph G and a feasible interface Φ = (I, T, C) of G,
Algorithm 4 returns a Φ-tour F in G with the guarantees stated in Theorem 9.10.

Proof. The running time guarantee stated in Theorem 9.10 immediately follows from
Theorem 9.11 and Theorem 9.12, using |I|+ 8|T |

ε ≤
9|I|
ε . Let F ∈ {F1, F2} be the Φ-tour

returned by Algorithm 4. To show that F fulfills the approximation guarantee stated
in (9.1), we distinguish two cases.

If c(J) ≤ ε
4 ·OPT, then the solution F1 will be short enough:

c(F) ≤ c(F1) ≤
(

1 + ε

2

)
α ·OPT + (α+ 1)ε4 ·OPT ≤ (1 + ε) · α ·OPT,

where we used (α+1)
2 ≤ α for the last inequality, which holds because α ≥ 1.

If c(J) ≥ ε
4 ·OPT, then the Φ-tour F2 will be short enough:

c(F) ≤ c(F2) ≤
(
β + ε

8(β − 1)
)
·OPT− (β − 1) · ε4 ·OPT =

(
β − ε

8(β − 1)
)
·OPT,

thus completing the proof of Lemma 9.13.

For the proof of Theorem 9.10, it remains to show Theorem 9.11 and Theorem 9.12.

9.3 Finding a short Φ-tour if there is a short T -join

In this section we prove Theorem 9.11, i.e., how to get a short Φ-tour if the shortest
T -join has small length compared to OPT.

We start by analyzing a simple algorithm for computing a Φ-tour. However, this
simple algorithm will not be sufficient to prove Theorem 9.11. Thus in a second step,
we will refine the algorithm to obtain the desired bound.

168

9.3. FINDING A SHORT Φ-TOUR IF THERE IS A SHORT T-JOIN

Algorithm 5: A simple Φ-TSP algorithm
Input: a weighted graph G, an interface Φ = (I, T, C) of G, and a T -join J in G.
Output: an edge set F .

1. In each connected component of G apply A to get an α-approximate TSP-tour.
Let Q be the union of these tours.

2. Return F = Q
.
∪ J .

Notice that Algorithm 5 always returns an edge set F , even if the input is infeasible.
We therefore show first that Algorithm 5 does return a Φ-tour whenever it is run with
a feasible input.

Lemma 9.14. The set F returned by Algorithm 5 is a Φ-tour if and only if the input
is feasible, i.e. G admits a Φ-tour.

Proof. Assume that G admits a Φ-tour, which implies by Lemma 9.8 that the three
properties (i), (ii), and (iii) listed in Lemma 9.8 are fulfilled. Because the set Q com-
puted in Algorithm 5 consists of TSP tours in each connected component of G, the
vertex sets of the connected components of (V,Q) and G are the same. Because G
fulfills (ii) and (iii), this implies that also (V,Q) and (V,Q

.
∪ J) fulfill these two con-

ditions. Finally, odd(Q
.
∪ J) = odd(J) = T , because odd(Q) = ∅ and J is a T -join,

which shows that Q
.
∪ J is indeed a Φ-tour.

We now analyze the length of the Φ-tour returned by Algorithm 5.

Lemma 9.15. Assume we are given an algorithm A that computes α-approximate
solutions for TSP. Let G = (V,E, c) be a weighted graph, Φ = (I, T, C) a feasible
interface of G, and J a T -join in G. Then, Algorithm 5 computes a Φ-tour F in G
with

c(F) ≤ α ·OPT + (α+ 1) · c(J) + 2α · |I| ·max
{
c(e) : e ∈ E \ (F ∗ ∪ J)

}
,

in time O(|V | · fA(G)), where F ∗ is a shortest Φ-tour. Here max ∅ := 0.

Proof. First, observe that the running time is indeed as claimed, because the bottle-
neck of the algorithm is calling A for each connected component of G; moreover, the
connected components can be found in linear time and there are at most |V | many of
them.

To bound c(Q), we transform a shortest Φ-tour F ∗ into a union of TSP solutions,
one for each connected component of G. Let S ⊆ E be a minimal edge set such that
the vertex sets of the connected components of (V, F ∗ ∪ J ∪ S) and G are the same.
Observe that the multi-set F ∗

.
∪ J

.
∪ S

.
∪ S is a union of TSP solutions, one for each

connected component of G. Because the set Q determined in Algorithm 5 was obtained
through A, which computes α-approximate solutions, we have

c(Q) ≤ α ·
(
OPT + c(J) + 2c(S)

)
,

and, hence, the solution F = Q
.
∪ J returned by the algorithm satisfies

c(F) = c(Q) + c(J) ≤ α ·OPT + (α+ 1) · c(J) + 2α · c(S). (9.2)

169

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

Moreover, because F ∗ is a Φ-tour, we have that (V, F ∗)/I must be connected, which
implies that (V, F ∗) has at most |I| connected components, and thus

|S| ≤ |I| − 1.

Together with (9.2), this leads to the desired guarantee:

c(F) ≤ α ·OPT + (α+ 1) · c(J) + 2α · |I| ·max
{
c(e) : e ∈ E \ (F ∗ ∪ J)

}
,

where the inequality follows from S ⊆ E \ (F ∗ ∪ J), which holds because the edges in
S connect different connected components of (V, F ∗ ∪ J).

We now explain how to refine Algorithm 5 by a guessing step to obtain the guaran-
tees claimed in Theorem 9.11. If all edges that are not contained in F ∗ ∪J have length
at most δ·OPT

2·|I| , Lemma 9.15 already implies the desired bound. To obtain this property,
we delete all edges from G that are heavy, i.e. have length at least δ·OPT

2·|I| , and are not
contained in F ∗ ∪ J . We guess this set of edges to delete as follows. First we guess the
set H of heavy edges, which can be done in polynomial time by guessing a minimum
length edge in H. Then we guess the set H∗ = F ∗ ∩ H of heavy edges contained in
the optimum Φ-tour F ∗. Algorithm 6 formalizes this procedure and, as we show next,
indeed implies Theorem 9.11.

Algorithm 6: Φ-TSP algorithm to prove Theorem 9.11
Compute a shortest T -join J in G.
For f ∈ E define Hf := {e ∈ E : c(e) ≥ c(f)}.
for every edge set H ∈ {Hf : f ∈ E} ∪ {∅} do

for every set H∗ ⊆ H with |H∗| ≤ 2|I|
δ do

Set D := H \ (H∗ ∪ J).
Apply Algorithm 5 to the graph (V,E \D) to obtain a multi-set FD of edges,
which is a Φ-tour in G if the input is feasible.

Among all computed Φ-tours FD, return a shortest one.

Proof of Theorem 9.11. We start by observing that the running time of Algorithm 6 is
indeed bounded by |V |O

(|I|
δ

)
· fA(G). There are at most |V |2 possible edges f that are

being considered in the outer for-loop. For each of them, there are |V |O
(|I|
δ

)
possible

sets H∗ considered in the inner for-loop. Thus, there are at most |V |O
(|I|
δ

)
calls to

Algorithm 5. Finally, all other operations can be done in time |V |O(1).
We now show that Algorithm 6 returns a Φ-tour with the guarantees claimed by

Theorem 9.11. Let F ∗ be a shortest Φ-tour and let H := {e ∈ E : c(e) ≥ δ·OPT
2|I| } be the

set of heavy edges. Then in some iteration of the outer for-loop we consider the set H.
Because

OPT ≥ c(H ∩ F ∗) ≥ |H ∩ F ∗| · δ ·OPT
2 · |I| ,

we have |H ∩ F ∗| ≤ 2|I|
δ , and thus, we consider the set H∗ := H ∩ F ∗ in some iteration

of the inner for-loop. As D = H \ (H∗∪J) does not contain any edge of F ∗, the Φ-tour
F ∗ is a feasible solution of the instance to which we apply Algorithm 5. Moreover, the

170

9.4. ITERATIVE IMPROVEMENT VIA DYNAMIC PROGRAMMING

set D contains all heavy edges not contained in F ∗ ∪ J and hence by Lemma 9.15, we
obtain

c(FD) ≤ α ·OPT + (α+ 1) · c(J) + 2α · |I| ·max
{
c(e) : e ∈ (E \D) \ (F ∗ ∪ J)

}
≤ α ·OPT + (α+ 1) · c(J) + 2α · |I| · δ ·OPT

2 · |I|
= (1 + δ) · α ·OPT + (α+ 1) · c(J).

9.4 Iterative improvement via dynamic programming

In this section, we show how to prove Theorem 9.12, i.e., how to obtain a short Φ-
tour if the length of a shortest T -join is large. Here, our goal is to use dynamic
programming to “guess” a significant portion, in terms of total length, of edges used
in a fixed optimum Φ-tour F ∗. Very recently, dynamic programming has become a
strong tool in the context of s-t-path TSP, Chain-Constrained Spanning Trees, and
related problems [TV19a, TV18, Zen19, NZ19], leading to the currently best known
approximation ratios for these settings. The dynamic programming idea we employ
combines and extends elements used in these prior dynamic programming techniques.

What we aim to achieve with dynamic programming in the context of Φ-TSP, for
some interface Φ = (I, T, C) of G, is the following. We can fix an arbitrary laminar
family L of subsets of V . Our goal is to guess what edges of optimum Φ-tour F ∗ are
crossing the cuts in L. Clearly, if F ∗ ∩ δ(L) contains many edges for some L ∈ L,
it seems computationally elusive to guess them. This is the reason why we fix some
constant k and only guess F ∗-edges in cuts δ(L) for L ∈ L if |F ∗ ∩ δ(L)| ≤ k. We
denote the sets inducing these cuts by L(F ∗, k) ⊆ L and the F ∗-edges in these cuts by
F ∗(L, k) ⊆ F ∗. Formally, for any edge set R ⊆ E, we define

L(R, k) := {L ∈ L : |R ∩ δ(L)| ≤ k} , and
R(L, k) :=

⋃
L∈L(R,k)

(δ(L) ∩R) .

As we discuss in more detail later, guessing the edges F ∗(L, k) can be achieved through
a dynamic program that guesses the F ∗-edges in the different cuts defined by L step
by step, from smaller to larger sets in L. However, the running time of the propagation
step of the dynamic program depends on the number of disjoint sets in L that can be
contained in some larger set L ∈ L. We capture this dependency through the width
width(L) of the laminar family L.

Definition 9.16 (width of a laminar family). The width width(L) of a laminar family
L is the number of minimal sets contained in the family.

Observe that the number of minimal sets of a laminar family bounds the size of any
subfamily of disjoint sets.

The following theorem formalizes what we can achieve through our dynamic pro-
gram, which we present later in detail. Notice that for the algorithm to be efficient, we
need L to have width bounded by a constant.

171

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

Theorem 9.17. Let β > 1. Assume there is an algorithm A that computes α-
approximate solutions for TSP. Then there is an algorithm that computes for any fea-
sible interface Φ = (I, T, C) of a weighted graph G = (V,E, c), any k ∈ Z≥0, and any
laminar family L over V , a Φ-tour F with

c(F) ≤ min
{
β · c(R)− (β − 1) · c(R(L, k)) : R is a Φ-tour

}
(9.3)

in time |V |O(|I|+k·width(L)) ·fB
(
G, |I|+ k · (width(L) + 1)

)
. In particular, the algorithm

calls B only on instances with interfaces of size bounded by |I|+ k · (width(L) + 1).

Note that the guarantee stated in (9.3) for R = F ∗ indeed reflects the guessing of
the edges in F ∗(L, k). More precisely, by replacing R by F ∗ in (9.3), we obtain a Φ-tour
F with an upper bound on its length c(F) that decomposes into two terms:

(i) a term c(F ∗(L, k)), i.e., each edge e ∈ F ∗(L, k) contributes its length c(e), and

(ii) a term β · c(F ∗ \F ∗(L, k)), where the length of each other edge in F ∗ gets inflated
by the approximation factor β of the algorithm B.

9.4.1 Finding a suitable laminar family

To make significant progress through Theorem 9.17, we need to find a laminar family
L over V such that c(F ∗(L, k)) is large. Let J be a shortest T -join. If c(J) is large,
then we will construct a family L with the property that even for any T -join R, the
length c(R(L, k)) is large. Notice that this implies what we want because the Φ-tour
F ∗ is a T -join.

This statement is formalized in Lemma 9.19, which can be derived from the dual
of the natural linear program to find a shortest T -join. More precisely, this dual corre-
sponds to a fractional T -cut packing problem, which is well-known to admit solutions
with laminar support. This is the laminar family we will be using. The lemma below
summarizes the statement we need. It is well-known and has been proven in differ-
ent contexts (see, e.g. [Seb97] and references therein). For completeness, we provide a
self-contained proof below.

Lemma 9.18. Let G = (V,E, c) be a weighted graph and let T ⊆ V such that G
contains a T -join. Moreover, let t ∈ T and let J be a shortest T -join. Then there is a
polynomial-time algorithm that computes a laminar family L over V \ {t} and values
y ∈ RL>0 such that ∑

L∈L:
e∈δ(L)

yL ≤ c(e) ∀e ∈ E, (9.4)

∑
L∈L

yL = c(J), and (9.5)

|L ∩ T | is odd ∀L ∈ L. (9.6)

Proof. We start with a classical linear description to find a minimum length T -join,
based on the dominant of the T -join polytope. To this end, let F = {Q ⊆ V \ {t} :

172

9.4. ITERATIVE IMPROVEMENT VIA DYNAMIC PROGRAMMING

|Q∩T | is odd}; these vertex sets induce all T -cuts. Then, the following linear program
computes the value c(J) of a shortest T -join.

min c(x)

s.t. x(δ(Q)) ≥ 1 ∀ Q ∈ F

xe ≥ 0 ∀ e ∈ E

(9.7)

Its dual problem, which is a fractional T -cut packing problem, is given below.

max
∑
F∈F

yF

s.t.
∑
Q∈F :
e∈δ(Q)

yQ ≤ c(e) ∀ e ∈ E

yF ≥ 0 ∀ F ∈ F

(9.8)

If y ∈ RF≥0 is an optimum dual solution with laminar support L, then y and L have
the desired properties. Here (9.5) follows from strong duality (Theorem 2.7) and (9.6)
follows from L ∈ F .

We can solve (9.7) in polynomial time through the ellipsoid method. To find an
optimal dual basis, one can delete all variables from (9.8) that do not correspond to
constraints encountered by the ellipsoid algorithm when solving (9.7). The restricted
dual LP has polynomial size and can therefore be solved in polynomial time.

Finally, this solution can be transformed into a laminar one by uncrossing: if yA > 0
and yB > 0 for A,B ∈ F with A \ B 6= ∅ and B \ A 6= ∅ and A ∩ B 6= ∅, then either
A∩B and A∪B belong to F or A\B and B \A belong to F ; we can increase the dual
variables on these two sets by min{yA, yB} and decrease the dual variables yA and yB
by the same amount, maintaining a feasible dual solution. Karzanov [Kar96] showed
how to obtain a laminar family by a sequence of such uncrossing steps in polynomial
time.

We now show that the family L from Lemma 9.18 has the desired properties.

Lemma 9.19. Let G = (V,E, c) be a weighted graph. Moreover, let T ⊆ V such that G
admits a T -join. Then, there is a polynomial-time algorithm that computes a laminar
family L over V with width(L) ≤ max{0, |T | − 1} such that for any T -join R ⊆ E,
and any k ∈ Z≥0, we have

c(R(L, k)) ≥ c(J)− 1
k + 1 · c(R),

where J is a shortest T -join in G.

Proof. If T = ∅, we can simply set L = ∅ because c(J) = 0. Otherwise, we compute L
and y as in Lemma 9.18 and show that L has the desired properties. Since every set
in L must contain an element of T \ {t}, we have width(L) ≤ |T | − 1.

173

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

Let now R ⊆ E be a T -join, and let k ∈ Z≥0. Since R is a T -join, it has a non-empty
intersection with every cut δ(L) with L ∈ L because of (9.6). Hence, by (9.4),

c(R(L, k)) =
∑

e∈R(L,k)
c(e)

≥
∑

e∈R(L,k)

∑
L∈L:
e∈δ(L)

yL

=
∑
L∈L
|R(L, k) ∩ δ(L)| · yL

≥
∑

L∈L(R,k)
yL.

(9.9)

Again using (9.4), we moreover obtain

c(R) ≥
∑
e∈R

∑
L∈L:
e∈δ(L)

yL =
∑
L∈L
|R ∩ δ(L)| · yL ≥

∑
L∈L\L(R,k)

(k + 1) · yL. (9.10)

Combining (9.5), (9.9), and (9.10), we obtain

c(J) =
∑
L∈L

yL =
∑

L∈L(R,k)
yL +

∑
L∈L\L(R,k)

yL ≤ c(R(L, k)) + 1
k + 1 · c(R),

as desired.

Finally, Theorem 9.12 is a direct consequence of Theorem 9.17 and Lemma 9.19.

Proof of Theorem 9.12. If T = ∅, we simply call the given algorithm B that computes
a β-approximate solution. Otherwise, let k = b1

δ c. We apply Lemma 9.19 to obtain in
polynomial time a laminar family L over V such that

• c(R(L, k)) ≥ c(J)− 1
k + 1 · c(R) ≥ c(J)− δ · c(R) ∀ T -join R ⊆ E, and

• width(L) ≤ max{0, |T | − 1} = |T | − 1, where the equality follows from the
assumption T 6= ∅.

Because a shortest Φ-tour F ∗ is a T -join, we have

c(F ∗(L, k)) ≥ c(J)− δ · c(F ∗) = c(J)− δ ·OPT,

which, together with Theorem 9.17 implies the desired results, i.e., that one can find a
Φ-tour F in G with

c(F) ≤ β ·OPT− (β − 1) · c(F ∗(L, k))
≤ β ·OPT− (β − 1) (c(J)− δ ·OPT)
= (β + δ · (β − 1)) ·OPT− (β − 1) · c(J),

in time

|V |O
(
|I|+ width(L)

δ

)
· fB

(
G, |I|+ width(L) + 1

δ

)
≤ |V |O

(
|I|+ |T |

δ

)
· fB

(
G, |I|+ |T |

δ

)
.

174

9.4. ITERATIVE IMPROVEMENT VIA DYNAMIC PROGRAMMING

C1

C2

C3

C4

W

I = { , } T = { }

C = {C1, C2, C3, C4}

W

D1

D2

D3

D4

IW = { , } TW = { }

CW = {D1, D2, D3, D4}

Figure 9.3: On the left-hand side, an interface Φ = (I, T, C) on a graph G = (V,E) is
shown together with a Φ-tour F ⊆ E (the black edges) and a set W ⊆ V . The right-hand
side figure depicts the interface ΦW = (IW , TW , CW) induced by (F,Φ) on W .

It remains to derive Theorem 9.17, which, as mentioned, we show through a dynamic
programming approach.

9.4.2 Combining partial solutions

In the analysis of our dynamic programming algorithm we use the following notion of
an induced interface, which allows us to analyze the algorithm with respect to interfaces
coming from a shortest Φ-tour.

Definition 9.20 (induced interface). Let G = (V,E, c) be a weighted graph. Let Φ =
(I, T, C) be an interface of G, and let F be a Φ-tour in G. For W ⊆ V , the interface
ΦW = (IW , TW , CW) induced by (F,Φ) on W is defined by

(i) IW = (I ∩W) ∪ U , where U is the set of vertices in W that are connected by an
edge of F to a vertex in V \W ,

(ii) TW = odd(F [W]), and

(iii) CW ⊆ 2IW contains, for each connected component of (W,F [W]), a set including
all vertices of IW contained in that connected component.

See Figure 9.3 for an example of an induced interface. Moreover, also Figure 9.1,
which we used as an illustrative example in the introduction to showcase the guessing
of multiple edges per cut, highlights an induced interface with W = L3 \ L1, which is
induced by an s-t-tour. We remark that the interface induced by (F,Φ) depends only
on F and I, not on T or C.

The following lemma shows some basic properties of induced interfaces.

Lemma 9.21. Let G = (V,E, c) be a weighted graph and Φ = (I, T, C) an interface of
G. Let F be a Φ-tour in G and W ⊆ V . Let ΦW be the interface induced by (F,Φ) on
W . Then

175

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

(i) ΦW is an interface of G[W],

(ii) F [W] is a ΦW -tour in G[W], and

(iii) for everyW ′ ⊆W , the interface induced by (F [W],ΦW) onW ′ equals the interface
induced by (F,Φ) on W ′.

Proof. Let ΦW = (IW , TW , CW). As in Definition 9.20 (i), let U be the set of vertices
in W that are connected by an edge of F to a vertex in V \W .

To prove (i), we have to observe that TW ⊆ IW . (Notice that we clearly have that
|TW | is even because TW = odd(F [W]).) Let u ∈ TW . If F contains an edge connecting
u with V \W , then u ∈ U and hence u ∈ IW . Otherwise we have (δ(u) ∩ F) ⊆ E[W]
and hence u ∈ TW = odd(F [W]) implies u ∈ odd(F). Since F is a Φ-tour, we conclude
u ∈ T ⊆ I. Moreover, u ∈ TW = odd(F [W]) ⊆W , so u ∈ I ∩W ⊆ IW .

To prove (ii), we have to show that (W,F [W])/IW is connected (the other two
conditions of Definition 9.6 trivially hold). Suppose not. Then there is a set W ′ ⊆
W \ IW with W ′ 6= W and F [W] ∩ δ(W ′) = ∅. This implies, together with IW =
(I ∩W) ∪ U—which holds by definition of IW—that W ′ ⊆ V \ I with W ′ 6= V and
F ∩ δ(W ′) = F [W] ∩ δ(W ′) = ∅. This contradicts the fact that (V, F)/I is connected,
which has to hold because F is a Φ-tour.

To show (iii), let (I1, T1, C1) be the interface induced by (F,Φ) on W ′ and let
(I2, T2, C2) be the interface induced by (F [W],ΦW) onW ′. Let U1 be the set of vertices
in W ′ that are connected by an edge of F to a vertex in V \W ′. Let U2 be the set of
vertices in W ′ that are connected by an edge of F [W] to a vertex in W \W ′. Then
U1 = (U ∩W ′) ∪ U2. Therefore,

I1 = (I ∩W ′) ∪ U1

= (I ∩W ′) ∪ (U ∩W ′) ∪ U2

=
(
((I ∩W) ∪ U) ∩W ′

)
∪ U2

= (IW ∩W ′) ∪ U2

= I2.

Finally, because (F [W])[W ′] = F [W ′], which follows from W ′ ⊆W , we have

T2 = odd((F [W])[W ′]) = odd(F [W ′]) = T1,

and also C1 = C2, because these partitions of I1 = I2 are both defined with respect to the
connected components of (W ′, F [W ′]), because (W ′, (F [W])[W ′]) = (W ′, F [W ′]).

Notice that given an interface Φ = (I, T, C) on a graph G = (V,E) and a Φ-tour
F ⊆ E, then the interface ΦV induced by (F,Φ) on V is not necessarily identical to Φ.
More precisely, ΦV = (IV , TV , CV) always fulfills IV = I and TV = T . However, F may
connect different parts of the partition C, which, in the interface ΦV , will then only
appear as one set in CV . See the left-hand side illustration in Figure 9.3 for such an
example where the highlighted Φ-tour would induce an interface ΦV 6= Φ on V because
C2 ∪ C3 is a single set in CV .

In our dynamic program we will combine solutions for different subgraphs with
induced interfaces. The following lemma shows sufficient conditions under which this
works out.

176

9.4. ITERATIVE IMPROVEMENT VIA DYNAMIC PROGRAMMING

X

: I ⊆ Ī

: Ī
W0

W1 W2

W3 W4

W5

Figure 9.4: The dashed ellipsoids show the partition of V into W0, . . . ,Wp. The thick
blue edges are the edges in X. Only the vertices in Ī are shown here, where the vertices
with a red boundary are those contained in I.

Lemma 9.22. Let G = (V,E, c) be a weighted graph. Let Φ = (I, T, C) be an interface
of G and let F be a Φ-tour in G. Let W0, . . . ,Wp be a partition of V . For i ∈ {0, . . . , p},
let Φi = (Ii, Ti, Ci) be the interface induced by (F,Φ) on Wi, and let Fi be a Φi-tour in
G[Wi]. Then

F ′ := X
.
∪
(p⋃
i=0

Fi

)

is a Φ-tour in G, where X := F ∩
⋃p
i=0 δ(Wi).

Proof. We first show point (i) of Definition 9.6, i.e. odd(F ′) = T . For i ∈ {0, . . . , p},
we have odd(Fi) = Ti = odd(F [Wi]) since Fi is a Φi-tour. Thus

odd(F ′) = odd(X)4 odd(F0)4 · · · 4 odd(Fp)
= odd(X)4 odd(F [W0])4 · · · 4 odd(F [Wp])
= odd(F)
= T,

where 4 denotes the symmetric difference; we used F = X
.
∪ F [W0]

.
∪ . . .

.
∪ F [Wp].

Before proving that F ′ also fulfills the remaining two properties of a Φ-tour, we show
the following claim. See Figure 9.4 for an illustration.

Claim 2. Let I := I0
.
∪ . . .

.
∪ Ip and a, b ∈ I. Suppose (V, F) contains an a-b path.

Then (V, F ′) contains an a-b path.

Proof of Claim 2. Suppose the claim is wrong. Then there exist vertices a, b ∈ I such
that (V, F) contains an a-b path P , but (V, F ′) does not. We choose a, b, and P such
that the number of edges of P is minimum. Consequently, P contains no vertex of
I \ {a, b}. We now distinguish two cases.

Case 1: X ∩ E(P) = ∅.
Then P is completely contained in a single set Wi for some i ∈ {0, . . . , p}, by definition
of X. Hence, a, b ∈Wi∩I = Ii and a and b are connected by the path P in (Wi, F [Wi]).

177

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

Since Φi is the interface induced by (F,Φ) on Wi, the vertices a and b are contained in
the same set of the partition Ci of Ii. This implies that every Φi-tour, and in particular
Fi, must contain an a-b path, contradicting the assumption that (V, F ′) contains no
a-b path.

Case 2: X ∩ E(P) 6= ∅.
Recall X = F ∩

⋃p
i=0 δ(Wi). For i ∈ {0, . . . , p}, the set Ii contains all vertices of Wi

that are an endpoint of an edge in X, by definition of the induced interface Φi. Thus
all endpoints of edges in X are contained in I. Since P contains no vertex of I \ {a, b},
we have X ∩ E(P) = {{a, b}}, i.e. the path P consists only of a single edge that
is contained in X and thus also in F ′. This contradicts our assumption that (V, F ′)
contains no a-b path.

(proof of Claim 2)

To show point (iii) of Definition 9.6, we need to show that any two vertices a and
b that are contained in the same set of the partition C of I are also contained in the
same connected component of (V, F ′). If a and b are contained in the same set of the
partition C, they are contained in the same connected component of (V, F) because F
is a Φ-tour. Hence by Claim 2 and I ⊆ Ī, also (V, F ′) contains an a-b path.

It remains to show point (ii) of Definition 9.6, i.e., we prove that (V, F ′)/I is con-
nected. First observe that if p = 0, then the result holds because then F ′ = F0 is a
Φ0-tour and I0 = I. Hence, assume from now on p > 0. In this case, we first observe
that

Ii 6= ∅ ∀i ∈ {0, . . . , p}. (9.11)

Indeed, because (V, F)/I is connected, which follows from F being a Φ-tour, we have
for each i ∈ {0, . . . , p} that either I ∩Wi 6= ∅ or δ(Wi) ∩ F 6= ∅, both of which imply
Ii 6= ∅.

To conclude that (V, F ′)/I is connected, we will observe the following two properties,
which immediately imply the result:

(i) For each i ∈ {0, . . . , p}, each vertex v ∈ Wi is connected to a vertex in Ii in the
graph (Wi, Fi).

(ii) All vertices in ∪pi=0Ii are connected in (V, F ′)/I.

Notice that (i) is a consequence of (9.11) and the fact that (Wi, Fi)/Ii is connected,
which holds because Fi is a Φi-tour in G[Wi]. Finally, (ii) follows from Claim 2 due to
the following. Either I = ∅, in which case (V, F)/I = (V, F) is connected—because F
is a Φ-tour—which implies (ii) by Claim 2. Or I 6= ∅, in which case the connectivity
of (V, F)/I implies that in (V, F) each vertex v ∈ ∪pi=0Ii is connected to a vertex of I,
again implying (ii) by Claim 2.

9.4.3 The dynamic program

We now expand on the dynamic program used to show Theorem 9.17. The dynamic
program is formally described by Algorithm 7 below. See also Figure 9.5 for an illus-
tration. Before formally proving that Algorithm 7 indeed returns a Φ-tour implying
Theorem 9.17, we provide a brief explanatory discussion outlining the core ideas of the
algorithm and the line of reasoning we employ to show its correctness.

178

9.4. ITERATIVE IMPROVEMENT VIA DYNAMIC PROGRAMMING

: I ∩ L ⊆ I0 ∪ · · · ∪ I3

: I0 ∪ · · · ∪ I3

: X

: R ∩ δ(L)

L

L1
L2

L3

Figure 9.5: Illustration of Algorithm 7. The dashed ellipses show the laminar family
L; these sets are considered by the algorithm in an order of non-decreasing cardinality.
Suppose we are considering L ∈ L(R, k); only subsets of L are shown in the figure. In the
dynamic program we guess the children L1, . . . , Lp of L in the laminar family L(R, k). The
sets L1, . . . , Lp are shown as blue ellipses with white interior. The light blue area shows
the set L0 = L \ (L1 ∪ · · · ∪ Lp).
We also guess the set X of edges in R[L] ∩ (δ(L1) ∪ · · · ∪ δ(Lp)); these are the thick blue
edges. The thin gray edges are the edges in R ∩ δ(L); these will be guessed only in a later
step. However, we do guess the interface ΦL = (IL, TL, CL) that (R,Φ) induces on L, where
IL consists of all vertices in I ∩L (shown with a thick red boundary) and all vertices in L
that are endpoints of gray edges. Moreover, we guess the interfaces Φi = (Ii, Ti, Ci) that
(R,Φ) induces on the sets Li for i ∈ {0, . . . , p}. The picture shows only the vertices in
I0 ∪ · · · ∪ Ip; these are the vertices in L that are contained in the set I or are an endpoint
of a thick blue or thin gray edge.
We compute a Φ0-tour in G[L0] and combine it with X and the Φi-tours in G[Li] for
i ∈ {1, . . . , p} that we have computed in previous steps of the dynamic program. This
yields a ΦL-tour in G[L].

179

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

To this end, let R be a Φ-tour (unknown to the algorithm), and we will show that the
dynamic program returns a Φ-tour F ⊆ E such that c(F) ≤ β ·c(R)−(β−1)·c(R(L, k)).
Conceptually, we want to consider the elements of the laminar family L(R, k) ⊆ L from
smaller to larger ones. Since we do not know the laminar family L(R, k), we consider
all sets in L in an arbitrary fixed order of non-decreasing cardinality. We then guess,
for every vertex set L ∈ L(R, k), the interface ΦL induced by (R,Φ) on L. Now we
compute a ΦL-tour FL,ΦL in G[L] as follows.

First, we guess the children L1, . . . , Lp of L in the laminar family L(R, k). Then we
guess the set X ⊆ R[L] of edges that cross the cuts δ(L1), . . . , δ(Lp). In other words, we
guess all edges in R(L, k) that are contained in L, but not in any child of L. Moreover,
for each child Li with i ∈ {1, . . . , p}, we guess the interface Φi induced by (R,Φ) on Li.
Because we consider the elements of the laminar family L in an order of non-decreasing
cardinality, we have already considered Li before considering the current set L. Hence
we have already computed some Φi-tour FLi,Φi for all i ∈ {1, . . . , p}.

We now want to extend the union of these Φi-tours for all i ∈ {1, . . . , p} and the
set X of edges crossing the boundaries of the children L1, . . . , Lp to a ΦL-tour in G[L].
To this end we define L0 := L \ ∪pi=1Li. Then L0, . . . , Lp is a partition of L. We also
guess the interface Φ0 that (R,Φ) induces on L0. Then, by Lemma 9.22 applied to
the graph G[L], the union of X and arbitrary Φi-tours in G[Li] for i = {0, . . . , p} is a
ΦL-tour in G[L]. Here we use that Φi is the interface induced by (R[L],ΦL) on Li for
i = {0, . . . , p} (cf. Lemma 9.21 (iii)). Finally, we use the given algorithm B to compute
a β-approximation F0 of a minimum length Φ0-tour in the subgraph G[L0] and combine
X, F0, and the Φi-tours FLi,Φi for i ∈ {1, . . . , p} to a ΦL-tour FL,ΦL .

Algorithm 7: Algorithm computing a Φ-tour as stated in Theorem 9.17
Let L = L ∪ {V };
for L ∈ L, in non-decreasing order of cardinality do

for each interface ΦL = (IL, TL, CL) of G[L] with |IL| ≤ |I|+ k do
Let FL,ΦL := Nil; // No ΦL-tour found yet.

// We set by convention: c(Nil) =∞.
for each subfamily {L1, . . . , Lp} ⊆ L of disjoint proper subsets of L do

Let L0 := L \ ∪pi=1Li;
for all X ⊆ (

⋃p
i=1 δ(Li)) ∩ E[L] with |X ∩ δ(Li)| ≤ k ∀i ∈ {1, . . . , p} do

For i ∈ {0, . . . , p}, let Ui ⊆ Li be the set of all vertices in Li that are an
endpoint of some edge in X;
Let Ii := (IL ∩ Li) ∪ Ui ∀i ∈ {0, . . . , p};
for all Ti, Ci such that Φi = (Ii, Ti, Ci) is an interface of
G[Li] (i ∈ {0, . . . , p}) do

Use Algorithm B to find a Φ0-tour F0;
Let F := X

.
∪ F0

.
∪
⋃p
i=1 FLi,Φi ;

if F is a ΦL-tour and c(F) ≤ c(FL,ΦL) then
Set FL,ΦL = F ;

return FV,Φ;

In what follows, we now provide a rigorous proof that Algorithm 7 implies Theo-
rem 9.17 by leveraging the tools from Section 9.4.2.

180

9.4. ITERATIVE IMPROVEMENT VIA DYNAMIC PROGRAMMING

9.4.4 Proof of Theorem 9.17

We start by showing that Algorithm 7 has indeed the claimed running time, before
proving its correctness.

Running time

The running time of Algorithm 7 is dominated by the 5-fold nested for-loops. We
first determine upper bounds on the number of iterations of each for-loop separately,
whenever the algorithm reaches it.

1st for-loop: It goes over all sets in L. Because L is a laminar family over V , it
contains O(|V |) sets (by Lemma 2.6).

2nd for-loop: It goes over all interfaces ΦL = (IL, TL, CL) of G[L] with |IL| ≤ |I|+k.
There are no more than (|L| + 1)|I|+k ≤ (|V | + 1)|I|+k choices for
choosing IL. Moreover, there are at most 2|IL| ≤ 2|I|+k choices for
TL ⊆ IL. Finally, the number of partitions CL of IL can be upper
bounded by |IL||IL| ≤ |V ||I|+k. Overall, the number of iterations of
any run of the second for-loop is bounded by |V |O(|I|+k).

3rd for-loop: It iterates over subfamilies of L of disjoint proper subsets of L. Be-
cause the sets are disjoint, such a family can have at most width(L) ≤
width(L) + 1 sets, and we can therefore bound the number of these
subfamilies by |L|width(L) = |V |O(width(L)).

4th for-loop: It iterates over edge sets X ⊆ (∪pi=1δ(Li))∩E[L] with |X∩δ(Li)| ≤ k
for all i ∈ {1, . . . , p}, and can be bounded as follows. Notice that

|X| ≤
p∑
i=1
|X ∩ δ(Li)| ≤ p · k ≤ width(L) · k.

Hence, there are at most (|E|+ 1)k·width(L) = |V |O(k·width(L)) options
for X.

5th for-loop: This loop runs for all i ∈ {0, . . . , p} over all interfaces Φi = (Ii, Ti, Ci)
of G[Li] , where Li and Ii are fixed. The number of interfaces Φi

for a fixed i ∈ {0, . . . , p} is thus bounded by (2|Ii|)|Ii| ≤ (2|V |)|Ii|
and, hence, the total number of combinations of such interfaces, and
thus also on the number of iterations each time this for-loop is run,
is bounded by

p∏
i=0

(2|V |)|Ii| = (2|V |)
∑p

i=0 |Ii|. (9.12)

Moreover, for i ∈ {1, . . . , p}, we have |Ii| ≤ k+ |IL∩Li|, which follows
from the fact that each set Ii contains the elements of IL∩Li together

181

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

with at most k endpoints of edges from X because |X ∩ δ(Li)| ≤ k.
This implies

p∑
i=1
|Ii| ≤ p · k + |IL| ≤ width(L) · k + (|I|+ k)

= O(|I|+ k · width(L)).
(9.13)

Similarly,

|I0| ≤ |IL|+ k · width(L) ≤ |I|+ k + k · width(L)
= O(|I|+ k · width(L)).

(9.14)

Combining (9.13) and (9.14) with (9.12), we can bound the number
of iterations of the fifth for-loop by |V |O(|I|+k·width(L)).

The most expensive single operation performed by Algorithm 7 is the call to Algo-
rithm B to find a Φ0-tour, which, by assumption, takes no more than fB(G, |I0|) time.
Due to the bound on |I0| ≤ |I| + k · (width(L) + 1) provided by (9.14), we have that
the total running time is thus indeed bounded by

|V |O(|I|+k·width(L)) · fB(G, |I|+ k · (width(L) + 1)).

Correctness

We now show that, whenever G admits a Φ-tour, then Algorithm 7 will find a Φ-tour
FV,Φ with the length guarantee claimed by Theorem 9.17. So let R be a Φ-tour. We
have to show that FV,Φ computed by the algorithm is a Φ-tour (instead of Nil) and that
it satisfies

c(FV,Φ) ≤ β · c(R \R(L, k)) + c(R(L, k)). (9.15)

We prove (9.15) by showing the following claim from smaller to larger sets L ∈ L(R, k)∪
{V }.

Claim 3. Let L ∈ L(R, k) ∪ {V }. If L = V , let ΦL = Φ. Otherwise, let ΦL =
(IL, TL, CL) be the interface induced by (R,Φ) on L. Then Algorithm 7 computes a
ΦL-tour FL,ΦL such that

c(FL,ΦL) ≤ β · c (R[L] \R(L, k)) + c (R[L] ∩R(L, k)) .

Observe that the claim immediately implies Theorem 9.17 by choosing L = V .
Hence, it remains to prove the claim.

Proof of Claim 3. We prove the claim by induction from smaller to larger sets in
L(R, k) ∪ {V }. Hence, let L ∈ L(R, k) ∪ {V } and assume that the claim holds for
sets in L(R, k) ∪ {V } of strictly smaller cardinality than L. In particular, it holds for
the children L1, . . . , Lp of L in the laminar family L(R, k)∪{V }. (Note that L may also
not have any children.) Let L0 := L \∪pi=1Li, and for i ∈ {0, . . . , p}, let Φi = (Ii, Ti, Ci)
be the interface induced by (R,Φ) on Li. By using Lemma 9.21 (iii) in the case L 6= V ,
we observe that Φi is also the interface induced by (R[L],ΦL) on Li. Let F0 be a

182

9.4. ITERATIVE IMPROVEMENT VIA DYNAMIC PROGRAMMING

Φ0-tour obtained through Algorithm B. Because L0, L1, . . . , Lp partitions L, we have
by Lemma 9.22 that

F := X
.
∪ F0

.
∪

p⋃
i=1

FLi,Φi

is a ΦL-tour, where

X := R[L] ∩
p⋃
i=1

δ(Li). (9.16)

Before discussing that this ΦL-tour F will indeed be considered by Algorithm 7, we
bound its length. First, c(F0) ≤ β · c(R[L0]) because B computes β-approximate so-
lutions and R[L0] is a Φ0-tour by Lemma 9.21 (ii). Moreover, for i ∈ {1, . . . , p} we
apply the induction hypothesis to Li and Φi, which is possible because Li ∈ L(R, k)
has strictly smaller cardinality than L. Hence, FLi,Φi is a Φi-tour and fulfills the length
bound stated in the claim. We therefore get

c(F) = c (X) + c(F0) +
p∑
i=1

c (FLi,Φi)

≤ c (X) + β · c(R[L0]) +
p∑
i=1

(
β · c (R[Li] \R(L, k)) + c(R[Li] ∩R(L, k))

)
= β · c (R[L] \R(L, k)) + c (R[L] ∩R(L, k)) , (9.17)

where the last equality follows by observing that

R[L0], R[L1] \R(L, k), . . . , R[Lp] \R(L, k) partitions R[L] \R(L, k), and
X, R[L1] ∩R(L, k), . . . , R[Lp] ∩R(L, k) partitions R[L] ∩R(L, k).

Due to (9.17), the ΦL-tour F fulfills the length bound of the claim. It remains to show
that the ΦL-tour F will indeed be considered by Algorithm 7. For this, we show that
the following quantities are considered in the five nested for-loops:

1st for-loop: considers L,

2nd for-loop: considers the interface ΦL = (IL, TL, CL),

3rd for-loop: considers the children L1, . . . , Lp of the set L in the laminar family
L(R, k) ∪ {V },

4th for-loop: considers the set X,

5th for-loop: considers, for i ∈ {0, . . . , p}, the interfaces Φi induced by (R[L],ΦL)
on Li.

This run would indeed produce F . All that remains to be shown is that the above five
quantities, to be considered within the five nested for-loops, fulfill the conditions set
by the respective for-loops:

1st for-loop: Algorithm 7 considers all sets in L and hence, also L.

2nd for-loop: If L = V , the interface Φ is obviously considered. Otherwise ΦL =
(IL, TL, CL) is the interface induced by (R,Φ) on L, and we have

183

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

IL = (I ∩ L) ∪ U , where U is the set of vertices in L connected by
an edge of R to a vertex in V \ L. As L ∈ L(R, k) ∪ {V }, we have
|δ(L) ∩ R| ≤ k, and hence |U | ≤ k, which implies |IL| ≤ |I| + k and
shows that the interface ΦL is considered in the second for-loop.

3rd for-loop: We have {L1, . . . , Lp} ⊆ L . Hence, the subfamily {L1, . . . , Lp} will
be considered in the third nested for-loop.

4th for-loop: The set X we want to consider is given by (9.16). This set clearly
satisfies X ⊆ (∪pi=1δ(Li))∩E[L] because R[L] ⊆ E[L]. Moreover, for
each i ∈ {1, . . . , p} we have

|X ∩ δ(Li)| = |R[L] ∩ δ(Li)| ≤ |R ∩ δ(Li)| ≤ k,

where the last inequality follows from Li ∈ L(R, k). Hence, the set X
will be considered during the fourth nested for-loop of the algorithm.

5th for-loop: For i ∈ {0, . . . , p} we have that Φi = (Ii, Ti, Ci) is the interface of
G[Li] induced by (R[L],ΦL) on Li. Hence, Ii = (IL ∩Li)∪Ui, where
Ui are all vertices in Li connected by an edge of R[L] to a vertex
in L \ Li. We have R[L] ∩ δ(Li) = X ∩ δ(Li) by our choice of X
as described in (9.16) and because {L0, . . . , Lp} is a partition of L.
Therefore, Ii := (IL ∩ Li) ∪ Ui, as desired. Hence, the interfaces Φi

for i ∈ {0, . . . , p} indeed get considered in the fifth nested for-loop of
the algorithm.

As said, Claim 3 implies (9.15), completing the proof of Theorem 9.17.
We remark that Claim 3 can be slightly strengthened as follows. The statement

also holds when replacing the induced interface ΦL = (IL, TL, CL) by any interface
Φ′L = (IL, TL, C′L) where C′L is a refinement of CL. However, we do not need this for our
purposes.

9.5 Proof of the main theorem

We finally prove that the Boosting Theorem (Theorem 9.10) implies Theorem 9.1.
In fact, we prove a generalization, stated below as Theorem 9.23, which, for k = 2

and Φ = (I, T, C) with I = T = {s, t} and C = {{s, t}}, yields Theorem 9.1.

Theorem 9.23. Let α > 1. Let A be an algorithm that computes α-approximate solu-
tions for TSP. Then, for any ε > 0 and any integer k, there is an (α+ε)-approximation
algorithm for Φ-TSP restricted to instances with |IΦ| ≤ k that, for any instance (G,Φ),
calls A a polynomial number of times on TSP instances defined on subgraphs of G, and
performs further operations taking polynomial time.

Proof. We obtain the result by repeatedly applying the Boosting Theorem, i.e. Theo-
rem 9.10, to strengthen the 4-approximation algorithm for Φ-TSP guaranteed by The-
orem 9.9 through the α-approximation algorithm for TSP which we assume to exist.

184

9.5. PROOF OF THE MAIN THEOREM

Without loss of generality ε ≤ 1. The Boosting Theorem will be repeated imax many
times with error parameter given by ε′ = ε

α , where

imax :=
⌈4− (α+ ε)

α− 1 · 8α
ε

⌉
.

Notice that imax is constant, because both ε and α are fixed.
Let β0 := 4 be the approximation ratio for Φ-TSP before applying the Boosting The-

orem. We assume α ≤ 1.5 < β0 because Christofides’ algorithm is a 1.5-approximation
algorithm for TSP. Let i ∈ {1, . . . , imax}. After i applications of the Boosting Theorem
we obtain an algorithm Bi that computes βi-approximate solutions for Φ-TSP with

βi := max
{

(1 + ε′)α, βi−1 −
ε′

8 · (βi−1 − 1)
}

= max
{
α+ ε, βi−1 −

ε

8α · (βi−1 − 1)
}
,

where we used ε′ = ε
α . We therefore have

βi ≤ max
{
α+ ε, βi−1 −

ε

8α(α− 1)
}
≤ max

{
α+ ε, β0 − i ·

ε

8α(α− 1)
}
,

where the last inequality follows by induction on i. Hence,

βimax ≤ max
{
α+ ε, 4− imax ·

ε

8α(α− 1)
}

= max
{
α+ ε, 4−

⌈4− (α+ ε)
α− 1 · 8α

ε

⌉
· ε8α(α− 1)

}
= α+ ε.

Moreover, we define real numbers ki > 0 for i ∈ {0, . . . , imax} to upper bound the
size of the interfaces we have to be able to handle after i boosting steps. We want
the algorithm Bimax , obtained after imax many applications of the Boosting Theorem,
to handle interfaces of size kimax := k. Because Bimax was obtained by applying the
Boosting Theorem to Bimax−1, we obtain that Bimax−1 needs to handle interfaces of size
bounded by kimax−1 := 9

ε′ · kimax . Repeating this reasoning, we obtain upper bounds ki
on the size of the interfaces that we have to handle with Bi that satisfy

ki := 9
ε′
· ki+1 ∀i ∈ {imax − 1, . . . , 1, 0},

which implies

ki = k ·
(9
ε′

)imax−i
∀i ∈ {0, . . . , imax}.

Notice that because imax, k, and ε′ are constant, also k0 is constant.
For i = imax, the following claim implies Theorem 9.23 because βimax = α + ε and

imax, k0, and ε′ are constant and B0 is a polynomial-time algorithm.

Claim 4. Let c > 0 be the hidden constant in the big-O notation in the runtime bound in
Theorem 9.10. Let i ∈ {0, . . . , imax} and let A be the given α-approximation algorithm

185

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

for TSP. Then there is an algorithm Bi that computes βi-approximate solutions for
Φ-TSP and for every weighted graph G, runs in time at most

fi(G) := |V |i·c·
k0
ε′ ·

(
i · fA(G) + fB0(G)

)
(9.18)

on any instance (G′,Φ), where G′ is a subgraph of G and |IΦ| ≤ ki.

We prove the claim by induction on i. By Theorem 9.9 we have a β0-approximation
algorithm B0 for Φ-TSP, implying the claim for i = 0.

Now let i ∈ {1, . . . , imax}. By our induction hypothesis, there exists an algorithm
Bi−1 that computes βi−1-approximate solutions and runs in time fi−1(G) on every
weighted graph G and every interface Φ of G with |IΦ| ≤ ki−1. Applying Theorem 9.10
to the algorithms A and Bi−1 then yields an algorithm Bi that computes βi-approximate
solutions for Φ-TSP and runs on every graph G and every interface Φ with |IΦ| ≤ ki
in time at most

|V |c·
ki
ε′ ·

(
fA(G) + fBi−1

(
G, 9·ki

ε′

))
≤ |V |c·

k0
ε′ ·

(
fA(G) + fBi−1 (G, ki−1)

)
≤ |V |c·

k0
ε′ ·

(
fA(G) + fi−1(G)

)
= |V |c·

k0
ε′ · fA(G) + |V |i·c·

k0
ε′ ·

(
(i− 1) · fA(G) + fB0(G)

)
≤ fi(G).

9.6 A 4-approximation algorithm for Φ-TSP

Theorem 9.9. There is a 4-approximation algorithm for Φ-TSP.

Proof. Let Φ = (I, T, C) be an interface of G = (V,E). By Lemma 9.8, we can assume
that Φ is feasible. The main component of our algorithm is to obtain a 2-approximation
algorithm for the problem of finding a set (not a multi-set) F ⊆ E of minimum length
c(F) that satisfies the following three conditions:

(i) (V, F)/I is connected;
(ii) (V, F) connects all vertices within any C ∈ C;
(iii) each connected component of (V, F) contains an even number of vertices in T .

We will achieve this through an application of Jain’s iterative rounding method for the
Generalized Steiner Network Problem [Jai01].

Before we discuss the details of Jain’s method in our setting, we first assume that
we can indeed find in polynomial time a set F ⊆ E fulfilling (i), (ii), and (iii) of length
no larger than twice the length of a shortest edge set fulfilling these three conditions.
Because a shortest Φ-tour F ∗ must fulfill these conditions, and removing parallel edges
does not destroy them, there is a subset of F ∗ that contains no parallel edges and
satisfies (i), (ii), and (iii). Therefore, c(F) ≤ 2 ·OPT.

186

9.6. A 4-APPROXIMATION ALGORITHM FOR Φ-TSP

Due to property (iii), the set F contains a T -join J ⊆ F , which we can find in
linear time through standard techniques. We then return F

.
∪ (F \ J), which is indeed

a Φ-tour and satisfies

c(F
.
∪ (F \ J)) ≤ 2c(F) ≤ 4 ·OPT,

as desired. It remains to show how to obtain a polynomial 2-approximation algorithm
for finding a shortest edge set fulfilling (i), (ii), and (iii).

To this end, observe that a set F ⊆ E satisfies (i), (ii), and (iii) if and only if

|F ∩ δ(S)| ≥ f(S) ∀S ⊆ V, (9.19)

where the function f : 2V → {0, 1} is defined as follows. For S (V with S 6= ∅, we set
f(S) = 1 if at least one of the following three properties holds:

(a) S ∩ I = ∅;
(b) ∃ C ∈ C s.t. S ∩ C 6= ∅ and C \ S 6= ∅;
(c) |S ∩ T | is odd.

Otherwise we set f(S) = 0. (In particular, f(∅) = f(V) = 0.) Indeed, the proper-
ties (a), (b), and (c) are just reformulations of (i), (ii), and (iii), respectively.

Jain’s technique [Jai01] leads to a 2-approximation algorithm for finding a shortest
edge set F satisfying (9.19) if, first, the function f is weakly supermodular, which means
that for all X,Y ⊆ V

f(X) + f(Y) ≤ max {f(X ∪ Y) + f(X ∩ Y), f(X \ Y) + f(Y \X)} , (9.20)

and, second, one can separate over the polytope

P =
{
x ∈ [0, 1]E : x(δ(S)) ≥ f(S) ∀S ⊆ V

}
. (9.21)

in polynomial time.
We start by showing (9.20). Notice that (9.20) clearly holds if X ⊆ Y , because in

this case we have {X,Y } = {X ∪Y,X ∩Y }. Hence, in what follows, we always assume
that X \ Y 6= ∅ and Y \X 6= ∅.

Let fa, fb, and fc be the functions from 2V to {0, 1} that take a value of 1
precisely for sets S (V, S 6= ∅ that satisfy (a), (b), or (c), respectively. Hence,
f(S) = max{fa(S), fb(S), fc(S)}. First, one can observe that each of the functions fa,
fb, and fc is weakly supermodular. Consider first fa and let X,Y ⊆ V with X \ Y 6= ∅
and Y \ X 6= ∅. If fa(X) = 1 then fa(X \ Y) = 1. Similarly, if fa(Y) = 1, then
fa(Y \ X) = 1. Hence, fa satisfies (9.20). The function fb corresponds to pairwise
connectivity requirements and, as shown in [Jai01], is therefore weakly supermodular.
The function fc is easily seen to be a so-called proper function, which means that
fc(V) = 0, fc is symmetric, and fc(S1 ∪ S2) ≤ max{fc(S1), fc(S2)} for any pair of
disjoint sets S1, S2 ⊆ V . Finally, it is well-known that any proper function is weakly
supermodular (see [GGP+94]).

We say that a set S (V with S 6= ∅ is of type (a), (b), or (c), if it satisfies (a), (b),
or (c), respectively. Because each of the functions fa, fb, and fc is weakly supermodular,
the inequality (9.20) holds whenever the sets X and Y are of the same type, or if X or

187

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

Y is none of the three types. Hence, it remains to consider sets X and Y of two different
types among the types (a), (b), and (c). Let Sa, Sb, Sc ⊆ V be sets of type (a), (b),
and (c), respectively. Thus, we need to show that (9.20) holds for the three cases where
(X,Y) is either (Sa, Sb), (Sa, Sc), or (Sb, Sc). Moreover, let C ∈ C be a set such that
Sb ∩ C 6= ∅ and C \ Sb 6= ∅, which exists because Sb is of type (b).

We start by considering the case (X,Y) = (Sa, Sb). As discussed, we assume that
Sa 6⊆ Sb and Sb 6⊆ Sa; for otherwise, (9.20) holds trivially. Notice that in this case we
have

2 = f(Sa) + f(Sb) ≤ f(Sa \ Sb) + f(Sb \ Sa) = 2,

because (Sa \ Sb) ∩ I ⊆ Sa ∩ I = ∅, as well as (Sb \ Sa) ∩ I = Sb ∩ I and C ⊆ I. Hence,
Sa \ Sb is of type (a) and Sb \ Sa is of type (b).

Consider now the case (X,Y) = (Sa, Sc). Here, we have

2 = f(Sa) + f(Sc) ≤ f(Sa \ Sc) + f(Sc \ Sa) = 2,

because (Sa\Sc)∩I ⊆ Sa∩I = ∅, implying that Sa\Sc is of type (a), and |(Sc\Sa)∩T | =
|Sc ∩ T | due to Sa ∩ T ⊆ Sa ∩ I = ∅, which implies that Sc \ Sa is of type (c).

It remains to consider the case (X,Y) = (Sb, Sc). We first observe that

max {f(Sb \ Sc), f(Sb ∪ Sc)} ≥ 1, and (9.22)
max {f(Sb ∩ Sc), f(Sc \ Sb)} ≥ 1, (9.23)

due to the following. Inequality (9.22) holds because Sb ∪Sc can be partitioned into Sc
and Sb \ Sc. Because |Sc ∩ T | is odd, either Sb ∪ Sc or Sb \ Sc must also have an odd
intersection with T and is thus of type (c). Inequality (9.23) follows from an analogous
reasoning using the partition of Sc into Sb ∩ Sc and Sc \ Sb. Moreover, we have

max {f(Sb \ Sc), f(Sb ∩ Sc)} ≥ 1, and (9.24)
max {f(Sb ∪ Sc), f(Sc \ Sb)} ≥ 1, (9.25)

because Sb is of type (b), i.e., Sb ∩ C 6= ∅ and C \ Sb 6= ∅. Indeed, even without any
assumptions on Sc ⊆ V , we have that either Sb \ Sc or Sb ∩ Sc is also of type (b).
The same holds for either Sb ∪ Sc or Sc \ Sb. Among the four expressions f(Sb ∪ Sc),
f(Sb ∩ Sc), f(Sb \ Sc), and f(Sc \ Sb), consider any one of minimum value and sum up
the two inequalities among (9.22), (9.23), (9.24), and (9.25) containing that expression.
This gives the desired result. For example, if f(Sb \Sc) achieves minimum value among
the four, then (9.22) implies f(Sb ∪ Sc) = 1 and (9.24) implies f(Sb ∩ Sc) = 1. Hence,

2 = f(Sb) + f(Sc) ≤ f(Sb ∪ Sc) + f(Sb ∩ Sc) = 2,

as desired. This completes the proof that f is weakly supermodular.
To apply Jain’s method, it remains to show that we can separate over P , and we

will in fact give a polynomial algorithm. Given y ∈ [0, 1]E , we will either show that all
constraints y(δ(S)) ≥ f(S) for S ⊆ V are fulfilled or return one of these constraints
that is violated. Notice that, because y ≥ 0, a constraint y(δ(S)) ≥ f(S) can only be
violated if f(S) = 1, i.e., S is either of type (a), (b), (c). Hence, we can check these
constraints for each type separately.

188

9.6. A 4-APPROXIMATION ALGORITHM FOR Φ-TSP

Whether there is a violated constraints of type (a) reduces to finding a minimizer
of

min {y(δ(S)) : S ⊆ V with S ∩ I = ∅} .

This can be solved through a global minimum cut algorithm applied to the graph G/I
with edge weights y. Indeed, this either leads to a cut S with S ∩ I = ∅ as desired or
one where I ⊆ S, in which we can replace S by V \ S.

To check whether there is a violated constraint of type (b) reduces to

min {y(δ(S)) : ∃C ∈ C with S ∩ C 6= ∅ and C \ S 6= ∅} .

This can be solved by performing the following for all C ∈ C with |C| ≥ 2. Number the
vertices in C arbitrarily C = {c1, . . . , ck}, and solve a minimum ci-ci+1 cut problem
in G with edge weights y for each i ∈ {1, . . . , k − 1}. If any of these s-t-cut problems
leads to a cut of value strictly smaller than 1, then the minimizing cut corresponds to a
violated constraint. Otherwise, there is no violated constraints of type y(δ(S)) ≥ f(S)
for any set S of type (b).

Finally, checking whether there is a violated constraint of type (c) reduces to

min {y(δ(S)) : S ⊆ V, |S ∩ T | is odd} .

This is a minimum weight T -cut problem, for which polynomial-time algorithms are
well known (see, e.g. [Sch03]).

In summary, the separation problem over P can be solved in polynomial time, and
we can therefore apply Jain’s technique as claimed.

189

CHAPTER 9. REDUCING S-T -PATH TSP TO TSP

190

Chapter 10

Conclusions and open questions

In this thesis we studied TSP, ATSP and their path versions, as well as their unit-
weight special cases. We gave new approximation algorithms and better upper bounds
on the integrality ratio of the classical LP relaxations for many of these problems. For
a summary of what we now know on these topics see Section 1.2. In this chapter we
will discuss some open questions and possible directions for further research.

10.1 ATSP and its path version

In Chapter 4 we gave a (22 + ε)-approximation algorithm for ATSP for every fixed
ε > 0 and proved that the integrality ratio of (ATSP LP) is at most 22. The best
known lower bound on the integrality ratio is 2 [CGK06]. So determining the exact
integrality ratio of (ATSP LP) remains an open question.

Open question 1
What is the integrality ratio of (ATSP LP)?

This question is also open for graph ATSP. We showed a lower bound of 2 in
Section 4.6 and the best known upper bound is 13 [Sve15].

For the path version of ATSP we proved the first constant upper bound on the inte-
grality ratio of (ATSPP LP); see Chapter 5. We also showed that the integrality ratio
of (ATSPP LP) is less than four times larger than the integrality ratio of (ATSP LP).
While the integrality ratio of (ATSPP LP) is clearly not smaller than the integrality
ratio of (ATSP LP), it might be possible that it is equal.

Open question 2
Are the integrality ratios of (ATSP LP) for ATSP and (ATSPP LP) for s-t-path ATSP
different?

At the moment, the best known lower bounds on the integrality ratios of these
two LP relaxations are both 2 [CGK06]. However, for (ATSPP LP), Friggstad, Gupta,
and Singh [FGM16] gave a simpler family of examples proving this lower bound; see
Figure 5.5.

In Chapter 9 we proved that in the symmetric case the path version is not substan-
tially harder to approximate than TSP. A natural question is whether the same holds
for the asymmetric versions.

191

CHAPTER 10. CONCLUSIONS AND OPEN QUESTIONS

Open question 3
Is s-t-path ATSP substantially harder to approximate than ATSP?

Feige and Singh [FS07] showed that any α-approximation algorithm for ATSP im-
plies that there is a (2α+ε)-approximation algorithm for its path version (for any fixed
ε > 0). One might try to extend the techniques that we used for our reduction in the
symmetric case (Chapter 9) to the asymmetric setting in order to avoid the loss of a
factor 2 in the approximation ratio.

If the distance from s to t is large, one can still apply dynamic programming as
in Section 8.8 and Chapter 9. Otherwise, the distance from s to t is small, but in the
asymmetric setting the distance from t to s could still be large. In this situation we do
not know how to reduce the problem to ATSP or guess edges of significant weight by
a dynamic program.

Another obstacle is the following. Our reduction from the s-t-path TSP to TSP
used a constant-factor approximation algorithm for Φ-TSP. An asymmetric analogue of
Φ-TSP should certainly generalize ATSP and its path version. For these two problems
there are constant-factor approximation algorithms; see [STV18a, FS07], Chapter 4,
and Chapter 5. However, we do not know how to generalize these algorithms to an
analogue of Φ-TSP.

10.2 TSP and some generalizations

For the symmetric TSP the probably most important open question is to improve on
Christofides’ algorithm.

Open question 4
Is there an approximation algorithm for TSP with approximation ratio less than 3

2 ?

This question is open even for node-weighted instances, i.e. instances with node-
weights cv > 0 for every vertex v and edge cost defined by c({v, w}) = cv + cw. In
contrast to ATSP, where node-weighted instances are essentially equivalent to unit-
weight instances (see Section 4.6), for the symmetric TSP node-weighted instances seem
to be more general. Although we know better algorithms than Christofides’ algorithm
for graph TSP (see [OSS11, MS16, Muc14, SV14] and Chapter 8), for node-weighted
TSP this is not the case.

Another important question is whether the so-called “4
3 -conjecture” is true, i.e. the

integrality ratio of (TSP LP) is 4
3 . We know that the integrality ratio is at least 4

3
(see Figure 6.1), but the best known upper bound is 3

2 [Wol80]; see Theorem 6.1. For
instances with up to twelve vertices Boyd and Elliott-Magwood [BEM07] verified the
4
3 -conjecture computationally.

Open question 5
Is the integrality ratio of (TSP LP) 4

3?

This is open also for graph TSP, i.e. the special case c ≡ 1.

In Chapter 7 we gave an improved upper bound of 1.5284 on the integrality ratio of
the relaxation (TSPP LP) for the s-t-path TSP. The best known lower bound, which
is widely believed to be tight, is 3

2 ; see Figure 6.2.

192

10.2. TSP AND SOME GENERALIZATIONS

Open question 6
Is the integrality ratio of the relaxation (TSPP LP) for the s-t-path TSP 3

2?

For the special case of unit weights this question was answered affirmatively by Sebő
and Vygen [SV14]. We proved a strengthening of this in Chapter 8 (Lemma 8.39).

The proof by Sebő and Vygen [SV14] also extends to the T -tour problem in graphs,
where we we are looking for a T -join J in an undirected graph G = (V,E) such that
(V, J) is connected and |J | is minimum. The s-t-path graph TSP with s 6= t is the
special case where T = {s, t} and graph TSP is the special case where T = ∅. For the
T -tour problem in weighted graphs, no 3

2 -approximation algorithm is known.

Open question 7
Is there a 3

2 -approximation algorithm for the T -tour problem?

Our black-box reduction from s-t-path TSP to TSP also applies to the special case
of the T -tour problem where |T | is bounded by a constant; see Theorem 9.23. Also
Zenklusen’s [Zen19] recent 3

2 -approximation algorithm for the s-t-path TSP can be
generalized to this special case of the T -tour problem. For general T , the best known
approximation ratio is 8

5 , due to Sebő [Seb13].

Finally, one could consider Φ-TSP, which further generalizes the T -tour problem;
see Chapter 9. We gave a 4-approximation algorithm, but a better approximation ratio
might be possible.

193

CHAPTER 10. CONCLUSIONS AND OPEN QUESTIONS

194

Bibliography

[ABCC06] D.L. Applegate, R. Bixby, V. Chvátal, and W.J. Cook. The Traveling
Salesman Problem: A Computational Study. Princeton University Press,
2006.

[AGM+17] A. Asadpour, M.X. Goemans, A. Mądry, S. Oveis Gharan, and A. Saberi.
An O(logn/ log logn)-approximation algorithm for the asymmetric travel-
ing salesman problem. Operations Research, 65:1043–1061, 2017.

[AKS15] H.-C. An, R. Kleinberg, and D.B. Shmoys. Improving Christofides’ algo-
rithm for the s-t path TSP. Journal of the ACM, 62(Article 34), 2015.

[AOG15] N. Anari and S. Oveis Gharan. Effective-resistance-reducing flows, spec-
trally thin trees, and asymmetric TSP. In Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages
20–39, 2015.

[Aro98] S. Arora. Polynomial time approximation schemes for Euclidean traveling
salesman and other geometric problems. Journal of the ACM, 45:753–782,
1998.

[BBCM04] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation al-
gorithms for deadline-TSP and vehicle routing with time-windows. In
Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC), pages 166–174, 2004.

[BCK+07] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff.
Approximation algorithms for orienteering and discounted-reward TSP.
SIAM Journal on Computing, 37:653–670, 2007.

[BEM05] S. Boyd and P. Elliott-Magwood. Computing the integrality gap of the
asymmetric traveling salesman problem. Electronic Notes in Discrete
Mathematics, 19:241–247, 2005.

[BEM07] S. Boyd and P. Elliott-Magwood. Structure of the extreme points of the
subtour elimination polytope of the STSP. Technical Report TR-2007-09,
SITE, University of Ottawa, 2007.

[BG13] Y. Bartal and L.-A. Gottlieb. A linear time approximation scheme for
Euclidean TSP. In Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 698–706, 2013.

195

BIBLIOGRAPHY

[Blä03] M. Bläser. A new approximation algorithm for the asymmetric TSP with
triangle inequality. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 638–645, 2003.

[Bry73] T.H. Brylawski. Some properties of basic families of subsets. Discrete
Mathematics, 6:333–341, 1973.

[BSvdSS14] S. Boyd, R. Sitters, S. van der Ster, and L. Stougie. The traveling sales-
man problem on cubic and subcubic graphs. Mathematical Programming,
144:227–245, 2014.

[CFG15] J. Cheriyan, Z. Friggstad, and Z. Gao. Approximating minimum-cost con-
nected T -joins. Algorithmica, 72:126–147, 2015.

[CGK06] M. Charikar, M.X. Goemans, and H. Karloff. On the integrality ratio for
the asymmetric traveling salesman problem. Mathematics of Operations
Research, 31:245–252, 2006.

[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the Travelling
Salesman Problem. Technical Report 388, Graduate School of Industrial
Administration, Carnegie-Mellon University, 1976.

[CKP12] C. Chekuri, N. Korula, and M. Pál. Improved algorithms for orienteering
and related problems. ACM Transactions on Algorithms, 8(3):23:1–23:27,
2012.

[CLS15] J. Correa, O. Larré, and J.A. Soto. TSP tours in cubic graphs: beyond
4/3. SIAM Journal on Discrete Mathematics, 29:915–939, 2015.

[CSS01] J. Cheriyan, A. Sebő, and Z. Szigeti. Improving on the 1.5-approximation
of a smallest 2-edge connected spanning subgraph. SIAM Journal on Dis-
crete Mathematics, 14:170–180, 2001.

[DFJ54] G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson. Solution of a large-scale
traveling-salesman problem. Journal of the Operations Research Society
of America, 2(4):393–410, 1954.

[DHK11] E.D. Demaine, M. Hajiaghayi, and K. Kawarabayashi. Contraction de-
composition in H-minor free graphs and algorithmic applications. In Pro-
ceedings of the 43rd Annual ACM Symposium on Theory of Computing
(STOC), pages 441 – 450, 2011.

[DHM10] E.D. Demaine, M. Hajiaghayi, and B. Mohar. Approximation algorithms
via contraction decomposition. Combinatorica, 30:533–552, 2010.

[DKM17] Z. Dvor̆ák, D. Král’, and B. Mohar. Graphic TSP in cubic graphs. In
34th Symposium on Theoretical Aspects of Computer Science (STACS),
volume 66, pages 27:1–27:13, 2017.

[DL18] B. Duník and R. Lukotka. Cubic TSP: A 1.3-approximation. SIAM Jour-
nal on Discrete Mathematics, 32(3):2094–2114, 2018.

196

BIBLIOGRAPHY

[Edm67] J. Edmonds. Optimum branchings. Journal of Research of the National
Bureau of Standards B, 71:233–240, 1967.

[Edm68] J. Edmonds. Matroid partition. Mathematics of the Decision Sciences,
Part 1, pages 335–345, 1968.

[Edm70] J. Edmonds. Submodular functions, matroids and certain polyhedra.
In Proceedings of the Calgary International Conference on Combinatorial
Structures and Their Applications 1969, pages 69–87, 1970.

[EJ73] J. Edmonds and E.L. Johnson. Matching, Euler tours and the Chinese
postman. Mathematical Programming, 5(1):88–124, 1973.

[FGM82] A.M. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of
some algorithms for the asymmetric traveling salesman problem. Networks,
12:23–39, 1982.

[FGM16] Z. Friggstad, A. Gupta, and Singh. M. An improved integrality gap for
asymmetric TSP paths. Mathematics of Operations Research, 41:745–757,
2016.

[Fra93] A. Frank. Conservative weightings and ear-decompositions of graphs.
Combinatorica, 13:65–81, 1993.

[FS07] U. Feige and M. Singh. Improved approximation algorithms for traveling
salesperson tours and paths in directed graphs. In Proceedings of the 10th
International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, pages 104–118, 2007.

[FSS13] Z. Friggstad, M.R. Salavatipour, and Z. Svitkina. Asymmetric traveling
salesman path and directed latency problems. SIAM Journal on Comput-
ing, 42:1596–1619, 2013.

[Gao13] Z. Gao. An LP-based 3/2–approximation algorithm for the s-t path graph
traveling salesman problem. Operations Research Letters, 41:615–617,
2013.

[GB93] M.X. Goemans and D.J. Bertsimas. Survivable networks, linear program-
ming relaxations and the parsimonious property. Mathematical Program-
ming, 60:145–166, 1993.

[GGP+94] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, É. Tardos, and
D. P. Williamson. Improved approximation algorithms for network design
problems. In Proceedings of the 5th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 223–232, 1994.

[GLS81] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197,
1981.

[GLS05] D. Gamarnik, M. Lewenstein, and M. Sviridenko. An improved upper
bound for the TSP in cubic 3-edge-connected graphs. Operations Research
Letters, 33:467–474, 2005.

197

BIBLIOGRAPHY

[Got13] C. Gottschalk. Approximation algorithms for the traveling salesman prob-
lem in graphs and digraphs. Master’s Thesis, Research Institute for Dis-
crete Mathematics, University of Bonn, 2013.

[Gre73] C. Greene. A multiple exchange property for bases. Proceedings of the
American Mathematical Society, 39:45–50, 1973.

[GV18] C. Gottschalk and J. Vygen. Better s-t-tours by Gao trees. Mathematical
Programming B, 172:191–207, 2018.

[Hoo91] J.A. Hoogeveen. Analysis of Christofides’ heuristic: some paths are more
difficult than cycles. Operations Research Letters, 10(5):291–295, 1991.

[HV17] K. Heeger and J. Vygen. Two-connected spanning subgraphs with at most
10
7 OPT edges. SIAM Journal on Discrete Mathematics, 31:1820–1835,
2017.

[Jai01] K. Jain. A factor 2 approximation algorithm for the generalized Steiner
Network Problem. Combinatorica, 21:39–60, 2001.

[Kar72] R.M. Karp. Reducibility among combinatorial problems. In Complexity
of computer computations, pages 85–103, 1972.

[Kar96] A.V. Karzanov. How to tidy up a symmetric set-system by use of uncross-
ing operations. Theoretical Computer Science, 157:215–225, 1996.

[Kha79] L. Khachiyan. A polynomial algorithm in linear programming [in Russian].
In Doklady Academii Nauk SSSR, volume 244, pages 1093–1096, 1979.

[Kle08] P.N. Klein. A linear-time approximation scheme for TSP in undirected
planar graphs with edge-weights. SIAM Journal on Computing, 37:1926–
1952, 2008.

[KLS15] M. Karpinski, M. Lampis, and R. Schmied. New inapproximability bounds
for TSP. Journal of Computer and System Sciences, 81:1665–1677, 2015.

[KLSS05] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation
algorithms for asymmetric TSP by decomposing directed regular multi-
graphs. Journal of the ACM, 52:602–626, 2005.

[KTV19] A. Köhne, V. Traub, and J. Vygen. The asymmetric traveling salesman
path LP has constant integrality ratio. In Proceedings of 20th Interna-
tional Conference on Integer Programming and Combinatorial Optimiza-
tion (IPCO), pages 288–298, 2019. Full version: arXiv:1808.06542v2.

[KV18] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algo-
rithms. Springer, Berlin, Sixth Edition, 2018.

[Lov76] L. Lovász. On some connectivity properties of Eulerian graphs. Acta
Mathematica Academiae Scientiarum Hungaricae, 28:129–138, 1976.

[LWN17] H. Le and C. Wulff-Nilsen. Minor-free graphs have light spanners. In Pro-
ceedings of the 58nd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 767 – 778, 2017.

198

BIBLIOGRAPHY

[Mad82] W. Mader. Konstruktion aller n-fach kantenzusammenhängender Di-
graphen. European Journal of Combinatorics, 3:63 – 67, 1982.

[Mit99] J. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: a
simple polynomial-time approximation scheme for geometric TSP, k-MST,
and related problems. SIAM Journal on Computing, 28:1298–1309, 1999.

[MMP90] C.L. Monma, B.S. Munson, and W.R. Pulleyblank. Minimum-weight two-
connected spanning networks. Mathematical Programming, 46:153–171,
1990.

[MS16] T. Mömke and O. Svensson. Removing and adding edges for the Traveling
Salesman Problem. Journal of the ACM, 63(1):2:1–2:28, 2016.

[Muc14] M. Mucha. 13
9 -approximation for graphic TSP. Theory of Computing

Systems, 55(4):640–657, 2014.

[NR07] V. Nagarajan and R. Ravi. Poly-logarithmic approximation algorithms
for directed vehicle routing problems. In Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques: AP-
PROX/RANDOM 2007, pages 257–270, 2007.

[NR08] V. Nagarajan and R. Ravi. The directed minimum latency problem. In
Proceedings of the 11th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems, pages 193–206, 2008.

[NW67] C.S.J.A. Nash-Williams. An application of matroids to graph theory. In
Theory of Graphs; Proceedings of an International Symposium in Rome
1966, pages 263–265, 1967.

[NZ19] M. Nägele and R. Zenklusen. A new dynamic programming approach
for spanning trees with chain constraints and beyond. In Proceedings of
the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1550–1569, 2019.

[OSS11] S. Oveis Gharan, A. Saberi, and M. Singh. A randomized rounding ap-
proach to the Traveling Salesman Problem. In Proceedings of the 52nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 550–559, 2011.

[RS93] S.B. Rao and W.D. Smith. Approximating geometric graphs via “span-
ners” and “banyans”. In Proceedings of the 30th Annual ACM Symposium
on Theory of Computing (STOC), pages 540–550, 1993.

[Sch03] A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency.
Springer, 2003.

[Seb97] A. Sebő. Potentials in undirected graphs and planar multiflows. SIAM
Journal on Computing, 26(2):582–603, 1997.

[Seb13] A. Sebő. Eight-fifth approximation for the Path TSP. In Proceedings of
16th International Conference on Integer Programming and Combinatorial
Optimization (IPCO), pages 263–373, 2013.

199

BIBLIOGRAPHY

[Ser78] A. I. Serdjukov. Some extremal bypasses in graphs [in Russian]. Upravlyae-
mye Sistemy, 17:76–79, 1978.

[SSTvZ18] F. Schalekamp, A. Sebö, V. Traub, and A. van Zuylen. Layers and matroids
for the traveling salesman’s paths. Operations Research Letters, 46(1):60–
63, 2018.

[STV18a] O. Svensson, J. Tarnawski, and L. Végh. A constant-factor approximation
algorithm for the asymmetric traveling salesman problem. In Proceedings
of the 50th Annual ACM Symposium on Theory of Computing (STOC),
pages 204–213, 2018.

[STV18b] O. Svensson, J. Tarnawski, and L. Végh. Constant factor approxima-
tion for ATSP with two edge weights. Mathematical Programming, 172(1-
2):371–397, 2018.

[STV19] O. Svensson, J. Tarnawski, and L. Végh. A constant-factor ap-
proximation algorithm for the asymmetric traveling salesman problem.
arXiv:1708.04215v3, 2019.

[SV14] A. Sebő and J. Vygen. Shorter tours by nicer ears: 7/5-approximation for
the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected
subgraphs. Combinatorica, 34(5):597–629, 2014.

[Sve15] O. Svensson. Approximating ATSP by relaxing connectivity. In Proceed-
ings of the 56th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1–19, 2015.

[SvZ19] A. Sebő and A. van Zuylen. The salesman’s improved paths through
forests. Journal of the ACM, 66(4):28:1–28:16, 2019.

[SW90] D. B. Shmoys and D. P. Williamson. Analyzing the Held-Karp TSP bound:
a monotonicity property with application. Information Processing Letters,
35:281–285, 1990.

[Tra17] V. Traub. Approximating the s-t-path TSP. Master’s Thesis, Research
Institute for Discrete Mathematics, University of Bonn, 2017.

[TV18] V. Traub and J. Vygen. Beating the integrality ratio for s-t-tours in
graphs. In Proceedings of 59th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 766–777, 2018. Full version:
arXiv:1804.03112v2.

[TV19a] V. Traub and J. Vygen. Approaching 3/2 for the s-t-path TSP. Journal
of the ACM, 66(14), 2019.

[TV19b] V. Traub and J. Vygen. An improved upper bound on the integrality ratio
for the s-t-path TSP. Operations Research Letters, 47:225–228, 2019.

[TVZ19] V. Traub, J. Vygen, and R. Zenklusen. Reducing Path TSP to TSP.
arXiv:1907.10376v1, 2019.

200

BIBLIOGRAPHY

[Vyg16] J. Vygen. Reassembling trees for the traveling salesman. SIAM Journal
on Discrete Mathematics, 30(2):875–894, 2016.

[Whi32] H. Whitney. Non-separable and planar graphs. Transactions of the Amer-
ican Mathematical Society, 34:339–362, 1932.

[Wol80] L.A. Wolsey. Heuristic analysis, linear programming and branch and
bound. Mathematical Programming Study, 13:121–134, 1980.

[Woo74] D.R. Woodall. An exchange theorem for bases of matroids. Journal of
Combinatorial Theory, Series B, pages 227–228, 1974.

[XR15] Z. Xu and B Rodrigues. A 3/2-approximation algorithm for the multiple
TSP with a fixed number of depots. INFORMS Journal on Computing,
27(4):636–645, 2015.

[Zen19] R. Zenklusen. A 1.5-approximation for Path TSP. In Proceedings of 30th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1539–1549, 2019.

201

BIBLIOGRAPHY

202

Summary

The traveling salesman problem is the probably most famous problem in combinatorial
optimization. Given a graph G and nonnegative edge costs, we want to find a closed
walk in G that visits every vertex at least once and has minimum cost. When G is
an undirected graph, we call this problem the symmetric traveling salesman problem
(TSP). When G is a directed graph, we call it the asymmetric traveling salesman
problem (ATSP).

We also consider the more general path versions, where we do not require the walk to
be closed, but to start and end in prescribed vertices s and t. Moreover, we investigate
the unit-weight special cases, where all edges have the same cost. These are of particular
interest because the best known lower bounds on the integrality ratio of the standard
linear programming relaxations can be obtained from unit-weight instances.

In this thesis we give improved approximation algorithms and better upper bounds
on the integrality ratio of the classical linear programming relaxations for several of
these traveling salesman problems. For this we use techniques arising from various
parts of combinatorial optimization such as linear programming, network flows, ear-
decompositions, matroids, and T -joins.

In a recent breakthrough, Svensson, Tarnawski, and Végh gave the first constant-
factor approximation algorithm for ATSP. Building on their result, we present a simpler
algorithm with a much better approximation guarantee. We prove an approximation
ratio of 22 + ε (for any fixed ε > 0), improving on the previously best bound of 506.
We also improve the upper bound on the integrality ratio of the classical LP relaxation
from 319 to 22.

For the path version of ATSP we give the first constant upper bound on the inte-
grality ratio of its classical LP relaxation. We show that the integrality ratio for the
path version is at most four times larger than for ATSP.

Then we turn to the symmetric case. For the path version of TSP we prove a new
upper bound on the integrality ratio of its classical LP relaxation. We achieve this by
an improved analysis of an algorithm by Sebő and van Zuylen.

For the s-t-path TSP with unit weights, the integrality ratio is known to be exactly
3
2 . We show that the classical instances with integrality ratio close to 3

2 are essentially
the only such instances (up to small local differences). From the proof of this result
we derive the first approximation algorithm that has an approximation ratio below the
integrality ratio of the classical LP relaxation.

Finally, we prove that the s-t-path TSP is not substantially harder to approximate
than its special case TSP: if there exists an α-approximation algorithm for TSP, then
for any fixed ε > 0 there is an (α + ε)-approximation algorithm for the s-t-path TSP.

203

SUMMARY

Until very recently the best known approximation ratios for TSP and s-t-path TSP
differed significantly. Our result avoids such discrepancies in the future.

Moreover, our result also holds for the case of unit weights. By applying this to an
algorithm by Sebő and Vygen, we obtain an improved approximation algorithm for the
s-t-path TSP with unit weights.

204

	Introduction
	Outline and contributions of this thesis
	State of the art

	Preliminaries
	Notation
	Eulerian walks
	Ear-decompositions
	Laminar families
	Linear programming
	Matroids
	T-joins
	Network flows
	Steiner forest and iterative rounding

	I The asymmetric traveling salesman problem and its path version
	ATSP and s-t-path ATSP
	Introduction and overview of previous work
	Structured dual LP solutions

	A (22+eps)-approximation algorithm for ATSP
	Outline
	Reducing to vertebrate pairs
	Computing subtour covers
	Algorithm for vertebrate pairs
	The main result
	Graph ATSP

	The ATSP path LP has constant integrality ratio
	Reducing to strongly laminar instances
	Bounding the integrality ratio for strongly laminar instances
	Blackbox reduction to ATSP

	II The symmetric traveling salesman problem and its path version
	TSP and s-t-path TSP
	Problem definitions
	The standard LP relaxations
	Christofides' algorithm
	Approximation algorithms for s-t-path TSP
	Approximation algorithms for graph TSP and s-t-path graph TSP

	An improved upper bound on the integrality ratio for s-t-path TSP
	Best-of-many Christofides with lonely edge deletion
	Outline of the new analysis
	Analyzing one tree
	Average cost

	Beating the integrality ratio for s-t-tours in graphs
	Introduction and preliminaries
	Enhanced ear induction
	Computing the initial ear-decomposition
	Optimizing outer ears and improving the lower bound
	Ear-decompositions with many non-entered ears
	Ear-decompositions with few non-entered ears
	Instances with large integrality ratio
	A 1.497-approximation algorithm

	Reducing s-t-path TSP to TSP
	Introduction
	Overview of our approach
	Finding a short Phi-tour if there is a short T-join
	Iterative improvement via dynamic programming
	Proof of the main theorem
	A 4-approximation algorithm for Phi-TSP

	Conclusions and open questions
	ATSP and its path version
	TSP and some generalizations

	Bibliography
	Summary

