277 research outputs found

    Least squares support vector machine with self-organizing multiple kernel learning and sparsity

    Get PDF
    © 2018 In recent years, least squares support vector machines (LSSVMs) with various kernel functions have been widely used in the field of machine learning. However, the selection of kernel functions is often ignored in practice. In this paper, an improved LSSVM method based on self-organizing multiple kernel learning is proposed for black-box problems. To strengthen the generalization ability of the LSSVM, some appropriate kernel functions are selected and the corresponding model parameters are optimized using a differential evolution algorithm based on an improved mutation strategy. Due to the large computation cost, a sparse selection strategy is developed to extract useful data and remove redundant data without loss of accuracy. To demonstrate the effectiveness of the proposed method, some benchmark problems from the UCI machine learning repository are tested. The results show that the proposed method performs better than other state-of-the-art methods. In addition, to verify the practicability of the proposed method, it is applied to a real-world converter steelmaking process. The results illustrate that the proposed model can precisely predict the molten steel quality and satisfy the actual production demand

    Kernel learning at the first level of inference

    Get PDF
    Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e.parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense

    L2-norm multiple kernel learning and its application to biomedical data fusion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper introduces the notion of optimizing different norms in the dual problem of support vector machines with multiple kernels. The selection of norms yields different extensions of multiple kernel learning (MKL) such as <it>L</it><sub>∞</sub>, <it>L</it><sub>1</sub>, and <it>L</it><sub>2 </sub>MKL. In particular, <it>L</it><sub>2 </sub>MKL is a novel method that leads to non-sparse optimal kernel coefficients, which is different from the sparse kernel coefficients optimized by the existing <it>L</it><sub>∞ </sub>MKL method. In real biomedical applications, <it>L</it><sub>2 </sub>MKL may have more advantages over sparse integration method for thoroughly combining complementary information in heterogeneous data sources.</p> <p>Results</p> <p>We provide a theoretical analysis of the relationship between the <it>L</it><sub>2 </sub>optimization of kernels in the dual problem with the <it>L</it><sub>2 </sub>coefficient regularization in the primal problem. Understanding the dual <it>L</it><sub>2 </sub>problem grants a unified view on MKL and enables us to extend the <it>L</it><sub>2 </sub>method to a wide range of machine learning problems. We implement <it>L</it><sub>2 </sub>MKL for ranking and classification problems and compare its performance with the sparse <it>L</it><sub>∞ </sub>and the averaging <it>L</it><sub>1 </sub>MKL methods. The experiments are carried out on six real biomedical data sets and two large scale UCI data sets. <it>L</it><sub>2 </sub>MKL yields better performance on most of the benchmark data sets. In particular, we propose a novel <it>L</it><sub>2 </sub>MKL least squares support vector machine (LSSVM) algorithm, which is shown to be an efficient and promising classifier for large scale data sets processing.</p> <p>Conclusions</p> <p>This paper extends the statistical framework of genomic data fusion based on MKL. Allowing non-sparse weights on the data sources is an attractive option in settings where we believe most data sources to be relevant to the problem at hand and want to avoid a "winner-takes-all" effect seen in <it>L</it><sub>∞ </sub>MKL, which can be detrimental to the performance in prospective studies. The notion of optimizing <it>L</it><sub>2 </sub>kernels can be straightforwardly extended to ranking, classification, regression, and clustering algorithms. To tackle the computational burden of MKL, this paper proposes several novel LSSVM based MKL algorithms. Systematic comparison on real data sets shows that LSSVM MKL has comparable performance as the conventional SVM MKL algorithms. Moreover, large scale numerical experiments indicate that when cast as semi-infinite programming, LSSVM MKL can be solved more efficiently than SVM MKL.</p> <p>Availability</p> <p>The MATLAB code of algorithms implemented in this paper is downloadable from <url>http://homes.esat.kuleuven.be/~sistawww/bioi/syu/l2lssvm.html</url>.</p

    Modeling for the Computer-Aided Design of Long Interconnects

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Novel analysis–forecast system based on multi-objective optimization for air quality index

    Full text link
    © 2018 Elsevier Ltd The air quality index (AQI) is an important indicator of air quality. Owing to the randomness and non-stationarity inherent in AQI, it is still a challenging task to establish a reasonable analysis–forecast system for AQI. Previous studies primarily focused on enhancing either forecasting accuracy or stability and failed to improve both aspects simultaneously, leading to unsatisfactory results. In this study, a novel analysis–forecast system is proposed that consists of complexity analysis, data preprocessing, and optimize–forecast modules and addresses the problems of air quality monitoring. The proposed system performs a complexity analysis of the original series based on sample entropy and data preprocessing using a novel feature selection model that integrates a decomposition technique and an optimization algorithm for removing noise and selecting the optimal input structure, and then forecasts hourly AQI series by utilizing a modified least squares support vector machine optimized by a multi-objective multi-verse optimization algorithm. Experiments based on datasets from eight major cities in China demonstrated that the proposed system can simultaneously obtain high accuracy and strong stability and is thus efficient and reliable for air quality monitoring

    Fault Diagnosis and Failure Prognostics of Lithium-ion Battery based on Least Squares Support Vector Machine and Memory Particle Filter Framework

    Get PDF
    123456A novel data driven approach is developed for fault diagnosis and remaining useful life (RUL) prognostics for lithium-ion batteries using Least Square Support Vector Machine (LS-SVM) and Memory-Particle Filter (M-PF). Unlike traditional data-driven models for capacity fault diagnosis and failure prognosis, which require multidimensional physical characteristics, the proposed algorithm uses only two variables: Energy Efficiency (EE), and Work Temperature. The aim of this novel framework is to improve the accuracy of incipient and abrupt faults diagnosis and failure prognosis. First, the LSSVM is used to generate residual signal based on capacity fade trends of the Li-ion batteries. Second, adaptive threshold model is developed based on several factors including input, output model error, disturbance, and drift parameter. The adaptive threshold is used to tackle the shortcoming of a fixed threshold. Third, the M-PF is proposed as the new method for failure prognostic to determine Remaining Useful Life (RUL). The M-PF is based on the assumption of the availability of real-time observation and historical data, where the historical failure data can be used instead of the physical failure model within the particle filter. The feasibility of the framework is validated using Li-ion battery prognostic data obtained from the National Aeronautic and Space Administration (NASA) Ames Prognostic Center of Excellence (PCoE). The experimental results show the following: (1) fewer data dimensions for the input data are required compared to traditional empirical models; (2) the proposed diagnostic approach provides an effective way of diagnosing Li-ion battery fault; (3) the proposed prognostic approach can predict the RUL of Li-ion batteries with small error, and has high prediction accuracy; and, (4) the proposed prognostic approach shows that historical failure data can be used instead of a physical failure model in the particle filter

    Algorithms for Fault Detection and Diagnosis

    Get PDF
    Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions

    Advanced models of supervised structural clustering

    Get PDF
    The strength and power of structured prediction approaches in machine learning originates from a proper recognition and exploitation of inherent structural dependencies within complex objects, which structural models are trained to output. Among the complex tasks that benefited from structured prediction approaches, clustering is of a special interest. Structured output models based on representing clusters by latent graph structures made the task of supervised clustering tractable. While in practice these models proved effective in solving the complex NLP task of coreference resolution, in this thesis, we aim at exploring their capacity to be extended to other tasks and domains, as well as the methods for performing such adaptation and for improvement in general, which, as a result, go beyond clustering and are commonly applicable in structured prediction. Studying the extensibility of the structural approaches for supervised clustering, we apply them to two different domains in two different ways. First, in the networking domain, we do clustering of network traffic by adapting the model, taking into account the continuity of incoming data. Our experiments demonstrate that the structural clustering approach is not only effective in such a scenario, but also, if changing the perspective, provides a novel potentially useful tool for detecting anomalies. The other part of our work is dedicated to assessing the amenability of the structural clustering model to joint learning with another structural model, for ranking. Our preliminary analysis in the context of the task of answer-passage reranking in question answering reveals a potential benefit of incorporating auxiliary clustering structures. Due to the intrinsic complexity of the clustering task and, respectively, its evaluation scenarios, it gave us grounds for studying the possibility and the effect from optimizing task-specific complex measures in structured prediction algorithms. It is common for structured prediction approaches to optimize surrogate loss functions, rather than the actual task-specific ones, in or- der to facilitate inference and preserve efficiency. In this thesis, we, first, study when surrogate losses are sufficient and, second, make a step towards enabling direct optimization of complex structural loss functions. We propose to learn an approximation of a complex loss by a regressor from data. We formulate a general structural framework for learning with a learned loss, which, applied to a particular case of a clustering problem – coreference resolution, i) enables the optimization of a coreference metric, by itself, having high computational complexity, and ii) delivers an improvement over the standard structural models optimizing simple surrogate objectives. We foresee this idea being helpful in many structured prediction applications, also as a means of adaptation to specific evaluation scenarios, and especially when a good loss approximation is found by a regressor from an induced feature space allowing good factorization over the underlying structure
    corecore