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Abstract  

In recent years, least squares support vector machines (LSSVMs) with various kernel 
functions have been widely used in the field of machine learning. However, the selection of kernel 
functions is often ignored in practice. In this paper, an improved LSSVM method based on 
self-organizing multiple kernel learning is proposed for black-box problems. To strengthen the 
generalization ability of the LSSVM, some appropriate kernel functions are selected and the 
corresponding model parameters are optimized using a differential evolution algorithm based on 
an improved mutation strategy. Due to the large computation cost, a sparse selection strategy is 
developed to extract useful data and remove redundant data without loss of accuracy. To 
demonstrate the effectiveness of the proposed method, some benchmark problems from the UCI 
machine learning repository are tested. The results show that the proposed method performs better 
than other state-of-the-art methods. In addition, to verify the practicability of the proposed method, 
it is applied to a real-world converter steelmaking process. The results illustrate that the proposed 
model can precisely predict the molten steel quality and satisfy the actual production demand. 
Keywords: Least squares support vector machines, Self-organizing multiple kernel learning, 
Sparse selection, Differential evolution. 

 

1 Introduction 

Since the 1950s, several scholars have focused their research interests on machine learning [1], which 
has been widely applied to artificial intelligence fields such as pattern recognition, signal processing, 
image interpretation, and intelligent control. Based on the self-learning capability with historical 
experience, a deep exploration of machine learning has gone beyond computer science and has been 
carried on to biomedicine [2], energy [3], manufacturing [4], and other application areas [5]. 
Additionally, to satisfy different requirements of practical engineering applications, machine learning is 
used in monitoring [6], diagnosis [7], and prediction [8]. 

For different types of modeling methods, machine learning can be classified as unsupervised learning, 
semi-supervised learning, and supervised learning [9-11]. The focus of this paper is on supervised 
learning methods. Parts of the data are used to train the model, and the remaining parts of the data are 
used to test the model. Representative supervised learning methods include decision trees [12], Kalman 
filter [13], random forests (RFs) [14], support vector machines (SVMs) [15], and neural networks (NNs) 
[16-18]. In recent years, for large-scale datasets, incremental learning and deep learning have been 
attracting increasing attention [19-21]. 

Among all supervised learning methods, RFs, NNs, and SVMs are the most widely applied ones. RFs 
are a combination of tree predictions in which each tree depends on the values of a random vector 
sampled independently [14]. As an ensemble algorithm, RFs are robust to noise and have good 
generalization ability. However, the random values in the forest produce promising results in 
classification but not so good results in regression [14]. NNs are composed of a large number of simple 
connected neurons. Each neuron generates a series of activations. In theory, NNs are powerful at 
handing nonlinearity in large-scale datasets but have the drawbacks of being time consuming and being 
susceptible to gradient explosion or vanishing when hundreds or thousands of weights are adjusted by a 
back-propagation algorithm [22]. SVMs, based on statistical learning theory, have been proven to 
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outperform NNs [15]. They basically involve solving a computationally complicated quadratic 
programming problem. Least squares support vector machines (LSSVMs), proposed in 1999 [23], 
replaced the quadratic programming problem of SVMs with a linear system of equations. Since then, 
many variations of LSSVMs have been proposed in terms of methodology, theory, and application. For 
example, LSSVMs lack sparsity. When handling large-scale data, the computer memory can easily 
overflow. Some sparse LSSVMs have been proposed to solve large-scale problems [24-27]. 

As is known, kernel types and kernel parameters significantly affect the prediction accuracy of 
SVM-based methods. The choice of the kernel functions plays a key role in handling learning tasks [23]. 
It requires prior knowledge of the data distribution in the feature space. However, when the data 
distribution is unknown or the distribution is complex, multiple kernel (MK) functions are combined to 
construct the feature space and strengthen the learning ability of the model [28-31]. Therefore, the 
problem is reduced to a search for approximate parameters with respect to a given dataset. Ineffective 
parameters will cause poor robustness. Grid search [32] is a simple and efficient approach to optimize 
parameters, but it is only suitable for adjusting a small number of parameters. The gradient descent 
method is a classical approach for searching for multiple parameters [32], although it has some 
restrictive assumptions. First, it requires the kernel functions to be differentiable. Second, the objective 
function, which evaluates the performance of the hyperparameters, must also be differentiable with 
respect to kernel and regularization parameters. 

Fortunately, evolutionary methods for parameter selections do not suffer from the above-mentioned 
limitations [32]. Zeng et al. exploited a switching delayed particle swarm optimization (PSO) algorithm 
to search for the optimal parameters of an SVM [33]. However, in multimodal problems, the PSO has 
the disadvantage of trapping in a local optimum. Lin et al. proposed a modified artificial fish swarm 
algorithm for choosing the hyperparameters of SVMs [34]. Artificial fish swarm algorithms have been 
verified effective in numerous studies, but they lack diversity. To solve the above presented problems, a 
powerful and efficient evolutional algorithm was adopted in this study—differential evolution (DE)—in 
order to optimize the parameters of LSSVM. DE has a good convergence property to a global minimum 
and has been used in many scientific and engineering fields [35-37]. 
  In this paper, an LSSVM with self-organizing MK learning and sparsity (S) is developed for 
black-box problems. On the one hand, a self-organizing MK learning strategy is applied to an LSSVM. 
Several types of kernel functions are applied to construct an LSSVM with MK (MKLSSVM). The 
combination coefficients and the kernel parameters are selected using an improved differential evolution 
(DE) algorithm. The MKLSSVM with DE (DE-MKLSSVM) can strengthen the generalization ability of 
LSSVM. On the other hand, a pruning approach to improve the sparsity of the LSSVM is used to 
simplify the training samples by iteratively removing the samples corresponding to small support vector 
spectrums. This sparse selection strategy can reduce the influence of redundant samples and outliers. 

The remainder of this paper is structured as follows. A brief review on LSSVM is given in Section 2. 
Then, the proposed method based on DE-MKLSSVM with sparsity (SDE-MKLSSVM) is presented in 
Section 3. Section 4 shows the experimental results on benchmark problems and a real-world industrial 
application. Finally, conclusions and future research are presented in Section 5. 

2 Description of LSSVM 

In 1995, Vapnik [15] proposed SVM as a highly competitive learning paradigm for solving regression 
and classification problems. Subsequently, a modified version of SVM known as LSSVM was proposed 
by Suykens and Vandewalle [23]. The principle behind LSSVM is described below: 

Given a training dataset with N samples (xi, yi), i = 1, 2, …, N, d
i ∈x   and iy ∈  denote the 

input and output of LSSVM, respectively, and d is the dimension of the input. The mathematical model 
of LSSVM is expressed as 
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( ) ( )i if bϕΤ= +x w x                                  (1) 

where ( )iϕ x  denotes a nonlinear function mapping xi into a high-dimensional feature space; w and b 

are the weights and bias to be adjusted, respectively. Then, an optimization problem is formulated as 
follows with a minimized cost function and a constraint: 

                 
2

, , 1

1 1min  ( , )
2 2

. . ( ) ,  =1,2 ,

N

ib i

i i i

J e

s t y b e i N

γ

ϕ

Τ

=

Τ

= +

= + +

∑ω e
w e w w

w x 

                         (2) 

where ie ∈  denotes the error (slack variable) for the i-th sample, and γ is a positive regularization 

parameter. The first term in the objective function is needed to avoid over-fitting problem and improve 
the generalization ability. The second term in the objective function is needed to guarantee regression 
accuracy. Based on the principle of structural risk minimization, the Lagrangian function is constructed 
as 
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where iα ∈  is the Lagrangian multiplier corresponding to the i-th sample, and the optimal solution 

of Eq. (3) can satisfy the Karush–Kuhn–Tucker (KKT) conditions as follows: 
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By eliminating ei and w, Eq. (4) can be transformed to the following linear equation set: 
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where y = [y1, y2, …, yN]T, α = [α1, α2, …, αN]T, 1 is an N-dimensional column vector, whose elements 
are all equal to 1. I is an N N×  identify matrix. Ω is an N×N kernel symmetric matrix. The elements 
of the kernel matrix are expressed as 

, ( ) ( ) ( , ),  , 1, 2, ,i j i j i jK i j Nϕ ϕΤΩ = = =x x x x                     (6) 

Generally, a Gaussian function is chosen in LSSVM as the kernel function. By solving Eq. (5), α and 
b are obtained simultaneously. Thus, in dual form, the final LSSVM model can be written as 

1
( ) ( , )

N

i i
i

f K bα
=

= +∑x x x                                (7) 

From Eqs. (5) and (7), it is worth noting that the generalization ability of LSSVM is controlled by the 
regularization parameter γ and the characteristic of the kernel functions. 

3 Proposed method 

In this section, the ideas of self-organizing MK learning and sparse selection are elaborated. Different 
types of kernel functions are combined to form the MK learning, and the corresponding combination 
coefficients and kernel parameters are selected using DE based on an improved mutation strategy. With 
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the purpose of reducing storage space for large scale datasets, a sparse selection strategy is proposed to 
simplify the training dataset. Finally, the overall structure of the proposed SDE-MKLSSVM is given, 
and its computational complexity is analyzed. 

3.1 LSSVM based on self-organizing MK learning 

In LSSVM, the input data are mapped into a high-dimensional space using kernel functions. The 
kernel functions mainly include two categories: local kernel functions and global kernel functions. Local 
kernel functions have an appealing learning ability in a local range, but weak generalization ability for 
the test samples far from the training samples. On the contrary, global kernel functions have good 
generalization ability but poor local learning ability. Therefore, in this study, the advantages of the two 
types of kernel functions are combined together. The effectiveness of MK functions can be guaranteed 
without changing the original mapping space. In this paper, six typical kernel functions are considered 
as base kernel functions, where Gaussian, Laplacian, Cauchy, and Generalized t-student kernels are 
local kernel functions, while Polynomial and Sigmoid kernels are global kernel functions [28, 38]. 

The Gaussian kernel is expressed as 

2
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where Gaussσ is an adjustable parameter, which determines the performance of the kernel [38]. If 

overestimated, the kernel will behave almost linearly and the high-dimensional mapping will weaken its 
non-linear power. Otherwise, if underestimated, the kernel will lose regularization, and the decision 
boundary will be sensitive to noise in the training dataset. 

The Laplacian kernel is expressed as 

( , ) exp( ),  , 1, 2,i j
Lap i j

Lap

K i j N
σ

−
= − = 

x x
x x                    (9) 

where Lapσ  is adaptable to the problem at hand. The Laplacian kernel is less sensitive to the changes 

of hyperparameters than the Gaussian function.  
  The Cauchy kernel is expressed as 
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where Cauchyσ  is an adjustable parameter. The Cauchy kernel is a long-tailed kernel, deriving from the 

Cauchy distribution. It has the characteristic of reflecting long-range influence and sensitivity in a 
high-dimensional space. 

The Generalized t-student kernel is expressed as 

1( , ) ,  , 1, 2,
1 GtkGtk i j d

i j

K i j N= =
+ −

x x
x x

                   (11) 

where Gtkd  is an adjustable integer. The positive semi-definite Generalized t-student kernel has been 

verified to be a Mercel kernel. It is effective for high-dimensional mapping. 
Besides the above-mentioned local kernel functions, two global kernel functions—Polynomial kernel 

and Sigmoid kernel—are used in MK learning. They are based on the inner product of xi and xj.  
The Polynomial kernel is expressed as  
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( , ) ( ) ,  , 1, 2, ,Polyd
Poly i j i j PolyK a c i j NΤ= + =x x x x                    (12) 

where Polyc  and a  are both set to 1, and the kernel degree Polyd  is an adjustable integer. The 

Polynomial kernel measures the similarity of two vectors not only on the same dimension, but also 
across different dimensions. 

The Sigmoid kernel is expressed as 

ˆ( , ) tanh( ),  , 1, 2,Sig i j i j SigK a r i j NΤ= + =x x x x                     (13) 

where the scaling parameter â  is set to 1, and the shifting parameter Sigr  is an adjustable parameter. 

The idea of Sigmoid kernel comes from NNs. 
Each kernel function possesses its own merits and has particular effects on the performance of 

LSSVM. In this study, the six kernels were combined in order to construct the new kernel: 

1
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M
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=
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where M is an integer randomly chosen between 1 and 6, which denotes the number of the randomly 
selected kernel functions, ( , ), 1, 2, ,c iK c M= x x  denotes the corresponding kernel functions, and 

, 1,2, ,cu c M=   are the combination coefficients of the M kernel functions. The coefficients cu  

should satisfy the constraint 
1

1
M

c
c

u
=

=∑ , and 0 ≤ uc ≤ 1. In order to make the statement clear, an 

example is provided. If M is chosen as 2, two kernel functions are randomly selected out of the six 
typical kernel functions, e.g., the Gaussian kernel and the Sigmoid kernel, i.e. 

1( , ) ( , ),i Gauss iK K=x x x x  2 ( , ) ( , )i Sig iK K=x x x x ; then the proper Gaussσ , Sigr , u1, and u2 = 1 – u1, 

are chosen to form Eq. (14). 
Finally, the MKLSSVM is expressed as 

1 1
( ) [ ( , )] , {1,2,3,4,5,6}

N M

i c c i
i c

f u K b Mα
= =

= + ∈∑ ∑x x x                  (15) 

Based on the above analysis, the adjustable parameters in MKLSSVM model are the penalty factor γ, 
the number of kernel functions M, and corresponding kernel parameters, as well as the combination 
coefficients uc, c = 1, 2, …, M. 

As stated in previous studies [39, 40], the effectiveness of the single kernel function has been verified. 
According to Shiju et al. [41], Proposition 1 can be obtained, which sustains the validness of the 
self-organizing MK learning strategy. 

Proposition 1. Let the set θ ( Gaussσ , Lapσ , Cauchyσ , Gtkd , Polyd and Sigr ) be the key parameters of 

selected kernel functions. If these kernel functions are valid, the self-organizing MK functions given by 
Eq. (15) will be valid. 

Fig. 1 shows the schematic diagram of the MK learning strategy. In order to obtain high prediction 
accuracy, the above kernel functions should be adaptively selected in a self-organizing means. 
Meanwhile, the parameters of the kernel functions and the corresponding coefficients need to be 
adjusted adaptively. Since the DE [35] is a simple and efficient global optimization algorithm in the 
continuous search domain, DE with an improved mutation strategy was used to obtain all the adjustable 
parameters.  



6 

MK learning

 
Fig. 1. The sketch of MK learning. 

The procedure of DE is introduced below. 
1) Initialization: The parameters of DE are set in the initial stage, where NP represents the number of 

individuals in a population for each generation, D is the dimension of each individual, g denotes the 
current generation number, which is initialized to 0, and the maximum generation number is gmax. Each 
individual at the g-th generation is denoted as ,1 ,2 ,( , , )g g g g

p p p p Dz z z=z  , p = 1, 2, …, NP. All of the 

individuals are generated randomly by an upper boundary constraint Uq and a lower boundary constraint 
Lq, q = 1, 2, …, D. There is one point to be emphasized: g

pz  contains an element denoting the number 

of selected kernel functions, which should be an integer randomly chosen from { }1,2,3,4,5,6 . For each 

individual vector, the objective function value is calculated by 

2

1

1F( ) ( ( , ))
N

g g
p i i p

i
y f

N =

= −∑z x z                            (16) 

where iy  is the real value, and ( , )g
i pf x z  is the predicted value, which is obtained using Eq. (15). 

2) Mutation: After initialization, DE employs an improved mutation operation to generate a mutation 
individual:  

, 1, 1 2, 3, 2 max , 2, 3,( ) ( / ) ( ( ) / 2),  =1,2, ,g g g g g g g
p q r q r q r q p q r q r qv z F z z F g g z z z q D= + × − + × × − +      (17) 

where ,1 ,2 ,( , , )g g g g
p p p p Dv v v=v  , p = 1, 2,…, NP is the mutation individual at the g-th generation with 

respect to the target individual g
pz , F1 and F2 represent the mutation factors, r1, r2 and r3 are different 

random integers chosen from 1 to NP. The improved mutation formula is mainly based on DE/rand/1 
[35]. With the generation number g increasing, the influence of the third term gradually strengthens. 

3) Crossover: After mutation, a crossover operation is applied to each pair of target individuals and 
their corresponding mutation individuals. A trial individual at the g-th generation denoted as 

,1 ,2 ,( , , , )g g g g
p p p p Do o o=o   is obtained by 

,
,

,

,  if ( ) or ( )

,  otherwise

g
p q q rdg

p q g
p q

v rand CR q q
o

z

 ≤ == 


                        (18) 

where the crossover rate CR ∈ [0, 1] is a user-specified constant, and qrand  is a random variable 

uniformly distributed within the range [0, 1] [35]. The random integer rdq  is chosen between 1 to D. 

The condition rdq q=  ensures that at least one dimension in g
po  is different from g

pz . 
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Fig. 2. The flowchart of self-organizing strategy based on DE. 

4) Selection: After crossover, g
po  is compared with g

pz  in terms of the objective function values. 

The selection operation is formulated as 

1
,  if (F( ) F( ))

,  otherwise.

g g g
p p pg

p g
p

+
 ≤= 


o o z
z

z
                          (19)  

After the selection operation, it is known that either g
po  or g

pz  survives to the next generation. 

5) Stopping criterion: If the maximum generation gmax is reached, the algorithm will be terminated, 
and the global best individual is acquired. Otherwise, the algorithm continues to next generation. 

The flowchart of the self-organizing strategy based on DE is shown in Fig. 2. 

3.2 Sparse selection 

It is well known that the Lagrangian multipliers play a key role in SVMs since many αi values in 
SVMs are equal to zero. However, compared with standard SVMs, LSSVMs lack sparseness, which is 
ineffective on large-scale datasets, although it is a successful variant of SVMs for transforming a series 
of inequality constraints to linear equations. Due to optimality conditions and i ieα γ= , all of the 

training samples are considered as support vectors (SVs) for LSSVMs. In order to reduce computation 
cost and memory space, according to previous studies [25, 26], in this study, a sparse selection strategy 
was designed based on pruning to reduce the number of training samples. First, the iα  values are 

sorted to evaluate which sample contributes most to the LSSVM model. Based on the sorted iα  

values of LSSVM, the sparse condition is described as follows: 

iα β≤                                    (20) 
where β is designed as a sparsity threshold value. Using Eq. (20), the less important data (corresponding 
to small iα ) are omitted from the training dataset. 

Fig. 3 shows the physical meaning of pruning. With respect to the sorted iα  spectrum, the most 

significant samples are maintained in the training dataset, and the samples with least information are 
gradually omitted from the training dataset. This sparsity strategy does not require the information of a 
Hessian matrix or its inverse. Afterwards, the model of DE-MKLSSVM is re-estimated based on the 
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updated training dataset. To guarantee the accuracy of sparse approximation, DE is used to optimize the 
model parameters in each sparse process.  

The sparse selection operation is carried out as follows: 
Step 1. The original training dataset with N samples is given. 
Step 2. DE-MKLSSVM is trained, and the model parameters are obtained. 
Step 3. iα  values are sorted in a descending order. 

Step 4. If the spectrum values iα  are less than β, the training samples corresponding to small iα  

are removed. 
Step 5. The model is retrained with the updated training dataset ( )N N′ < . 

Step 6. Return to step 3 until the current generation number g reaches the given generation number λ. 
The pseudo-code of the sparse selection strategy is given in Algorithm 1 below. It should be noted 

that β has a great influence on the selection of training samples. If β is set to a small value, the sparsity 
of the training dataset will be weak. On the contrary, if β is considered as a large value, the useful 
samples will be omitted. Therefore, β should be chosen carefully to strike a balance between sparsity 
and model accuracy. Because the omitted samples have little influence on the prediction model, they 
may be redundant samples or outliers. Training on these samples will lead to an ill-posed problem, and 
have a bad effect on the model performance.  

3.3 SDE-MKLSSVM 

In this paper, MK learning is used to improve the prediction accuracy. The appropriate kernel 
functions are selected by a self-organizing strategy based on DE. Meanwhile, the corresponding kernel 
parameters and combination coefficients are adaptively adjusted by DE as well. Moreover, to reduce the 
computation cost, a sparse selection strategy is used to simplify the training dataset. A part of training 
samples will be omitted according to the sparsity criterion. Fig. 4 describes the schematic diagram of 
proposed model, and its pseudo-code is presented in Algorithm 2. 

3.4 Computation complexity analysis of SDE-MKLSSVM 

In the section, a computation complexity analysis of SDE-MKLSSVM is carried out. For 
DE-MKLSSVM, it is notable that the complexity of MKLSSVM is O(N2 d), and the complexity of DE 
is O(gmax NP D), where N denotes the number of the training samples, d denotes the dimension of one 
training sample, and D denotes the number of parameters to be optimized. It can be observed that gmax, 
N, d, NP and D have a strong effect on self-organizing MK learning. In SDE-MKLSSVM, the number 
of the final training dataset N ′  is much smaller than N. Thus, it can be concluded that the computation 
complexity of SDE-MKLSSVM is lower than that of DE-MKLSSVM. 

Sparse LSSVM

 LSSVM

N

i αSorted

Training size  
Fig. 3. Pruning of the sparse LSSVM spectrum. 
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Algorithm 1 Sparse selection strategy 

1: Given the training dataset { } 1: ( , ) N
i i iy

=
Γ x , the sparsity threshold value β, and the maximum 

sparse selection generation number λ (stopping criterion). 
2. Initialize g = 0.  
3: While g λ<  do   

4: Train DE-MKLSSVM on the current training dataset Γ , and then obtain the Lagrangian 
multipliers iα . 

5:  Sort the Lagrangian multipliers iα . 

6： Make the set of selected samples Ψ  as null, and 0N ′ = . 
7: For i = 1 : N 
  If iα β≤  

     Omit ( , )i iyx ; 

Else 
     ( , )i iyΨ ← x ;  

N ′ ++; 
End if 

End for 
8:  N N ′= ; 

9:  Update the training dataset { } 1= : ( , ) N
i i iy ′

=
Γ Ψ x . 

End while 
10: Obtain the final training dataset. 
 
 
 

Algorithm 2 SDE-MKLSSVM 

1: Preprocess the original data. 
2: Initialize the whole parameters of the proposed method. 
3: While g λ<  do 

4:  Update training dataset by sparse selection strategy. 
End while 

5: Obtain the final training dataset. 
6: While g λ≥  and maxg g<  do 

7: Utilize DE to select appropriate kernel functions and optimize the corresponding parameters 
on the final training dataset. 

End while 
8: Obtain the model with best parameters. 
9: Test the model. 
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Fig. 4. Schematic of the proposed method. 

4 Experiments 

To demonstrate the effectiveness of the proposed SDE-MKLSSVM, we compare it with some other 
state-of-the-art black-box methods on UCI benchmark datasets. To further illustrate the applicability of 
the proposed method, the experiment was conducted on a real-world steelmaking problem, and 
discussions about prediction results are presented. 

4.1 Experimental setting 

1) Experimental platform: The experiments are conducted on a computer with a Microsoft Windows 
7 operating system, Intel® Core™ i7-6700 CPU, Microsoft Visual Studio 2008 software. The 
programming language is C++. 

2) Parameters setting: The parameters of SDE-MKLSSVM are set in Table 1. For the black-box 
benchmark problems, each model was run 20 times to avoid the randomness of experimental results. For 
the practical application problem, to verify the generalization ability of the proposed method, 
SDE-MKLSSVM was tested by a 10-fold cross-validation. 

Table 1 Parameters setting of SDE-MKLSSVM. 
Parameter NP N d M D gmax λ 

Value 100 Depends on the 
problems 

Depends on the 
problems 3 15 10 5 

Parameter β F1 F2 CR γ Gaussσ  Lapσ  

Value [0.01, 0.3] 0.5 0.3 0.7 [1, 1000] [1, 10] [1, 100] 

Parameter Cauchyσ  Gtkd  Polyd  Sigr  u1 u2  

Value [1, 100] Integer in [1, 10] Integer in [1, 10] [0, 10] [0.1, 0.5] [0.1, 0.5]  
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Table 2 Datasets in the UCI repository. 
Datasets Data Types Number of Attributes Number of Instances 

Airfoil Self-Noise Multivariate 6 1503 

Concrete Compressive Strength Multivariate 9 1030 

Auto MPG Multivariate 8 398 
Energy Efficiency 

(Heating Load) Multivariate 8 768 

Energy Efficiency 
(Cooling Load) Multivariate 8 768 

SkillCraft1 Master Table Multivariate 20 3395 

White Wine Quality Multivariate 12 4898 

Red Wine Quality Multivariate 12 1599 

4.2 Benchmark problems in UCI repository 

To analyze the characteristics of SDE-MKLSSVM, several regression problems from the UCI 
machine learning repository [42] are considered as black-box benchmark problems. After normalization 
and standardization, these data are used to verify the effectiveness of SDE-MKLSSVM and other 
state-of-the-art methods. 

1) Experimental data: Eight datasets were chosen from the UCI repository to conduct the experiments, 
all having multiple attributes and with size varying from hundreds to thousands of instances. The details 
are given in Table 2. 

2) Strategies comparison: The method proposed in this paper contains two main parts: the 
self-organizing MK learning strategy and the sparse selection strategy. Considering the effectiveness of 
different strategies, SDE-MKLSSVM is compared with DE-LSSVM and DE-MKLSSVM. Specifically, 
DE-LSSVM represents LSSVM with Gaussian kernel optimized by DE, and DE-MKLSSVM represents 
LSSVM with MK optimized by DE. Besides, SDE-MKLSSVM is compared with other LSSVM-based 
methods such as sparse LSSVM [43] with DE (SDE-LSSVM), and MK learning [44] based on LSSVM 
(MKL-LSSVM). In Table 3, four quantitative criteria are provided—root mean square error (RMSE), 
mean absolute error (MAE), standard error (STDE) of the absolute prediction errors, and maximum 
absolute error (MAXAE). The values in bold are the best results in the comparisons. From the obtained 
results, it was observed that DE-LSSVM and SDE-LSSVM perform worse than MKLSSVM-based 
methods. This indicates the effectiveness of MK learning. In addition, SDE-MKLSSVM and 
DE-MKLSSVM show higher accuracy than MKL-LSSVM, demonstrating that the DE algorithm 
contributes to the model accuracy. 

In terms of sparsity, β is set to 0.2 for all benchmark testing problems. Table 4 provides some statistic 
results on the reduction percentage of training samples. Compared with DE-MKLSSVM, 
SDE-MKLSSVM reduces the average for approximately 18% of training samples in terms of different 
benchmark datasets, with the computation complexity reduced to a great extent. Based on the above 
results, it can be seen that the proposed SDE-MKLSSVM achieves a higher accuracy than LSSVM with 
a single kernel and runs faster than non-sparsity methods. Therefore, SDE-MKLSSVM is suitable for 
black-box modeling. 

3) Comparison with state-of-the-art methods: Experiments were also conducted with other 
state-of-the-art methods, SVR [45], RVM [46], KELM [47] and ESN [48], to illustrate the effectiveness 
of the SDE-MKLSSVM. The comparison results are presented in Table 5. Besides, Fig. 5 shows the 
number of best results produced by SDE-MKLSSVM and the other methods. From Table 5 and Fig. 5, it 
can be seen that SDE-MKLSSVM is superior to other methods and presents powerful generalization 
ability on different benchmark problems. Specifically, SVR has a powerful regression capability for 
some small- and medium-scale data, but when the number of training samples becomes large, SVR 

http://archive.ics.uci.edu/ml/datasets.html?format=&task=reg&att=&area=&numAtt=&numIns=&type=&sort=typeUp&view=table
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overfits. The main reason is that SVR has a single kernel function and presents no sparsity. However, 
the problem can be solved by a self-organizing MK learning strategy and a sparsity strategy. The 
optimal combination of kernel functions is selected from various types of kernel functions, and the 
corresponding parameters of the model are adaptively adjusted to fit the data. Furthermore, the 
redundant training samples are removed by pruning. Therefore, the generalization ability of the 
proposed model is improved. 

Table 3 Performance comparisons of SDE-MKLSSVM and other LSSVM-based methods on UCI datasets. 

Datasets Indices DE-LSSVM DE-MKLSSVM SDE-MKLSSVM SDE-LSSVM MKL-LSSVM 

Airfoil Self-Noise 

RMSE 3.16E+00 2.34E+00 2.40E+00 3.32E+00 3.15E+00 

MAE 2.36E+00 1.69E+00 1.74E+00 2.49E+00 2.35E+00 

STDE 2.11E+00 1.62E+00 1.66E+00 2.19E+00 2.10E+00 

MAXAE 1.69E+01 1.35E+01 1.37E+01 1.76E+01 1.69E+01 

Concrete Compressive 

Strength 

RMSE 7.47E+00 6.69E+00 6.72E+00 7.19E+00 7.96E+00 

MAE 4.94E+00 4.62E+00 4.68E+00 4.87E+00 5.92E+00 

STDE 5.61E+00 4.84E+00 4.83E+00 5.29E+00 5.30E+00 

MAXAE 4.90E+01 3.57E+01 3.49E+01 3.95E+01 3.93E+01 

Auto MPG 

RMSE 5.43E+00 4.09E+00 4.02E+00 4.96E+00 4.43E+00 

MAE 4.19E+00 3.02E+00 2.95E+00 3.70E+00 3.18E+00 

STDE 3.46E+00 2.77E+00 2.75E+00 3.32E+00 3.10E+00 

MAXAE 1.80E+01 1.48E+01 1.50E+01 1.70E+01 1.51E+01 

Energy Efficiency 

(Heating Load) 

RMSE 5.67E+00 2.09E+00 2.13E+00 5.33E+00 3.15E+00 

MAE 4.88E+00 1.51E+00 1.56E+00 4.59E+00 2.38E+00 

STDE 2.89E+00 1.45E+00 1.45E+00 2.71E+00 2.06E+00 

MAXAE 1.30E+01 6.96E+00 7.07E+00 1.21E+01 9.63E+00 

Energy Efficiency 

(Cooling Load) 

RMSE 6.84E+00 3.06E+00 3.08E+00 6.23E+00 3.37E+00 

MAE 5.59E+00 2.02E+00 2.05E+00 5.00E+00 2.40E+00 

STDE 3.95E+00 2.30E+00 2.30E+00 3.70E+00 2.36E+00 

MAXAE 2.24E+01 1.37E+01 1.39E+01 2.08E+01 1.21E+01 

SkillCraft1 Master 

Table 

RMSE 1.52E+00 1.07E+00 1.06E+00 1.37E+00 1.12E+00 

MAE 1.11E+00 7.79E-01 7.72E-01 9.99E-01 8.35E-01 

STDE 1.03E+00 7.38E-01 7.31E-01 9.34E-01 7.48E-01 

MAXAE 9.65E+00 5.00E+00 5.00E+00 6.90E+00 4.45E+00 

White Wine Quality 

RMSE 1.05E+00 8.82E-01 8.78E-01 9.91E-01 9.13E-01 

MAE 7.29E-01 6.10E-01 6.07E-01 6.90E-01 6.33E-01 

STDE 7.51E-01 6.37E-01 6.35E-01 7.12E-01 6.57E-01 

MAXAE 7.00E+00 3.60E+00 3.45E+00 6.35E+00 5.10E+00 

Red Wine Quality 

RMSE 1.17E+00 8.49E-01 8.49E-01 1.06E+00 7.90E-01 

MAE 7.98E-01 5.55E-01 5.58E-01 7.15E-01 5.17E-01 

STDE 8.54E-01 6.42E-01 6.41E-01 7.84E-01 5.98E-01 

MAXAE 4.55E+00 3.00E+00 3.00E+00 4.10E+00 3.30E+00 
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Table 4 Average reduction percentage of training samples on UCI datasets. 

Datasets 
Airfoil 

Self-Noise 

Concrete 

Compressive Strength 

Energy Efficiency 

(Heating Load) 
White Wine Quality 

Reduction percentage (%) 1.06E+01 1.63E+01 3.50E+01 8.25E+00 

Datasets Auto MPG 
SkillCraft1 Master 

Table 

Energy Efficiency 

(Cooling Load) 
Red Wine Quality 

Reduction percentage (%) 1.75E+01 9.80E+00 2.95E+01 1.30E+01 

Table 5 Performance comparisons of the state-of-the-art methods on UCI datasets. 

Datasets Indices SVR RVM KELM ESN SDE-MKLSSVM 

Airfoil Self-Noise 

RMSE 3.28E+00 6.35E+00 3.72E+00 4.63E+00 2.40E+00 

MAE 2.41E+00 4.99E+00 2.90E+00 3.61E+00 1.74E+00 

STDE 2.22E+00 3.94E+00 2.34E+00 2.90E+00 1.66E+00 

MAXAE 1.89E+01 2.02E+01 1.74E+01 2.43E+01 1.37E+01 

Concrete Compressive Strength 

RMSE 7.79E+00 7.97E+00 8.43E+00 1.05E+01 6.72E+00 

MAE 5.61E+00 5.85E+00 6.64E+00 8.25E+00 4.68E+00 

STDE 5.41E+00 5.42E+00 5.21E+00 6.57E+00 4.83E+00 

MAXAE 4.31E+01 4.40E+01 3.62E+01 4.31E+01 3.49E+01 

Auto MPG 

RMSE 5.69E+00 7.28E+00 5.15E+00 4.86E+00 4.02E+00 

MAE 4.46E+00 5.48E+00 3.87E+00 3.74E+00 2.95E+00 

STDE 3.54E+00 4.82E+00 3.41E+00 3.11E+00 2.75E+00 

MAXAE 1.78E+01 2.34E+01 1.52E+01 1.42E+01 1.50E+01 

Energy Efficiency (Heating Load) 

RMSE 1.98E+00 1.04E+00 2.81E+00 9.60E+00 2.13E+00 

MAE 1.13E+00 8.25E-01 1.93E+00 8.31E+00 1.56E+00 

STDE 1.62E+00 6.36E-01 2.05E+00 4.63E+00 1.45E+00 

MAXAE 7.78E+00 4.27E+00 8.63E+00 2.37E+01 7.07E+00 

Energy Efficiency (Cooling Load) 

RMSE 2.58E+00 2.95E+00 3.30E+00 1.50E+01 3.08E+00 

MAE 1.65E+00 1.71E+00 2.30E+00 1.36E+01 2.05E+00 

STDE 1.99E+00 2.41E+00 2.37E+00 6.05E+00 2.30E+00 

MAXAE 9.54E+00 1.70E+01 1.32E+01 3.14E+01 1.39E+01 

SkillCraft1 Master Table 

RMSE 1.10E+00 1.36E+00 1.09E+00 1.09E+00 1.06E+00 

MAE 8.33E-01 1.05E+00 8.77E-01 8.33E-01 7.72E-01 

STDE 7.21E-01 8.62E-01 6.53E-01 6.35E-01 7.31E-01 

MAXAE 4.00E+00 4.00E+00 4.45E+00 4.75E+00 5.00E+00 

White Wine Quality 

RMSE 1.50E+00 9.50E-01 8.06E-01 9.15E-01 8.78E-01 

MAE 1.26E+00 6.76E-01 6.36E-01 6.68E-01 6.07E-01 

STDE 8.24E-01 6.67E-01 4.96E-01 5.48E-01 6.35E-01 

MAXAE 5.00E+00 4.00E+00 3.53E+00 5.95E+00 3.45E+00 

Red Wine Quality 

RMSE 1.06E+00 8.74E-01 7.42E-01 8.43E-01 8.49E-01 

MAE 7.64E-01 5.56E-01 5.81E-01 6.19E-01 5.58E-01 

STDE 7.33E-01 6.74E-01 4.62E-01 4.99E-01 6.41E-01 

MAXAE 4.00E+00 4.00E+00 2.64E+00 3.55E+00 3.00E+00 
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4.3 End-point prediction problems in converter steelmaking 

To investigate the practicability of SDE-MKLSSVM, an experiment was conducted on a real-world 
application: an endpoint prediction problem in the converter steelmaking process. By comparison with 
other methods, the superiority of the proposed method will be demonstrated. 

1) Experimental background: In the steelmaking process, converter steelmaking is a crucial link of 
steel production: the aim is to smelt high-quality steel comprising carbon (C), manganese (Mn), silicon 
(Si), sulfur (S), and phosphorus (P). The product must conform to the specified molten steel quality. 
Moreover, to avoid accidents such as molten steel splashing, the temperature (T) of the furnace needs to 
be monitored in real time. Therefore, the temperature and the molten steel quality have a very strong 
impact on smelting. Fig. 6 shows the schematic for the production process in converter steelmaking. 
Due to the limitations in current measurement instruments, it is difficult to establish mechanism models. 
In this section, SDE-MKLSSVM is used to deal with the endpoint prediction problems. 

 

Fig. 5. Number of best performances of each method on UCI datasets. 
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Fig. 6. Production process of converter steelmaking. 
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2) Experimental data: In the iron and steel production process, a large amount of data can be 
collected by multi-source sensors. Temperature in the furnace is measured by flame analyzers, and 
compositions in the molten steel are collected by sub-lance and throwing probes. Moreover, gas quantity 
is detected by gas analyzers. According to the operators’ experience, the inputs of training samples can 
be defined as: initial T, initial C content, initial Mn content, initial Si content, initial S content, initial P 
content, initial weight of steel scrap, initial weight of molten iron, height of oxygen lance, flow of 
oxygen, flow of flue gas, flow of carbon monoxide, flow of carbon dioxide, flow of nitrogen, flow of 
argon and seven types of auxiliary material, i.e., 22 variables in total. The outputs are the endpoint 
temperature as well as the five endpoint components—C, Mn, Si, S, and P. 

There are 300 input–output pairs of data collected from a plant in one month. The data were 
preprocessed and clustered first. Then, some outlier points were deleted. Additionally, some missing 
data were complemented by means of interpolation methods. The final processed data were considered 
as the experimental data. 

3) Experimental results: The experiment was conducted by a 10-fold cross-validation. In each 
cross-validation, 270 samples were used to train the model, and the remaining 30 samples were used for 
testing. The prediction errors of temperature and components of 300 samples produced by DE-LSSVM, 
DE-MKLSSVM, and SDE-MKLSSVM are shown in Fig. 7. As can be seen for SDE-MKLSSVM and 
DE-MKLSSVM, the absolute prediction errors of T are in the range of 0–25°C, and the absolute 
prediction errors of C content are mainly in the range of 0–0.008%. Due the high temperature in the 
furnace, the absolute errors of Mn content are mostly between 0% and 0.02%. Owing to the 
desulfurization procedure, most absolute errors for S content are smaller than 0.003%. With respect to Si 
content and P content, the prediction errors approach to zero. Moreover, it can be observed that the 
absolute errors in SDE-MKLSSVM and DE-MKLSSVM are smaller than in DE-LSSVM, and there is 
no obvious difference in the prediction errors between DE-MKLSSVM and SDE-MKLSSVM. This 
means that improvements with sparsity occur with no loss of prediction accuracy. 

Table 6 shows the quantitative comparison of different strategies. If the values of performance criteria 
are smaller than 1.0E–04, these values are regarded as zero. According to the statistic results, we can see 
that SDE-MKLSSVM is comparable to DE-MKLSSVM but better than DE-LSSVM, which is 
consistent with Fig. 7. With respect to SDE-MKLSSVM, the MAE of temperature is below 8, and the 
MAE of the quality component is below 0.007. This demonstrates that the prediction precision of 
SDE-MKLSSVM can meet actual production demand. 

Fig.8 depicts the distributions of prediction errors produced by SDE-MKLSSVM, wherein one can 
clearly note that the prediction errors for all objectives conform to the normal distribution with a mean 
of approximately zero. As most impurities have been removed in the desulfurization and 
dephosphorization operations before the steelmaking process, a small quantity of Si, S, and P remains. 
Thus, from Fig. 8 it can be seen that there are a large number of the prediction errors around zero. 

In a practical problem, the sparsity threshold value has a great influence on different models. Due to 
the complicated physicochemical process of reaction, there exists a relatively large range for T, and C, 
to balance the relationship between accuracy and complexity, the training samples should maintain 
adequate diversity. Thus, a small threshold value with β = 0.01 is considered in the experimental setting. 
For other compositions of molten steel, the change in the component contents is relatively small. Thus, a 
sparsity threshold of β = 0.05 is applied in the experiments. Table 7 shows the sparsity of 
SDE-MKLSSVM compared with DE-MKLSSVM, SDE-MKLSSVM requires 10–20% fewer training 
samples for predicting the T, C, and Mn contents. For other component contents (Si, S, and P), the 
reduction in training samples exceeds 30%. 

The aforementioned results demonstrate the effectiveness of the proposed method on endpoint 
prediction in the converter steelmaking process. The SDE-MKLSSVM method contributes to safe 
production by efficiently and effectively predicting temperature and molten steel quality. 
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Table 6 Performance comparisons of SDE-MKLSSVM and other LSSVM-based methods on steelmaking datasets. 

Datasets Indices DE-LSSVM DE-MKLSSVM SDE-MKLSSVM 

T 

RMSE 1.22E+01 8.94E+00 9.32E+00 

MAE 9.56E+00 7.15E+00 7.68E+00 

STDE 9.48E+00 6.78E+00 6.88E+00 

MAXAE (°C) 4.31E+01 2.30E+01 2.48E+01 

C 

RMSE 5.98E-03 3.62E-03 3.63E-03 

MAE 4.73E-03 2.87E-03 2.90E-03 

STDE 4.57E-03 2.76E-03 2.75E-03 

MAXAE (%) 1.87E-02 1.03E-02 9.33E-03 

Mn 

RMSE 1.18E-02 9.80E-03 1.02E-02 

MAE 7.78E-03 6.41E-03 6.63E-03 

STDE 9.97E-03 8.22E-03 8.58E-03 

MAXAE (%) 5.52E-02 5.45E-02 6.08E-02 

Si 

RMSE 4.71E-04 3.17E-04 2.92E-04 

MAE 2.72E-04 1.18E-04 1.17E-04 

STDE 4.21E-04 3.06E-04 2.79E-04 

MAXAE (%) 3.29E-03 2.55E-03 2.56E-03 

S 

RMSE 3.11E-03 2.94E-03 2.96E-03 

MAE 1.64E-03 1.41E-03 1.44E-03 

STDE 2.81E-03 2.71E-03 2.72E-03 

MAXAE (%) 2.58E-02 1.95E-02 2.19E-02 

P 

RMSE 6.28E-03 6.24E-03 6.26E-03 

MAE 2.39E-03 2.01E-03 2.16E-03 

STDE 6.01E-03 6.06E-03 6.05E-03 

MAXAE (%) 6.47E-02 6.45E-02 6.62E-02 

 
 
 

/℃

   
    (a) T                                                   (b) C                                                                                                                          
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(c) Mn                                              (d) Si                                                                                                                          

  
(e) S                                                (f) P                                                                                                                           

Fig. 7. Boxplots of prediction errors produced by DE-LSSVM, DE-MKLSSVM and SDE-MKLSSVM: (a) T, (b) C, (c) Mn, (d) Si, 
(e) S, (f) P. 

 

 
(a) T                                              (b) C 
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(c) Mn                                                 (d) Si 

    
(e) S                                                  (f) P 

Fig. 8. The distributions of prediction errors produced by SDE-MKLSSVM: (a) T, (b) C, (c) Mn, (d) Si, (e) S, (f) P. 

Table 7 The average reduction percentage of training samples for the converter steelmaking process. 

Datasets T C Mn 

Reduction percentage (%) 1.48E+01 1.07E+01 2.04E+01 

Datasets Si S P 

Reduction percentage (%) 3.15E+01 3.33E+01 3.59E+01 

5 Conclusions 

This paper focuses on black-box modeling of regression problems. To solve these problems, a new 
framework was developed based on LSSVM with a self-organizing MK learning strategy and a sparse 
selection strategy (SDE-MKLSSVM). Several base kernel functions were combined to form MK 
learning. The optimal kernel functions and corresponding model parameters were selected by DE with 
an improved mutation strategy. In order to make the model efficient for large datasets, a sparse selection 
strategy was used to reduce the number of training samples. Numerical results on some benchmark 
datasets verify that SDE-MKLSSVM performs better than other state-of-the-art methods and strategies. 
Additionally, to further verify the practicability of the proposed method, it was used to predict the 
endpoint temperature and molten steel quality in the converter steelmaking process. Experimental 
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results sustain that SDE-MKLSSVM can meet actual production requirements over a wide range of 
instances. 

In the processing industry, there are some problems involving dynamic process prediction instead of 
static endpoint prediction. These problems can be solved by multi-stage modeling. In future, it will be 
attempted to establish multi-stage models based on the proposed method. According to the variation 
between the real output and the expectation output, the operation scheme can be dynamically optimized. 
In addition, an attempt is made to develop dynamic multi-objective optimization algorithms to further 
solve the operation optimization models. 
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