
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

ADVANCED MODELS OF SUPERVISED STRUCTURAL

CLUSTERING

Iryna Haponchyk

Advisor:

Prof. Alessandro Moschitti

Università degli Studi di Trento

April 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints PhD

https://core.ac.uk/display/158257743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright ©2018, by the author.
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission.

Abstract

The strength and power of structured prediction approaches in machine learning originates
from a proper recognition and exploitation of inherent structural dependencies within complex
objects, which structural models are trained to output. Among the complex tasks that benefited
from structured prediction approaches, clustering is of a special interest. Structured output
models based on representing clusters by latent graph structures made the task of supervised
clustering tractable. While in practice these models proved effective in solving the complex NLP
task of coreference resolution, in this thesis, we aim at exploring their capacity to be extended
to other tasks and domains, as well as the methods for performing such adaptation and for
improvement in general, which, as a result, go beyond clustering and are commonly applicable
in structured prediction.

Studying the extensibility of the structural approaches for supervised clustering, we apply
them to two different domains in two different ways. First, in the networking domain, we do
clustering of network traffic by adapting the model, taking into account the continuity of in-
coming data. Our experiments demonstrate that the structural clustering approach is not only
effective in such a scenario, but also, if changing the perspective, provides a novel potentially
useful tool for detecting anomalies. The other part of our work is dedicated to assessing the
amenability of the structural clustering model to joint learning with another structural model,
for ranking. Our preliminary analysis in the context of the task of answer-passage reranking in
question answering reveals a potential benefit of incorporating auxiliary clustering structures.

Due to the intrinsic complexity of the clustering task and, respectively, its evaluation scenar-
ios, it gave us grounds for studying the possibility and the effect from optimizing task-specific
complex measures in structured prediction algorithms. It is common for structured prediction
approaches to optimize surrogate loss functions, rather than the actual task-specific ones, in or-
der to facilitate inference and preserve efficiency. In this thesis, we, first, study when surrogate
losses are sufficient and, second, make a step towards enabling direct optimization of complex
structural loss functions. We propose to learn an approximation of a complex loss by a regres-
sor from data. We formulate a general structural framework for learning with a learned loss,
which, applied to a particular case of a clustering problem – coreference resolution, i) enables
the optimization of a coreference metric, by itself, having high computational complexity, and
ii) delivers an improvement over the standard structural models optimizing simple surrogate
objectives. We foresee this idea being helpful in many structured prediction applications, also
as a means of adaptation to specific evaluation scenarios, and especially when a good loss ap-

proximation is found by a regressor from an induced feature space allowing good factorization
over the underlying structure.

Thesis committee

Roberto Basili
University of Rome, Tor Vergata

Andrea Passerini
University of Trento

Ivan Titov
University of Edinbugh

Keywords: structured prediction, structured output methods, supervised clustering, learned
loss

Acknowledgements

I was driven by the thirst for interest, when I submitted myself to the PhD program. And
the interest, in the broad sense, is the only of my expectations for how this path would be that
come true. All the way, something new and interesting appeared to challenge and entertain me.
In the rest, I could hardly realize what was awaiting ahead. It turns out, as I write it now, that
the system of my expectations, in a sense, was inconsistent, since the fulfilment of the rest of
the expectations would have canceled the interest one. By merely knowing the future, you have
already lived it, thus no interest. There is something paradoxical about the interest itself here:
knowing you will have it does not cancel it at the moment of realization, even if it is to be
realized in making predictions as we do in machine learning. Before I get lost in the intricacies
of the phenomenon of interest, let me thank those who contributed greatly to its realization
during these years.

First of all, I am enormously grateful to my advisor Alessandro Moschitti, for his profes-
sional guidance, countless wise and valuable suggestions for doing research, and his help and
support. He willingly shares his rich expertize, inspires, starting from the first day, when he
revealed to me what startling things math can do for machine learning (at that time, I was new
to machine learning), and above all, he always sees and indicates the positive side of the things,
which I appreciate very much. I thank my colleagues Olga Uryupina, for her precious advice on
coreference resolution and, in general, her encouraging optimism, and Kateryna Tymoshenko,
for making possible our work on the ranking task and her willingness to help and share her
knowledge, and both, for helping us with the data for the experiments. I thank all the members
of our iKernels research group, current and former. It is a great pleasure for me to work side by
side with you, and to witness your enthusiasm, ingenuity, and generosity.

The ICT Doctoral School, the DISI department, and the University of Trento, in general,
have created a dynamic friendly environment providing a broad range of facilities for studying
and doing research. I do not think it is possible to even imagine how many people and how much
they have done for its creation. I am very lucky to have a chance to work here, for which I am
thankful to all of them. I am particularly grateful to Andrea Passerini for his remarkable lectures
on machine learning, among many other dedicated teachers. I thank Katsiaryna Labunets who
inroduced me to the school in the beginning of 2012, when everything started.

I would like to thank the members of the thesis defence committee for their keen interest,
deep questions, and valuable suggestions. In spite of my anxiety, I enjoyed our discussion,
which turned out to be very inspiring. I will keep the memories of this very special day for a
long time.

I remember very well the lecture of the course on algorithms by Pavel Skums at the Faculty
of Mechanics and Mathematics at the Belarusian State University, where I pursued my degree

in mathematics, when he taught us the algorithms on graphs. I listened in amazement to him
showing us Kruskal’s spanning algorithm, nothing I knew at that moment of how closely I was
going to deal with it. I thank our faculty for giving me that which I can hardly overestimate.

The writing of this manuscript was accompanied by the great music from the already non-
existing Finnish band Charon, which I found as I started. I was looking for a service which
would suggest me some artists similar to my favourites and the one I found was ultimately
precise. I believe it employs a graph-based technology which might be related to the one we
study in our work.

During the years of PhD, I met a lot of wonderful people, those who helped me, especially
in the very beginning, those with whom we shared a lot of good moments, and those who
showed me the real beauty in Man. Friends, you have made this time a treasure. I put this long
acknowledgement list in the easiest straightforward way by the following clusters: Belarus,
China, Georgia, Iran, Italy, Macedonia, Russia, Spain, Togo, and Ukraine.

Finally, I owe it all to my big family. I know some of you were times more eager than
myself for this to happen. Thank you for your constant support all the way. I dedicate this work
to my parents. I wish there existed a means to express entirely how much I am grateful to my
wonderful mother, for all her care and love, and the freedom she is giving to me. And, I thank
immensely that in whose eyes I had often seen that unspeakable, silent love – my dear father.
I thank you for our early ”mathematical disputes”, starting probably from when I was nine-ten
years old. I remember you suggesting me to solve a problem using equations, when I had not
even known what an equation is. You are always in my heart.

Iryna Haponchyk

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Supervised clustering as structured prediction 2

1.1.2 Structured prediction: evaluation v.s. optimization 2

1.2 Thesis Work and Structure . 3

1.3 Thesis Contributions . 4

1.4 Publications . 4

2 Backgrounds on Structured Output Methods and Supervised Clustering 7
2.1 Structured Output Methods . 7

2.1.1 Algorithms . 7

2.1.2 Loss functions . 8

2.1.3 Inference . 8

Max-violating inference and loss factorization 8

2.1.4 Latent variables . 9

Latent Structural SVM . 9

Latent Structured perceptron . 10

Online passive-agressive structured output learning 11

2.2 Structured Prediction for Supervised Clustering 11

2.2.1 Supervised clustering . 11

2.2.2 Structured output clustering approaches 12

SVMcluster . 12

Supervised k-means . 12

Graph-based learning . 12

LSSVMK . 13

LSPE . 14

iii

3 Genearal Framework for Learning with a Learned Structural Loss 15
3.1 On Optimality of Simple Loss Functions . 16
3.2 Learning a Loss Function . 17
3.3 Joint Learning of a Model and a Loss Function 18

3.3.1 Joint learning approach (LSP∗ρ) . 19
3.3.2 Online algorithm for learning of a model and a loss function 19

4 Structural Clustering in Network Environments 21
4.1 Overview . 21
4.2 Structural Representation of Network Data . 23
4.3 Features from Raw Network Sensor Data . 23
4.4 Inference . 24
4.5 Experimental Analysis . 25

4.5.1 Data description . 25
4.5.2 Experimental setup . 25

LSP model . 25
Traning data sampling . 25

Baselines . 26
Features . 26
Evaluation . 26

4.5.3 Results . 26
Standard classification scenario . 26
Using recent traffic for reference . 27
Comparison to online learning . 28

4.6 Summary . 29

5 Structured Prediction for Coreference Resolution 31
5.1 Coreference Resolution Task . 32

5.1.1 Definition . 32
5.1.2 Task Evaluation . 32
5.1.3 MUC . 33
5.1.4 B3 . 33
5.1.5 CEAF . 33

Mention, Entity, and Link Average (MELA) 34
5.2 Comparison of Structured Prediction Methods for Coreference Resolution . . . 34

5.2.1 Algorithm equivalence . 35
5.2.2 Experimental study . 36

Setup . 36

Data . 36
Evaluation measure . 36
Models and software . 36
Parametrization . 37
Selecting the epoch number 37

Model comparison . 37
Feature selection . 38
Candidate edge selection . 39
Results on filtered data . 39

5.2.3 Discussion . 39
5.3 Learning and Optimizing a Complex Clustering Metric 41

5.3.1 Related work . 42
5.3.2 Surrogate loss functions . 43
5.3.3 Automatically learning loss functions 44

Features for learning measures . 45
Generating training and test data . 45

5.3.4 Learning with learned loss functions 46
A general inexact decoding algorithm 46
Notes on convergence . 47
Approaching factorization properties 48

5.3.5 Experimental study . 48
Setup . 48

Data . 48
Models . 48
Parametrization . 49
Evaluation measure . 49

Learning loss functions . 49
Model comparison . 50
Learning in more challenging conditions 51
Generalization to other languages . 53

5.4 Jointly Learning Loss and Model . 53
5.4.1 Notes on convergence . 54
5.4.2 Results of the joint learning model . 54

5.5 Summary . 55

6 Structured Prediction for Ranking 57
6.1 Task formulation . 57

6.2 Overview . 57
6.3 Structured Prediction for Ranking . 59

6.3.1 Our learning approach . 60
Learning . 60
Max-violating inference . 60

6.4 Joint Ranking and Clustering . 62
6.4.1 Structured clustering . 62
6.4.2 Joint inference . 63
6.4.3 Learning . 64

6.5 Experiments . 65
6.5.1 Setup . 65

Data . 65
Models . 65
Features . 66
Parametrization . 66
Evaluation metrics . 66

6.5.2 Experimental results . 66
6.6 Summary . 67

7 Summary and future work 69

Bibliography 73

List of Tables

4.1 Comparison of anomaly detection models on the NSL-KDD test set. 27
4.2 SVM accuracy on the NSL-KDD training set in 10-fold cross-validation. 28

5.1 Best parameter combinations for structural approaches selected on CoNLL-2012
English development set. 37

5.2 System results on CoNLL-2012 English development and test sets, using all
the training documents for training. Tbest is evaluated on the development set.
∗LSPO is the result published in Martschat and Strube [2015]. 38

5.3 System results on CoNLL-2012 English development and test sets, using all
training documents with filtered features (N=106) and edges (d=20). 40

5.4 Accuracy of the loss regressor on two different sets of examples generated from
different documents samples. 49

5.5 Results of our and previous work models evaluated on CoNLL-2012 English
development and test sets, using for training all the training documents with All
and 1M features. Tbest is evaluated on the development set. 51

5.6 Results on CoNLL-2012 English test set using the same setting of Table 5.5 and
the measures composing MELA. 51

5.7 Results of our and baseline models on CoNLL-2012 Arabic development and
test sets, using all the training documents for training. Tbest is evaluated on the
development set. 53

5.8 Average MELA± Standard Deviation on CoNLL-2012 English test set of mod-
els trained on eight disjoint samples of 100 documents from the training set. . . 54

6.1 Results of re-ranking systems on WikiQA dataset. 66

vii

List of Figures

2.1 Graph representations used in structured prediction clustering algorithms 13

4.1 Graph of pairwise links between transmission nodes. 23
4.2 Spanning tree. 24

5.1 Text fragment with seven highlighted mentions from the English part of the
corpus from CoNLL 2012-Shared Task. 32

5.2 LSP learning curves, with 100 random documents used for training (all the
features, all the edges), tested on all the development documents. 36

5.3 LSPE training time and accuracy with respect to the number of features N ,
selected according to the binary classifier weights. 38

5.4 LSPE training time and accuracy with respect to d (max number of candidate
antecedent edges for each mention). 39

5.5 Regressor Learning curves. 50
5.6 Results of LSP models on CoNLL-2012 English development set using differ-

ent number of features, N . The last plot reports MELA score on the test set of
the models using the optimal number of epochs tuned on the development set. . 52

5.7 LSP learning curves on CoNLL-2012 English development set, averaged over
8 disjoint samples of 100 random documents from the training set. 55

ix

Chapter 1

Introduction

Things are as they are. Looking out into the universe at night, we make
no comparisons between right and wrong stars, nor between well and

badly arranged constellations.

Alan Watts

1.1 Motivation

The rise of structured prediction methods in machine learning gave way to the development
of effective solutions for the complex prediction tasks. In learning scenarios with a presumed
or observed dependence between the output variables, structured prediction takes advantage
of (imposing and) treating a structure over multiple dependent output variables as a unified
output object of learning. It is opposed to solving a bunch of elementary prediction tasks and
uniting their independently made predictions by diverse aggregation techniques to impart the
underlying structure to the desired output. Passing on to learning structural dependencies solely,
in most cases, results in an improvement over unstructured counterpart approaches whereas, for
the latter, enriching the input representations seems to be nearly the only way of enhancement.

Powerful structured prediction methods were devised for such standard complex learning
tasks as multilabel classification, sequence labelling, ranking, etc. On the discriminative side,
generalizations to structured output of all the classic learning algorithms were derived: per-
ceptron by Collins [2002], SVMs by Altun et al. [2003]; Tsochantaridis et al. [2004], online
passive-aggressive learning by Crammer et al. [2006]. Discriminant functions f of these struc-
tured prediction approaches build on capturing the structural dependencies within the complex
output space of structured objects Y . A prediction by the model is done finding a maximizer of
the discriminant function f , a structure y, over Y . It is desirable that exploring Y in search for
the optimal y is done by an efficient inference procedure.

2 Introduction

1.1.1 Supervised clustering as structured prediction

In this respect, clustering, if viewed as a structured prediction problem, lacks an efficient infer-
ence procedure, e.g., k-means clustering is NP-hard [Aloise et al., 2009], correlation clustering
is NP-complete [Bansal et al., 2004]. However, structured prediction approaches targeting ap-
proximations of clustering inference, e.g., SVMcluster by Finley and Joachims [2005], supervised
k-means by Finley and Joachims [2008], realized tools for doing supervised clustering. Later,
Yu and Joachims [2009] proposed a more feasible solution to the supervised clustering formu-
lation enabling exact inference. The trick consisted in transferring learning from the space of
clusterings Y to the latent space of spanning graphs H , where inference is efficiently done by a
spanning algorithm. Employed in the Latent Structural SVM, the approach of Yu and Joachims
found its application in the NLP task of coreference resolution, having intrinsically a clustering
nature. A similar approach, again applied to coreference resolution, although with alternative
graph structures and a different spanning algorithm wrapped up in the Latent Structured Per-
ceptron learner, by Fernandes et al. [2012, 2014] established the state of the art for its time.
Regarding and inferring a clustering y of some set of elements as a unique structural object
appears beneficial in contrast to deciding on the similarity for pairs of elements in detachment
from the rest elements of the set.

Clustering is of a general interest and purpose, both as a standalone solution and as a
provider of intermediate helpful information. Inspired by the effectiveness of the structured
prediction approaches to supervised clustering in coreference resolution, one might think about
their extensions to other tasks and domains. Even more promising is the fact that these ap-
proaches do not require neither searching for and supplying to the algorithm of an appropriate
distance metric nor the beforehand indication of the number of the output clusters, the latter
being a thorny issue of unsupervised and semi-supervised clustering approaches.

1.1.2 Structured prediction: evaluation v.s. optimization

When it turns to applying an approach of machine learning in general and structured output
in particular, to a new domain, we inevitably have to adapt to a certain evaluation scenario.
Optimization of the empirical risk expressed in terms of a domain- or task-specific evalua-
tion measure is not always possible as the corresponding loss functions do not possess prop-
erties sufficient to admit a tractable solution. At the same time, task metric optimization via
parametrization is known to have limited potential. Nevertheless, in structured output learning,
the expressivity of loss functions is often sacrificed for preserving the feasibility of solutions,
e.g., losses with the factorization properties conforming to the factorization of the learned model
are preferred for facilitating inference.

In case of clustering, it is very unlikely to bypass the above compromise as clustering eval-

Thesis Work and Structure 3

uation metrics are far from being trivial, e.g., clustering accuracy [Zhao and Karypis, 2002],
purity and entropy [Fung et al., 2003], just to mention a few of most common ones. In the
meantime, the approaches of Yu and Joachims and Fernandes et al. use simple loss functions,
counting the number of mistaken edges, in order to perform the max-violating inference using
the same spanning graph algorithms. A clustering measure adopted in coreference resolution
research – Mention, Entity, and Link Average (MELA) [Pradhan et al., 2012] – has even more
superior complexity, and its computation cannot be afforded during training.

1.2 Thesis Work and Structure

In this thesis, we seek to explore the applicability and extensibility of the structured output
approaches for supervised clustering. We start by giving a general overview of structured output
methods and structured prediction solutions to supervised clustering, in Chapter 2. We revisit
the essential components of the structured prediction framework and provide formulations of
the algorithms employed throughout this work. Specifically, the structured output approaches
with latent variables supplying algorithmic machinery for supervised clustering.

We found supervised clustering useful in the networking domain. In particular, we enable an
extension of the graph-based structural model for clustering of the network traffic that provides a
viable solution to the intrusion detection task. We address the task of intrusion or, more broadly,
anomaly detection framing it as a clustering problem, where new coming instances which do
not fall into existing clusters are regarded anomalous. We elaborate the structured prediction
approach for supervised clustering to make it operate on the continuous flow of data. This
results in an effective anomaly detection method not requiring re-training, which is described
in Chapter 4.

The intricacies, highlighted in Section 1.1.2, around optimization of complex metrics aris-
ing in applications of structured prediction, inclined us towards research on making structured
prediction more ’complex metric’ -friendly. We propose to address this kind of problems by
approximating a complex measure by learning its representation, or alternatively a representa-
tion of the loss function induced by it, from data. Here, we introduce a notion of a learned loss.
In Chapter 3, we define a general structured output framework for learning with a learned loss,
which bases on the idea of approximating a task-specific complex loss with a regressor. This
is where MELA enters into play providing an interesting special case of a complex measure,
on which we test the whole idea of learning a complex structural loss. The framework is also
extended with a specification of the algorithm that performs joint learning of a loss and a model.

First, in Chapter 5, we carry out a practical study comparing structured prediction ap-
proaches for supervised clustering applied to the task of coreference resolution: i) online versus
batch learning, ii) employing different graph structures and inference algorithms. Subsequently,

4 Introduction

we implement the idea of a learned loss for the MELA case on the basis of the best identified
structured approach. This way, we enable a direct optimization of an approximation of a com-
plex clustering measure.

Finally, our recent study on using structural clustering as an auxiliary means in the context
of another structured prediction task of ranking, as a strategy to boost the accuracy of the latter.
It bases on a simple intuition, that in presence of similar items in the ranking list, both relevant
and irrelevant, clustering can communicate to a ranking model that certain items are likely to
take neighbouring rank positions. Thus, we attempt at combining a structural ranking model
with the clustering graph h, providing a procedure for joint inference, and show our preliminary
results of such a model ”collaboration” in Chapter 6.

1.3 Thesis Contributions

The contributions of the thesis can be summarized as follows:

• Definition of a general structured prediction framework for learning with a learned loss.
Joint formulation for learning the loss and the task simultaneously.

• Comparison of structured prediction approaches for supervised clustering applied to the
task of coreference resolution.

• Enabling a direct optimization of MELA, a complex clustering measure used in corefer-
ence resolution for evaluating the system output, which was previously intractable.

• Anomaly detection model based on supervised clustering.

• Structured prediction model for re-ranking, combined with clustering.

1.4 Publications

Research presented in this thesis resulted into the following publications:

• Jointly learning models and loss functions from coreference resolution. Iryna Haponchyk
and Alessandro Moschitti. Under submission, 2018.

• Real-time intrusion detection via structured graph-based learning. Iryna Haponchyk and
Alessandro Moschitti. To be submitted.

• A Latent Structured Prediction Approach for Passage Re-ranking. Iryna Haponchyk and
Alessandro Moschitti. To be submitted.

Publications 5

• Don’t understand a measure? Learn it: Structured Prediction for Coreference Resolution
optimizing its measures. Iryna Haponchyk and Alessandro Moschitti. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1018-1028, Vancouver, Canada, 2017.

• A Practical Perspective on Latent Structured Prediction for Coreference Resolution. Iryna
Haponchyk and Alessandro Moschitti. In Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics (EACL 2017), pp. 143–
149, Valencia, Spain, 2017.

• Making Latent SVMstruct Practical for Coreference Resolution. Iryna Haponchyk and
Alessandro Moschitti. In Proceedings of the First Italian Conference on Computational
Linguistics (CLiC-it 2014), pp. 203–207, Pisa, Italy, 2014.

6 Introduction

Chapter 2

Backgrounds on Structured Output
Methods and Supervised Clustering

2.1 Structured Output Methods

There is a growing body of approaches in machine learning that are devised to make inference
in complex output spaces. Unlike classification, where the output space is Y = {1, 2, ..., K},
the output space of structured prediction algorithms consists of complex or structured objects
like sequences, trees or graphs. In classification, a predictor learns a mapping f : X → Y from
training examples. A structured predictor learns a scoring function f : X × Y → R and makes
a prediction by finding

ŷ = argmax
y∈Y

f(x,y). (2.1)

Often, as well as throughout this work, function f(x,y) is assumed linear in a joint feature
vector Φ(x,y) of an input-output example:

f(x,y) = w · Φ(x,y), (2.2)

where the form of Φ depends on a specificity of a problem, and w is a learned weight vector.
This modelling allows efficient use of combined features of inputs and outputs.

2.1.1 Algorithms

Structured perceptron [Collins, 2002] is a structural version of the standard perceptron algo-
rithm for classification, providing an online algorithm with established convergence bounds for
learning to predict structures. Among large-margin approaches, there are Structural SVMs – a
generalization of multiclass SVMs to the case of tasks with structured output [Tsochantaridis
et al., 2004].

8 Backgrounds on Structured Output Methods and Supervised Clustering

2.1.2 Loss functions

Since incorrect structures ŷ vary in their degree of correctness against the correct (gold) struc-
ture y, large-margin structured prediction approaches involve loss functions:

∆(y, ŷ) : Y × Y → R,

which reflect such degrees of correctness. To minimize the risk expressed in terms of a loss
∆(y, ŷ), Structural SVMs pass to optimizing a piecewise convex upper-bound on the loss

∆(y, ŷ) ≤ max
ŷ∈Y

[∆(y, ŷ) + w · Φ(x, ŷ)]−w · Φ(x,y),

and solve the following large-margin objective:

min
w

[1

2
||w||2 + C

n∑
i=1

[
max
ŷ∈Y

[∆(yi, ŷ) + w · Φ(xi, ŷ)]−w · Φ(xi,yi)
]]

(2.3)

on training data {(xi,yi)}ni=1 [Tsochantaridis et al., 2004].

2.1.3 Inference

Finding argmax in Equation 2.1 through exhaustive search over the output space Y is not
always tractable. For this reason, exploration techniques, efficient, preferably exact but also
heuristic, are adopted in different applications, e.g., search for an optimum sequence in se-
quence tagging could be done by a dynamic programming Viterbi-like decoding algorithm [Al-
tun et al., 2003].

Max-violating inference and loss factorization

The objective in Equation 2.3 involves finding the max-violating structure:

ŷ = argmax
y∈Y

[∆(yi,y) + w · Φ(xi,y)]. (2.4)

For efficient max-violating inference of ŷ, it is indispensable that the loss ∆ and the score
factorize in the same way over the substructures (components) of ŷ.

There is a large-margin version of the structured perceptron which adopts inference in Equa-
tion 2.4, also called loss-augmented inference [Fernandes and Brefeld, 2011]. Another online
large-margin algorithm is a structured passive-aggressive (PA) algorithm by Crammer et al.
[2006].

Structured Output Methods 9

2.1.4 Latent variables

Auxiliary information, which is not available in the input training data {(xi,yi)}ni=1 but which
can alleviate infeasible inference or help training in general, can be included as latent vari-
ables h [Yu and Joachims, 2009]. The joint feature vector is extended with h to Φ(x,y,h).
Correspondingly, the inference – to

(ŷ, ĥ) = argmax
(y,h)∈Y×H

w · Φ(x,y,h). (2.5)

Latent Structural SVM

Latent Structural SVM (Latent SVMstruct, or LSSVM for short) proposed by Yu and Joachims
[2009] introduces latent structures in SVMstruct [Tsochantaridis et al., 2004]. In presence of
auxiliary latent structures, the objective function of SVMstruct in Equation 2.3, optimizing an
upper bound on the loss function, becomes no longer valid. To solve this problem Yu and
Joachims assume that loss functions usually do not depend on the gold latent structures hi in
correspondence to the gold outputs yi, and can be computed against the gold yi only:

∆(yi,hi, ŷ, ĥ) = ∆(yi, ŷ, ĥ),

For such cases, they derived the following LSSVM objective:

min
w

[1
2
||w||2 +C

n∑
i=1

max
(ŷ,ĥ)∈Y×H

[∆(yi, ŷ, ĥ) + w ·Φ(xi, ŷ, ĥ)]−C
n∑
i=1

max
h∈H

w ·Φ(xi,yi,h)
]
.

(2.6)
Being essentially a difference of two convex functions, it is solved using the Concave-Convex
Procedure (CCCP) by Yuille and Rangarajan [2003], which is guaranteed to converge to a local
minimum or a saddle point. This alternatively switches between

1. finding an upper bound on the concave part of the objective in Equation 2.6: g(w) =

−C
n∑
i=1

max
h∈H

w·Φ(xi,yi,h), which includes finding the best latent structures h∗i explaining

gold truths yi with respect to the current model weights w:

h∗i = argmax
h∈H

w · Φ(xi,yi,h), and

2. solving a standard SVMstruct problem:

min
w

[1

2
‖w‖2 +C

n∑
i=1

[
max

(ŷ,ĥ)∈Y×H
[∆(yi, ŷ, ĥ) +w ·Φ(xi, ŷ, ĥ)]−w ·Φ(xi,yi,h

∗
i)
]]

(2.7)

10 Backgrounds on Structured Output Methods and Supervised Clustering

by a one-slack cutting-plane Algorithm 1.

The cost of one CCCP iteration is nearly a cost of one SVMstruct, which in turn is polynomial
[Tsochantaridis et al., 2004].

Algorithm 1 Latent Structural SVM (LSSVM)
1: Input: X = {(xi,yi)}ni=1, w0, ε

2: w← w0; S ← ∅
3: repeat
4: for i = 1, ..., n do
5: Hi(y,h) ≡ ∆(yi,y,h)+

w · Φ(xi,y,h)−w · Φ(xi,yi,h
∗
i)

6: compute (ŷi, ĥi) = argmax
(y,h)∈Y×H

Hi(y,h)

7: end for
8: compute

ξ = max{0, max
{(y′

i,h
′
i)}

n
i=1∈S

n∑
i=1

Hi(y
′
i,h
′
i)}

9:
10: if

n∑
i=1

Hi(ŷi, ĥi) > ξ + ε then

11: S ← S ∪ {(ŷi, ĥi)}ni=1

12: w← optimize primal over S
13: end if
14: until S has changed during iteration

returnw

Algorithm 2 Latent Structured Perceptron (LSP)
1: Input: X = {(xi,yi)}ni=1, w, C, T

2: w0 ← w; t← 0

3: repeat
4: for i = 1, ..., n do
5: ĥ← argmax

h∈H(xi)

wt ·Φ(xi,y,h) +C ·∆(yi,y,h)

6: if ŷ 6≡ yi then
7: h∗ ← argmax

h∈H(xi,yi)

wt · Φ(xi,yi,h)

8: wt+1 ← wt + Φ(xi,yi,h
∗)− Φ(xi, ŷ, ĥ)

9: end if
10: t← t+ 1

11: end for
12: until t < nT

13: w← 1
t

t∑
i=1

wi

return w

Latent Structured perceptron

Latent Structured Perceptron (LSP) is a version of the structured perceptron with latent vari-
ables [Sun et al., 2009]. Algoritm 2 presents the LSP algorithm with loss-augmented inference
[Fernandes et al., 2014].

Given a training set {(xi,yi)}ni=1, initialized model weights w0 (e.g., to ~0 or a random
vector), a loss parameter C and the maximum number of epochs T , LSP iterates the following
instructions:

• Line 5 seeks for the max-violating latent variable ĥ in H(xi), which is the set of all
possible latent variables for the current example. Further, we denote by ŷ the output
structure corresponding to the max-violating ĥ.

• Line 6 tests if the output ŷ, induced by the produced max-violating ĥ, is incorect.

• Line 7 finds a latent variable h∗ that maximizes the model score wt · Φ(xi,yi,h), for the
example (xi,yi). This finds the maximum latent variable corresponding to the ground
truth structure yi with respect to the current wt. Finding such max requires an exploration
over the set H(xi,yi), composed of only h consistent with gold structured label yi.

Structured Prediction for Supervised Clustering 11

• If the test is verified, the model is updated with the vector Φ(xi,yi,h
∗)− Φ(xi, ŷ, ĥ).

Online passive-agressive structured output learning

In this work, we will also employ a structured passive-aggressive (PA) algorithm [Crammer
et al., 2006] which we extend with latent variables. Following Crammer et al., we perform
perceptron-like updates:

w = min
w

1

2
‖w −wt‖2,

s.t. w · Φ(xi,yi,h
∗
i)−w · Φ(xi, ŷ, ĥ) ≥ ∆(yi, ŷ, ĥ),

where
(ŷ, ĥ) = argmax

(y,h)∈Y×H

[
wt · Φ(xi,y,h)−wt · Φ(xi,yi,h

∗
i) + ∆(yi,y,h)

]
,

which in a closed form is

wt+1 = wt + τt(Φ(xi,yi,h
∗
i)− Φ(xi, ŷ, ĥ)),

where τt =
wt·Φ(xi,ŷ,ĥ)−wt·Φ(xi,yi,h

∗
i)+∆(yi,ŷ,ĥ)

‖Φ(xi,yi,h∗i)−Φ(xi,ŷ,ĥ)‖2 .

We refer to this model as LSPA.

2.2 Structured Prediction for Supervised Clustering

2.2.1 Supervised clustering

In this work, we consider the following formulation of the supervised clustering task [Finley
and Joachims, 2005]:

Given training data {(xi,yi)}ni=1, where

• each xi is a set of elements xi = {x1, x2, ..., xNi} of arbitrary nature (we can assume xj
belong to some set S),

• yi is the corresponding gold output clustering of the elements of xi,

learn to predict clusterings y of unseen input sets x ∈ 2S . Thus, the task is to learn a predictor
h : X → Y , where X = 2S is a set of all possible sets of items from S and Y is a set of all
possible clusterings of such sets, Y = 22S .

Note that the above formulation is different from the view on the task adopted in data min-
ing [Eick et al., 2004], where the input data points xi are supervised with class membership
labels c (c ∈ C, C = {ci}Ni=1) and the output clustering is assessed with respect to class pu-
rity/impurity of the produced clusters, the number of output clusters being adjusted for the

12 Backgrounds on Structured Output Methods and Supervised Clustering

specific application needs. In contrast, the aim pursued here is to reproduce entirely the in-
tended clustering of the input set, whereas the beforehand indication of the number of clusters
k is not required.

2.2.2 Structured output clustering approaches

SVMcluster

Finley and Joachims [2005] formulate the clustering task as a structured prediction. The input-
output pair (x,y) is represented with a following joint feature vector

Φ(x,y) =
1

|x|2
∑
y∈y

∑
xi,xj∈y

φ(xi, xj), (2.8)

which sums up feature vectors φ(xi, xj) over all item pairs (xi, xj), where xi and xj fall into
the same clusters y according to y. SVMstruct solver learnes a linear model w, which scores
clusterings with w · Φ(x,y) (Equation 2.2). Finding a clustering y maximizing such a score,
i.e. maximizing the intracluster pairwise similarity scores, is performed by correlation cluster-
ing [Bansal et al., 2004]. Inference by correlation clustering is approximate as finding a real
maximizer is NP-complete.

SVMcluster optimizes the clustering loss functions ∆: i) pairwise loss – the percentage of
wrong pairwise decisions ii) F1 loss of the coreference resolution MUC metric [Vilain et al.,
1995]. Both the losses are global in a sense that they compare entirely the output clustering y to
the gold standard yi. A greedy procedure and a relaxation of correlation clustering are proposed
for the max-violating inference with respect to the mentioned losses.

Supervised k-means

Supervised k-means approach by Finley and Joachims [2008] builds on a similar modelling of
SVMcluster. Using the structural SVM formulation, it learns a similarity measure in a structural
way but uses k-means as the inference method. Here, however, the number of clusters k should
be provided by the user.

Graph-based learning

The above two approaches train a structural predictor optimizing the aggregated pairwise sim-
ilarities via approximations of clustering methods (correlation clustering, k-means). The in-
tractability of finding an optimal clustering imposes limitations on the accuracy of the inference
and scalability with respect to the size of the input sets x.

Structured Prediction for Supervised Clustering 13

(a) Latent graph with highlighted clusters (b) Latent tree

Figure 2.1: Graph representations used in structured prediction clustering algorithms

LSSVMK A workaround proposed by Yu and Joachims [2009] suggests to switch from the
output space of clusterings Y to the space of graph structures H . Namely, instead of searching
for the optimal clustering y the search is performed for the spanning forest h on an undirected
graphG, whose nodes are elements xi of the input x and edges are all the pairwise links between
them (xi, xj). In Figure 2.1a, the spanning forest h composed of the solid edges corresponds to
clustering y highlighted in red. Note, that there is no one to one correspondence between h’s
and y’s. Using two other possible alternative ways to span the biggest cluster of 3 in Figure 2.1a
give the same y. However, each h uniquely induces a clustering y.

This way, Yu and Joachims base their approach on the strong pairwise links (those spanning
each cluster component, the rest can be inferred), in contrast to the previous approaches taking
into account all the pairwise intracluster connections. The spanning forest structures h are
incorporated as latent variables into the structured prediction framework and the joint feature
representation decomposes over the edges of h:

Φ(x,y,h) =
∑

e=(xi,xj)∈h

φ(e) =
∑

e=(xi,xj)∈h

φ(xi, xj). (2.9)

This facilitates the inference (Equation 2.5) which now can be performed exactly and which
reduces to finding a spanning algorithm on the fully connected graph G. Kruskal’s spanning
algorithm [Kruskal, 1956] is used for inferring h. It involves sorting of all the candidate edges
by weight, followed by the construction of a spanning forest, starting from the edge with the
highest weight. The threshold on the edge weight to be included into the forest is naturally 0,
as including more or less edges decreases the total weight of the spanning forest w ·Φ(x,y,h).

The authors train the LSSVM algorithm. We will further denote this approach as LSSVMK.

14 Backgrounds on Structured Output Methods and Supervised Clustering

LSPE An approach similar to LSSVMK, appeared in works of Fernandes et al. [2012, 2014] in
application to the NLP task of coreference resolution, adopts another kind of graph structures
– directed trees with an additional root node (see Figure 2.1b). In this case, the inference
is done on a graph G formed by all the directed arcs (xi, xj), where i < j, plus directed
arcs from the root node to each xi – (root, xi). Imposing the node order root, x1, x2, ..., xn
and the directionality of links imply the absense of cycles in G. The inference by Edmonds’
spanning tree algorithm [Chu and Liu, 1965; Edmonds, 1967] reduces to traversing the nodes
x1, x2, ..., xn in their predefined order and choosing for each an incoming arc of the highest
weight, which is added to the tree h. In the resulting spanning tree h, the subtrees connected
directly to the root node form clusters. In a sense, the inference procedure can be viewed as
a iterative process of adding nodes to the tree selecting the best subtree (cluster) for a node to
be added to based on the score of the connecting arc. The joint feature vector of the input-
output pair decomposes over the arcs of the spanning tree h in the same way as in Equation 2.9.
Fernandes et al. use the LSP algorithm for training to predict such structures. Let us refer to
this model as LSPE.

Chapter 3

Genearal Framework for Learning with a
Learned Structural Loss

The final goal of ML models is to optimize a task-specific measure. In non-strucutured predic-
tion, there is already a range of methods which optimize measures encompassing the outputs
for several (all) training examples, i.e., multivariate measures [Joachims, 2005]. In structured
prediction, the importance of reference to the measure is even more amplified. Already at the
example level, we have different degrees of correctness of the output structure y with respect to
the task measure µ. It is crucial to communicate to the learner a proper information about such
differentiation for it to discriminate correspondingly.

In many cases, direct optimization of a task measure is associated with high complexities.
Thus, the models often base on optimizing alternative surrogate objectives. These, for instance,
include loss functions which are upper bounds on the real loss ∆ associated with the task mea-
sure µ. Such loss upper bounds often possess good factorization properties. Or just a simple
surrogate loss, e.g., counting mistakes on the subparts of the output structure y.

In this chapter, we abstract from the application specifics and give a general formulation of
the framework for optimizing a task-specific structural loss. It is based on learning an approx-
imation of the task loss ∆ (or alternatively, of the measure µ) and optimizing such a learned
objective within the structured prediction framework. We provide also a joint formulation des-
tined for training the loss model and the general task learner simultaneously.

We, first, explore the conditions when simple surrogate losses are effective in structured
prediction.

16 Genearal Framework for Learning with a Learned Structural Loss

3.1 On Optimality of Simple Loss Functions

A most common class of surrogate loss functions optimized by the structured prediction algo-
rithms are those having good factorization properties. Suppose the structured output variable
y or the latent structure h, in the latent case, decompose into subparts (substructures). Let us

stick with the latent case. If h decomposes into substructures: h =
n⊕
j=1

hj , the straightforward

loss can be defined by

∆simple(y, ŷ, ĥ) =
n∑
j=1

1[ĥj /∈Hj(y)], (3.1)

where 1[·] is an indicator function. ∆simple counts the substructure mistakes, i.e., the substruc-
tures ĥj which do not comply with the gold standard y. Or more generally,

∆simple(y, ŷ, ĥ) =
n∑
j=1

l(y, ŷ, ĥj), (3.2)

where l(·) is a substructure loss function. Equation 3.2 allows for assigning different penalties
for different mistake types, e.g., through parametrization.

Proposition 1 (Sufficient condition for optimality of simple factorizable loss functions for
learning structured outputs). Let ∆(y, ŷ, ĥ) ≥ 0 be a simple, factorizable loss function, which
is also monotone in the number of substructure errors, and let µ(y, ĥ) be any structure-based
measure maximized by no substructure errors. Then, if the training set is linearly separable the
LSP optimizing ∆ converges to the µ’s optimum.

Proof. If the data is linearly separable the perceptron converges⇒ ∆(yi, ŷ, ĥ) = 0,∀xi. From

Equation 3.2, it follows that
n∑
j=1

l(yi, ŷi, ĥ
j) = 0. The latter equation and monotonicity imply

l(yi, ŷi, ĥ
j) = 0, ∀i = 1, n, i.e., there are no substructure mistakes, otherwise by fixing such, we

would have a smaller ∆, i.e., negative, contradicting the initial positiveness hypothesis. Thus,
no substructure mistake in any xi implies that µ(y, ĥ) is maximized on the training set.

Proposition 1 implies that, for separating the data separable with respect to the target task-
specific measure, it is sufficient to optimize a simple factorizable loss whose 0 mistakes maxi-
mize the measure and which meets the requirement of delivering monotonicity to the measure.
From the proof, it is easy to notice that the conclusion of Proposition 1 holds also under a
weaker condition than global monotonicity. It is sufficient that ∆ is locally monotone by inclu-
sion in substructure mistakes, i.e., ∀ĥ1, ∀ĥ2, such that ∀j, ĥj ∈ ĥ1 \ (ĥ1 ∩ ĥ2) 1[ĥj /∈Hj(y)] > 0,
∆(y, ŷ1, ĥ1) > ∆(y, ŷ2, ĥ2).

Learning a Loss Function 17

In inseparable cases, however, simple loss functions loose optimality, and the reached ”sep-
arating” hyperplane might be no longer optimal with respect to the task measure.

3.2 Learning a Loss Function

Consider a more difficult setting, whether in terms of separability or when the specifics of the
real task loss cannot be straightforwardly spanned onto the defined structure (onto substructure
variables). What if such implicit loss specifics could be captured within some approximation by
a learned model over substructure variables or their aggregations? In the simplest linear case,
suppose we have learned a function ∆̃ : Rm → R:

∆̃(y, ŷ, ĥ) = v ·Ψ(y, ŷ, ĥ), (3.3)

over some feature space induced by some mapping Ψ : Y × Y × H → Rm. ∆̃ is such that it
approximates the task-specific loss ∆

∆̃(y, ŷ, ĥ) ≈ ∆(y, ŷ, ĥ), (3.4)

with sufficient accuracy.

We need data for training and validation of the loss model v, i.e., examples of the form:

xρ = [∆(y, ŷ, ĥ),Ψ(y, ŷ, ĥ)],

here, ρ stands for ”regression”. xρ is simply a tuple containing a target value, which is the
actual value of the task-specific loss ∆ on the output (ŷ, ĥ) for some example (x,y), and a
feature vector Ψ describing such output against the gold standard y. For generating a dataset
Xρ = {xρ} of such examples, we propose to collect max-violating structured outputs (ŷ, ĥ)

produced for training examples {(xi,yi)}ni=1 during structural learning with a surrogate loss,
e.g., LSP learning using ∆simple. Generally, there is no restriction on the amount of structures
we can generate, although it can be subject to how many of them we can afford to label with
target values ∆.

In Section 5.3, we learn a linear regression model that approximates the complex coreference
resolution measure and optimize it using LSP. Optimizing ∆̃ by LSP (injecting in Line 5 of
Algorithm 2) requires defining a customized procedure for finding the max-violating constraint,
if ∆̃ does not factorize or factorize differently than the model w. Let us denote the instance of
LSP optimizing the learned loss as LSPρ.

18 Genearal Framework for Learning with a Learned Structural Loss

3.3 Joint Learning of a Model and a Loss Function

In this section, we define an algorithm for learning the loss function along with the model, where
the training data for the former is generated during the training of the latter. At the same time,
the model uses the loss function, which becomes more and more accurate throughout training.
The definition of the joint algorithm is based on LSP, for the sake of simplicity, and since we
apply it later in this form, however, it is of general purpose and not bound to LSP.

We propose two methods of a joint learning strategy. The first method trains ∆̃ model in a
batch style at each iteration of LSPρ using training data, which become more and more available.
And the second approach uses an online regressor to learn ∆̃. This means that the updates of
the LSPρ and the loss regressor models are interleaved.

Algorithm 3 Latent Structured Perceptron with
Joint ∆̃ Learning (LSP∗ρ)

1: Input: X = {(xi,yi)}ni=1, w, C, T

2: w0 ← w; t← 0; Xρ = ∅; ∆̃← ∆simple

3: repeat
4: for i = 1, ..., n do
5: ĥ← argmax

h∈H(xi)

wt ·Φ(xi,y,h) +C · ∆̃(yi,y,h)

6: xρ = [∆(yi, ŷ, ĥ),Ψ(yi, ŷ, ĥ)]

7: Xρ = Xρ ∪ xρ

8: if ŷ 6≡ yi then
9: h∗ ← argmax

h∈H(xi,yi)

wt · Φ(xi,y,h)

10: wt+1 ← wt + Φ(xi,yi,h
∗)− Φ(xi, ŷ, ĥ)

11: end if
12: t← t+ 1

13: end for
14: Train ∆̃ on Xρ

15: until t < nT

16: w← 1
t

t∑
i=1

wi

return w

Algorithm 4 Latent Structured Perceptron with Joint
Online ∆̃ Learning (LSP∗online

ρ)

1: Input: X = {(xi,yi)}ni=1, w, C, T

2: w0 ← w; v ← ~0; t ← 0; ∆̃ ← ∆simple; flag ←
true

3: repeat
4: err = 0

5: for i = 1, ..., n do
6: ĥ← argmax

h∈H(xi)

wt ·Φ(xi,y,h) +C · ∆̃(yi,y,h)

7: if ŷ 6≡ yi then
8: h∗ ← argmax

h∈H(xi,yi)

wt · Φ(xi,yi,h)

9: wt+1 ← wt + Φ(xi,yi,h
∗)− Φ(xi, ŷ, ĥ)

10: end if
11: t← t+ 1

12: if flag then
13: ν = ∆(yi, ŷ, ĥ)− v ·Ψ(yi, ŷ, ĥ)

14: v← v + νΨ(yi, ŷ, ĥ)

15: err = err + |ν|
16: end if
17: end for
18: if err > prev err then
19: flag ← false

20: else
21: prev err = err

22: end if
23: until t < nT

24: w← 1
t

t∑
i=1

wi

return w

Joint Learning of a Model and a Loss Function 19

3.3.1 Joint learning approach (LSP∗ρ)

Our basic approach with an automatically learned loss involves (i) learning standard models,
e.g., LSP, (ii) generating examples from such models, (iii) learning ∆̃ on the examples, and
then (iv) using the learned loss in LSPρ.

In order to reduce the computation time of the approach, we verify if it is possible to combine
the above steps in one joint algorithm. For this purpose, we designed Algorithm 3, which
adds the following instructions to Algorithm 2: first, the starting loss ∆̃ is set to ∆simple in
Line 2. Second, Line 6 composes a regression example xρ, for training ∆̃, from the current
max-violating structure ĥ for the example (xi,yi), which contributes to creating the training set
Xρ. Finally, in Line 14, ∆̃ is trained on Xρ, and is used for all the training documents at the
next epoch. In our experiments, we used a linear SVM regression solver for training ∆̃ model.

3.3.2 Online algorithm for learning of a model and a loss function

One advantage of joint learning is to provide the loss learner with examples specific to the
current learning task. However, although it is very fast, the loss regressor has to be retrained
on each iteration. Thus, to further decrease the computational complexity of the joint learning
algorithm, we use simple perceptron updates instead of SVM for the learning ∆̃. In this variant
of our model depicted in Algorithm 4, v, the model used to obtain ∆̃, is gradually updated
in Lines 13–15 on each processed example, until the overall epoch regression error no longer
decreases.

As will be seen from the experiments, the joint models show that it is enough to utilize
the examples from the general LSPρ training. It is not needed to generate them separately on
preprocessing as it is done for LSPρ. This even appears favourable as the examples come from
the regions of the search space of the general learner.

20 Genearal Framework for Learning with a Learned Structural Loss

Chapter 4

Structural Clustering in Network
Environments

Supervised clustering can aid in solving tasks arising in network environments, ranging from
network traffic classification to anomaly detection. In particular, the advantage can be taken
of the fact that certain network transmissions are detected to fall within the same category
(cluster), since they share similar behaviors and/or characteristics. In this chapter, we show how
clustering of the network traffic can be converted into an effective tool for detecting anomalies
or intrusions.

The robustness of intrusion detection systems is highly conditioned by their capacity to
adapt to the changes in network environments, on one hand, and to receiving previously unseen
types of traffic, on the other hand. The state-of-the-art learning methods, however, do not show
such flexibility: they would need to be continuously retraining, e.g., using online learning, on
new coming data, which might considerably increase time and resource costs.

As it will be revealed in this chapter, the supervised clustering approach is able to adapt to
the current network state without requiring retraining. The structured prediction formulation
effectively captures inter-instance similarity patterns. This way, the approach learns to pre-
dict clusters of the traffic instances of the same type and classify the new incoming instances
based on such clusters. Its application to a network scenario of the NSL-KDD dataset shows
impressive improvements over the classification approaches.

4.1 Overview

Intrusion detection component is crucial for any computer system or network. The task of
detecting intrusions (or anomalies) is classically viewed as a classification problem in which a
model is trained to distinguish between good and bad traffic behavior. A variety of classification

22 Structural Clustering in Network Environments

approaches, not restricted to SVM [Raman et al., 2017], Random forest [Farnaaz and Jabbar,
2016], and neural networks [Subba et al., 2016], has been proposed in the literature. The current
top classification models report the accuracy of more than 95%. However, such high results are
unrealistic as they were obtained in problematic evaluation settings: (i) tuning of the model
parameters on the test set [Subba et al., 2016] or (ii) cross-validation [Raman et al., 2017;
Farnaaz and Jabbar, 2016], which is rather inappropriate as the distribution of the instances is
supposed to be different between training and test set to simulate a real-world scenario.

In particular, model evaluation using cross-validation, which is valid for a general classifi-
cation scenario, might not give an adequate assessment of the accuracy of an intrusion detection
system. This is because it is rather prone, if only the folds are not formed adequately, to violate
the requirement of the task, according to which the test data is not supposed to contain traffic
with anomaly types that were seen on training. Indeed, the benchmark intrusion detection KDD
Cup 1999 dataset [Archive, 1999] carefully respects the above property. In contrast, including
the test data into the training loop makes the system diverge from the realistic setting.

In our work, we follow the guidelines of the KDD Cup 1999 competition in the evaluation of
the results, i.e., we train the models using only training data, and evaluate them on test data. In
our attempt to apply cross-validation, the classification accuracy of previous methods increased
by more than 20% compared to the standard setting. This confirms that 95% of accuracy is an
unrealistic number, and consequently, new models are needed for operational scenarios.

The above experiment also suggests that classification methods essentially tend to model
the training data distribution while the situation in a network is subject to continuous changes,
which imposes onto a system a requirement of adaptability. The supervised clustering approach
we explore in this work addresses this issue. Its main difference from the classification view of
the problem is that it is based on capturing the similarity patterns between traffic instances, thus
is able to adapt to changes in the network environment.

Our operational hypothesis is that the categorization of the preceding traffic can be available
with some delay. For example, after a certain time if no alarm has been received by users, system
administrators, or lower-level automatic systems, we can consider that the given traffic is not
affected by anomalies. Then, we can rely on such data when classifying the new instances. Our
model dynamically exploiting the newly coming data improve the accuracy of the basic systems
by more than 12% points. The strong side of the proposed approach is its ability to adapt to the
network situation without the need to be retrained on more recent data.

In the following sections, we give a detailed description of the proposed modelling and
provide the results of the experimental analysis in Section 4.5.

Structural Representation of Network Data 23

4.2 Structural Representation of Network Data

We use LSPE approach of Fernandes et al. [2012, 2014] described in Section 2.2.2 for supervised
clustering of the network data. This choice is motivated by the fact that, in a network scenario,
we deal with a continuous data flow with a naturally defined order.

To train an algorithm, we need a labeled set: a collection of points pre-assigned to some
clusters. Applied to a network scenario, we form directed graphs out of the pairwise ”links”
between transmission data points1 (Figure 4.1). In these graphs, each node ti, i ≥ 1 corresponds
to a network transmission, t0 denotes the artificial root node. For illustration purposes, we
flatten here the graph structures presented in Figure 2.1b to emphasize the continuity of the data
flow, moreover, the graph in Figure 4.1 can be extended to the right continuously. We connect
each transmission node ti to each of the preceding transmission nodes t0, t1, ..., ti−1. Each edge
corresponds to a pair of transmission points (ti, tj), where i < j; it is associated with pairwise
features and labeled 0 or 1 (in the training phase), depending on whether ti and ti fall into the
same cluster or not. We assume that all transmissions of the same class type belong to the same
cluster, e.g., in NSL-KDD, we consider all the normal traffic points to fall into one cluster, as
well as all the points from each of the fine-grained attack types (back, buffer overflow, ftp write,
guess passwd, etc.) to be grouped together as well.

4.3 Features from Raw Network Sensor Data

Each transmission data point t is associated with a number of transmission parameters or at-
tributes ψ(t). We extract the pairwise feature representation φ(ti, tj) as follows: i) from the pair
of the continuous-valued attributes ψf (ti) and ψf (tj), we form a pairwise feature with value:

φf (ti, tj) = maxf −minf + |ψf (ti)− ψf (tj)|,

1We use interchangeably throughout the paper the terms ’traffic instance’, ’transmission’, ’transmission data point’, ’con-
nection’, ’connection record’, ’connection data point’.

Figure 4.1: Graph of pairwise links between transmission nodes.

24 Structural Clustering in Network Environments

where maxf and minf are the max and the min values, correspondingly, of the ψf over all the
data points in the training set; and ii) from each binary attribute ψf , we make 3 binary features:
1[ψf (tj)=1&ψ(ti)=1], 1[ψf (tj)=1Yψ(ti)=1], and 1[ψf (tj)=0&ψ(ti)=0], where 1[·] is the indicator function,
same applied to each instantiation of each symbolic attribute.

The introduced pairwise features φ(ti, tj) are destined to express the similarity between the
points of a pair. This way, the approach is different from the classification-based methods, as it
enables the model to learn, based on these features, to predict how similar transmissions are and
to group together also transmissions of the type crossing the data plane for the first time based
on such similarities.

4.4 Inference

At the prediction stage, the algorithm computes weights for each edge using the learned model.
Then we do the inference, which consists in finding the maximum spanning trees (Figure 4.2) on
the sample graphs. Following the LSPE inference described in Section 2.2.2, we find such trees
by iterating over the transmission nodes tj and selecting for each of them the in-coming edge
with the highest score. This way, each transmission node tj is connected to another preceding
node ti with which they have the highest similarity according to the model. This means it is
connected to the cluster to which ti belongs. The tree in Figure 4.2 is one of the two possible
ways to represent two clusters {t1, t4, t5} and {t2, t3} (alternatively, t5 can be connected to
t4). An advantage of such a graph-based model is its incremental nature, which enables a new
coming data point to be clustered at a cheap cost within the current clustering without the need
to reconsider the previous clustering decisions.

If tj is the first occurrence of a particular class type in the data flow, the link from it to
the artificial node (tj, t0) is considered correct (having label 1). At the prediction stage, if the
model decides to link a new coming point tj to t0, it is probable that tj belongs to an unseen
traffic class type, therefore a potential anomaly. This way, in our experiments with NSL-KDD,
we declare anomalous i) points that are predicted to be connected to the clusters of the known
(previously seen) anomalous type, ii) points connected to t0, and iii) points connected to ii), or,

Figure 4.2: Spanning tree.

Experimental Analysis 25

inversely, everything that is not connected to the normal traffic type cluster.

4.5 Experimental Analysis

4.5.1 Data description

We use an intrusion detection NSL-KDD2 dataset [Tavallaee et al., 2009] which is a version of
the most widely used benchmark KDD Cup 1999 dataset [Archive, 1999] solving some of its
deficiencies, such as redundancy and duplicate records. The dataset is composed of a variety of
connection records from the U.S. Air-force military network. The connection records attributed
to normal traffic are annotated as one class type. The attack connections are labelled with 38

attack types, among which, 14 appear only in test data. Overall, there are approximately 126K

training and 22.5K test single connection vectors with 41 attribute each.

4.5.2 Experimental setup

LSP model

The proposed LSP model is implemented on the basis of the Latent SVMstruct Yu and Joachims
[2009] implementation3.

Traning data sampling In theory, the structural model should be fed with a series of structured
examples of the form (x,y), where x are sets of transmission nodes, and y – clusterings of
such sets, from which we construct candidate graphs as described in Section 4.2. Instead, in
the current scenario, such kind of transmission sets are not given, neither we intend to split
the training data to obtain them since otherwise we risk to break the eventual continuity of the
network traffic. What we do instead is considering the whole training set of transmissions as a
continuous x = {t0, t1, ..., tN}, where N equals to the original training set size. Due to the huge
size of the training set, for each node ti, we limit the number of candidate arcs to 100 from the
preceding nodes ti−100, ..., ti−1, which will later refer to as referent points, plus one link from
the root (t0, ti). LSP updates (Line 8 of Algorithm 2) are now interleaved with inference: we
update on tree segments encompassing nodes tj, ..., tk with their in-coming arcs, where tk is the
first transmission node on which a mistake occurs at max-violating inference after the previous
update, ended with tj−1.

2http://nsl.cs.unb.ca/NSL-KDD/
3www.cs.cornell.edu/˜cnyu/latentssvm/

http://nsl.cs.unb.ca/NSL-KDD/
www.cs.cornell.edu/~cnyu/latentssvm/

26 Structural Clustering in Network Environments

Baselines

We compare the LSP approach against two classification baselines: SVM and perceptron. For
the SVM baseline, we employ LIBSVM version 3.20 package [Chang and Lin, 2011]. We use
our implementation of the binary perceptron.

Features

In all the three cases, at the preprocessing phase, we linearly scale the continuous-valued at-
tributes to lie in the interval of [0, 1] using LIBSVM. The rest, binary and symbolic-valued,
attributes are converted into binary features as described in Section 4.3.

Evaluation

All the reported models are trained on the full training set and evaluated on the test set, no
parameter tuning applied. We report the performance of the models in terms of the overall
accuracy, detection rate, and false positive alarm rate:

Overall accuracy =
TP + TN

TP + TN + FP + FN
,

Detection rate =
TP

TP + FN
,

FP rate =
FP

FP + TN
,

where TP is the number of correctly identified anomalies, FP is the number of normal traffic
instances incorrectly identified as anomalous, TN - correctly identified normal traffic, and FN
- incorrectly identified as normal.

4.5.3 Results

For making a decision regarding each test connection point, the LSP model relies onto a set of
candidate referent points. In a realistic scenario, the points from the network history for which
the type is already known could be used for reference. In this regard, two relevant issues arise:
i) how to select the referent points, and ii) how many.

Standard classification scenario

In the evaluation setting of NSL-KDD, as a standard classification scenario, the correct labels
are ”available” only for training instances. Therefore, we first evaluate LSP performance using

Experimental Analysis 27

training instances as candidate references for each of the test instances. In Table 4.1, this corre-
sponds to LSP TR model. In this experiment, we randomly select a subset of 280 training points
containing representatives of all the training classes proportionally to the class sizes. Let us call
this subset TR. In the mentioned model, TR points are used as referent for drawing predictions
for each of the test points. LSP stays on a par with the baseline SVM models, with linear and
polynomial kernels of degree 3. As mentioned in Section 4.1, there is a big gap between these
numbers and 10-fold cross-validation results in Table 4.2 which we obtained for SVM.

Model Overall
accuracy

Detection
rate

FP rate

LSP
TR 75.82 59.35 2.42

TR + TEpred. d = 100 74.30 56.86 2.65

TR + TEgold d = 100 89.18 86.61 7.85

TR + TEgold d = 200 89.24 86.82 7.56

TR + TEgold d = 1000 88.55 85.23 7.06

TR + TEgold d = 2000 88.26 84.44 6.69

SVM
linear 74.96 61.58 7.34

polynomial, degree 3 76.83 60.50 1.59

Perceptron
76.28 66.09 8.37

online update on d test items d = 100 77.46 67.44 8.20

Table 4.1: Comparison of anomaly detection models on the NSL-KDD test set.

Using recent traffic for reference

In the following scenarios, we aim to check the impact on the LSP performance of adding other
test points to the test point’s reference list, those from its close or relatively close history. For
classifying each point, we compose a set, TE, of 100 consequent test points, preceding it and
placed at distance d from it, e.g., d = 100 meaning that for point tj , TE includes points ti
satisfying d < j − i ≤ d + 100. Note that by doing so we exclude d immediate preceding
points, allowing some delay.

In such first experiment, if a point is predicted to be linked to some of the TE points, it
receives the predicted label of that point, (result subscripted pred. in Table 4.1). The results
slightly worsen compared to using only TR for reference. Analysing the test output in this
evaluation scenario reveals that the link predictions were reasonably good, however, a small
number of prediction errors in the labels of TE points, propagated down through the test set,
causes the observed drop in the classification accuracy. If instead the model is aware of the real
labels of the TE points, the accuracy becomes considerably better (result subscripted gold). This
reflects the main property of the LSP model of being able to learn from some connection point

28 Structural Clustering in Network Environments

kernel linear polynomial, degree 3
Overall
accuracy 97.41 95.57

Table 4.2: SVM accuracy on the NSL-KDD training set in 10-fold cross-validation.

pairs and be successfully applicable to some rather different ones, since based on capturing
the point similarity rather than the training data distribution. In a real network environment,
this property is particularly valuable, as such a model is less dependent on the changes in the
network traffic over time.

To exclude eventual homogeneity in the distribution of the class types of neighbouring test
data points, we explore larger values of d. Increasing d preserves relatively high accuracy. It
should be noted that some part of the observed small drop is due to the fact that, in the current
evaluation scenario, for the first d+ 100 test points, TE = ∅.

Comparison to online learning

To make a fair comparison to LSP using distant gold labels, we introduce another baseline –
online binary perceptron with weight averaging. In our experiment, this model converges fast
on the training set reaching decent overall accuracy of 97.19%, detection rate of 96.90%, and
false positive rate of 2.48%. However, as it is often the case, it does not generalize that well on
the unseen test data, as seen from the bottom section of Table 4.1. The perceptron reaches the
generalization levels of SVM and LSP being slightly better in accuracy and detection rate and
slightly worse in false positive alarm rate.

An appropriate model variant for a network environment could be the one allowing efficient
real-time retraining. Perceptron can provide such functionality by performing online updates
on the records of new traffic instances coming to the network plane. The last line in Table 4.1
shows the performance of such a model. It corresponds to the previous standard perceptron
which we continue to update on the test data examples after being trained on the training set.
Before drawing a prediction for the test point tj , we make an update on the test point tj−d. This
way, the model sees all the traffic except for the preceding d connections. The accuracy gain
due to such online updates on test, not exceeding 1.4% points, is much lower compared to that
of LSP relying on the ”recent” traffic. Moreover, perceptron requires a constant control as it
risks to be skewed towards eventual predominating traffic and not to be able to adapt fast to the
change of the network situation. At the same time, LSP has an advantage that it does not even
require any retraining and adaptation.

Summary 29

4.6 Summary

The supervised clustering approach proved beneficial for intrusion detection in network traffic
environments. The method has an incremental nature, which is able to effectively use recent
network information in a structural way. It is based on the similarity patterns between the traffic
instances arising in a network rather than on the properties and characteristics of individual
instances. This enables the model to adapt efficiently to the eventual changes in the traffic
situation without the need to be retrained. Such essential properties deliver a valuable accuracy
gain with respect to the basic approaches, making it a good candidate for employment in a
realistic network environment.

In this study, we focused primarily on the comparison of machine learning approaches to
intrusion detection, without their in-depth enhancement using different data mining techniques
such as feature engineering, and instance and feature selection. Regarding this, the proposed
LSP approach can be improved in a number of ways.

The following several directions of enhancing the LSP model can be explored: i) finding the
best method for selecting the referent candidate instances (or representatives of the preceding
clusters) for a given new coming instance and in general, ii) exploiting the information about
the coarse-grained anomaly categories (DOS, R2L, U2R, probing) of connection instances, iii)
choosing effective feature representations considering also those of higher orders, spanning
more that two instances, iv) testing the model’s ability to be optimized to different network
metrics most crucial in particular environments, either by means of tuning or directly, by inject-
ing as a loss function in the learning algorithm.

30 Structural Clustering in Network Environments

Chapter 5

Structured Prediction for Coreference
Resolution

Latent structured prediction theory proposes powerful methods such as Latent Structural SVM
(LSSVM), which can potentially be very appealing for coreference resolution (CR). In contrast,
only small work is available regarding the use of LSSVM. Mainly, the structured approaches
target the latent structured perceptron (LSP). In Section 5.2, we present a practical study com-
paring online learning with LSSVM. We analyze the intricacies that may make initial attempts
to use LSSVM fail, i.e., huge training time and the much lower accuracy produced by the
Kruskal’s spanning tree algorithm. In this respect, we also propose a new feature selection ap-
proach for improving system efficiency. The results show that LSP, if correctly parameterized,
produces the same performance as LSSVM, being at the same time much more efficient.

An essential aspect of structured prediction is the evaluation of an output structure against
the gold standard. Especially in the loss-augmented setting, the need of finding the max-
violating constraint has severely limited the expressivity of effective loss functions. In this
respect, CR offers an interesting setting because it uses complex measures, e.g., MELA, which
has been designed by domain experts based on semantic considerations. Consequently, defin-
ing an optimal loss function for CR is rather challenging as it requires a deep knowledge of this
specific domain, added to, already complex, inherent clustering nature of the task. At the same
time, the structured prediction approaches, LSSVM and LSP, optimize simple loss functions
preserving the factorization of the objective onto the underlying structure.

In Section 5.3, we show that complex loss functions can be (i) automatically learned also
from the controversial but commonly accepted CR measure – MELA, and (ii) successfully used
in learning algorithms. We study the advantages of jointly learning loss functions and models,
in Section 5.4. The accurate model comparison on the well-known CR benchmark dataset from
CoNLL–2012 Shared task demonstrates the benefit of more expressive losses, although we have

32 Structured Prediction for Coreference Resolution

to trade off the exact inference for enabling their use in the learning algorithm.

5.1 Coreference Resolution Task

We start by recalling the definition of coreference resolution and its benchmark evaluation met-
ric MELA – Mention, Entity, and Link Average score (MELA) [Pradhan et al., 2012].

5.1.1 Definition

Coreference Resolution (CR) aims at linking together all the mentions referring to the same
entities entities of a target text. CR is typically modeled as a clustering problem. Given x =

{mi}Mi=1, a set of entity mentions contained in the input text, the desired output y is a set of
the corresponding mention clusters. For example, the text in Figure 5.1 contains three entities,
Tona, Australian Government, and China, and several mentions of them, m1,m2, ...,m7. The
target y is then composed of three clusters {m1, m6}, {m2, m3, m5, m7} and {m4}.

5.1.2 Task Evaluation

Evaluation of the output of coreference systems is based on comparing the gold mention clusters
or key entity set K =

⊔
i ki with the response entity set R =

⊔
j rj , produced by a system. K

is a disjoint union of sets ki, each of which contains mentions referring to the same entity,
equivalently for R. Note that real-life coreference systems are trained to predict clusters on
mentionsM detected by the system. Mention setM does not always coincide with the mentions
comprised in the key entity set K. Thus, the ground truth clustering y supplied to the structured
prediction learner is a contraction of K onto M . Let us denote the gold standard clustering
corresponding to K as ỹ. R is the output ŷ.

(Tona, the Australian foreign affairs minister)m1 , recently said in Sydney that (the
Australian government)m2 will maintain a one - China policy, and that the rela-
tionship between (Australia)m3 and (China)m4 is a central point of (Australia’s)m5

foreign policy. (Tona)m6 made this announcement while explaining (Australia’s)m7

Asian policy structure to foreign reporters.

Figure 5.1: Text fragment with seven highlighted mentions from the English part of the corpus from
CoNLL 2012-Shared Task1.

Coreference Resolution Task 33

5.1.3 MUC

MUC coreference score [Vilain et al., 1995] is based on the number of correctly predicted
links between mentions. The number of links required for obtaining the key entity set K
is
∑

ki∈K(|ki| − 1), i.e., cardinality of each entity minus one. MUC recall computes what
fraction of these were predicted, and the predicted were as many as

∑
ki∈K(|ki| − |p(ki)|) =∑

ki∈K(|ki| − 1− (|p(ki)| − 1)), where p(ki) is a partition of the key entity ki formed by inter-
secting it with the corresponding response entities rj ∈ R, s.t., ki ∩ rj 6= ∅. This number equals
to the number of the key links minus the number of missing links, required to unite the parts of
the partition p(ki) to obtain ki. More precisely, the formula for MUC recall is

Recall =

∑
ki∈K

(|ki| − |p(ki)|)∑
ki∈K

(|ki| − 1)
. (5.1)

The MUC Precision is computed by interchanging the roles of the key and response entities,
i.e.,

Precision =

∑
rj∈R

(|rj| − |p(rj)|)∑
rj∈R

(|rj| − 1)
. (5.2)

5.1.4 B3

B3 is a mention-based metric [Bagga and Baldwin, 1998]. B3 computes Precision and Recall
individually for each mention. For mention m: Recallm =

|kmi ∩rmj |
|kmi |

, where kmi and rmj , sub-
scripted with m, denote, correspondingly, the key and response entities into which m falls. The
over-document Recall is then an average of these taken with respect to the number of the key
mentions:

Recall =

∑
ki∈K

∑
m∈ki

Recallm∑
ki∈K
|ki|

=

∑
ki∈K

∑
rj∈R

|ki∩rj |2
|ki|∑

ki∈K
|ki|

(5.3)

B3 Precision is computed by switching as well the roles of the key and response entities.

5.1.5 CEAF

CEAFe computes similarity between key and system entities after finding an optimal alignment
between them. Using ψ(ki, rj) =

2|ki∩rj |
|ki|+|rj | as the entity similarity measure, it finds an optimal

one-to-one map g∗ : K → R, which maps every key entity to a response entity, maximazing
an overall similarity Ψ(g) =

∑
ki∈K ψ(ki, g(ki)) of the example. This is solved as a bipartite

34 Structured Prediction for Coreference Resolution

matching problem by the Kuhn-Munkres algorithm. Then Precision and Recall are Ψ(g∗)∑
rj∈R

ψ(rj ,rj)

and Ψ(g∗)∑
ki∈K

ψ(ki,ki)
, respectively.

Mention, Entity, and Link Average (MELA)

MELA is the unweighted average of MUC [Vilain et al., 1995], B3 [Bagga and Baldwin, 1998]
and CEAFe (CEAF variant with entity-based similarity) [Luo, 2005; Cai and Strube, 2010]
scores, having heterogeneous nature. MELA computation is rather expensive mostly because
of CEAFe. Its complexity is bounded by O(Ll2 log l) [Luo, 2005], where L and l are, corre-
spondingly, the maximum and minimum number of entities in y and ŷ. Computing CEAFe is
especially slow for the candidate outputs ŷ with a low quality of prediction, i.e, when l is big,
and the coherence with the gold y is scarse.

5.2 Comparison of Structured Prediction Methods for Coreference Reso-
lution

CR research has shown effective applications of structured prediction, e.g., the latent structured
perceptron (LSP) by Fernandes et al. [2012, 2014] obtained the top rank in the CoNLL-2012
Shared Task [Pradhan et al., 2012]. There has been an ample exploration of LSP variants [Chang
et al., 2011; Björkelund and Kuhn, 2014; Lassalle and Denis, 2015], and also of SGD-like
methods [Chang et al., 2013; Samdani et al., 2014; Peng et al., 2015; Kummerfeld et al., 2015].
However, LSSVM by Yu and Joachims [2009], which offers theoretical guarantees on reducing
the error upper-bound, is scarcely studied. The major advantage of such theory is the possibility
to stop the optimization process, carried out using the Concave-Convex Procedure (CCCP) by
Yuille and Rangarajan [2003], when the approximation to the optimum is close as much as we
want. In contrast, the gradient descent operated by perceptron-like algorithms does not allow
us to estimate how much our solution is far away from the optimum. In other words, we do not
know at which epoch our algorithm should stop. Thus, LSSVM holds an important advantage
over online methods.

We empirically compare LSSVM with two online learning algorithms, LSP and LSPA (a
structured passive-aggressive (PA) algorithm [Crammer et al., 2006] that we extend with latent
variables) using the exact setting of the CoNLL-2012 dataset. This preserves comparability
with the work in CR. We use the latest version of the MELA scorer2.

Implementing a sound comparison was rather complex as it required testing all the algo-
rithms in the same conditions and optimally setting their parameters. In particular, LSSVM and

2conll.cemantix.org/2012/software.html

conll.cemantix.org/2012/software.html

Comparison of Structured Prediction Methods for Coreference Resolution 35

LSP adopt different graph models and use different methods to extract spanning trees from a
document graph, namely, Kruskal’s [Kruskal, 1956] and Edmonds’ [Chu and Liu, 1965; Ed-
monds, 1967]. Although both extract optimal spanning trees, they provide different solutions,
which critically impact on accuracy and efficiency. The latter is problematic as LSSVM requires
too long time for convergence on the large CoNLL dataset.

To tackle this issue, we apply two kinds of efficiency boost: feature and mention pair selec-
tion. Feature selection is rather challenging as the CR feature space is different from a standard
text categorization setting. We cannot not apply a filtering threshold on simple and effective
statistics such as document frequency since almost all the features appear in many documents.
For solving this problem, we explore the use of efficient binary SVMs for computing feature
weights, which we used for our selection. Additionally, we also provided a parallelized version
of LSSVM to afford the computation requirement of the full CoNLL dataset.

The results of our study show that LSSVM can be trained on large data and achieve the state
of the art of online methods. However, the latter using optimal parameters can even surpass its
accuracy and outperform the current state of the art of LSP by 2 points. Finally, our feature
selection algorithm is rather efficient and effective.

5.2.1 Algorithm equivalence

LSSVM, LSP, LSPA can reach the same accuracy subject to different convergence rates and
bounds. Indeed, LSSVM solves an optimization problem using a CCCP iteration, the cost of
the latter is nearly a cost of one Structural SVM problem, which in turn is polynomial [Tsochan-
taridis et al., 2004].

LSP and LSPA require linear times, however, in contrast to LSSVM, they do not have stop-
ping criteria - the number of epochs T has to be set. The CCCP procedure is guaranteed to
converge to a local minimum or a saddle point. LSP and LSPA, in essence, perform an update
which is equivalent, up to some constant, to an SGD update, with a gradient taken with respect
to a document variable.

They can approach the local minimum as close as possible, which is supported by our ex-
periments, reflecting the results compatible among the three algorithms. For LSP and LSPA
though, we do not know a priori when to stop training. While, for LSPA, there are error bounds
derived by Crammer et al. [2006], there are not for LSP at all.

However, for CR, as it can be seen from our experiments, values of T for LSP and LSPA can
be reliably selected on a validation set for a fixed training data size and a choice of features/in-
stances. Since the algorithms optimize a surrogate objective, it is often the case that accurately
tuned LSP and LSPA result in higher performance than LSSVM, not mentioning an excessive
complexity of the latter.

36 Structured Prediction for Coreference Resolution

0 10 20 30 40 50

52

54

56

58

60

number of epochs, T

M
E

L
A

LSPE LSPAE LSPO (T = 5)
LSPK LSPAK

Figure 5.2: LSP learning curves, with 100 random documents used for training (all the features, all the
edges), tested on all the development documents.

5.2.2 Experimental study

Setup

Data We performed our experiments on the English part of the corpus from CoNLL 2012-
Shared Task3, containing 2,802, 343 and 348 documents for training, development and test sets,
respectively.

Evaluation measure We report our coreference results in terms of the MELA score [Pradhan
et al., 2012] computed using the version 8 of the official CoNLL scorer.

Models and software As baselines, we used (i) the original implementation of the Latent
SVMstruct 4 (denoted as LSSVMK) performing inference on undirected graphs using Kruskal’s
spanning algorithm, (ii) LSPE – our implementation of the LSP algorithm with a tree modeling
of Fernandes et al. [2012, 2014] and Edmonds’ spanning tree algorithm, (iii) cort – coreference
toolkit by Martschat and Strube [2015], precisely its antecedent tree approach, encoding, as well
as LSPE, the modeling of Fernandes et al. (denoted as LSPO, where ”O” stands for Original).

In LSPE, the candidate graph, by construction, does not contain cycles, and the inference
by Edmonds’ algorithm is reduced to selecting for each node an incoming edge with a maxi-
mum weight, in other words, the best antecedent or no antecedent for each mention. Thus, the
difference between our LSPE and cort is only due to a different implementation.

Along with the baselines, we consider the following models: (i) LSSVME, i.e., LSSVM
with the latent trees and Edmonds’, (ii) LSPK, i.e., LSP using Kruskal’s on undirected graphs,
and (iii) two structured versions of the PA online learning algorithms, LSPAE and LSPAK.

3conll.cemantix.org/2012/data.html
4www.cs.cornell.edu/˜cnyu/latentssvm/

conll.cemantix.org/2012/data.html
www.cs.cornell.edu/~cnyu/latentssvm/

Comparison of Structured Prediction Methods for Coreference Resolution 37

Model Parameters
LSSVMK C = 100.0 r = 0.5

LSSVME C = 100.0 r = 1.0

LSPK C = 1000.0 r = 0.1

LSPE C = 1000.0 r = 1.0

Table 5.1: Best parameter combinations for structural approaches selected on CoNLL-2012 English
development set.

We employed the cort toolkit both to preprocess the CoNLL data and to extract candidate
mentions and features (the basic cort feature set).

As emphasized by Fernandes et al., averaging the perceptron weights renders the learning
curve rather smooth. We applied weight averaging in all the LSP and LSPA variants.

Parametrization All the models require tuning of a regularization parameter C and of a spe-
cific loss parameter r. In LSSVMK and LSPK, r is a penalty for adding an incorrect edge; in
LSSVME and LSPE, r is a penalty for selecting an incorrect root arc. We select the param-
eters on the entire development set by training on 100 random documents from the training
set. We pick up C from {1.0, 100.0, 1000.0, 2000.0}, the r values for LSSVMK and LSPK from
{0.05, 0.1, 0.5}, and the r values for LSSVME and LSPE from the interval [0.5, 2.5] with step
0.5. The values reported in Table 5.1 were used for all our experiments.

Selecting the epoch number A standard previous work setting for the number of epochs T of
the online learning algorithms is 5 [Martschat and Strube, 2015]. Fernandes et al. [2012, 2014]
noted that T = 50 was sufficient for convergence. Figure 5.2 shows that setting T is crucial for
achieving a high accuracy. We also note that the dataset size and the selected sets of features
and/or instances highly affect the best epoch number, thus, for each particular experiment, we
selected the best T from 1 to 50 on the dev. set.

Model comparison

Table 5.5 reports the results of the models trained on the entire training set, and the numbers
of epochs Tbest for LSP and LSPA, tuned on the development set. LSPO denotes the result of
our run of the original cort software. We note that (i) LSP and LSPA perform on a par in both
the settings; (ii) the latent trees used with the Edmonds’ algorithm outperform the undirected
graphs used with Kruskal’s; (iii) LSSVME is around one point less than LSPE and LSPAE;
(iv) the training time of LSSVME is one order of magnitude longer than that of LSPE; and (v)
LSSVMK took more than 1.5 months to converge.

38 Structured Prediction for Coreference Resolution

Model Dev. Test Tbest Time, h

LSSVMK 61.03 59.89 – 1164.09

LSSVME 62.91 61.88 – 210.01

LSPK 61.08 60.00 10 27.77

LSPAK 61.15 60.16 6 47.73

LSPE 64.01 63.04 43 32.55

LSPAE 64.14 62.81 8 37.33

LSPO 62.92 62.00 5 –
∗LSPO 62.31 61.24 5 5 –

Table 5.2: System results on CoNLL-2012 English development and test sets, using all the training
documents for training. Tbest is evaluated on the development set. ∗LSPO is the result published in

Martschat and Strube [2015].

104 105 106 107

5
10
15
20
25
30
35

N

H
ou

rs

training time, T = 50

104 105 106 107

30

40

50

N

#
of

ep
oc

hs

Tbest on development

104 105 106 107

45

50

55

60

65

N

M
E

L
A

performance on development

104 105 106 107

45

50

55

60

65

N

M
E

L
A

performance on test

Tbest on development T = 5 T = 50

Figure 5.3: LSPE training time and accuracy with respect to the number of features N , selected
according to the binary classifier weights.

Feature selection

The number of distinct features extracted from cort and used for training in the above exper-
iments is around 16.8 millions. Training systems with such a large model size is nearly pro-
hibitive, this especially concerns SVMs, which may require a substantial number of iterations
for convergence.

We tried to filter out less relevant features removing those that appear in a fewer number
of documents but these were too few, e.g., less than 1% of all the features have document
frequency ≤ 3. Thus, we proposed a feature selection technique consisting in (i) training a
binary classification model, ~w, on all mention-pair feature vectors and (ii) removing features
with lower absolute weights in ~w.

Figure 5.3 plots the accuracy of CR models, using different numbers of features selected as
above. Interestingly, only retaining 5% of the features (N = 106) results in a small loss.

Comparison of Structured Prediction Methods for Coreference Resolution 39

810 15 20 all

5
10
15
20
25
30
35

d

H
ou

rs

training time, T = 50

810 15 20 all
20

30

40

d

#
of

ep
oc

hs

Tbest on development

810 15 20 all

60

61

62

63

64

d

M
E

L
A

performance on development

810 15 20 all

60

61

62

63

d

M
E

L
A

performance on test

Tbest on development T = 5 T = 50

Figure 5.4: LSPE training time and accuracy with respect to d (max number of candidate antecedent
edges for each mention).

Candidate edge selection

Using all the candidate edges in the CR graph is another cause of computational burden, which
is overcome by the best CR systems by exploiting heuristic linguistic filters.

In cort, filtering is not implemented and all the candidate edges are used for training. We
simply adopted one of the filters, the so-called sieves, of Fernandes et al. [2012, 2014] to reduce
the number of candidate links. Such sieve retains links between two mentions only if their
distance is lower or equal to d, i.e., we consider only links (mi,mj) with |j− i| ≤ d. Fernandes
et al. use d = 8.

Figure 5.4 shows that, although the training time is reduced considerably, the accuracy suf-
fers. In our experiments, we used d = 20, which causes a loss smaller than 0.5 in MELA.
It should be noted that we also had to enable the LSSVM implementation to operate on non-
complete candidate graphs as it was originally designed for making inference on fully-connected
graphs only [Haponchyk and Moschitti, 2014].

Results on filtered data

Table 5.3 reports the results using filtering corresponding to the setting N = 106, d = 20. We
note that (i) the training time is reduced by more than 10 times; (ii) LSSVMK is outperformed by
LSPK (2 points) and performs worse than LSSVME; (iii) LSPAK seems to generalize better on
filtered data than LSPK; and (iv) w.r.t. no filtering, LSSVME faces a lower drop in performance
than LSPE does, approaching nearer to the latter.

5.2.3 Discussion

The results of our study are the following:

(i) we show that LSSVM can be applied to a realistic CR dataset and achieve the same state

40 Structured Prediction for Coreference Resolution

Model Dev. Test Tbest Time, h

LSSVMK 56.16 54.50 – 23.06

LSSVME 62.82 61.75 – 24.09

LSPK 57.98 56.81 6 1.82

LSPAK 58.69 57.38 3 3.50

LSPE 63.11 61.98 49 1.62

LSPAE 63.28 62.11 6 1.98

Table 5.3: System results on CoNLL-2012 English development and test sets, using all training
documents with filtered features (N=106) and edges (d=20).

of the art of the online methods;

(ii) although the optimum found by CCCP produces better results than online learning algo-
rithms, the latter, when parameterized, provide similar accuracy, while at the same time
being much more efficient;

(iii) in this respect, we studied the optimal model parameterization and found that LSP can be
highly improved, almost 2 points (63.04 vs. 61.24) over the previous best LSP result, by
accurately selecting the number of epochs on a validation set;

(iv) the results of all the approaches using an undirected graph model coupled with Kruskal’s
are 3 − 7 absolute percent points lower than their results obtained with a directed tree
model coupled with Edmonds’. Our outcome is supported by Chang et al. [2013] who
employed a fast SGD approach with the best-left-link inference, which is equivalent to
the Edmonds’ algorithm applied to the directed latent trees. They compared the previous
inference approach with the spanning graph algorithm by Kruskal’s on undirected graphs.
They explain that the better accuracy of the first method is due to the fact that the latent
tree structure considers the order of the mentions in the document. Apart from that, by
using an artificial root, it implicitly models the cluster initial elements (i.e., discourse-new
mentions).

(v) The use of direct trees in Edmonds’ method delivers comparable results among all the
algorithms; and

(vi) our new approach to feature selection based on binary SVMs turned out to be efficient and
effective and, together with mention pair instance filtering, sped up training by 88% only
losing 0.15 of a point in accuracy.

Learning and Optimizing a Complex Clustering Metric 41

5.3 Learning and Optimizing a Complex Clustering Metric

CR provides an interesting application scenario of structured output methods in NLP where
complex measures defined by domain experts cannot be optimized by simple loss functions.

As seen from Section 5.2, recent methods based on structured perceptron, e.g., Fernandes
et al. [2012, 2014]; Björkelund and Kuhn [2014]; Martschat and Strube [2015], provide efficient
solutions representing h as trees. The efficiency and effectiveness of these models come from
the optimization of simple loss functions, essentially based on the number of errors in detecting
graph edges. These functions may be suitable for optimizing a measure of a general clustering
task, where clusters do not have any specific semantic meaning, which is not the case for CR.
For instance, let us consider the example in Figure 5.1 and suppose that System 1 outputs the
correct cluster {m1, m6} but mistakes all the other edges, whereas System 2 correctly detects
{m2,m3} only. The two systems are equivalent considering the count of correct/incorrect edges
but any expert of CR would judge the first system more accurate since it correctly detects an
entire entity, i.e., Tona.

This kind of analyses has led to the design of many measures, e.g., eight different versions
of the MELA score [Pradhan et al., 2012]. MELA has received the largest consensus from the
CR community, although several drawbacks have been pointed out [Moosavi and Strube, 2016],
e.g., simple loss functions for structured prediction cannot optimize it, thus motivating research
directions on direct measure optimization [Le and Titov, 2017]. CR setting is extremely com-
plex for machine learning designers as they need to closely work with the CR domain experts
to model loss surrogates capturing the intuition over the specific domain measure.

We study the possibility to automatize the transfer of the expert knowledge on the required
measure to the learning algorithm. We focus on the CR application domain as it offers the
possibility of learning loss functions that optimize structured prediction algorithms over com-
plex domain-specific measures. We follow the general framework for learning with a learned
loss defined in Chapter 3. More in detail, first, we learn MELA using efficient linear regres-
sion models based on aggregate features, e.g., Precision, Recall, and their approximaitons. We
generate labelled training data for our regressors, applying MELA to the structures generated
during the conventional structured prediction learning. It should be noted that MELA requires
the alignment of mentions between the generated output and the gold standard mention cluster-
ing. This results in a non-convex and non differentiable function. Moreover, the running time
is very large, preventing any possibility to use MELA directly in a learning algorithm.

Secondly, since we could not find a factorization of the corresponding loss ∆ρ, we designed
a latent structured perceptron LSPρ that can optimize non-factorizable loss functions on CR
graphs. We experimented with LSP using ∆ρ and other traditional loss functions using the
same setting of the CoNLL–2012 Shared Task on CR [Pradhan et al., 2012], thus enabling an

42 Structured Prediction for Coreference Resolution

exact comparison with previous work. In particular, we tested our LSPρ on different conditions,
e.g., with smaller feature spaces, languages and datasets. The results show that (i) ∆ρ can be
effectively learned and improve the state of the art of the LSP models, (ii) our approach requires
much fewer number of epochs for convergence than the counterparts; and (iii) it delivers a large
improvement in a setting, where fewer manually engineered features are available, e.g., on the
Arabic CoNLL–2012 data. It is worth noting that ∆ρ learned for the English task can be applied
to a different domain (and language) – the Arabic CR task, demonstrating that ∆ρ is invariant
to the different CR settings, as expected.

Thirdly, we studied the influence of the joint learning of a loss function and models utilizing
it (see algorithms in Section 3.3 of Chapter 3). The further improvement produced by this ap-
proach suggests interesting research lines in learning models together with their loss functions.

5.3.1 Related work

SVMcluster by Finley and Joachims [2005] – the first structured output approach applied to CR,
introduced in Section 2.2.2 – enables the optimization of any clustering loss function (including
non-decomposable ones). The authors show experimentally that optimizing a loss function
with approximated clustering techniques results into a better classification accuracy in terms of
the same very loss. The loss functions explored in their work allow for fast computation, but
the approach is not viable for more realistic benchmarks (large dataset) and measures, such as
MELA.

SampleRank – a large margin stochastic approach for structured prediction of Wick et al.
[2011] – also directly optimizes a global but simple coreference loss, which has a certain degree
of factorizability, and does not need to be fully reevaluated for each local search step. Tarlow
and Zemel [2012] study the cases from image processing when a global loss does not factorize
over graphical structure. The authors’ remark that putting the complexity into the loss rather
than into the model facilitates inference on test: this also applies to our approach. The exam-
ined loss functions again allow for fast computation, thus, the main difficulty, as well as the
focus, is on customized methods for optimizing them, which include relaxing conditions on the
loss compounds, constructing dynamic programming procedures to facilitate the loss optimiza-
tion. Ranjbar et al. [2010] propose a piecewise linear approximation method for optimizing a
complex loss and a complex feature function. Their approximation requires a target complex
measure to be computed by the contingency table, which is not the case of MELA. In contrast,
the MELA induced loss by itself shows prohibitively expensive computation time, which our
work contributes to alleviate.

Regarding the direct optimization of CR metrics, the solution proposed by Zhao and Ng
[2010] consists in finding an optimal weighting (by beam search) of training instances, which
would deliver a classifier maximizing the target coreference metric on the same training set.

Learning and Optimizing a Complex Clustering Metric 43

Their models optimizing MUC and B3 delivered significant improvement on the MUC and
ACE corpora. Uryupina et al. [2011] benefited from applying genetic algorithms for the selec-
tion of features and architecture configuration by multi-objective optimization of MUC and the
two CEAF variants. Our approach is different in that the evaluation measure (its approxima-
tion) is injected directly into the learning algorithm. Throughout this work, we use structured
perceptron models due to their efficiency, however, one may think of optimizing our loss ap-
proximation using SVMcluster, SampleRank or an alternative structural perceptron update rule
derived by McAllester et al. [2010], which, in a long run, approximates the direct structural
loss minimization. Le and Titov [2017] derive a differentiable representation of B3. Clark and
Manning [2016] optimize B3 directly. For efficiency reasons, both the previous works omitted
the optimization of CEAFe, which is instead part of MELA.

5.3.2 Surrogate loss functions

When defining a loss function, it is very important to preserve the factorization along the graph
edges to exploit the efficient inference algorithms (see Sec. 5.3.4). Fernandes et al. use a loss
function that (i) compares a predicted tree ĥ against the gold tree h∗ and (ii) factorizes over the
edges in the way the model does. Its equation is

∆F (h∗, ĥ) =
M∑
i=1

1[ĥ(i)6=h∗(i)](1 + r · 1[h∗(i)=0]),

where h∗(i) and ĥ(i) output the parents of the mention node mi in the gold and predicted tree,
respectively, whereas 1[h∗(i)6=ĥ(i)] checks if the two parents are different, and if yes, a penalty of
1 (or 1 + r if the gold parent is the root) is added.

Yu and Joachims’ loss, based on undirected graphs, is computed as follows:

∆Y J(y, ŷ, ĥ) = n(y)− k(y) +
∑
e∈ĥ

l(y, e), (5.4)

where n(y) is the number of graph nodes, k(y) is the number of clusters in the ground truth y,
and l(y, e) assigns -1 to any edge e = (mi,mj) connecting nodes from the same cluster in y,
and r otherwise:

l(y, e) =

−1, if y(i) = y(j),

r, otherwise.

In our experiments, we employ both the loss functions, however, we measure ∆F , in contrast
to Fernandes et al., always against the gold label y and not against the current h∗, i.e., in the
way it is done by Martschat and Strube [2015], who employ an equivalent LSP model in their

44 Structured Prediction for Coreference Resolution

work. Thus, we adopt
∆F (y, ŷ, ĥ) =

∑
e∈ĥ

l(y, e), (5.5)

where

l(y, e) =

1 + r, if mi = root ∧mj does not start a new cluster in y,

1, if mi 6= root ∧ yi 6= yj ,

0, otherwise.

Note, that ∀h∗ ∈ H(x,y), ∀ĥ ∈ H(x), ∆F (h∗, ĥ) ≥ ∆F (y, ŷ, ĥ), as in Equation 5.5 we do
not penalize edges which are correct according to the gold clustering y.

The loss functions in Equations 5.4 and 5.5 are simple in a sense of the general definition by
Equation 3.2 in Section 3.1, since based on counting the mistaken edges. They achieve training
data separation (if it exists) of a general task measure reaching its max on their 0 mistakes. The
latter is a desirable characteristic of many measures used in CR and NLP research.

Corollary 1. ∆F (y, ŷ, ĥ) and ∆Y J(y, ŷ, ĥ) are both optimal loss functions for graphs.

Proof. Equations 5.5 and 5.4 show that both are 0 when applied to a clustering with no mistake
on the edges. Additionally, for each edge mistake more, both loss functions increase, implying
monotonicity. Thus, they satisfy all the assumptions of Proposition 1.

The above characteristic suggests that ∆F and ∆Y J can optimize any measure that reason-
ably targets no mistakes as its best outcome. Clearly, this property does not guarantee loss
functions to be suitable for a given task measure, e.g., the latter may have different max points
and behave rather discontinuously. For instance, B3 and CEAFe are strongly influenced by the
mention identification effect [Moosavi and Strube, 2016]. Thus, ∆F and ∆Y J may output iden-
tical values for different clusterings that can have a big gap in terms of MELA. However, a
common practice in NLP is to optimize the maximum of a measure, e.g., in case of Precision
and Recall, or Accuracy, therefore, loss functions able to at least achieve such an optimum are
preferable.

5.3.3 Automatically learning loss functions

As computational reasons prevent us from injecting MELA directly in LSP (see our inexact
search algorithm in Section 5.3.4), we study methods for approximating it with a linear regres-
sor. Considering the specifics of the CR task, we suggest slight customizing of the general
formulation of the learned loss in Equation 3.3. Since MELA(ỹ, ŷ) score lies in the interval
[100, 0], a simple approximation of the loss could be:

∆ρ(y, ŷ, ĥ) = 100−wρ ·Ψ(ỹ, ŷ). (5.6)

Learning and Optimizing a Complex Clustering Metric 45

Note that, in this formulation, we make reference to the real gold standard clustering ỹ. This
way, the clustering decisions during max-violated inference with respect to ∆ρ will also reflect
the mention detection accuracy. We use a simple linear SVM to learn a model wρ.

In the following, we describe the features constituting Ψ(ỹ, ŷ), show the improved version
of ∆ρ and LSPρ for learning with it based on inexact search.

Features for learning measures

We define nine features, which count either exact or simplified versions of Precision, Recall and
F1 of each of the three metric-components of MELA. Clearly, neither ∆F nor ∆Y J provide the
same values.

Apart from the computational complexity, the difficulty of evaluating the quality of the pre-
dicted clustering ŷ during training is also due to the fact that CR is carried out on automatically
detected mentions, while it needs to be compared against a gold standard clustering of a gold
mention set. However, we can use simple information about automatic mentions and how they
relate to gold mentions and gold clusters. In particular, we use four numbers: (i) correctly de-
tected automatic mentions, (ii) links they have in the gold standard, (iii) gold mentions, and (iv)
gold links. The last one enables the precise computation of Precision, Recall and F1-measure
values of MUC; the required partitions p(ki) of key entities are also available at training time as
they contain only automatic mentions. These are the first three features that we design. Likewise
for B3, the feature values can be derived using (ii) and (iii).

For computing CEAFe heuristics, we do not perform cluster alignment to find an optimal
Ψ(g∗). Instead of Ψ(g∗), which can be rewritten as

∑
m∈K∩R

2
|kmi |+|g∗(kmi)| if summing up over

the mentions not the entities, we simply use Ψ̃ =
∑

m∈K∩R
2

|kmi |+|rmj |
, pretending that for each

m its key kmi and response rmj entities are aligned.
∑

rj∈R ψ(rj, rj) and
∑

ki∈K ψ(ki, ki) in
the denominators of the Precision and Recall are the number of predicted and gold clusters,
correspondingly. The imprecision of the CEAFe related features is expected to be leveraged
when put together with the exact B3 and MUC values into the regression learning using the
exact MELA values (implicitly exact CEAFe values as well).

Generating training and test data

The features described characterize the clustering variables ŷ. For generating training data, we
collected all ŷ in correspondence to the max-violating trees ĥ produced during LSPE learning
(using ∆F) and associate them with their correct MELA scores from the scorer and the above
features. This way, we can have both training and test data for our regressor. In our experiments,
for the generation purpose, we decided to run LSPE on each document separately to obtain more
variability in ŷ’s.

46 Structured Prediction for Coreference Resolution

5.3.4 Learning with learned loss functions

Our experiments will demonstrate that ∆ρ can be accurately learned from data. However, the
features we used for this are not factorizable over the edges of the latent trees. Thus, we design
a new LSPρ algorithm that can use our learned loss in an approximated max search.

A general inexact decoding algorithm

If the loss function can be factorized over tree edges (see Equations 3.2, 5.5) the max-violating
constraint in Line 5 of Algorithm 2 can be efficiently found by exact decoding using the same
inference procedure as for prediction, e.g., Edmonds’ algorithm as in Fernandes et al. [2012,
2014] or Kruskal’s as in Yu and Joachims [2009]. The candidate graph, by construction, does
not contain cycles, and the inference by Edmonds’ algorithm does technically the same as the
”best-left-link” inference algorithm by Chang et al. [2012]. This can be schematically repre-
sented by Algorithm 5.

Algorithm 5 Max-violating Spanning Tree
1: Input: training example (x,y); graph G(x) with ver-

tices V ; set of the incoming candidate edges, E(v),
v ∈ V ; w

2: ĥ← ∅
3: for v ∈ V do
4: ê = argmax

e∈E(v)

w · φ(e) + C · l(y, e)

5: ĥ = ĥ ∪ ê

6: end for
7: return max-violating tree ĥ

8: (clustering ŷ is induced by the tree ĥ)

Algorithm 6 Inexact Inference of a Max-
violating Spanning Tree with a Global Loss
1: Input: training example (x,y); graph G(x) with ver-

tices V ; set of the incoming candidate edges, E(v),
v ∈ V ; w

2: ĥ← ∅
3: score← 0

4: repeat
5: prev score = score

6: score = 0

7: for v ∈ V do
8: h = ĥ \Eĥ(v)

9: ê = argmax
e∈E(v)

w · φ(e) + C ·∆(y, ŷ,h ∪ e)

10: ĥ = h ∪ ê

11: score = score+ w · φ(ê)

12: end for
13: score = score+ ∆(y, ŷ, ĥ)

14: until score = prev score

15: return max-violating tree ĥ

Such efficient inference procedure cannot be applied to ∆ρ, which is non-factorizable. Thus,
we designed Algorithm 6, which is a greedy solution for finding an approximate maximum
spanning tree with respect to a general non-factorizable global loss ∆. Its main idea is, starting
from an empty tree (edge set), ĥ = ∅, to build a locally-max violating tree as follows: for each
vertex v of the candidate graph G at a time (Line 7), we remove its incoming edge, Eĥ(v),

Learning and Optimizing a Complex Clustering Metric 47

from the current solution ĥ, in order to check if there is a more violating edge connecting v

with respect to the current ĥ. For this purpose, Line 9 finds the edge ê connecting v that scores
maximum w · φ(e) with respect to model and the loss ∆(y, ŷ, ĥ ∪ e). After this step, the new
max-violating tree contains ĥ built up to now plus a candidate edge ê (Line 10), where ĥ is
partial if it is the first run over the nodes.

On a high level, Algorithm 6 resembles the inference procedure of Wiseman et al. [2016],
who use it to optimize global features coming from an RNN. Differently from them, we re-
peat the procedure, after processing all the vertices, until the score of ĥ no longer improves.
Intuitively, even if Algorithm 6 does not guarantee to deliver the max-violating constraint, a so-
lution optimizing a more accurate loss function may lead to higher overall accuracy and faster
convergence.

Notes on convergence

The following proposition assesses the convergence of our algorithm based on the learned loss
function.

Proposition 2 (LSPρ convergence). The Latent Structured Perceptron (Algorithm 2) using the
greedy Algorithm 6 to optimize ∆ρ(y, ŷ, ĥ) defined in Equation 5.6 always converges when the
data is linearly separable.

Proof. Algorithm 6 converges as it greedily searches for all edges providing a loss increase and
stops when there is no increase. More specifically, steps in Lines 8 and 9 assure the monotonic-
ity of the scoring function. Since the score cannot decrease, the exit condition in Line 14 will
eventually be met.

If the data is linearly separable, LSPρ – Algorithm 2 using Algorithm 6 for max-violating in-
ference – converges since it is basically a perceptron algorithm optimizing an objective function
augmented with a loss function.

Björkelund and Kuhn [2014] perform inexact search on the same latent tree structures as
well, to extend the model to non-local features. In contrast to our approach, they use beam
search and accumulate the early updates. Their tests show that early perceptron updates, in
themselves, considerably slowdown the convergence of the perceptron.

Apart from the necessity to the design of an algorithm enabling the use non-factorizable
loss ∆ρ, there are other intricacies caused by the lack of factorization that need to be taken into
account, which are revealed in the next section.

48 Structured Prediction for Coreference Resolution

Approaching factorization properties

The ∆ρ defined by Equation 5.6 approximately falls into the interval [0, 100]. However, the
simple optimal loss functions, ∆F and ∆Y J , output a value dependent on the size of the input
training document in terms of edges (as they factorize in terms of edges). Since this property
cannot be learned from MELA by our regression algorithm, we calibrate our loss with respect
to the number of correctly predicted mentions, c, in that document, obtaining ∆′ρ = c

100
∆ρ.

Finally, another important issue is connected to the fact that on the way as we incrementally
construct a max-violating tree according to Algorithm 6, ∆ρ decreases (and MELA grows),
as we add more mentions to the output, traversing the tree nodes v. Thus, to equalize the
contribution of the loss among the candidate edges of different nodes, we also scale the loss
of the candidate edges of the node v having order i in the document, according to the formula
∆′′ρ = i

|V |∆
′
ρ. This can be interpreted as giving more weight to the hard-to-classify instances

– an important issue alleviated by Zhao and Ng [2010]. Towards the end of the document, the
probability of correctly predicting an incoming edge for a node generally decreases, as increases
the number of hypotheses.

5.3.5 Experimental study

In our experiments, we first show that our regressor for learning MELA approximates it rather
accurately. According to the results of our study on comparison of the structured output ap-
proaches in Section 5.2, LSPE reaches the highest accuracy at the lowest cost. Thus, we exam-
ine the impact of our ∆ρ by comparing LSPρ, derived on the basis of LSPE, to LSPE models
optimizing the other loss functions, ∆F and ∆Y J , which are defined in Section 5.3.2. We show
that the impact of ∆ρ is amplified when learning in smaller feature spaces.

Setup

Here, we follow the setup previously defined in Section 5.2.2.

Data In addition to the English data, we use also the Arabic part of the corpus from CoNLL
2012-Shared Task. The Arabic data includes 359, 44, and 44 documents for training, dev. and
test sets, respectively.

Models We employ the LSPE implementation, which originally optimizes ∆F . Here, we refer
to this model as LSPF, to distinguish the loss function optimized. We implement the LSPE

version using ∆Y J – LSPYJ, and LSPρ itself. As before, in the English experiments, we use
the data preprocessed by cort [Martschat and Strube, 2015]. For Arabic, we used mentions and

Learning and Optimizing a Complex Clustering Metric 49

Samples
examples MSE SCC

Train Test

S1 S2 6, 011 2.650 99.68

S2 S1 5, 496 2.483 99.70

Table 5.4: Accuracy of the loss regressor on two different sets of examples generated from different
documents samples.

features from BART6 [Uryupina et al., 2012]. We extended the initial feature set for Arabic
with the feature combinations proposed by Durrett and Klein [2013], those permitted by the
available initial features.

Parametrization All the perceptron models require tuning of a regularization parameter C.
LSPF and LSPYJ – also tuning of a specific loss parameter r. We select the parameters on
the entire dev. set by training on 100 random documents from the training set. We pick up
C ∈ {1.0, 100.0, 1000.0, 2000.0}, the r values for LSPF from the interval [0.5, 2.5] with step 0.5,
and the r values for LSPYJ – from {0.05, 0.1, 0.5}. Ultimately, for English, we usedC = 1000.0

in all the models; r = 1.0 in LSPF and r = 0.1 in LSPYJ. And wider ranges of parameter values
were considered for Arabic, due to the lower mention detection rate: C = 1000.0, r = 6.0 for
LSPF, C = 1000.0, r = 0.01 for LSPYJ, and C = 5000.0 – for LSPρ. The best T – the number
of epochs – is selected on the development set from 1 to 50.

Evaluation measure We used MUC, B3, CEAFe, and MELA for evaluation, computed by the
version 8 of the official CoNLL scorer.

Learning loss functions

For learning MELA, we generated training and test examples from LSPF according to the pro-
cedure described in Section 5.3.3. In the first experiment, we trained the wρ model on a set
of examples S1, generated from a sample of 100 English documents and tested on a set of ex-
amples S2, generated from another sample of the same size, and vice versa. The results in
Table 5.4 show that with just 5, 000/6, 000, the Mean Squared Error (MSE) is roughly between
∼ 2.4− 2.7: these are rather small numbers considering that the regression output values in the
interval [0, 100]. Squared Correlation Coefficient (SCC) reaches a correlation of about 99.7%,
demonstrating that our regression approach is effective in estimating MELA.

Additionally, Figure 5.5 shows the regression learning curves evaluated with MSE and SCC.
The former rapidly decreases and, with about 1, 000 examples, reaches a plateau of around 2.3.

6http://www.bart-coref.org/

http://www.bart-coref.org/

50 Structured Prediction for Coreference Resolution

101 102 103

2

4

6

8

10

12

number of training examples

M
SE

101 102 103

number of training examples
SC

C

Figure 5.5: Regressor Learning curves.

The latter shows a similar behaviour, approaching a correlation of about 99.8% with real MELA.

Model comparison

We first experimented with the standard CoNLL setting to compare the LSP accuracy in terms
of MELA using the three different loss functions, i.e., LSPF, LSPYJ and LSPρ. In particular, we
used all the documents of the training set and all N ∼ 16.8M features from cort, and tested on
the both dev. and test sets. The results are reported in Columns All of Table 5.5.

We note first that our ∆ρ is effective as it stays on a par with ∆F and ∆Y J on the dev. set.
This is interesting as Corollary 1 shows that such functions can optimize MELA, the reported
values refer to the optimal epoch numbers. Also, LSPρ improves the other models on the test
set by 0.3 percent points (statistical significant at the 93% level of confidence).

Secondly, all the three models improve the state of the art on CR using LSP, i.e., by Martschat
and Strube [2015] using antecedent trees (M&S AT) or mention ranking (M&S MR), Björkelund
and Kuhn [2014] using a global feature model (B&K) and Fernandes et al. [2012, 2014] (Fer).
Noted that all the LSP models were trained on the training set only, without retraining on the
training and dev. sets together, thus our scores can be improved.

Thirdly, Table 5.6 shows the breakdown of the MELA results in terms of its components on
the test set. Interestingly, LSPρ is noticeably better in terms of B3 and CEAFe, while LSP with
simple losses, as expected, deliver higher MUC score.

Finally, the overall improvement of ∆ρ is not impressive. This mainly depends on the op-
timality of the competing loss functions, which in a setting of ∼ 16.8M features, satisfy the
separability condition of Proposition 1.

Learning and Optimizing a Complex Clustering Metric 51

Model
Selected (N = 1M) All (N ∼ 16.8M)
Dev. Test Tbest Dev. Test Tbest

LSPF 63.72 62.19 49 64.05 63.05 41

LSPYJ 63.72 62.44 29 64.32 62.76 13

LSPρ 64.12 63.09 27 64.30 63.37 18

M&S AT – – – 62.31 61.24 5

M&S MR – – – 63.52 62.47 5

B&K – – – 62.52 61.63 –
Fer – – – 60.57 60.65 –

Table 5.5: Results of our and previous work models evaluated on CoNLL-2012 English development
and test sets, using for training all the training documents with All and 1M features. Tbest is evaluated

on the development set.

features Model
Test set accuracy

MUC B3 CEAFe MELA

All LSPF 72.66 59.94 56.54 63.05

LSPYJ 72.18 59.31 55.82 62.76

LSPρ 72.34 60.36 57.40 63.37

LSPF 71.95 59.03 55.59 62.19

1M LSPYJ 72.35 59.54 56.38 62.44

LSPρ 72.09 60.11 57.07 63.09

Table 5.6: Results on CoNLL-2012 English test set using the same setting of Table 5.5 and the
measures composing MELA.

Learning in more challenging conditions

In these experiments, we verify the hypothesis that when the optimality property is partially
or totally missing ∆ρ is more visibly superior to ∆F and ∆Y J . As we do not want to degrade
their effectiveness, the only condition dependent on the setting is the data inseparability or at
least harder to be separated. These conditions can be obtained by reducing the size of the fea-
ture space. However, since we aim at testing conditions, where ∆ρ is practically useful, we
filter out less important features, preserving the model accuracy (at least when the selection
is not extremely harsh). For this purpose, we use the feature selection approach, described in
Section 5.2.2, based on a basic binary classifier trained to discriminate between correct and in-
correct mention pairs. It is typically used in non structured CR methods and has a nice property
of using the same features of LSP (we do not use global features in our study).

The MELA produced by our models using all the training data is presented in Figure 5.3.

52 Structured Prediction for Coreference Resolution

0 25 50 75 100

42

44

46

48

number of epochs, T

M
E

L
A

N = 10K

0 25 50 75 100

54

56

58

60

number of epochs, T

M
E

L
A

N = 100K

0 25 50 75 100
56

58

60

62

number of epochs, T

M
E

L
A

N = 300K

0 25 50 75 100
58

60

62

64

number of epochs, T

M
E

L
A

N = 500K

0 25 50 75 100

60

62

64

number of epochs, T

M
E

L
A

N = 1M

0 25 50 75 100

60

62

64

number of epochs, T

M
E

L
A

N = 1.5M

0 25 50 75 100

61

62

63

64

number of epochs, T

M
E

L
A

All (N ∼ 16.8M)

104 105 106 107
45

50

55

60

65

number of features, N

M
E
L
A

All on the Test Set

LSPF LSPYJ LSPρ

Figure 5.6: Results of LSP models on CoNLL-2012 English development set using different number of
features, N . The last plot reports MELA score on the test set of the models using the optimal number of

epochs tuned on the development set.

The first 7 plots show learning curves in terms of LSP epochs for different feature sets with in-
creasing size N , evaluated on the dev. set. We note that: firstly, the fewer features are available,
the better LSPρ curves are than those of LSPF and LSPYJ in terms of accuracy and convergence
speed. The intuition is that finding a separation of the training set (generalizing well) becomes
more challenging (e.g., with 10k features, the data is not linearly separable) thus a loss function
which is closer to the real measure provides some advantages.

Secondly, when using all features, LSPρ is still overall better than the other models but
clearly the latter can achieve the same MELA on the dev. set.

Thirdly, the last plot shows the MELA produced by LSP models on the test set, when trained
with the best epoch derived from the dev. set (previous plots). We observe that LSPρ is con-
stantly better than the other models, though decreasing its effect as the feature number increases.

Next, in Column 1 (Selected) of Table 5.5, we report the model MELA using 1 million
features. We note that LSPρ improves the other models by at least 0.6 percent points, achieving
the same accuracy as the best of its competitors, i.e., LSPF , using all the features.

Finally, ∆ρ does not satisfy Proposition 1, therefore, generally, we do not know if it can
optimize any µ-type measure over graphs. Each of the features comprising regression examples
xρ separately by definition satisfy the relaxed condition of Proposition 1, however, the learned

Jointly Learning Loss and Model 53

Model
All (N ∼ 395K)

Dev. Test Tbest

LSPF 31.20 33.19 10

LSPYJ 27.70 28.51 13

LSPρ 36.91 37.91 6

LSPENρ 38.47 39.56 12

Uryupina et al., 2012 – 37.54 –
B&K 46.67 48.72 –
Fer – 45.18 –

Table 5.7: Results of our and baseline models on CoNLL-2012 Arabic development and test sets, using
all the training documents for training. Tbest is evaluated on the development set.

model wρ is not exempt from containing also negative weights. However, by checking the
MELA score obtained on the training set, we empirically verified that LSPρ always optimizes
MELA, iterating for fewer epochs than LSP variants using the other loss functions.

Generalization to other languages

Here, we test the effectiveness of the proposed method on Arabic using all available data and
features. The results in Table 5.7 reveal an indisputable superiority of LSPρ over the counter-
parts optimizing simple loss functions. They support the results of the previous section as we
had to deal with the insufficiency of the expert-based features for Arabic. In such an uneasy
case, LSPρ was able to improve over LSPF by more than 4.7 points.

We also tested the loss model wρ trained for the experiments on the English data (resp.
setting All of Section 5.3.5) in LSPρ on Arabic. This corresponds to LSPENρ model. Notably,
it performs even better, 1.5 points more, than LSPρ using a loss learned from Arabic examples.
This suggests a nice property of data invariance of ∆ρ. The improvement delivered by the
”English” wρ is due to the fact that it was trained on the data which is richer: (i) quantitatively,
since coming from almost 8 times more training documents in comparison to Arabic and (ii)
qualitatively, in a sense of diversity with respect to the RL target value. Indeed, the Arabic data
is much less separable than the English data and this prevents to have examples where MELA
values are higher.

5.4 Jointly Learning Loss and Model

In the previous section, we have shown that we can learn a linear regressor from a complex
measure such as MELA for CR and we can transform it in a loss function that can be used in

54 Structured Prediction for Coreference Resolution

10k 100k 300k 500k 1M

LSPF 43.59± 1.30 54.38± 0.66 57.18± 0.31 58.44± 0.35 59.01± 0.41

LSPYJ 43.79± 0.58 55.61± 0.25 57.90± 0.31 58.33± 0.23 58.74± 0.33

LSPρ 47.03± 0.29 55.89± 0.28 58.17± 0.24 58.58± 0.31 58.80± 0.30

LSP∗ρ 47.07± 0.22 56.00± 0.28 58.33± 0.19 58.88± 0.19 59.23± 0.34

LSP∗onlineρ 46.88± 0.13 56.01± 0.21 58.27± 0.27 58.79± 0.21 59.05± 0.28

Table 5.8: Average MELA ± Standard Deviation on CoNLL-2012 English test set of models trained on
eight disjoint samples of 100 documents from the training set.

the LSP algorithm. In this section, we apply the joint models LSP∗ρ and LSP∗onlineρ defined in
Section 3.3.

5.4.1 Notes on convergence

The convergence of LSP∗ρ may result tricky as the target of the optimization objective changes at
each epoch, i.e., the loss function, ∆ρ changes during training. However, our preposition below
assesses that the joint learning can be reliably carried out in case of linearly separable data.

Proposition 3 (LSP∗ρ convergence). Algorithm 3 that jointly learns a model together with
∆ρ(y, ŷ, ĥ) always converges when the data is linearly separable.

Proof. Line 7 of Algorithm 3.3 generates data from the candidate tree ĥi, found using the
current model. Let us suppose that for some reasons the model does not converge. The model
changes inside the loop and generates new training examples, xρ. In the worst case, the model
can generate all possible examples, which are limited by all possible spanning trees for each
document. Although, this can be a large number, eventually, the training set Xρ will be a stable
training set, consequently ∆ρ will not change anymore, enabling the same convergence rationale
of LSPρ (see Proposition 2).

A similar rationale to Proposition 3 can be applied to the convergence of Algorithm 4. In
practice, the convergence of online joint learning can be assured by a simple consideration:
when the accuracy of the regressor for ∆ρ is enough good, there is no need anymore to re-train
it and not even to generate other data. Thus, we simple add the instruction at lines 18-20, which
will disable the regressor training when it does not improve anymore, thus Proposition 2 can be
applied again.

5.4.2 Results of the joint learning model

In these experiments, we tested if the joint modeling of CR and its loss is effective. Tab. 5.8
reports the comparison between the previous LSP model and LSP∗ρ using the average of MELA

Summary 55

0 20 40 60 80 100

46

48

50

52

54

56

58

number of epochs, T

M
E

L
A

LSPF LSPYJ LSPρ LSP∗
ρ

LSP∗online
ρ

Figure 5.7: LSP learning curves on CoNLL-2012 English development set, averaged over 8 disjoint
samples of 100 random documents from the training set.

over eight disjoint samples of 100 documents extracted from the training set and tested on all
documents of the official test set. The different columns report experiments with different num-
ber of features. We note that (i) when the number of dimensions is small, our LSPρ models are
clearly superior, e.g., 4 absolute points better with 10K features; (ii) LSPρ, LSP∗ρ and LSP∗onlineρ

perform comparably with any number of features; and finally (iii) the improvement over tradi-
tional loss functions decreases when the space becomes easily separable, e.g., 1M dimensions.

The above experiments suggest that there is no much difference in accuracy using joint
learning. Thus, we explored its impact on convergence by plotting MELA according to the
number of epochs, T , ranging from 1 to 100. Figure 5.7 shows the learning curves of models
using different loss functions and different algorithms: LSPρ and LSP∗ρ seem much better than
models using standard loss functions, i.e., LSPF and LSPYJ, both in terms of accuracy and
convergence speed.

LSP∗ρ seems equivalent to LSPρ, however, the former does not require to generate data in
advance for learning ∆ρ.

5.5 Summary

In this chapter, we tested an interesting machine learning problem – learning loss functions for
structured prediction, targeting CR, which becomes particularly compelling when an evaluation
measure captures specific background knowledge of the application domain, which cannot be
surrogated by simple loss functions.

First, we conducted a comparative analysis of online and batch methods for structured pre-

56 Structured Prediction for Coreference Resolution

diction in CR. Although LSSVM can reliably select a stopping point of its learning, LSP and
LSPA, when well parameterized, can achieve the same accuracy. This empirically illustrates
that all these methods, inherently optimizing the same objective, are able to achieve the same
optimum. Additionally, we observed a very positive impact of our new feature selection method
for CR, based on a pairwise classifier, which we can efficiently train thanks to linear SVMs.

We also demonstrated that a noticeable benefit to the online methods comes from accurately
parameterizing the epoch number. The latter is rather stable between development and test sets
but must be parametrized when using different training data, feature or instance sets. Therefore,
given the scale of our investigation, we further limit to LSP our study on the learned loss.

We showed that a complex measure, such as MELA, can be learned by a linear regressor
with high accuracy and effective generalization. For optimizing the corresponding learned loss
∆ρ, we design a new LSPρ based on inexact search. Its results demonstrate that an automatically
learned loss can be optimized and achieve competing performance in a real setting, including
thousands of documents and millions of features, the CoNLL–2012 Shared Task. The results
support the property of optimal loss functions: the improvement of LSPρ over the counterparts
using simple loss functions is not significant in the cases close to separability. However, when
separability is more complex, LSPρ is more accurate and faster. The joint models, which learn
the LSP model and the loss ∆ρ simultaneously, improve over it both in accuracy and speed.

Our approach of loss learning exhibits also good generalization properties. The cross-lingual
experiments, in which a loss model learned from data coming from one language was applied to
training of a model for another language, delivered significant improvements over the baselines.

This study opens several future directions, ranging from defining algorithms based on au-
tomatically learned loss functions to learning more effective measures from expert examples.
There is also a lot of room for developing an interesting theory, which can impact on practical
applications.

Chapter 6

Structured Prediction for Ranking

This chapter contains our recent developments and ongoing work on applying structured predic-
tion methods to ranking. The structured output framework provides a helpful tool for learning
complex ranking representations. We propose a structured perceptron approach which regards
rankings as latent structural variables and combines them with auxiliary cluster graphs. The
approach addresses such hard to optimize ranking metric as Mean Average Precision (MAP).
We provide an inference procedure for finding the max-violating joint ranking and clustering
structure based on the decomposition of the MAP loss. We give our preliminary results of
the experiments we conduced for the task of answer passage re-ranking for question answer-
ing (QA).

6.1 Task formulation

We have training examples of the form {xi, yi}, where xi = {qi, Di}, qi is a query, Di =

{dji}
Ni
j=1 is a set of items corresponding to qi; the gold labelling yi = {yji : yji ∈ {0, 1}}

Ni
j=1 is

a vector of gold item labels, label yji corresponding to item dji , taking value of 1 for relevant
(good or positive) items and 0 – for irrelevant (bad or negative).

The task is to learn to predict, for each example xi, a ranking of its items r(xi) = r(qi, Di),
such that the relevant items, dji with gold labels yji = 1, are always at top positions in r(qi, Di).
Finally, r(qi, Di) = {rj}Nij=1 is a permutation of the set Di. In the following, we omit the
example index i, where it is not needed, for simplification of the notation.

6.2 Overview

Ranking models are trained to reorder a list of candidate itemsD according to their relevancy to
some query q. A reranking function is learned to score the relevant items higher than irrelevant.

58 Structured Prediction for Ranking

In simple unstructured models, it is searched for as a real-valued function defined over the space
of the query-item feature representations fqd : φ(q, d) → R. In preference ranking [Joachims,
2002], such a linear mapping is learned from the pairs of items (dj, dk), where dj is higher
in the optimal rank r than dk with respect to q. This way, the training examples are treated
independent with respect to the rest of the candidate list D and the learning is based only on the
match between the item d and the query q.

The current state-of-the-art learning approaches for answer sentence re-ranking in QA mostly
base on learning pairwise ranking signals or simple binary classification (relevant vs irrelevant).
There have been promising attempts to learn global ranking functions which encompass the sig-
nals of all the candidates for a given query [Chapelle et al., 2007; Weston and Blitzer, 2012;
Le et al., 2018]. Employing the structured output learning framework, such works represent
a ranking as a structured object, with respect to which it is possible to optimize directly the
ranking measures.

The structured ranking models exploit also the information about the structure of the candi-
date listD, e.g., that of how much similar or diverse the items inD are, in order to preserve such
(in)consistency in the ranking. Thus, Weston and Blitzer [2012] propose a class of structural
models over the latent embedding spaces:

f(q, r) =

|D|∑
j=1

wjfqd(q, r
j) +

|D|∑
j,k=1

wjwkfdd(r
j, rk),

which in addition to the ranking score based on individual query-item scores considers item-
item similarities in the second term. Choosing weights wj associated with the positions accord-
ing to the schema:

wj =
1

j
, if i ≤ m and 0 otherwise,

they enforce consistency between top m items of the rank and diversity of the rest of the list
with respect to them.

In this work, we abstract from the above structured formulation, and allow the presence of
groups of similar items in the ranking list. There could be distinct groups of similar relevant
items. At the same time, there could be similar irrelevant items as well. Consider an example
form the Community Question Answering (cQA):

q =”Can anybody recommend me a dentist? A good one.”

d1 =”Thanks for your answer.”

d2 =”Thank you guys!”

Both d1 and d2 being bad for the query q are very similar, and it might be beneficial for a
model to use this information and to place the two candidates in the rank close to each other.

Structured Prediction for Ranking 59

Thus, we propose a structural model that combines ranking and clustering in one place:

f(q, r, c) = frank(q, r) + fclust(q, c),

where the ranking r and clustering c are tied between each other in a way that elements of
the same cluster ci should occupy neighbouring positions in r without being interfered by the
elements of the other clusters. Essentially, we deal with the combined structural object y =

(r, c). The same ranking can correspond to different clusterings. Consider two extreme cases:
i) putting all the D’s items into one cluster v.s. ii) leaving them all singletons. We can obtain
the same r by ordering the elements of one cluster or the singletons in the same way.

The re-ranking task does not fall straightforwardly within the structured prediction formula-
tion as the ground truths for ranking objects are usually not provided in the training data (only
relevance labels for candidates). Chapelle et al. [2007] select one among all possible correct
rankings at random as a ground truth for training. Weston and Blitzer [2012] bypass the neces-
sity of comparison to a complete ranking during training and sample the candidate pairs. This
issue is seamlessly circumvent by using the latent structured prediction formulation.

Optimization of the target ranking measures is affordable when measures are factorizable,
e.g., the structural SVM of Chapelle et al. [2007] makes use of the factorization properties of the
Normalized Discounted Cumulative Gain (NDCG) ranking score. The case of MAP is rather
involving. Yue et al. [2007] found an exact solution to the hinge-loss relaxation of Average
Precision (AP) for the structural SVM approach. Chen et al. [2009] found tight upper bounds
on AP using simple learning to rank loss functions. We derive a strict decomposition of the loss
corresponding to AP and propose an approximate method for inference of the max-violating
constraint with respect to it.

6.3 Structured Prediction for Ranking

The structured prediction framework for ranking [Chapelle et al., 2007; Le et al., 2018] con-
siders a joint feature representation of an input example x together with an output ranking r:
Φ(x, r) = Φ(q,D, r), which factorizes over the individual feature representations of items with
respect to the query, weighted relative to the item positions j in the rank:

Φ(x, r) = Φ(q,D, r) =
N∑
j=1

wjφ(q, rj), (6.1)

The typically used weighting schema, w, implies non-increasing weights associated with the
positions j: w1 ≥ w2 ≥ ... ≥ wN ≥ 0, where importance decreases gradually from the top to
the bottom of the ranking.

60 Structured Prediction for Ranking

Inferring a ranking corresponding to a linear model w, i.e., finding

argmax
r∈R(x)

w · Φ(x, r)

among all possible rankings R(x) = R(q,D), reduces simply to ordering the items by scores
w · φ(q, d), since wj are fixed.

Since the correct ranking r∗ for an example x is often not unique, Chapelle et al. [2007]
choose one of the correct rankings at random as a gold label for training. This evidently bi-
ases the training towards the chosen ground truths. The above kind of problems is effectively
alleviated within a latent structured prediction framework.

6.3.1 Our learning approach

Learning

We deal with not fully observed case as the ranking labels r, we intend to learn, are not given in
the input data. We use LSP (Algorithm 2), which, in Line 7, finds such structure for the current
example (xi, yi) – the best correct ranking r∗ corresponding to the current model weights wt.
The search here is restricted to the set R(xi, yi) of all rankings of the example xi that comply
with the gold label yi, i.e., at which good items take top positions and bad – bottom positions.
Thus, the operation is reduced to simple ordering of the good and bad items (separately) by
weights, and putting the former to the top, and the latter – to the bottom of the resulting ranking.
The max-violating r̂ is found in Line 5 with respect to a ranking loss ∆(yi, r), over all possible
rankings R(xi). Sec. 6.3.1 describes the procedure we use here for max-violating inference
with respect to the loss corresponding to the MAP ranking metric. In Line 8, the weights w are
updated using the structural feature representations (defined by Equation 6.1) of the two ranking
outputs r∗ and r̂.

Max-violating inference

Our target is to optimize the MAP ranking metric. Thus, in training, we intend to minimize the
following loss on structural examples which is the inverse of the average precision (AP):

∆ap(y, r) = 1− AP (y, r).

AP is a global measure, non-decomposable in a strict sense over the position variables, so that
to enable iterative exact inference. Here, we propose a method for approximate inference with
respect to ∆ap, which is efficient and enables exact local search.

Let us denote by P = |{d|y(d) = 1}| the number of good/positive items in the candidate list
D, and by I+

j = 1[y(rj)=1] and I−j = 1[y(rj)6=1] – the indicator functions that the items in position

Structured Prediction for Ranking 61

j in r is good and not good (positive and negative), respectively. Then,

AP (y, r) =
1

P

N∑
j=1

1

j
I+
j

j∑
k=1

I+
k .

We can have a strict decomposition of ∆ap over negative items. We rewrite the AP formula as
follows:

AP (y, r) =
1

P

N∑
j=1

1

j
I+
j (

j−1∑
k=1

I+
k + I+

j) =
1

P

N∑
j=1

1

j
I+
j (

j−1∑
k=1

I+
k + 1).

Then,

∆ap(y, r) = 1− 1

P

N∑
j=1

1

j
I+
j (

j−1∑
k=1

I+
k + 1) =

1

P
(P −

N∑
j=1

1

j
I+
j (

j−1∑
k=1

I+
k + 1)) =

=
1

P

N∑
j=1

1

j
I+
j (j − 1−

j−1∑
k=1

I+
k) =

1

P

N∑
j=1

1

j
I+
j

j−1∑
k=1

(1− I+
k) =

=
1

P

N∑
j=1

I+
j

j

j−1∑
k=1

I−k =
1

P

N−1∑
j=1

I−j

N∑
k=j+1

I+
k

k
. (6.2)

According to the last line of Equation 6.2, ∆ap decomposes into a sum over all the positions j

with negative items (those activating I−j) of quantities lj(y, r) = 1
P

N∑
k=j+1

I+k
k

, except for the last

position N .
Note that I−j lj(y, r) gives the loss at the position j considering the correct items below

position j in the ranking. Therefore, we can use it for a bottom-up (max-violating) inference
procedure, which first finds the best candidate item to be put at the lowest position of the rank
and proceeds filling the positions in the ascending order.

To use the loss decomposition of Equation 6.2 in Line 5 of Algorithm 2, we start with the
last N th position of the rank and put there the minimum weighted item:

r̂N = argmin
d∈Di

wNw · φ(q, d).

According to the decomposition in Equation 6.2, loss is always 0 at position N . At each of the
following steps j: r̂N−j =

= argmin
d∈D\{r̂N−k}j−1

k=0

wN−jw · φ(q, d) + I−N−jlN−j(y, r̂).

Since, in the loss decomposition, the position-wise components are not independent of the de-

62 Structured Prediction for Ranking

cisions for the other positions, using a greedy procedure does not find a global optimum, but
finds a local optimum with respect to the loss exactly. Namely, an item chosen at each position
is optimal with respect to to the partial rank constructed at the previous steps of the inference
procedure.

6.4 Joint Ranking and Clustering

For an input x = (q,D), let c be a clustering of its items d ∈ D. Let y = (r, c) be a new
structured output object combining in one ranking r and clustering c, which implies that the
items clustered together according to c occupy neighbouring positions in r.

The combined joint feature representation would be:

Φ(x,y) = Φ(x, (r, c)) = [Φ(x, r),Φ(x, c)]>.

We use a linear scoring model w:

w · Φ(x,y) = [wr,wc][Φ(x, r),Φ(x, c)]> =

= wr · Φ(x, r) + wc · Φ(x, c) = frank(q, r) + fclust(q, c). (6.3)

6.4.1 Structured clustering

For the clustering part of the structure, we follow the approach of Yu and Joachims [2009]. In
the current setting, however, we are not provided with the ground truth for clustering c. We
only assume that there might be some similar items in the candidate item list D. Thus, we
consider correct any c whose clusters contain items di with the same label y(di) = y, i.e., only
positive or only negative items. Respectively, any h containing only correct links is considered
correct, plus h = ∅. This is in contrast to the original approach of Yu and Joachims, in which
the supervision for gold clustering y is available and fixed, and a correct h should necessarily
reproduce it. As in Equation 2.9, we impose a decomposition of the joint feature vector of an
input-output pair into a sum of the feature representations of the edges of h:

Φ(x, c,h) =
∑

(dk,dl)∈h

φ(dk, dl).

The loss function optimized by the clustering approach decomposes over the edges of h. In
this work, we use a simple loss, that counts the number of edge mistakes:

∆clust(y,y) = ∆clust(y, c,h) =
∑

(dk,dl)∈h

1[y(dk) 6=y(dl)], (6.4)

Joint Ranking and Clustering 63

unlike the original loss in Equation 5.4.

6.4.2 Joint inference

The prediction rule to be learned then is

argmax
y∈Y

w · Φ(x,y) = argmax
(r,h)∈R×H

w · Φ(x, r, c,h).

The ranking and clustering parts of the model decompose in different ways: the former decom-
poses over the item variables di and the latter – over their pairs (di, dj). This complicates the
inference with respect to the combined objective in Equation 6.3. In Algorithm 7, we provide a
joint inference procedure, which starts from a clustering c composed of all singletons (Line 4)
and h = ∅. In Line 6, we find the corresponding maximum ranking. Further, the algorithm
follows the Kruskal’s procedure. It iteratively tries to add edges with positive weight not mak-
ing loops to the spanning forest h in decreasing order of their weight, or, in other words, to
merge clusters (Lines 16–28). After the merge, the maximum ranking is found for a new clus-
tering, and if this results in the increased overall score (Line 20), the merge persists. When
finding the maximum ranking corresponding to a clustering (using function FindMaxRank),
the preliminarily ranked clusters are repetitively swapped until the highest scoring ordering is
found.

Proposition 4 (Joint exact search). The joint inference procedure by Algorithm 7 finds y maxi-
mazing the joint objective (6.3) exactly.

Proof. The maximum of the ranking part of the joint objective frank(q, r) is achieved on the
two trivial clusterings of the item listD, i.e., on all singletons and on all merged into one cluster
since there is the highest freedom in reordering the rank. Adding an edge we can only decrease
frank(q, r). Since we add only edges with positive score starting from one with the highest
weight, the proof reduces to the correctness to the Kruskal’s algorithm.

64 Structured Prediction for Ranking

Algorithm 7 Joint inference
1: Input: example (x, y) = (q,D, y), w = [wr,wc]

2: Initialize h← ∅
3: for i = 1 to |D| do
4: c(di)← {di}
5: end for
6: (y, score) = FindMaxRank(x, c)

7: for i = 1 to |D| do
8: for j = i+ 1 to |D| do
9: edge weight = wc · φ(di, dj)

10: if edge weight > 0 then
11: E = E ∪ (di, dj)

12: end if
13: end for
14: end for
15: Es = SortDesc(E)

16: for (u, v) ∈ Es do
17: if c(u) 6= c(v) then
18: Merge(c(u), c(v))

19: (ynew, scorenew) = FindMaxRank(c)

20: if score < scorenew + wc · φ(u, v) then
21: y = ynew

22: score = scorenew

23: h = h ∪ (u, v)

24: else
25: Unmerge(c(u), c(v))

26: end if
27: end if
28: end for

Algorithm 8 Joint Latent Structured Perceptron
1: Input: X = {(xi, yi)}ni=1, w

r
0,w

c
0, C, T

2: wr0 ← wr
0; wc0 ← wc

0; t← 0

3: repeat
4: for i = 1, ..., n do
5: ŷ← argmax

y∈Y(xi)

wt,Φ(xi · y) + C ·∆map(yi,y)

6: if ∆map(yi, ŷ) > 0 then
7: y∗ ← argmax

y∈Y(xi,yi)

wt · Φ(xi,y)

8: wrt+1 ← wrt + Φ(xi, r(y
∗))− Φ(xi, r(ŷ))

9: end if
10: wct+1 ← wct

11: t← t+ 1

12: ŷ← argmax
y∈Y

wt ·Φ(xi,y) +C ·∆clust(yi,y)

13: if ∆clust(yi, ŷ) > 0 then
14: h∗ ← argmax

h∈H(xi,yi)

wct · Φ(xi,h)

15: wct+1 ← wct +Φ(xi, c,h
∗)−Φ(xi, c,h(ŷ))

16: end if
17: wct ← ~0

18: t← t+ 1

19: end for
20: until t < 2nT

21: w← 1
t

t∑
i=1

wi

return w

6.4.3 Learning

In the absence of the supervision for the combined ranking-clustering object y, we target the
latent structural large-margin objective (see Equation 2.6):

min
w

[1
2
||w||2 + C

n∑
i=1

max
y∈Y(xi)

[∆(yi,y) + w · Φ(xi,y)]−

− C
n∑
i=1

max
y∈Y(xi,yi)

w · Φ(xi,y)
]
. (6.5)

We alternatively optimize the objective in Equation 6.5 with respect to the two loss functions
∆map and ∆clust. We adapt the standard LSP algorithm to alternate between updating the rank-

Experiments 65

ing wr and clustering wc parts of the structural model. The pseudocode of the alternate LSP
is depicted in Algorithm 8. In Lines 5–9, we perform an update of the ranking model part wr.
First, we find the max-violating ŷ n Line 5 according to the inference procedure in Algorithm 7.
The clue on the adaptation of the inference procedure to involve loss is given in Section 6.3.1. If
the ranking part r̂ within the combined object ŷ is not correct, we find the current ground truth
y∗ corresponding to the current model weights wt in Line 7 and update the ranking part weights
wr in Line 8. The search for y∗ is restricted to the set of all possible correct y ∈ Y(xi, yi),
i.e., those whose ranking r complies with the gold label yi and whose clusters c can be formed
only of the items having the same labels, using only correct links (dk, dl). This means that in
FindMaxRank() clusters of positive items take always top rank positions, and of negative –
the bottom ones, and a cluster can be swapped only with another cluster containing items having
the same label.

We proceed with finding the max-violating structure with respect to the clustering loss ∆clust

in Line 12. ∆clust is straightforwardly injected into the inference procedure of Algorithm 7 as
the loss factorizes over the edges (Equation 6.4). Since we do not have ground truth for the
clustering part – a correct tree can contain from 0 to the maximum possible number of correct
edges – in Line 15, we update only on the wrong edges in h(ŷ) v.s. correct edges h∗ preferred
by the clustering model. argmax in Line 14 is found by running the Kruskal’s algorithm.

6.5 Experiments

In our experiments, we compare the proposed structured ranking approaches with the classifi-
cation baselines.

6.5.1 Setup

Data We conduct our experiments on WikiQA dataset for answer sentence selection. We use
only examples with at least one correct and at least one incorrect answer candidate Yang et al.
[2015] both for training and evaluation. This corresponds to 873 examples for training from the
train set, 243 – for testing from test, and 126 – for validation from the development set.

Models We implement the structured ranking approach described in Section 6.3.1, denoted
SR. We compare it to the baseline classification approach using the same feature set of question-
answer features (q, di) – an SVM with polynomial kernels trained using SVM-Light-TK1. The

1http://disi.unitn.it/moschitti/Tree-Kernel.htm

http://disi.unitn.it/moschitti/Tree-Kernel.htm

66 Structured Prediction for Ranking

Model MAP MRR P@1

Develoment
SVM 63.37 64.37 50.00
SR 68.67 69.65 53.28
JSRC 69.21 69.72 54.10

Test
SVM 54.67 55.90 39.66
SR 62.14 63.46 45.15
JSRC 64.03 65.57 48.52

Table 6.1: Results of re-ranking systems on WikiQA dataset.

joint structural model from Section 6.4 goes by name JSRC – joint structured ranking and clus-
tering. JSRC uses in addition pairwise item-item features φ(dk, dl).

Features In our study, we use the features and setting by Barrón-Cedeño et al. [2016], i.e.,
cosine similarity over the text pair, the similarity based on the PTK score, longest common
substring/subsequence measure, Jaccard similarity, word containment measure, greedy string
tiling, ESA similarity based on Explicit Semantic Analysis (ESA), IR score (optional) given by
the IR engine, if available.

Parametrization We use the following weighting schema for the ranking structures: wj = 1
j
.

The structural model requires specifying a loss parameter C, whose value was chosen on the
development set. The max number of the perceptron epochs T is set to 50. We derived the best
number Tbest with respect to the MAP score on the development set.
The baseline SVM is trained with polynomial kernels of degree 3.

Evaluation metrics We report Mean Average Precision (MAP), Mean Reciprocal Rank (MRR)
and Precision@1 (P@1).

6.5.2 Experimental results

In Table 6.1, we provide the results of the models on the WikiQA dataset. Compared to the
baseline SVM, the results of the structural approach (SR) are more than 5 points better on the
development set, and around 7.5 points – on test. It should be noted that the SVM uses kernels,
while SR is a simple linear model. For SVM, we also had to limit the number of candidates

Summary 67

to 10 for each query to balance the the classifier. The joint model (JSRC) delivers a further
improvement. While, on the development set, we observe a slight increase of half a point in
MAP, the improvement of around 2 points suggest the viability of the joint approach.

6.6 Summary

This study broadens the view on re-ranking as a structured prediction problem. We propose
to leverage the multiplicity of gold rankings by introducing latent variables. Our approximate
max-violating inference with respect to the proposed decomposition of the MAP loss seem to
be helpful. However, we plan to verify its exact impact in comparison to the versions optimizing
simpler surrogate losses. According to the results of our preliminary experiments, adding the
clustering structure has a positive effect on the ranking structural model. As the scale of the
answer passage re-ranking on the exploited data allows, in these attempts, so far, we performed
the ”quasi”-exhaustive inference with respect to the joint ranking and clustering objective, in
order to assess the potential benefit of the joint modelling. In future, we will look for more
effective ways for exploring the joint space and extend our approach to other ranking tasks and
datasets.

68 Structured Prediction for Ranking

Chapter 7

Summary and future work

Machine learning methods for structured prediction have greatly facilitated learning for the
tasks with complex structured output. In a broad sense, every structured output method needs
to address the following components:

1. effective encoding of the output structure, imposing necessary structural dependencies,

2. defining efficient techniques for exploring the complex space of output structures,

3. providing mechanisms for the comparison of the output structures to the gold standard.

In this thesis, we explored methods for reinforcing the structured prediction through these
channels using the case of supervised clustering, enabled by the structural models of Yu and
Joachims [2009] and Fernandes et al. [2012, 2014].

Regarding the first point, our study on the comparison of these structural approaches for
supervised clustering in application to coreference resolution in Section 5.2 confirms the trivial
consideration of the importance of choosing an appropriate structural modelling for a particular
task. In our experiments, the directed tree structures of Fernandes et al. were always better for
coreference resolution. We also studied how well the models, under reasonable modifications,
can accommodate other tasks. Our adaptation of the model of Fernandes et al. applied in
the network domain in Chapter 4 resulted in an effective tool for detecting anomalies based
on predicted clusters of traffic transmissions. Here, we assume the notion of order adopted
in the original model was quite substantial for representing a continuos traffic flow. In future,
we would like to experiment more with the graph model, e.g., identify how long should be a
”history” span to guarantee secure anomaly detection, or whether relying on a subset of referent
transmission points, cluster representatives, is beneficial.

Our work also verified the possibility of joint structural models. In Chapter 6, we combined
the structural representation of ranking with that of clustering in one structure, which delivered
promising preliminary results. A further research in the direction of alternative ways of joint

70 Summary and future work

structured output representations is to be done, addressing also the inference and learning issues.
In particular, answering the questions of how to coordinate the respective contributions of each
of the substructures in the joint structure score, how to optimize more effectively multiple loss
functions, in general, potentially having heterogeneous nature (for now, we merely alternate
the model updates, each involving independent inference with respect to one of the two loss
functions), etc.

There is always a trade-off between the expressiveness of the structural model and the in-
ference efficiency and exactness. Especially the latter can be subject to compromise in the
max-violating case. Our experiments for both coreference resolution in Chapter 5 and ranking
in Chapter 6, in which we attempted at optimizing the actual task evaluation measures, including
their approximations, showed that allowing inexact inference but with respect to the task mea-
sure has better impact on convergence speed and accuracy, especially in hard cases in sense of
separability, as compared to the exact inference with respect to surrogate objectives. Neverthe-
less, there is a room for improvement of the inference procedures for the tasks covered in this
thesis: i) the max-violating inference procedure with respect to the approximation of MELA
in Section 5.3, which is greedy, ii) the inference of the max-violating ranking structure with
respect to MAP, which is only locally exact, i.e., an item selected for each rank position is an
exact maximizer with respect to the current partial structure, and iii) the joint ranking-clustering
inference procedure in Chapter 6. This is to be closely interlinked with the research for better
factorizations of the objectives (their approximations) and appropriate structure modelling.

Finally and most notably, we introduce the idea of learning a complex structural loss from
data, which arose in the application of clustering to coreference resolution in connection to
the impossibility to optimize directly the task-specific metric due to its high computational
complexity. Although, our study here is limited to the particular case of a clustering measure,
its outcome indicates a promising research direction encompassing i) learning measures from
expert examples, ii) finding effective representations of task-specific loss functions in terms of
the structural components, substructure variables, delivering decomposition properties to losses,
iii) enabling the loss computation, as in our case, etc.

Our experiments in Section 5.3 reflect the sufficiency of surrogate loss functions follow-
ing the optimality property, given in Section 3.1, in conditions close to separability and their
weakening as far as the separability worsen. The learned loss function mimicking the actual
task-specific loss was able to deliver not only better convergence rate in separable case, but also
a better separating hyperplane in terms of the task measure in more difficult learning conditions.
We realize the necessity of further investigation of the viability of the approach, including, in
the coreference resolution case, a strict comparison to the counterpart approaches optimizing
other global measures [Clark and Manning, 2016; Le and Titov, 2017].

Regarding the work on learning structural losses, our plans for future work can be summa-

71

rized as follows:

• Studying the properties of the learned loss approximation, e.g., what is the possible impact
of approximating a loss with a function linear or, more generally, smooth in some feature
space.

• Verifying, whether the approach generalizes well,

- empirically, to other structured prediction tasks and domains;

- theoretically,

- assessing the convergence speed,

- finding upper bounds on the training loss and generalization error

in terms of the approximation accuracy of the loss.

In conclusion, the idea of joint learning of the loss and the model, introduced in Chapter 4,
provides a formulation of our framework for learning with a learned loss, an all-in-one solution,
whose implementation in Section 5.4 resulted in even better accuracy, being at the same time
more efficient. In general, it gives a common solution sketch as it meets the requirements of
many real world machine learning scenarios with complex outputs and with non-trivial, and
even partially defined, evaluation measures.

Bibliography

Aloise, Daniel; Deshpande, Amit; Hansen, Pierre, and Popat, Preyas. Np-hardness of euclidean sum-of-squares clustering.
Machine Learning, 75(2):245–248, May 2009. ISSN 1573-0565. doi: 10.1007/s10994-009-5103-0. URL https://

doi.org/10.1007/s10994-009-5103-0.

Altun, Y.; Tsochantaridis, I., and Hofmann, T. Hidden Markov support vector machines. In Proceedings of the International
Conference on Machine Learning, 2003.

Archive, The UCI KDD. Kdd cup 1999 data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html, 1999. [Online; accessed 09-Nov-2017].

Bagga, Amit and Baldwin, Breck. Algorithms for scoring coreference chains. In Proceedings of the Linguistic Coreference
Workshop at the First International Conference on Language Resources and Evaluation, pages 563–566, Granada, Spain,
May 1998.

Bansal, Nikhil; Blum, Avrim, and Chawla, Shuchi. Correlation clustering. Machine Learning, 56(1):89–113, Jul 2004.
ISSN 1573-0565. doi: 10.1023/B:MACH.0000033116.57574.95. URL https://doi.org/10.1023/B:MACH.

0000033116.57574.95.

Barrón-Cedeño, Alberto; Martino, Giovanni Da San; Joty, Shafiq; Moschitti, Alessandro; Obaidli, Fahad A. Al; Romeo,
Salvatore; Tymoshenko, Kateryna, and Uva, Antonio. ConvKN at SemEval-2016 Task 3: Answer and question selection for
question answering on Arabic and English fora. In Proceedings of the 10th International Workshop on Semantic Evaluation,
SemEval ’16, pages 896–903, San Diego, California, USA, 2016.

Björkelund, Anders and Kuhn, Jonas. Learning structured perceptrons for coreference resolution with latent antecedents and
non-local features. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 47–57. Association for Computational Linguistics, 2014. doi: 10.3115/v1/P14-1005. URL http:

//aclweb.org/anthology/P14-1005.

Björkelund, Anders and Kuhn, Jonas. Learning structured perceptrons for coreference resolution with latent antecedents and
non-local features. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 47–57, Baltimore, Maryland, June 2014. Association for Computational Linguistics. URL http:

//www.aclweb.org/anthology/P/P14/P14-1005.

Cai, Jie and Strube, Michael. Evaluation metrics for end-to-end coreference resolution systems. In Proceedings of the 11th An-
nual Meeting of the Special Interest Group on Discourse and Dialogue, SIGDIAL ’10, pages 28–36, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics. ISBN 978-1-932432-85-5. URL http://dl.acm.org/citation.

cfm?id=1944506.1944511.

Chang, Chih-Chung and Lin, Chih-Jen. Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2(3):
27:1–27:27, May 2011. ISSN 2157-6904. doi: 10.1145/1961189.1961199. URL http://doi.acm.org/10.1145/

1961189.1961199.

https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1007/s10994-009-5103-0
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1023/B:MACH.0000033116.57574.95
http://aclweb.org/anthology/P14-1005
http://aclweb.org/anthology/P14-1005
http://www.aclweb.org/anthology/P/P14/P14-1005
http://www.aclweb.org/anthology/P/P14/P14-1005
http://dl.acm.org/citation.cfm?id=1944506.1944511
http://dl.acm.org/citation.cfm?id=1944506.1944511
http://doi.acm.org/10.1145/1961189.1961199
http://doi.acm.org/10.1145/1961189.1961199

74 Bibliography

Chang, Kai-Wei; Samdani, Rajhans; Rozovskaya, Alla; Rizzolo, Nick; Sammons, Mark, and Roth, Dan. Proceedings of
the Fifteenth Conference on Computational Natural Language Learning: Shared Task, chapter Inference Protocols for
Coreference Resolution, pages 40–44. Association for Computational Linguistics, 2011. URL http://aclweb.org/

anthology/W11-1904.

Chang, Kai-Wei; Samdani, Rajhans; Rozovskaya, Alla; Sammons, Mark, and Roth, Dan. Illinois-coref: The ui system in the
conll-2012 shared task. In Joint Conference on EMNLP and CoNLL - Shared Task, pages 113–117, Jeju Island, Korea, July
2012. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/W12-4513.

Chang, Kai-Wei; Samdani, Rajhans, and Roth, Dan. A constrained latent variable model for coreference resolution. In Pro-
ceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 601–612. Association for
Computational Linguistics, 2013. URL http://aclweb.org/anthology/D13-1057.

Chapelle, Olivier; Le, Quoc V., and Smola, Alex. Large margin optimization of ranking measures. In NIPS Workshop: Machine
Learning for Web Search, 2007.

Chen, Wei; Liu, Tie-Yan; Lan, Yanyan; Ma, Zhiming, and Li, Hang. Ranking measures and loss func-
tions in learning to rank. In Advances in Neural Information Processing Systems 22: 23rd Annual Con-
ference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009,
Vancouver, British Columbia, Canada., pages 315–323, 2009. URL http://papers.nips.cc/paper/

3708-ranking-measures-and-loss-functions-in-learning-to-rank.

Chu, Y. J. and Liu, T. H. On the shortest arborescence of a directed graph. Science Sinica, 14:1396–1400, 1965.

Clark, Kevin and Manning, Christopher D. Improving coreference resolution by learning entity-level distributed repre-
sentations. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 643–653, Berlin, Germany, August 2016. Association for Computational Linguistics. URL http:

//www.aclweb.org/anthology/P16-1061.

Collins, Michael. Discriminative training methods for hidden markov models: Theory and experiments with percep-
tron algorithms. In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing -
Volume 10, EMNLP ’02, pages 1–8, Stroudsburg, PA, USA, 2002. Association for Computational Linguistics. doi:
10.3115/1118693.1118694. URL http://dx.doi.org/10.3115/1118693.1118694.

Crammer, Koby; Dekel, Ofer; Keshet, Joseph; Shalev-Shwartz, Shai, and Singer, Yoram. Online passive-aggressive algorithms.
Journal of Machine Learning Research, 7:551–585, 2006.

Durrett, Greg and Klein, Dan. Easy victories and uphill battles in coreference resolution. In In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, 2013.

Edmonds, Jack. Optimum branchings. Journal of research of National Bureau of standards, pages 233–240, 1967.

Eick, C. F.; Zeidat, N., and Zhao, Z. Supervised clustering - algorithms and benefits. In 16th IEEE International Conference
on Tools with Artificial Intelligence, pages 774–776, Nov 2004. doi: 10.1109/ICTAI.2004.111.

Farnaaz, Nabila and Jabbar, M.A. Random forest modeling for network intrusion detection system. Procedia Computer Science,
89(Supplement C):213 – 217, 2016. ISSN 1877-0509. doi: https://doi.org/10.1016/j.procs.2016.06.047. URL http://

www.sciencedirect.com/science/article/pii/S1877050916311127. Twelfth International Conference
on Communication Networks, ICCN 2016, August 1921, 2016, Bangalore, India Twelfth International Conference on Data
Mining and Warehousing, ICDMW 2016, August 19-21, 2016, Bangalore, India Twelfth International Conference on Image
and Signal Processing, ICISP 2016, August 19-21, 2016, Bangalore, India.

http://aclweb.org/anthology/W11-1904
http://aclweb.org/anthology/W11-1904
http://www.aclweb.org/anthology/W12-4513
http://aclweb.org/anthology/D13-1057
http://papers.nips.cc/paper/3708-ranking-measures-and-loss-functions-in-learning-to-rank
http://papers.nips.cc/paper/3708-ranking-measures-and-loss-functions-in-learning-to-rank
http://www.aclweb.org/anthology/P16-1061
http://www.aclweb.org/anthology/P16-1061
http://dx.doi.org/10.3115/1118693.1118694
http://www.sciencedirect.com/science/article/pii/S1877050916311127
http://www.sciencedirect.com/science/article/pii/S1877050916311127

Bibliography 75

Fernandes, Eraldo R. and Brefeld, Ulf. Learning from partially annotated sequences. In Gunopulos, Dimitrios; Hofmann,
Thomas; Malerba, Donato, and Vazirgiannis, Michalis, editors, Machine Learning and Knowledge Discovery in Databases,
pages 407–422, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-23780-5.

Fernandes, Eraldo Rezende; dos Santos, Cı́cero Nogueira, and Milidiú, Ruy Luiz. Latent structure perceptron with feature in-
duction for unrestricted coreference resolution. In Joint Conference on EMNLP and CoNLL - Shared Task, pages 41–48, Jeju
Island, Korea, July 2012. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/

W12-4502.

Fernandes, Eraldo Rezende; dos Santos, Cı́cero Nogueira, and Milidiú, Ruy Luiz. Latent trees for coreference resolution.
Computational Linguistics, 40(4):801–835, 2014.

Finley, Thomas and Joachims, Thorsten. Supervised clustering with support vector machines. In ICML ’05: Proceedings of the
22nd international conference on Machine learning, pages 217–224, New York, NY, USA, 2005. ACM. ISBN 1-59593-180-
5. doi: 10.1145/1102351.1102379. URL http://portal.acm.org/citation.cfm?id=1102351.1102379.

Finley, Thomas and Joachims, Thorsten. Supervised k-means clustering. The NCSTRL collection of Computer Science Techni-
cal Reports, 2008. URL http://hdl.handle.net/1813/11584.

Fung, B. C. M.; Wang, K., and Ester, M. Hierarchical document clustering using frequent itemsets. In Proc. of the 3rd SIAM
International Conference on Data Mining (SDM), pages 59–70, San Francisco, CA, May 2003. SIAM.

Haponchyk, Iryna and Moschitti, Alessandro. Making Latent SVMstruct practical for coreference resolution. In Pro-
ceedings of the First Italian Conference on Computational Linguistics (CLiC-it 2014) & the Fourth International Work-
shop EVALITA 2014, pages 203–207, Pisa, Italy, 2014. URL http://www.fileli.unipi.it/projects/clic/

proceedings/vol1/CLICIT2014139.pdf.

Joachims, Thorsten. Optimizing search engines using clickthrough data. In Proceedings of the Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’02, pages 133–142, New York, NY, USA, 2002. ACM.
ISBN 1-58113-567-X. doi: 10.1145/775047.775067. URL http://doi.acm.org/10.1145/775047.775067.

Joachims, Thorsten. A support vector method for multivariate performance measures. In Raedt, Luc De and Wrobel, Stefan,
editors, Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), August 7-11, 2005, Bonn,
Germany, pages 377–384. ACM Press, New York, NY, USA, 2005. ISBN 1-59593-180-5. URL http://doi.acm.

org/10.1145/1102351.1102399.

Kruskal, Joseph Bernard. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. In Proceedings
of the American Mathematical Society, 7, 1956.

Kummerfeld, K. Jonathan; Berg-Kirkpatrick, Taylor, and Klein, Dan. An empirical analysis of optimization for max-margin
nlp. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 273–279. Asso-
ciation for Computational Linguistics, 2015. doi: 10.18653/v1/D15-1032. URL http://aclweb.org/anthology/

D15-1032.

Lassalle, Emmanuel and Denis, Pascal. Joint anaphoricity detection and coreference resolution with constrained latent struc-
tures. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pages 2274–2280. AAAI
Press, 2015. ISBN 0-262-51129-0. URL http://dl.acm.org/citation.cfm?id=2886521.2886637.

Le, Phong and Titov, Ivan. Optimizing differentiable relaxations of coreference evaluation metrics. Proceedings of CoNLL,
2017.

http://www.aclweb.org/anthology/W12-4502
http://www.aclweb.org/anthology/W12-4502
http://portal.acm.org/citation.cfm?id=1102351.1102379
http://hdl.handle.net/1813/11584
http://www.fileli.unipi.it/projects/clic/proceedings/vol1/CLICIT2014139.pdf
http://www.fileli.unipi.it/projects/clic/proceedings/vol1/CLICIT2014139.pdf
http://doi.acm.org/10.1145/775047.775067
http://doi.acm.org/10.1145/1102351.1102399
http://doi.acm.org/10.1145/1102351.1102399
http://aclweb.org/anthology/D15-1032
http://aclweb.org/anthology/D15-1032
http://dl.acm.org/citation.cfm?id=2886521.2886637

76 Bibliography

Le, Quoc V.; Smola, Alex; Chapelle, Olivier, and Teo, Choon Hui. Direct optimization of ranking measures. Journal of
Machine Learning Research, 2018. URL https://arxiv.org/pdf/1802.07400.

Luo, Xiaoqiang. On coreference resolution performance metrics. In Proceedings of the Conference on Human Language
Technology and Empirical Methods in Natural Language Processing, HLT ’05, pages 25–32, Stroudsburg, PA, USA, 2005.
Association for Computational Linguistics. doi: 10.3115/1220575.1220579. URL http://dx.doi.org/10.3115/

1220575.1220579.

Martschat, Sebastian and Strube, Michael. Latent structures for coreference resolution. Transactions of the Association for
Computational Linguistics, 3:405–418, 2015. ISSN 2307-387X.

McAllester, David A.; Hazan, Tamir, and Keshet, Joseph. Direct loss minimization for structured prediction. In Lafferty,
John D.; Williams, Christopher K. I.; Shawe-Taylor, John; Zemel, Richard S., and Culotta, Aron, editors, NIPS, pages
1594–1602. Curran Associates, Inc., 2010.

Moosavi, Nafise Sadat and Strube, Michael. Which coreference evaluation metric do you trust? a proposal for a link-based
entity aware metric. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 632–642, Berlin, Germany, August 2016. Association for Computational Linguistics. URL http:

//www.aclweb.org/anthology/P16-1060.

Peng, Haoruo; Chang, Kai-Wei, and Roth, Dan. A joint framework for coreference resolution and mention head detection.
In Proceedings of the Nineteenth Conference on Computational Natural Language Learning, pages 12–21. Association for
Computational Linguistics, 2015. doi: 10.18653/v1/K15-1002. URL http://aclweb.org/anthology/K15-1002.

Pradhan, Sameer; Moschitti, Alessandro; Xue, Nianwen; Uryupina, Olga, and Zhang, Yuchen. Joint Conference on EMNLP and
CoNLL - Shared Task, chapter CoNLL-2012 Shared Task: Modeling Multilingual Unrestricted Coreference in OntoNotes,
pages 1–40. Association for Computational Linguistics, 2012. URL http://aclweb.org/anthology/W12-4501.

Raman, M. R. Gauthama; Somu, Nivethitha; Kannan, Kirthivasan; Liscano, Ramiro, and Sriram, V. S. Shankar. An efficient
intrusion detection system based on hypergraph - genetic algorithm for parameter optimization and feature selection in
support vector machine. Knowl.-Based Syst., 134:1–12, 2017. doi: 10.1016/j.knosys.2017.07.005. URL https://doi.

org/10.1016/j.knosys.2017.07.005.

Ranjbar, Mani; Mori, Greg, and Wang, Yang. Optimizing complex loss functions in structured prediction. In European
Conference on Computer Vision, 2010.

Samdani, Rajhans; Chang, Kai-Wei, and Roth, Dan. A discriminative latent variable model for online clustering. In Proceedings
of the 31st International Conference on International Conference on Machine Learning - Volume 32, ICML’14, pages I–1–
I–9. JMLR.org, 2014. URL http://dl.acm.org/citation.cfm?id=3044805.3044807.

Subba, B.; Biswas, S., and Karmakar, S. A neural network based system for intrusion detection and attack classification. In 2016
Twenty Second National Conference on Communication (NCC), pages 1–6, March 2016. doi: 10.1109/NCC.2016.7561088.

Sun, Xu; Matsuzaki, Takuya; Okanohara, Daisuke, and Tsujii, Jun’ichi. Latent variable perceptron algorithm for structured
classification. In Proceedings of the 21st International Jont Conference on Artifical Intelligence, IJCAI’09, pages 1236–
1242, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc. URL http://dl.acm.org/citation.

cfm?id=1661445.1661643.

Tarlow, Daniel and Zemel, Richard S. Structured output learning with high order loss functions. In Proceedings of the 15th
Conference on Artificial Intelligence and Statistics, 2012.

https://arxiv.org/pdf/1802.07400
http://dx.doi.org/10.3115/1220575.1220579
http://dx.doi.org/10.3115/1220575.1220579
http://www.aclweb.org/anthology/P16-1060
http://www.aclweb.org/anthology/P16-1060
http://aclweb.org/anthology/K15-1002
http://aclweb.org/anthology/W12-4501
https://doi.org/10.1016/j.knosys.2017.07.005
https://doi.org/10.1016/j.knosys.2017.07.005
http://dl.acm.org/citation.cfm?id=3044805.3044807
http://dl.acm.org/citation.cfm?id=1661445.1661643
http://dl.acm.org/citation.cfm?id=1661445.1661643

Bibliography 77

Tavallaee, Mahbod; Bagheri, Ebrahim; Lu, Wei, and Ghorbani, Ali A. A detailed analysis of the kdd cup 99 data set.
In Proceedings of the Second IEEE International Conference on Computational Intelligence for Security and Defense
Applications, CISDA’09, pages 53–58, Piscataway, NJ, USA, 2009. IEEE Press. ISBN 978-1-4244-3763-4. URL
http://dl.acm.org/citation.cfm?id=1736481.1736489.

Tsochantaridis, Ioannis; Hofmann, Thomas; Joachims, Thorsten, and Altun, Yasemin. Support vector machine learning for
interdependent and structured output spaces. In Proceedings of the Twenty-first International Conference on Machine Learn-
ing, ICML ’04, pages 104–, New York, NY, USA, 2004. ACM. ISBN 1-58113-838-5. doi: 10.1145/1015330.1015341. URL
http://doi.acm.org/10.1145/1015330.1015341.

Uryupina, Olga; Saha, Sriparna; Ekbal, Asif, and Poesio, Massimo. Multi-metric optimization for coreference: The unitn/i-
itp/essex submission to the 2011 conll shared task. In Proceedings of the Fifteenth Conference on Computational Natural
Language Learning: Shared Task, CONLL Shared Task ’11, pages 61–65, Stroudsburg, PA, USA, 2011. Association for
Computational Linguistics. ISBN 9781937284084. URL http://dl.acm.org/citation.cfm?id=2132936.

2132944.

Uryupina, Olga; Moschitti, Alessandro, and Poesio, Massimo. Bart goes multilingual: The unitn/essex submission to the
conll-2012 shared task. In Joint Conference on EMNLP and CoNLL - Shared Task, CoNLL ’12, pages 122–128, Strouds-
burg, PA, USA, 2012. Association for Computational Linguistics. URL http://dl.acm.org/citation.cfm?id=

2391181.2391198.

Vilain, Marc; Burger, John; Aberdeen, John; Connolly, Dennis, and Hirschman, Lynette. A model-theoretic coreference scoring
scheme. In Proceedings of the 6th Message Understanding Conference, pages 45–52, 1995.

Weston, Janson and Blitzer, John. Latent structured ranking. In Conference on Uncertainty in Artificial Intelligence, 2012.

Wick, Michael; Rohanimanesh, Khashayar; Bellare, Kedar; Culotta, Aron, and McCallum, Andrew. Samplerank: Training
factor graphs with atomic gradients. In Getoor, Lise and Scheffer, Tobias, editors, Proceedings of the 28th International
Conference on Machine Learning (ICML-11), ICML ’11, pages 777–784, New York, NY, USA, June 2011. ACM. ISBN
978-1-4503-0619-5.

Wiseman, Sam; Rush, Alexander M., and Shieber, Stuart M. Learning global features for coreference resolution. In NAACL
HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, San Diego California, USA, June 12-17, 2016, pages 994–1004, 2016. URL http://aclweb.

org/anthology/N/N16/N16-1114.pdf.

Yang, Yi; Yih, Wen-tau, and Meek, Christopher. Wikiqa: A challenge dataset for open-domain question answering. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2013–2018, Lisbon,
Portugal, September 2015. Association for Computational Linguistics. URL https://aclweb.org/anthology/D/

D15/D15-1237.

Yu, Chun-Nam John and Joachims, Thorsten. Learning structural svms with latent variables. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, pages 1169–1176, New York, NY, USA, June 2009. ACM. ISBN
978-1-60558-516-1. doi: 10.1145/1553374.1553523. URL http://doi.acm.org/10.1145/1553374.1553523.

Yue, Yisong; Finley, Thomas; Radlinski, Filip, and Joachims, Thorsten. A support vector method for optimizing average
precision. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’07, pages 271–278, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-597-7. doi:
10.1145/1277741.1277790. URL http://doi.acm.org/10.1145/1277741.1277790.

Yuille, Alan and Rangarajan, Anand. The concave-convex procedure (CCCP). Neural Computation, 15:915–936, 2003.

http://dl.acm.org/citation.cfm?id=1736481.1736489
http://doi.acm.org/10.1145/1015330.1015341
http://dl.acm.org/citation.cfm?id=2132936.2132944
http://dl.acm.org/citation.cfm?id=2132936.2132944
http://dl.acm.org/citation.cfm?id=2391181.2391198
http://dl.acm.org/citation.cfm?id=2391181.2391198
http://aclweb.org/anthology/N/N16/N16-1114.pdf
http://aclweb.org/anthology/N/N16/N16-1114.pdf
https://aclweb.org/anthology/D/D15/D15-1237
https://aclweb.org/anthology/D/D15/D15-1237
http://doi.acm.org/10.1145/1553374.1553523
http://doi.acm.org/10.1145/1277741.1277790

78 BIBLIOGRAPHY

Zhao, Shanheng and Ng, Hwee Tou. Maximum metric score training for coreference resolution. In Proceedings of the 23rd
International Conference on Computational Linguistics (Coling 2010), pages 1308–1316, Beijing, China, August 2010.
Coling 2010 Organizing Committee. URL http://www.aclweb.org/anthology/C10-1147.

Zhao, Ying and Karypis, George. Criterion functions for document clustering: Experiments and analysis. Technical report,
2002.

http://www.aclweb.org/anthology/C10-1147

	Introduction
	Motivation
	Supervised clustering as structured prediction
	Structured prediction: evaluation v.s. optimization

	Thesis Work and Structure
	Thesis Contributions
	Publications

	Backgrounds on Structured Output Methods and Supervised Clustering
	Structured Output Methods
	Algorithms
	Loss functions
	Inference
	Max-violating inference and loss factorization

	Latent variables
	Latent Structural SVM
	Latent Structured perceptron
	Online passive-agressive structured output learning

	Structured Prediction for Supervised Clustering
	Supervised clustering
	Structured output clustering approaches
	SVMcluster
	Supervised k-means
	Graph-based learning
	LSSVMK
	LSPE

	Genearal Framework for Learning with a Learned Structural Loss
	On Optimality of Simple Loss Functions
	Learning a Loss Function
	Joint Learning of a Model and a Loss Function
	Joint learning approach (LSP*)
	Online algorithm for learning of a model and a loss function

	Structural Clustering in Network Environments
	Overview
	Structural Representation of Network Data
	Features from Raw Network Sensor Data
	Inference
	Experimental Analysis
	Data description
	Experimental setup
	LSP model
	Traning data sampling

	Baselines
	Features
	Evaluation

	Results
	Standard classification scenario
	Using recent traffic for reference
	Comparison to online learning

	Summary

	Structured Prediction for Coreference Resolution
	Coreference Resolution Task
	Definition
	Task Evaluation
	MUC
	B3
	CEAF
	Mention, Entity, and Link Average (MELA)

	Comparison of Structured Prediction Methods for Coreference Resolution
	Algorithm equivalence
	Experimental study
	Setup
	Data
	Evaluation measure
	Models and software
	Parametrization
	Selecting the epoch number

	Model comparison
	Feature selection
	Candidate edge selection
	Results on filtered data

	Discussion

	Learning and Optimizing a Complex Clustering Metric
	Related work
	Surrogate loss functions
	Automatically learning loss functions
	Features for learning measures
	Generating training and test data

	Learning with learned loss functions
	A general inexact decoding algorithm
	Notes on convergence
	Approaching factorization properties

	Experimental study
	Setup
	Data
	Models
	Parametrization
	Evaluation measure

	Learning loss functions
	Model comparison
	Learning in more challenging conditions
	Generalization to other languages

	Jointly Learning Loss and Model
	Notes on convergence
	Results of the joint learning model

	Summary

	Structured Prediction for Ranking
	Task formulation
	Overview
	Structured Prediction for Ranking
	Our learning approach
	Learning
	Max-violating inference

	Joint Ranking and Clustering
	Structured clustering
	Joint inference
	Learning

	Experiments
	Setup
	Data
	Models
	Features
	Parametrization
	Evaluation metrics

	Experimental results

	Summary

	Summary and future work
	Bibliography

