2,042 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Opportunities and Risks of the Information and Communication Technologies for Users with Special Needs

    Get PDF
    The fast developing of information and communication technologies has aroused the hope of P new society in which all people would kwe the same opportunities to access -through diverse eservices- to knowledge, work, leisure, etc. Information society has also offered a promising opportunity for social inclusion of people with disabilities. The combination of technological advancer (such as wireless personal area networks, wearable computing, etc.) with social advances (such as new inclusive legislation and social awareness) would make the social inclusion of people with special needs possible. Nevertheless, this will not automatically happen. It is necessary to apply inclusive design methods and to identify and avoid technological, ethicnl and social risk. This paper analyses the opportunities that information technology can offer to disabled people and the main risks that must be avoided. As a conclusion some guidelines to avoid these risks are outlined.Ministerio de Ciencia y Tecnología TIC2000-0087-P4Ministerio de Ciencia y Tecnología TIC2001-1868-C0

    Personalizable edge services for Web accessibility

    Get PDF
    Web Content Accessibility guidelines by W3C (W3C Recommendation, May 1999. http://www.w3.org/TR/WCAG10/) provide several suggestions for Web designers regarding how to author Web pages in order to make them accessible to everyone. In this context, this paper proposes the use of edge services as an efficient and general solution to promote accessibility and breaking down the digital barriers that inhibit users with disabilities to actively participate to any aspect of society. The idea behind edge services mainly affect the advantages of a personalized navigation in which contents are tailored according to different issues, such as client’s devices capabilities, communication systems and network conditions and, finally, preferences and/or abilities of the growing number of users that access the Web. To meet these requirements, Web designers have to efficiently provide content adaptation and personalization functionalities mechanisms in order to guarantee universal access to the Internet content. The so far dominant paradigm of communication on theWWW, due to its simple request/responsemodel, cannot efficiently address such requirements. Therefore, it must be augmented with new components that attempt to enhance the scalability, the performances and the ubiquity of the Web. Edge servers, acting on the HTTP data flow exchanged between client and server, allow on-the-fly content adaptation as well as other complex functionalities beyond the traditional caching and content replication services. These value-added services are called edge services and include personalization and customization, aggregation from multiple sources, geographical personalization of the navigation of pages (with insertion/emphasis of content that can be related to the user’s geographical location), translation services, group navigation and awareness for social navigation, advanced services for bandwidth optimization such as adaptive compression and format transcoding, mobility, and ubiquitous access to Internet content. This paper presents Personalizable Accessible Navigation (PAN) that is a set of edge services designed to improveWeb pages accessibility, developed and deployed on top of a programmable intermediary framework. The characteristics and the location of the services, i.e., provided by intermediaries, as well as the personalization and the opportunities to select multiple profiles make PAN a platform that is especially suitable for accessing the Web seamlessly also from mobile terminals

    Integrating Haptic Feedback into Mobile Location Based Services

    Get PDF
    Haptics is a feedback technology that takes advantage of the human sense of touch by applying forces, vibrations, and/or motions to a haptic-enabled device such as a mobile phone. Historically, human-computer interaction has been visual - text and images on the screen. Haptic feedback can be an important additional method especially in Mobile Location Based Services such as knowledge discovery, pedestrian navigation and notification systems. A knowledge discovery system called the Haptic GeoWand is a low interaction system that allows users to query geo-tagged data around them by using a point-and-scan technique with their mobile device. Haptic Pedestrian is a navigation system for walkers. Four prototypes have been developed classified according to the user’s guidance requirements, the user type (based on spatial skills), and overall system complexity. Haptic Transit is a notification system that provides spatial information to the users of public transport. In all these systems, haptic feedback is used to convey information about location, orientation, density and distance by use of the vibration alarm with varying frequencies and patterns to help understand the physical environment. Trials elicited positive responses from the users who see benefit in being provided with a “heads up” approach to mobile navigation. Results from a memory recall test show that the users of haptic feedback for navigation had better memory recall of the region traversed than the users of landmark images. Haptics integrated into a multi-modal navigation system provides more usable, less distracting but more effective interaction than conventional systems. Enhancements to the current work could include integration of contextual information, detailed large-scale user trials and the exploration of using haptics within confined indoor spaces

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    corecore