
LONG PAPER

Personalizable edge services for Web accessibility

Ugo Erra Æ Gennaro Iaccarino Æ Delfina Malandrino Æ
Vittorio Scarano

Published online: 29 September 2007

� Springer-Verlag 2007

Abstract Web Content Accessibility guidelines by

W3C (W3C Recommendation, May 1999. http://www.w3.

org/TR/WCAG10/) provide several suggestions for Web

designers regarding how to author Web pages in order to

make them accessible to everyone. In this context, this paper

proposes the use of edge services as an efficient and general

solution to promote accessibility and breaking down the

digital barriers that inhibit users with disabilities to actively

participate to any aspect of society. The idea behind edge

services mainly affect the advantages of a personalized

navigation in which contents are tailored according to

different issues, such as client’s devices capabilities, com-

munication systems and network conditions and, finally,

preferences and/or abilities of the growing number of users

that access the Web. To meet these requirements, Web

designers have to efficiently provide content adaptation and

personalization functionalities mechanisms in order to

guarantee universal access to the Internet content. The so far

dominant paradigm of communication on the WWW, due to

its simple request/response model, cannot efficiently address

such requirements. Therefore, it must be augmented with

new components that attempt to enhance the scalability, the

performances and the ubiquity of the Web. Edge servers,

acting on the HTTP data flow exchanged between client and

server, allow on-the-fly content adaptation as well as other

complex functionalities beyond the traditional caching

and content replication services. These value-added services

are called edge services and include personalization and

customization, aggregation from multiple sources, geo-

graphical personalization of the navigation of pages (with

insertion/emphasis of content that can be related to the user’s

geographical location), translation services, group naviga-

tion and awareness for social navigation, advanced services

for bandwidth optimization such as adaptive compression

and format transcoding, mobility, and ubiquitous access

to Internet content. This paper presents Personalizable

Accessible Navigation (PAN) that is a set of edge services

designed to improve Web pages accessibility, developed and

deployed on top of a programmable intermediary frame-

work. The characteristics and the location of the services,

i.e., provided by intermediaries, as well as the personaliza-

tion and the opportunities to select multiple profiles make

PAN a platform that is especially suitable for accessing the

Web seamlessly also from mobile terminals.

Keywords Web accessibility �
Programmable edge servers � Disability � Universal access

1 Introduction

The World Wide Web, with its ability to represent a

‘‘24 · 7 source of information’’, and the services it pro-

vides, is a remarkable reality in modern society. Many

different explanations can motivate this astonishing suc-

cess, ranging from technological to sociological to

economical ones. Among the former, very important is the

emphasis on the capabilities of the standards to accom-

modate a wide range of services, therefore, pushing the

U. Erra (&) � G. Iaccarino � D. Malandrino � V. Scarano

ISISLab, Dipartimento di Informatica ed Applicazioni

‘‘R.M. Capocelli’’, Università di Salerno, Salerno, Italy

e-mail: ugoerr@dia.unisa.it

G. Iaccarino

e-mail: iaccar@dia.unisa.it

D. Malandrino

e-mail: delmal@dia.unisa.it

V. Scarano

e-mail: vitsca@dia.unisa.it

123

Univ Access Inf Soc (2007) 6:285–306

DOI 10.1007/s10209-007-0091-y

http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG10/

World Wide Web as a universal access portal to the

information, wherever located and however accessed.

In spite of this tremendous success, an important chal-

lenge affects both the structure of the pages that the Web

increasingly provides every day, and their multimedia

contents: most of them are published without any consid-

eration about ‘‘accessibility’’.

Web accessibility means that people with disabilities

can easily navigate and interact with the Web. Conversely,

currently most Web sites have accessibility barriers that

make difficult or impossible for many people with dis-

abilities to use and access the Web. Using keyboards and

mouse, browsing through some intrusive Web pages (i.e.,

Web pages with pop-ups, advertisements, etc.) and hearing

video and audio multimedia files (flash animations and

audio/video contents), could appear as a normal activity for

‘‘non-disabled’’ people, but, on the other hand, it appears as

a not simple task for users with some type of disability.

Currently there are no universally accepted categoriza-

tions of disability, but as described in [14], they can be

classified into the following main categories: Visual dis-

abilities, that include blindness (non-correctable loss of

vision) low vision and color blindness (a lack of sensitivity

to certain colors); Hearing Impairments that include deaf-

ness (non-correctable impairment of hearing) or a mild

hearing impairment; Physical disabilities that include

motor disabilities (weakness, limitations of muscular con-

trol, such as lack of coordination, limitations of sensation

in hands and arms); Speech disabilities that include diffi-

culty in producing speech that is recognizable by software

for voice recognition; Cognitive disabilities that include,

for example, dyslexia, attention deficit disorder, intellec-

tual and memory impairments. These categories are not

clearly distinguished, since there is no easy test to deter-

mine to which group a subject belongs.

In particular, in the above classification, visual impair-

ments produce the most common source of difficulty for

users accessing the Web. Small fonts, some text and

background color combinations, background images, and

blinking text constitute a problem for Web users. More-

over, blind people encounter several problems if Web

pages are composed of a lot of images, tables, and not only

of linear text. It is very important to address these issue,

since a high percentage1 of people worldwide have visual

deficiencies (180 million people worldwide are visually

impaired, 45 million are blind and 135 million are partially

sighted. In the US, 16.5 million people have vision

impairments). The efforts in making the Web a more

accessible place is very important since the rapid aging of

the population and the estimated increase of disabled users

(a reasonable estimate is a doubling by 2020 worldwide

and a total of 20 million US people by 2010).

In addition, for users with hearing impairments (almost

441 million worldwide), the most critical difficulty comes

from the increasing popularity of audio and video multi-

media applications that, on the other hand, also represent

an increasingly important part of many Web sites today.

Finally, to make things even more complicated, users

may have multiple disabilities (with various degrees),

and that imposes several constraints on the configurability

and personalization of services targeted to improve

accessibility.

Accessibility problems are also worsened by the navi-

gation on mobile terminals, since the ‘‘traditional’’

transcoding operates only taking into account the limita-

tions of the devices and not taking into account the

potential disabilities of the user. In literature, several

examples can be found of intermediary adaptation systems

for mobile terminals, such as iMobile by AT&T [39], the

TACC infrastructure [17], RabbIT2 and Privoxy.3

However, although current generation (3G, UMTS, etc.)

devices are increasingly able to present high resolution

images of standard Web pages, ergonomic considerations

of the used devices suggest that the problem is not going to

disappear.

This paper presents Personalizable Accessible Naviga-

tion (PAN), that is, a set of edge services that aims to make

the navigation on the Web more accessible for any user.

The main underlying goal is to provide efficient adaptation

services, that is, services that are able to apply different

type of on-the-fly transformations on Web pages in order to

meet different users preferences, needs and abilities.

The rationale behind this project is the effectiveness of

intermediary frameworks to efficiently provide services in a

transparent way for end users, allowing them to access to

the Internet, and benefit of specific functionalities anytime,

anywhere and by using any client device [3, 22]. Users

with disabilities can take advantage of the personalization

of the edge services by simply choosing a profile, among

the provided ones (or to define a new profile from scratch),

that mainly suit their needs.

This paper is organized as follows. The next section

strongly motivates the conducted research by presenting

important issue of Web accessibility. Some examples of

accessibility systems that exist in literature are also

presented, along with some example of intermediary

frameworks that could be programmed to provide acces-

sibility services. In particular, the issue is addressed of how

programmable proxies can be employed to promote

accessibility, and in general, tackle a relevant part of the

1 http://www.lighthouse.org/.

2 http://rabbit-proxy.sourceforge.net.
3 http://www.privoxy.org.

286 Univ Access Inf Soc (2007) 6:285–306

123

problems that are generated by the dynamic nature of the

Web. Then, platforms for programmable HTTP proxies

that are available nowadays are briefly introduced.

Section 3 provides some details about PAN, its configu-

ration and the multiple profiles options. Then, Sect. 4

presents PAN’s services that can be used for efficiently

providing accessibility to people with disabilities, in several

contexts, including the mobile Web. Section 5 substantiates

the claim that the services provided are, indeed, effective

and efficient, by showing the results of experiments on the

efficaciousness of several services (determined by Bobby

Web Accessibility Tester, a comprehensive Web accessi-

bility tool) and on the efficiency of the most computational

heavy service introduced (the Colorblind filter) with an

implementation on a graphical card.

Finally, Sect. 6 concludes with some final comments.

2 Web accessibility

The W3C Consortium devotes considerable efforts and

leads a wide variety of activities4 to make the most famous

information space accessible for anyone, thus allowing

people with disabilities to actively perceive, understand,

navigate, and interact with the Web.

Within this area, the interest is mainly devoted to the

provision of personalized applications, that is, applications

that are able to customize Web content according to users’

preferences and needs. In particular, some examples of

services that make Web pages more accessible for users

with visual and motor disabilities have been implemented.

Some disabilities, such as hearing impairments, do not

require any transformation on HTML pages accessed by

users. Visual and motor impairments could be addressed by

using screen readers or other assistive technologies (e.g.,

modified keyboards or software for keyboard and mouse

emulation). However, the aim is how to address these

challenges with an instrument that is able to personalize the

Web without any modification both on client and server

systems. It must also be emphasized that improvements on

Web pages could positively affect all users, for example,

support for speech output could not only benefits blind

users, but also Web users whose eyes are busy during other

tasks.

2.1 Examples of Web accessibility systems

Assistive devices, such as screen readers and audio

browsers, are used by blind users to access the Web.

However, these systems show limitations since they are not

able to filter Web pages for removing useless information,

thus leading users, bothered by more and more intrusive

elements, to quickly leave their frustrating navigation.

In order to address this issue, several systems have been

developed with the aim of providing Web content acces-

sible to everyone. These systems, that can be classified as

filter and transformation tools, include, for example, sys-

tems that build an only-text version of Web documents

(e.g., BETSIE and {textualise;}, systems that apply trans-

formation according to users’ preferences (e.g., Web

Access Gateway and Tablin), systems that apply transfor-

mations according to specific rules and heuristics (e.g.,

WAB). In the subsequent sections, these systems are

classified according to the role assumed on the Web and the

network location where transformation functionalities are

provided (server, client or proxy).

2.1.1 Server-side accessibility systems

BETSIE, acronym of BBC Education Text to Speech

Internet Enhancer [8], is a simple CGI Perl script whose

main goal is to tackle the difficulties experienced by people

using text-to-speech systems for Web browsing. BETSIE

produces on-the-fly text-only version of every Web page

navigated by the end user and, in particular, it modifies

Web pages by handling frames, linearizing tables, remov-

ing images, Java and JavaScript code, etc. Finally, it allows

any user to choose among some color-themes, specific

sizes and fonts for text. An important limitation of BETSIE

is that it only works on BBC sites.

The {textualise;} system [43], transforms a Web site from

a graphics-heavy and inaccessible version to a text-only

version that is easily accessible for visually impaired users.

By following the W3C’s Web Content Accessibility Guide-

lines, it removes elements that screen readers cannot handle,

allows user to customize fonts and background colors,

removes Java applets, JavaScript code, graphics and fixes

ALT attributes, replaces Shockwave, Flash, and other plug-in

applications with a link to them, etc. A server component

within the {textualise;} system performs the required trans-

formations by using a set of transformation rules.

The Access Gateway system [10], specifically designed

for people with low vision or dyslexia, is able to serialize

frames, linearize tables, and remove images (by substitut-

ing them with missing ALT attributes), JavaScript codes,

Flash, and cookies.

2.1.2 Client-side accessibility systems

WebAdapter [30] is a WWW browser that provides

accessibility functionalities for blind, visual and physically4 http://www.w3.org/Consortium/activities.

Univ Access Inf Soc (2007) 6:285–306 287

123

impaired people. The idea is to include these functionalities

within a browser without affecting the UI for non-disabled

users. In particular, the adaptations provided by Web-

Adapter include adaptation for physically impaired users

(customization of images sizes), adaptations for visually

impaired users (turning-off of background images), and

finally, adaptations for blind users (sequential presentation

of tables). Finally, WebAdapter uses an integrated speech

synthesizer to read HTML documents for people with

visual disabilities.

2.1.3 Proxy-side accessibility systems

The Accessibility Transformation Gateway [36] is a

transcoding gateway designed to apply on-the-fly trans-

formations of Web pages in order to adapt them for users

with disabilities. Web pages, filtered by the gateway, can

be easily handled and rendered by screen readers or as-

sistive technologies. The access gateway intercepts

requests and responses by applying transformations

according accessibility and the usability rules [46]. An

important step includes the construction of the Document

Object Model (DOM) tree representation of the requested

HTML page. Finally, chosen rules include: (a) providing

alternate text for images, applet and for each Object, (b)

linearizing tables, (c) avoiding any URL redirect and

automatic page refresh, etc. Other functionalities, imple-

mented as part of the accessibility transcoding gateway

project, are simplification (i.e., deletion of clutter infor-

mation on Web pages) and summarization (i.e., building a

preview of Web pages) [35].

The IBM system described in [28] enables universal

access to Internet content by allowing different types of

devices, and people with different abilities, to receive

content that is suitable for their needs. It removes com-

ments and JavaScripts, handles images (by modifying

colors or removing them at all), linearizes tables, and

allows text summarization. The evolution of this system led

to the famous IBM WebSphere Transcoding Publisher

technology5 that dynamically translates Web content and

applications to meet different client devices capabilities

and users preferences.

Crunch [26, 27] is a Web proxy that uses a set of heu-

ristics to extract content from HTML pages in order to

make it accessible according to W3C Guidelines. It

employs a set of heuristics that is filters operating on a

DOM representation of a Web page, to remove all extra-

neous or useless information (not recognizable, for

example, by screen readers). In particular, the content

extractor navigates the DOM tree recursively and removes

and adjusts specific nodes by leaving only the content

behind. Crunch provides filters for removing images, links,

scripts, and more complex filters to remove advertisements,

link lists, and empty tables. Once entirely parsed and

adapted, the page can be rendered both in HTML and plain

text (for example, for text to speech and summarization

purposes). Crunch is not able to handle Flash and dynamic

generated codes and to distinguish between different

accessing users.

Other examples include WAB, a not customizable

HTTP proxy (based on CERN httpd) that modifies Web

pages to assist blind users. The page is transformed in a

text-only version to make it easily readable by screen

readers. Tablin [42] is a filtering system, developed by the

WAI Evaluation and Repair (ER) group, that can be used to

linearize HTML tables and render them in a form suitable

for reading by screen readers.

2.2 Intermediary frameworks

2.2.1 Edge services

Most Web sites, today, are designed to follow the ‘‘one-

size-fits-all’’ philosophy, by providing content and services

without taking care of the abilities of users that access

them. In fact, because of its increasingly complex infra-

structure, the Web does not really provide equal access and

equal opportunity for users with disabilities. The docu-

ments available on the Web exhibit a growing complexity,

especially for people with visual disabilities, that often are

unable to access, extract and summarize information on

Web pages or groups of pages. For people with motor

disabilities, the WWW represents a very important source

of information about any aspect of life: education,

employment, shopping, business, government and more.

Hence, as the Internet continues to evolve with an

increasing diversity and heterogeneity, there is a growing

demand for technological solutions that are able to allow

universal access to the Web content, by breaking down

accessibility barriers that inhibit the access by users with

disabilities. These technologies could be provided server-

side, client-side or through intermediary systems. While

server-side solution require Web designers to write or re-

design accessible Web pages, and client-side solution

require the development of adaptive browsers or other

assistive technologies, intermediary solutions can be pro-

vided without any intervention on client and server

systems, by allowing transcoding and Web personalization

on-the-fly, transparently for users with disabilities [1, 31].

Other advantages of edge servers systems are: (1) they

can reduce both complexity on servers (that will only take

care of providing the requested resources) and system5 http://www-306.ibm.com/software/pervasive/transcodingpublisher/.

288 Univ Access Inf Soc (2007) 6:285–306

123

requirements on clients (independently from device’s

capabilities), (2) new services can be added without stop-

ping the servers, by ensuring fault-tolerance, (3) increased

flexibility (where new components can be deployed) and

scalability are offered, and (4), the quality of access to the

resources available on the Web is improved.

Finally, the edge services role in the World Wide Web

architecture makes them usable in three different ways.

The first one is the traditional proxy setting, which is

suitable for providing public services to communities. An

edge service can also act as an HTTP surrogate, that is as

an intermediary that acts on behalf of an origin server to

provide complex functionalities. On the other hand, an

edge service can also be placed at the other end of the

client–server path, by playing the role of an HTTP delegate

on behalf of client systems, by providing personalized

functionalities (implemented on the client) that can be also

used for accessing off-line HTML repositories as well as

intranet contents.

Intermediaries are increasingly used to develop and

deploy services for accessibility. This issue is discussed in

the following section.

2.2.2 Edge servers that promote Web accessibility

Famous examples of intermediary systems that can be

easily programmed to promote accessibility include Muffin

[http://muffin.doit.org], a Web HTTP proxy that provides

functionalities to remove cookies, kill GIF animations,

remove advertisements, add, remove, or modify any

HTML tag, remove Java applets and JavaScript code, etc.

RabbIT [http://rabbit-proxy.sourceforge.net] is a Web

HTTP proxy that accelerates the delivery of Web contents

to end users by compressing text pages and images, by

removing unnecessary parts of HTML pages (background

images, advertisements, banners, etc.) and, finally, by

caching filtered documents before forwarding them to the

clients.

Web Based Intermediaries (WBI) [4–6] is a dynamic

and programmable framework, developed by the IBM

Almaden Research Center [http://www.almaden.ibm.

com/cs/wbi], whose main goal is to personalize the Web

by realizing an architecture that simplifies the development

of intermediary applications. WBI defines a programming

model that can be used to implement all form of interme-

diaries, from simple server functions to complex

distributed applications.

On top of the WBI programmable proxy, as part of the

more complex Scalable Edge-computing Services system

(SEcS) [23], the Test-To-Speech service [2] has been

developed, that allows the speaking of the text of HTML

pages during their displaying towards end users. Moreover,

the Text-To-Speech Service can help the comprehension of

documents that are written in foreign languages, since a

reader that is partially familiar with the spoken language

and not with its written form can be supported in obtaining,

at least, the meaning of the information contained in the

document.

The framework used to develop PAN is Scalable Inter-

mediary Software Infrastructure for edge services (SISI). A

brief description of the framework and its functionalities

are presented in the next section.

2.3 Scalable Intermediary Software Infrastructure

(SISI)

2.3.1 SISI features

The SISI [12] is an efficient and programmable interme-

diary infrastructure that enables universal access to the

Web content. This framework has been designed with the

goal of guaranteeing an efficient and scalable delivery of

personalized services at intermediate edge server on the

WWW.

SISI programmability is a crucial characteristic, since it

allows an easy implementation and assembling of adapta-

tion services that enhance the quality of services perceived

by users during their navigation. To allow programmabil-

ity, the SISI framework provides a programming model

and a set of APIs that can be used for quick prototyping and

easy development of new services to improve the naviga-

tion on the Web for non-disabled users, as well as for

disabled ones. Services can be assembled and configured to

enhance the set of pre-defined functionalities.

This framework is, therefore, oriented both to pro-

grammers and users. First of all, SISI is able to offer a

simple interface that allows the personalization of the

content adaptation services, as well as their combination.

SISI user-friendly configuration of services is an important

feature, since in this phase the users can easily provide

information about the required services and personalize

their navigation on the Web.

Moreover, SISI provides programmers with a software

platform that contains all basic functions that are necessary

for an advanced intermediate server (i.e., user authentica-

tion and authorization, source content fetching, content

delivery, management of users preferences, logging and

auditing) and a set of already implemented content adap-

tation services that may be customized and composed in

several ways. None of the systems described before is

oriented to both users and programmers, facilitates pro-

grammers to create new content adaptation services and

integrate them, and provides programmers with a mecha-

nism to transparently handle user preferences.

Univ Access Inf Soc (2007) 6:285–306 289

123

Unlike other intermediary frameworks, SISI supports

also multiple concurrent users, each with an individual

profile, and offers a powerful mechanism to chain multiple

content adaptation services.

Besides programmability, SISI pursues also the effi-

ciency of the provided solutions, so as to avoid typical

performance degradation of most frameworks when they

apply multiple content adaptation services. As shown in

[12], while some of the other edge services infrastructures

exhibit efficiency or programmability, SISI is able to offer

both and, additionally, it also include personalization and

remote configuration through easy and dynamic per-user

per-profile management of the services.

2.3.2 SISI architecture

The SISI framework is composed of different modules,

entirely written in Perl, each acting during a specific phase

of the Apache HTTP Request life-cycle (see Fig. 1).

The ProxyPerl Module intercepts all client requests and

initializes the transaction process. Its most important task is

to fetch the requested URLs by manipulating, if necessary,

HTTP headers. If no transformation has to be applied on

the HTTP flow, the requested document will be sent back

unchanged to the client. Otherwise, the transaction will be

managed by the handlers invoked according to the user’s

profile.

The Authorization Module is useful both to restrict

access to the proxy server as well as to distinguish between

users, so that each user can have different SISI services

applied to individual requests.

The FilterPlugin Module acts as a dispatcher within the

architecture, by activating the services according to users’

preferences.

The Deploy Module is used by the programmer to add

new services to the framework. It consists of an automatic

modules generation process that implements intermediary

services starting from simple Perl files.

Finally, in order to simplify the management and the

debugging of the SISI components, the framework pro-

vides a Graphical User Interface, which relieves system

administrators and programmers from learning or remem-

bering complex and tedious commands during the

administration phase and the debugging of new deployed

modules.

It should be emphasized that, since SISI relays on the

Apache architecture and works as a set of Apache modules,

it can also work in HTTPS, which, in general, is an

increasingly interesting feature given the heterogeneity of

the information that are transmitted on the Web.

3 Personalizable accessible navigation

Personalizable Accessible Navigation, developed on top of

the SISI framework, offers to people with disabilities the

following important functionalities:

Configurability: each user is authenticated and services

can be applied according to the chosen configuration. Of

course, it is possible to activate and deactivate accessibility

services as preferred, by acting on a personal profile page.

Easy deployment: client-side configuration is quite sim-

ple, as it only requires using the proxy setting on the browser

Fig. 1 Placement of SISI

modules into the Apache

request life-cycle

290 Univ Access Inf Soc (2007) 6:285–306

123

and providing the authentication to PAN to use services.

Moreover, it provides ubiquitous services from any node and

does not require installation (and therefore, administrator

privileges), which makes it particularly useful when

accessing the Web from public terminals as well as from

mobile terminals. The main goal is to avoid any complex and

computationally onerous browser-dependent technology

[29] and provide the same set of services to each user, in any

context (be it home, workplace or public terminal) with

different devices (such as fixed or mobile terminals).

Efficiency: the accessibility services are executed on the

path from server to client, therefore amortizing the cost of

implementing expensive transcoding techniques onto the

‘‘natural’’ delay that is considered physiologic.

3.1 Installation

To use the PAN’s set of accessibility services, users have,

firstly, to install the SISI framework that is available as raw

source code for Unix/Linux platforms and in a pre-com-

piled version for Windows. The installation of the SISI

framework requires the installation of the Apache Web

server and mod_perl, and some packages for image

manipulations (PerlMagick library [37]) and a set of Perl

modules which provides a simple and consistent applica-

tion programming interface for developing Web client

applications (LWP User Agent perl package [34]).

The installation and the deployment of PAN is accom-

plished by simply using the deployment mechanism

provided by the SISI framework (see [12] for more details).

3.2 Configuration and profiles

Once deployed, the PAN set of services is accessible

through a specific configuration page (see Fig. 2).

User profiles are managed by explicitly asking the user

what s/he needs and using this information with a rule-

based approach to personalize the content. In particular,

users have to fill-in forms to create new profiles and to

modify or delete the existing ones, as shown in Fig. 2.

User-friendly configuration of services is an important

feature, since in this phase the users can easily provide

information about the required services and personalize

their navigation on the Web. In fact, by allowing services’

configuration, it is possible to affect the adaptation of a

given delivery context, and to change the user experience

accordingly.

When a new user is added to the system, a default profile

is automatically generated and the user can modify it at the

first log in to choose individual preferences.

As an example, a user with a moderate low-vision dis-

ability may be able to navigate with a modest help from PAN

when using his/her usual terminal (due to good in door

illumination and large-size screen) but may need more help

when accessing the network through public terminals (i.e.,

ordinary-sized screens), and especially when browsing the

Web through a mobile terminal. In each context, the user

can select a different profile, previously set and configured

on PAN, obtaining the right amount of support when needed.

Finally, it must be mentioned that PAN is the only system

that allows personal configuration of services as well as

multiple profiles when compared to the systems described

Fig. 2 Users’s profile

management

Univ Access Inf Soc (2007) 6:285–306 291

123

in Sect. 2.1. In fact, SISI is the only intermediary system

that allows remote users’ services configuration by using

the browser: each user can access profiles (as a set of

services), create new profiles, switch among them and

choose the one that is active (i.e., the set of services that are

to be applied to the HTTP flow). In this way, different

contexts can be easily accommodated by users, increasing

the overall usability.

4 PAN services for accessibility

The services provided by PAN are grouped in four main

categories, depending whether they act on text, links, ima-

ges or other objects on the HTML page (such as pop-up

windows, etc.), according also to the classification implic-

itly provided in [46]. This section also describes a filter for

colorblind users that would fit in the image-based category

but, because of its complexity, deserves its own section.

Of course, many of the guidelines provided by W3C for

making accessible a Website can be also found in the

corresponding Best Practices for Mobile Web [25]: as a

matter of fact, dealing with user limitations or terminal

limitations can be seen as the two faces of the same goal:

promote universal access to Web resources.

4.1 Text-based edge services

This section describes two services that adapt Web pages

by taking into account the rules suggested by W3C to

improve accessibility [46] and to enhance, in general, the

navigation of Web pages [44], and, more specifically, of

CSS files [13].

4.1.1 The CSS-Restyling service

Cascading Style Sheets (CSS) files benefit accessibility

since they separate document structure from its presentation.

More specifically, they allow defining how different ele-

ments, such as headers, text, links, etc., should appear to end

users. They establish a precise control over the structure of

Web pages, by providing rules for characteristics such as

spacing, alignment and positioning. They also allow defin-

ing a precise control over text style effects such as font size,

color, and color-contrast, etc. Finally, style sheets allow

Web designers to simplify the structure of Web pages and

clean up them by useless information and dynamic elements,

by making them more accessible from screen readers.

The PAN CSS-Restyling service accesses the Web page

retrieved by the origin server, parses it, and for each HTML

tag of the CSS file, modifies its attribute by replacing it

with accessible values as suggested by [13, 25]. In partic-

ular, in order to deliver information to a greater number of

users, the following changes are performed:

• Font size (text and links) is changed according to

service parameters (Guideline 11 in [24]).

• Text and link colors, background and foreground color

combinations are changed to provide sufficient contrast

when viewed by users with color deficiency (Check-

point 2.2 Color contrast, Guideline 2 Text formatting

and position in [24]).

• Blinking content is turned off (Checkpoint 7.2 Text

style effects, Guideline 7 in [24]).

• Textual cues are provided instead of images (by always

providing for each image the corresponding alt attribute

with the content attribute of the img tag, if present, or

the name of the image) (Checkpoint 3.3 Text instead of

images, Guideline 3 in [24]).

The CSS-Restyling service applies transformations on Web

pages by taking into account both internal and external

CSS files. The values provided by the CSS-Restyling

service can be customized by the user according to

individual needs and abilities by accessing a form on the

proxy side (see Fig. 3).

An example of application of the CSS-Restyling edge

service is shown in Fig. 4.

4.1.2 The TextColor-Restyling service

The TextColor-Restyling service ensures that foreground

and background color combinations of Web pages provide

sufficient contrast when displayed to users with color

deficiencies as defined by the Guideline 2 in [46], and Sect.

5.3: Page Content and Layout in [25].

The TextColor-Restyling service accesses the HTML

page retrieved by the origin server and, for each HTML

tag, analyzes its corresponding attribute looking for back-

ground and foreground text information. More precisely,

the following attributes are taken into account: color,

bgcolor, background, text, link, alink, vlink and style’s

attributes that specify images/backgrounds/colors.

The main goal of this service is to adapt Web pages in

order to make them more accessible for people with color

deficiencies.

4.2 Link-based services

This section discusses services that act on links of Web

pages in order to make Web pages more readable when

users use assistive technologies such as speech synthesiz-

ers, screen readers, etc.

292 Univ Access Inf Soc (2007) 6:285–306

123

4.2.1 The RemoveLink service

The RemoveLink edge service removes all anchors (the

HTML \A[tag) from HTML pages, by replacing them

with plain text (the text between the open and close of the

anchor tag).

The main advantage of this service is that screen readers

or other vocal browsers will not read useless information in

Web pages when users that access them are not able to see

links and follow them. Examples of Web pages include

Web pages news, meteorology, encyclopedias pages, etc.,

in which no links to other resources are required.

4.2.2 TheLinkAccessKey service

The W3C Guideline 9 Design for device-independence

[46], in section Keyboard access, and Sect. 5.2 Navigation

and Links (5.2.6 Access Keys) in [25] state the need to use

access keys HTML elements to allow users with disabili-

ties to browse the Web.

Content developers should always ensure that users may

interact with a page with input devices other than a mouse.

Since this limitation is not often considered, PAN provides a

service that allows both motor and visual disabilities users

to browse the Web without limitations.

This service adds to any link embedded in a Web page a

numeric Access Key in such a way to make it accessible

through a simple combination of keyboard keys, ALT +

Access Key + Return for example (see Figs. 5, 6). Pressing

the access key assigned to an element gives focus to the

element, and the corresponding action will be executed. In

particular, by pressing the access key, the browser will

follow the corresponding destination link. Moreover, the

numeric value of the access key is also added into the

HTML source of the Web page, so it can be easily read by

any screen reader. The LinkAccessKey edge service could

also be useful to improve Web navigation on devices with

limited display capabilities.

4.2.3 The LinkRelationship service

As defined by the W3C guideline 13 Provide clear navi-

gation mechanisms and by Sect. 5.2 Navigation and Links

(5.2.2 Navigation Bar) in [25], content developers should

use the LINK element and link types to describe document

navigation mechanisms and organization. Some user agents

may synthesize navigation tools or allow ordered printing of

a set of documents based on such markup. The LINK ele-

ment may also be used to designate alternative documents.

Browsers should load the alternative page automatically

based on the user’s browser type and preferences. For

example, content developers can produce different content

for browsers that support Braille rendering.

The LinkRelationship service adds a toolbar containing the

LINK attributes on top of each HTML page, as shown in Fig. 5.

It can also be useful to make HTML pages more accessible

Fig. 3 Form to for the

CSS-Restyling edge service

customization

Univ Access Inf Soc (2007) 6:285–306 293

123

and more readable by screen readers, and for improving Web

navigation trough devices with limited capabilities.

The W3C defines, other than the traditional set of rela-

tionship links (Start, Preview, Next, Help, Bookmarks),

another useful set for Web accessibility. It includes, for

example, the relationship link Alternate, designed to pro-

vide alternative versions of documents, the Contents link

relationship, that refers to a summary or to a site map, the

Glossary, that refers to a glossary of terms contained in the

current page, the Copyright, that refers to a copyright of

the current document, etc.

4.2.4 The DeleteTarget service

The target attribute of the HTML A tag specifies the frame

where the document will be opened. In particular, the blank

value allow to open a new browser window for displaying

the corresponding page.

As defined by the W3C Guideline 10 Use interim

solutions [46], new browser windows represent a critical

problem for screen readers because of their impossibility to

jump among different pages. Moreover, when the focus

comes back to the original window, the screen reader starts

again from the beginning of the page to speech the corre-

sponding content.

The main goal of the DeleteTarget service is, therefore, to

avoid any target attribute in both link and anchor elements,

by displaying all pages in the same browser window.

4.2.5 The LinkLinearizing service

The LinkLinearizing edge service allows to organize and to

lexicographically order links embedded in Web documents

in order to simplify their direct access by users with visual

and motor disabilities, by also adding a numerical access

key (see Fig. 6).

This service parses HTML pages and places all dis-

covered links in a table on the top or bottom of the page (as

specified by the user during the configuration and cus-

tomization of the service).

4.3 Image-based services

Web images represent a serious problem for blind users,

since they cannot be read by screen readers. Moreover,

particular images formats or compositions represent a

barrier also for cognitively disabled people, as discussed in

Sect. 4.3.2. At the end of this section, in Sect. 4.5.2, we will

also describe a filter for colorblind users that introduces

also a heavy-load image filtering technique.

4.3.1 The ImageRemoval service

The ImageRemoval edge service removes any image

embedded in a Web page by replacing it with a link, as

suggested in Sect. 5.4 Page Definition (5.4.5 Non-Text

Items) [25].

In particular, this service parses the Web page looking

for HTML img tags, and replace them with A tags whose

content attribute will contain the link information (see

image:) followed by the original img content attribute, if it

exists, and only the (see image) link message, conversely.

Fig. 4 The CSS-Restyling edge service. The original WWW 2006

Website (top) and the same page with the application of the CSS-

Restyling service by PAN (bottom)

294 Univ Access Inf Soc (2007) 6:285–306

123

In this way, only if requested, the image will be displayed

to end users (see Fig. 7).

Screen readers will be able to read all important

information available in a Web page, thus facilitating its

comprehension by users with disabilities.

4.3.2 The GIF-Deanimate service

GIF animated images represent a digital barrier for users

with cognitive disabilities. In fact, these images reduce

attention from the content, causing important problems to

users that suffer of dyslexia or of general attention deficit.

By following the Guideline 7: Ensure user control of

time-sensitive content changes [46], the GIF-Deanimate

edge service that replaces each animated image embedded in

a Web page with a static one, by showing only its first frame.

The GIF-Deanimate service has been implemented by

using the well-known PerlMagick [37] library, that is an

object-oriented Perl interface to ImageMagick [33], a free

software that allows to create, edit, and compose images

with different formats.

Fig. 5 The LinkAccessKey and

Linkrelationship edge services

Fig. 6 LinkLinearizing and

AccessKey services

Univ Access Inf Soc (2007) 6:285–306 295

123

4.4 Filtering of other objects

4.4.1 AnnojanceFilter service

As defined in the Guideline 10: Use interim solutions [46]

navigating with several pop-up windows, banners, scripts,

etc., can be difficult for people with visual and cognitive

disabilities.

The main goal of the AnnojanceFilter service is to

eliminate particularly annoying elements during the Web

navigation. More precisely, the AnnojanceFilter service

provides functionalities for removing advertisement, ban-

ners, pop-ups in JavaScript and HTML, JavaScript code,

for disabling unsolicited pop-up windows, etc. During

service’s configuration users can choose the functionality

to enable by providing parameters if required.

This is a very critical service, because animated objects,

banners or Popup browser windows could contain impor-

tant information about the Webpage (not only as images).

The customization of this service through SISI is, there-

fore, crucial for avoiding errors and subsequent distorted

Web pages during their displaying on clients.

4.4.2 The HTMLClean service

The main goal of this service (based on the HTML::Clean

Perl library) is to clean HTML pages from useless or

redundant code. It is very useful for Web pages built with

programs that silently add internal code. Other function-

alities include removing white spaces (Checkpoint 3.3:

Text formatting and position [24]), non-standard META

elements, and HTML comments, as well as replace tags

with equivalent shorter tags. By using the provided meth-

ods, the service is able to reduce the size of Web pages,

thus speeding up the download.

The HTMLClean service is able to ensure that docu-

ments are clear and simple, so they may be more easily

understood (Guideline 14: Ensure that documents are clear

and simple. [46]).

4.5 Support for colorblind users

This section describes separately an edge-service based

solution to the problem of colorblind users [32]. The Col-

orblind filter service implements an algorithm that modifies

any color in Web pages, by increasing contrast and light-

ness, in order to make them accessible for users with such a

disability. The filter acts on text (see Sect. 4.1.2) as well as

on images, and is the most complex of the filters presented

in this paper. This Section first introduces colorblindness,

and then describes the developed algorithm and its imple-

mentation on top of PAN.

4.5.1 Colorblindness

The human eye perceives an electromagnetic radiation only

in a particular segment of the enormous range of its fre-

quencies, called ‘‘visible light spectrum’’, that ranges

approximately from 380 to 780 nm (1 nm = 10–9 m). Each

individual wavelength within the spectrum of visible light

wavelengths is representative of a particular color.

Moreover, the human eye contains three types of color

sensitive receptors, called cones, which are responsible for

Fig. 7 RemoveImages and

LinkAccesskey services

296 Univ Access Inf Soc (2007) 6:285–306

123

the vision of a different portion of the spectrum, that is,

Long (reddish), Middle (greenish), or Short wavelengths

(bluish) [18]. A color deficiency is present when one or

more of the three cones light sensitive pigments have a

spectral sensitivity similar to the sensitivity of another cone

type or when they are entirely missing.

The most common forms of color deficient vision, called

protanopic and deuteranopic, are characterized by diffi-

culties in distinguish between green and red. This type of

deficiency, also known as color blindness, is mostly a

genetic condition, and it is much more common in men

than in women (roughly 8% of the male population against

only 2% of female population).

It must be emphasized that red and green colors are

absolutely unknown for colorblind users. Therefore, all the

analyzed approaches, both in computer graphics and mathe-

matics, for preserving the reproduction of colors, have mainly

addressed the problem of how to avoid, as much as possible,

any ‘‘loss of information’’ due to a genetic condition.

Related research has been mainly conducted in the field of

computer graphics and mathematics (see, as an example

[9]). As a consequence, results are typically not suitable to

be used in on-the-fly filtering, as in the case of WWW

navigation by a colorblind user [45]. Among previous

efforts, the interesting work by Dougherty and Wade [15]

also proposed a mechanism (on a website) for digital images

correction. More recent work [19] proposed algorithms that

transform color to gray scale by preserving image details. In

[41] an extension of this algorithm is shown to allow a re-

coloring of images for color-deficient viewers. While being

an interesting extension, their technique is far from having

real-time performance [40], that is, instead, the main moti-

vation that has guided the present work in this field.

4.5.2 Colorblind filter service

The Colorblind filter service (CBFS) translates on-the-fly

any HTTP response in order to obtain a page that is more

accessible to users with color blindness. More details on

the efficiency of the solution are provided in Sect. 5.2.

The adopted approach is to tackle accessibility for

dichromatic users by modifying on-the-fly both HTML and

the images embedded. In fact, the main goal of the CBFS is

to modify background and foreground colors in HTML

pages, and to re-color embedded images, including ani-

mated GIF images, in order to make more recognizable the

red/green contrast for dichromatic users.

The service parses on-the-fly each Web page and, for

each HTML tag, analyzes the corresponding attributes to

modify background and foreground text and images, if

some correction is required, by also taking into account

inline Internal and External CSS.

The following attributes of HTML pages are considered:

color, bgcolor, background, img, text, link, alink, vlink and

style attributes that specify images/backgrounds/colors,

following the rules suggested by ‘‘Techniques For Acces-

sibility Evaluation And Repair Tools’’ of W3C (http://www.

w3.org/TR/AERT).

The CBFS uses the HSL representation of colors, by

specifying them in terms of Hue (H), Lightness (L) and

Saturation (S). The Hue value describes the individual

colors (the portion of the spectrum that contains the color),

the Saturation value represents the intensity of a specific

color, and the Lightness value determines the perceived

intensity (light or dark color). The HSL color representa-

tion model was chosen instead of the RGB one due to its

ability to manipulate lightness, that represents the most

important discrimination element for dichromatic people.

The goal of the algorithm is to reduce all stimuli along the

so-called ‘‘confusion lines’’, that are the lines of intersection

between the plane of not visibility for dichromatic people and

the 3D color space of normal users [9]. In fact, by changing

proportionally hue, saturation and lightness values, it is

possible that all stimuli fall in two different half-planes (of

the 2D representation) by making them distinguishable both

for normal and dichromatic users.

The algorithm, shown below, has complexity of H(n � m)

when the input is an image of size n · m.

An important characteristic of this algorithm is that it is

customizable, that is, each user can choose the proportion

by which hue, saturation and lightness are changed.6 The

personalization of edge-services offered by SISI allows

6 The values used in the algorithm have been qualitatively tested with

several colorblind users and with the Vischeck simulator described in

[15].

Univ Access Inf Soc (2007) 6:285–306 297

123

easy personal tuning to meet different color perception

deficiencies.

Figure 8 shows an example of application of the algo-

rithm to a well-known Paul Gauguin’s painting,7 on left as

perceived by trichromatic and on the right as seen by

dichromatic users. In the image on the right the details of

the road in the meadow are lost, but by properly modifying

colors according to the developed algorithm, colorblind

viewers are able to distinguish the edge between the road

and the meadow, although not being able to perceive

exactly the right colors used by Gauguin. Figure 9 shows

the image as modified by the algorithm, as perceived by a

trichromatic user (left), and as perceived by a dichromatic

user (right8). The details are now evident also in the image

on the right-hand side.

Besides the experiments with the Vischeck simulator

[15], the results of the CBFS have been further validated

through a test on several colorblind users that recognized a

significant to very significant improvement in the percep-

tion of images that would present problems to dichromatic

vision.

Finally, to measure the impact of the CBFS on the

responsiveness of user navigation, a preliminary perfor-

mance evaluation has performed, which is described in

Sect. 5.2.

4.6 Summary of services features

As reported in this section, PAN provides a repertoire of

edge services that are tailored to address the needs of dif-

ferent kinds of disabilities. Table 1 summarizes how each

type of disability can be addressed by PAN’s services.

Finally, it should be emphasized that the remote, user-

friendly configuration of the services applied, per-user and

per-profile, offers an effective personalization of the tool.

The efficiency of the services is described in the next

section.

5 Testing effectiveness and efficiency

Effectiveness and efficiency of the services that are pro-

vided by PAN are, of course, crucial: services must be

useful, but they also need to be provided with a reasonable

degree of effort and resources by Internet providers, gov-

ernment, associations, etc.

It should emphasized that this research stems from

2 years long experience in a ‘‘Leonardo Da Vinci’’ Euro-

pean-funded project (ended November 2005) named

WHITE (Web for Handicap Integrated Training Environ-

ment) [38]. WHITE’s goal was to improve the educational

and training systems to include people with physical dis-

abilities (in particular, visually impaired users), and the

acquired experiences was very useful in the realization of

PAN.

5.1 Effectiveness

The requirements and design phase of the WHITE project

were supported by different volunteers of different blind

associations from Italy and Romania. The project ended

with the presentation of an early prototype9 of (some of)

the techniques reported in this paper as applied to a sound

engineering course.

In particular, following the categorization provided in

Sect. 4, during the WHITE project blind users were

involved during the design and realization of Text-based

services (Sect. 4.1), Link-based services (Sect. 4.2) and

services for filtering other objects (Sect. 4.4) that had the

main goal of making more acceptable and efficacious the

work performed by the screen reader for a blind user. In

Fig. 8 Original image (left) and

as perceived3 (right) by a

dichromatic user

7 Landscape, 1890. Oil on canvas. The National Gallery of Art,

Washington DC, USA.
8 Images on the right-hand side of Figs. 8 and 9 are obtained with the

Vischeck simulator described in [15].

9 It must be noticed that the prototype was an ad hoc implementation

of the filters and that it did not allow (e.g.) any configuration,

profiling, and personalization.

298 Univ Access Inf Soc (2007) 6:285–306

123

particular, one of the most popular screen readers for

Windows (JAWS for Windows) was used in the tests.

5.1.1 User study

A in-house user study was conducted in order of test the

efficacy of these services for people with low-vision dis-

abilities and people with colorblind deficiency, involving a

group of eight persons composed of both students and

researchers of the University of Salerno and people from

the Accademia musicale di Caserta,10 aged between 25 and

45 years. They were either color blind or low vision users.

The users were asked to navigate through a set of pre-

defined Web pages using two different browsers, one

connected to the developed edge server proxy (configured

to help the specific disability of each user) and another with

a direct connection to the Internet. The users did not know

which one between them was the browser with enhanced

capabilities that is the browser whose pages were inter-

cepted by PAN and modified if some correction process was

required. The objective of the experiment was mainly to

obtain qualitative feedback about the ability of PAN to

improve Web navigation for everyone.

In particular, the following questions were addressed:

1. Is the user able of to find visualization improvements

in the shown Web page, and such improvements are

simple to understand?

2. Is the user able of to get additional information when

comparing the two Web pages displayed by the two

different browsers?

Fig. 9 Modified image (left)
and as perceived3 by a

dichromatic user (right)

Table 1 Suggested services

implemented on PAN for main

kinds of disabilities

Disability Services Rationale

Low vision Gif-Deanimate

AnnojanceFilter

LinkAccesskey

LinkRelationship

CSS-Restyling

reduces confusion by eliminating animated

GIFs . . .

. . . and advertisement, banners and pop-ups;

facilitates finding links by number . . .

. . . and finding REL links easily; restyles

fonts and colors

Color blindness Filter ColorBlind

Textcolor Restyling

Changes images . . .

. . . and text colors so that they are easily

recognizable by colorblind users

Blindness ImageRemoval

DeleteTarget

HTMLClean

AnnojanceFilter

RemoveLinks

removes images so that screen-readers are

more effective;

disables new windows from opening when

clicking on a link;

improves readability for the screen readers;

removes advertisements, banners and pop-

ups;

removes all the links in the HTML page

Upper-limbs motor

disabilities

LinkAccesskey

LinkLinearizing

DeleteTarget

allows interaction without mouse based

interfaces;

makes more easily accessible all the links in

the same place;

disables new windows from opening when

clicking on a link

10 It was one of the partners of the WHITE project.

Univ Access Inf Soc (2007) 6:285–306 299

123

3. Does the user lose information during the visualization

of the Web pages via proxy?

All the questions are answered using the following scale:

never, occasional, sometimes, often, always. The results are

summarized in Fig. 10.

The subjects, after 20–30 min of navigation through the

pre-defined Web pages, were asked to provide some

comments about the usability of the provided tool. The

results confirm that PAN activation and service configura-

tion are simple and intuitive.

Users with color blindness are able to see all information

they would not see otherwise, and the improvements are

especially significant for graphics, buttons, tables and images

with text. In particular, the services were found particularly

helpful by professionals (e.g., scientist) that work heavily

with colored charts with tiny colored lines that intersect each

other or that are very close. Another example were the pro-

vided filters were considerably helpful was in showing

graphical representations of cells and molecules to chemists.

More controversial was the usage of Colorblind filters

on pictures, art paintings and geographic maps. In fact, the

comments were that the main advantage of the transfor-

mations directed at showing information in recognizable

colors does affect (often, negatively) the overall vision of

the image and in many cases, it is considered acceptable by

the users to miss red/green details but retain the ‘‘origi-

nality’’ of the color distribution of the image. In those

cases, particularly well accepted was the opportunity to

easily configure and turn the filter on or off in different

moments of the navigation, possibly when the user feels in

doubt about the perception of the image.

Users with low-vision had the opinion that, in general,

the services modifying the style of the page (i.e., CSS-

Restyling) were moderately useful, since, in general, could

support and improve existing tools offered by the visual

interface to the operating system (such as magnifying

glass) but were not critical to the accessibility of the pages.

5.1.2 Automated test

The efficacy of all the services (except ColorBlind)

was also tested by using an automated tester, namely

Bobby Web Accessibility Tester (available at the URL:

http://webxact.watchfire.com) that is a comprehensive Web

accessibility tool designed to aid Web masters to test Web

sites in order to improve their accessibility. Bobby tests

Web pages by using a set of accessibility checks defined in

WAI [44].

The following six categories of Web pages were selec-

ted: Airlines, Government, Information, Museums,

Research and (Computer Science) Technology. For each

category, five significant sites (homepage) were chosen.

The URL for each category are reported in Appendix A.

Bobby’s results on the original Web pages were com-

pared with Bobby’s results obtained on the same Web

pages adapted by PAN. The adapted pages were saved on a

local server and accessed with Bobby in a subsequent step.

The following PAN’s services were tested: ImageRemoval,

the CSS-Restyling, TextColor-Restyling, LinkAccessKey,

DeleteTarget and AnnojanceFilter. The effectiveness of the

Colorblind filter has been tested differently, as specified in

Sect. 4.5.2, by applying additional filters that simulate the

dichromatic vision and comparing the effect on the images

altered by Colorblind.

Bobby Accessibility Tester checks if the analyzed Web

pages are fully compliant with all of the automatic and

manual checkpoints of the W3C Web Content Accessibility

Guidelines. In particular, Bobby reports errors using the

W3C Guidelines priority list, but they can be assembled in

four categories: ‘‘Image Evaluation’’, ‘‘Insufficient Color

Contrast’’, ‘‘Animated Objects’’, and ‘‘Pop-ups and new

browser windows’’.

Figures 11, 12, 13, and 14 show the most significant

results of the tests on four of the six site categories used as a

sample. Each figure is composed by two graphs, indicating

the number of errors and warnings resulting from the Bobby

tests on the categories ‘Image Evaluation’’, ‘‘Insufficient

Color Contrast’’, ‘‘Animated Objects’’, ‘‘Pop-ups and new

browser windows’’. In particular, the topmost graph shows

Bobby’s results on the original Web pages, while the bot-

tom graph shows Bobby’s results on the adapted pages by

PAN. For each graph, the Web page tested is reported on the

X-axis while on the Y-axis the number of errors for each

category is shown, where the lower the number, the more

accessible is the page.

As shown in Figs. 11, 12, 13, and 14, a substantial

improvement on categories ‘‘Governments’’, ‘‘Information’’,

‘‘Research’’ and ‘‘Technology’’ is obtained with the use of

PAN.

Figure 15 shows the trend of errors detected by Bobby,

before and after application of PAN, on all the Web pages

Fig. 10 Left(1) to right(3), the

results of the three questions to

evaluate the feedback of the

Web navigation

300 Univ Access Inf Soc (2007) 6:285–306

123

tested. For each page (for readability, the X-axis shows the

number of the page in the list provided at the beginning of

this section) the total number of errors detected in all the

four error categories is reported.

These results show that accessibility is definitely

improved applying PAN; for each URL, accessibility

improves between 50 and 90%, in some cases improve-

ments are over 90%. It should be emphasized that, except

in one case (CNN site, URL no. 11), the total number of

errors is always diminished by at least 50%.

5.2 Efficiency

PAN is based on SISI, whose efficiency leverages on highly

optimized libraries for parsing and changing HTML, the

Apache Web server and mod Perl. As a matter of fact, as

shown in [12], SISI is particularly efficient in providing

services that modify the structure of an HTML page.

Obviously, different results can be obtained when the ser-

vice is required to parse and change images on-the-fly. As a

matter of fact, some preliminary testing of the Colorblind

filter [32] using image filters showed that, while the overall

architecture of PAN was able to keep up the pace with the

workload, the libraries for dealing with images represented

a bottleneck.

This section therefore focuses on the efficiency of the

Colorblind filter service, that represents a rather heavy-

weight service to be provided to a number of users. In fact,

while representing a killer application for accessibility, its

cost in terms of CPU is probably too much demanding for

real deployment. Therefore, this section discusses the cost

of the filter as is implemented in PAN, as well as potential

improvements which can be obtained if additional resour-

ces are used (e.g., graphical cards that are now available at

low cost on ordinary PCs).

5.2.1 Graphical hardware

Graphics Processors Unit (GPUs) are stream processor

that are highly optimized for computer games and, more

Fig. 11 Bobby results of Web pages of the ‘‘Government’’ category

Fig. 12 Bobby results of Web pages of the ‘‘Information’’ category

Fig. 13 Bobby results of Web pages of the ‘‘Research’’ category

Fig. 14 Bobby results of Web pages of the ‘‘Technology’’ category

Univ Access Inf Soc (2007) 6:285–306 301

123

generally, for real time rendering. GPUs have high memory

bandwidth and more floating point units as compared to the

CPUs. For example, the current top of the line GPU such as

the NVIDIA 7800 GTX, available at a price of $500, has a

peak performance of 313 GFLOPS and a memory band-

width of 56 GB/s, as compared to 25.6 GFPLOS and

6.4 GB/s, respectively, for a high-end dual core Pentium

IV processor.

Recently, researchers are using this computational power

as general purpose stream processing for applications beyond

graphics. The term GPGPU has been coined to indicate

General Purpose computation on GPUs. There are numerous

examples where the GPUs have been used to perform general

stream computations, for instance, in scientific computations,

matrix multiplication, FFT computation, sparse linear sys-

tems, etc., as reported in [21]. In particular, Govindaraju et al.

[20] show that a classic problem like sorting ported on the

GPU is significantly faster than optimized CPU-based algo-

rithms. These results suggest that the GPU used as a co-

processor can significantly improve performance of several

algorithms.

The main features that makes the graphics hardware

attractive are the programmability, the spatial parallelism it

provide (for example, each pixel on the screen can be

viewed as a stream processor) and the widespread avail-

ability on ordinary PCs.

GPU, compared to CPU, exploits a specialized compu-

tational model that can make problematic its usage in

general purpose computations instead of 3D graphics ren-

dering for which it has been designed for. Among the most

significant limitations, the limited size of a program and the

absence of quite useful programming paradigms such as,

for example, pointers can be mentioned.

Writing general purpose algorithms on highly special-

ized hardware like GPU is not an easy task. The design of

the programs is not intuitive at all; for example, it is nec-

essary to map computational concepts like an input or an

output to graphical computational resources like texture

and frame buffer, respectively. This mapping is not always

obvious, and it often has to face strict hardware limits.

There are several ways of programming GPU, ranging

from some ANSI C inspired language (Cg, HLSL, OpenGL

Shading Language) to recent specialized language that

exploit the restricted parallel programming model of the

GPU (BrookGPU, Accellerator, Sh). The Cg (C for

graphics) language and OpenGL graphics library was used

in the work described in the next section. Cg has been

designed by nVIDIA and supports different profiles to best

adhere to the various hardware available from different

manufacturer [16].

5.2.2 The Colorblind filter on GPU

This section describes the implementation of Colorblind

filter on GPU, within the same framework previously

described, i.e., the intermediary uses the local (top the

proxy) GPU in order to efficiently perform the filtering.

Most of the computing power of GPUs is accessible

from one particular stage of the graphics pipeline, pixel

shading. Image color processing fits well into the pixel

shading. In fact, pixel shaders have a particularly restricted

parallel programming model in which each pixel of a

texture is computed independently of every other pixel of

the texture. Then, the general idea is to store images as

texture map and to exploit fragment shader programs to

implement the Colorblind filter.

This service is built on top of the OpenGL library which

is responsible to transfer each incoming image from the

proxy into the graphics memory as texture in order to

perform an off-screen computation (i.e., rendering). Addi-

tionally, the recent PCI-Express bus which connect CPU

and GPU permits high amount of data to be transferred at

up to 4 GB/s in both directions. The great capability of this

new bus permits to promote GPU much more as a general

purpose co-processor. Furthermore, both GPU and CPU

can work simultaneously, fully exploiting the system with

better performances.

The Colorblind filter is written using the high level

language for graphics Cg, which exposes mathematical

Fig. 15 Graph of the

improvements obtained on sites

of all categories by using PAN,

as accessed through Bobby

302 Univ Access Inf Soc (2007) 6:285–306

123

functions implemented in the hardware, thus making the

computation of complex mathematical expressions more

efficient. Such mathematical functions can compute four

components simultaneously (traditionally red, green, blue,

and alpha) fully exploiting SIMD instructions.

The main steps to rendering an image on the GPU are:

1. Compile and set the pixel shader program with

Colorblind filter to compute the value of the output

pixel.

2. For each incoming image from the proxy

(a) Load and transfer the image to video memory as

texture.

(b) Draw an image-sized quad in order to create a

stream of fragments (i.e., pixels) upon which run

the filter.

(c) Pass the colors output values to system memory.

This approach is general and permits easily to plug a

custom color or image filter (black and white, image

downgrade, dithering for Braille display, etc.) with mini-

mum alteration, thus creating and extensible service. In

order to deploy the GPU Colorblind filter, written in C++,

on top of the SISI framework, written in Perl, the SWIG

tool [7] was used. SWIG is a free tool designed to integrate

C/C++ code with a variety of scripting languages including

Perl, Python, and Tcl. The integration of Perl and C/C++

code allows programmers to easily write wrappers that

convert data between the Perl interpreter and the compiled

c code. SWIG has been used for the design of the low-level

software interface to graphics hardware. In such a way, this

interface permits to use the provided Colorblind filter on

SISI within a Perl script as a standard package.

5.2.3 A comparison of Colorblind filter and its GPU

implementation

To evaluate the efficiency of the implemented Colorblind

filters, this section reports the results of some tests whose

goal was to measure the time required by the filters to apply

transformations on Web resources. Both implementations

(Cg and Perl implementations) of the Colorblind filter

apply transformations only on image resources whose

formats are GIF, animated GIF and JPG, since the com-

putationally heaviest part of the filter is on images. The

tests were performed in a local setting by comparing the

execution of the GPU program with the corresponding Perl

program, since the framework of PAN in both cases is the

same. It was anticipated that the improvement obtained

would be of an order of magnitude in time, quite precious

for offering the service to a number of users.

The experiments used two workload models. The first,

called Neighborhood, follows the study described in [11],

while the second, called HeavyWorkload, aims at stressing

the services since the images to be processed had a size

larger then 100 KB.

In the LightWorkload model, the image sizes have been

defined as suggested in [11]. The 80% of GIF images are

smaller than 6 KB, the 45% of them are bullets, icons,

lines, banners, the 15% are animated and, finally, the 10%

are standard images, i.e., images that do not belong to any

of the categories specified above, and larger than 6 KB. On

average, JPEG images are larger than GIF images, the 40%

of the JPEG images are larger than 6 KB, the 30% of small

JPEG images appear to be icons, bullets, etc., while the

35% are standard images larger than 6 KB.

The cost of the color image processing was measured in

terms of the response time of the requests issued as a

sequential stream on a PC with a 2.5 GHZ Opteron CPU

with NVIDIA GeForce 7900 GTX card, running Red Hat

ES Linux. In particular, the cumulative distribution func-

tion of the response time was used instead to consider mean

values, since the latter can mask important details about the

behavior of slow and fast responses, typical of systems

with high variability, during experiments.

From the plot in Fig. 16 it can be seen that the Perl

implementation of the Colorblind Filter is able to achieve a

90-percentile of the response time in a range between 220

and 230 ms, while the 90-percentile for the Cg imple-

mentation is between 4 and 5 ms (see Table 2).

From Table 3, it can be seen that the Cg Colorblind filter

is able to achieve a 90-percentile of about 160 ms, while

the Perl implementation is much slower, with a 90-per-

centile between 16,000 and 17,000 ms.

6 Conclusions

Personalizable Accessible Navigation represents an effec-

tive, efficient, simple and personalizable tool to provide

easier access to Web resources to people with disabilities.

Its nature (being an intermediary) and the characteristics

of its services make it suitable for adapting access to Web

resources in different contexts, such as fixed/mobile

terminals. As intermediary, PAN can flexibly act as a tra-

ditional proxy, as a HTTP surrogate (placed on the server-

side) or as a HTTP delegate (placed on the client side).

Being based on SISI, PAN can be used also for HTTPS

access. A main motivation is that several important

services (e-government, online banking, etc.) are only

available through HTTPS access. Of course, the accessi-

bility to these services via proxy would severely impact on

the privacy of the communication, that is the main reason

for the secure protocol itself. In fact, an intermediary could

have access to sensitive information just because the

transcoding or other services are needed. A first solution

Univ Access Inf Soc (2007) 6:285–306 303

123

could be using PAN as a delegate proxy (i.e., on client

machine), in such a way that HTTPS connection’s privacy

is preserved outside, in the network. Another more costly

option could be to offer corporate surrogate proxy (i.e., in

front of the Web server) so that secure and accessible

services can be provided to the users.

Moreover, by implementing easy configuration and

multiple profiles, PAN enhances the usability of the acces-

sibility services in many different contexts.

The effectiveness and efficiency of PAN have been

experimentally validated, which makes PAN a realistic

platform to deploy services for the navigation of people

with disabilities.

As a final comment, the intrinsic technological limita-

tions encountered by a solution based, as many others, on

transcoding, should be noted. Indeed, transcoding neces-

sitates, nowadays, an increasingly complex analysis of

HTML pages, as dynamic content (such as DHTML and

AJAX applications) is spreading on the World Wide Web.

In fact, scripts that alter the structure of the page client-side

offer a challenge to transcoding techniques, which can be

tackled only by approximate solutions, since computability

theory shows that this kind of problems are undecidable,

being easily reducible to the Turing machine halting

problem. In general, transcoding applications are doomed

not to provide guaranteed performances if no other infor-

mation on the semantics of the page and the modifications

is available.

Acknowledgments The authors gratefully acknowledge the support

and the interesting discussions within the ISIS Lab. In particular, we

thank Angelo Esposito for collaborating in the implementation of

CSS restyling PAN service. Part of the research was supported by EU

‘‘Leonardo da Vinci’’ project Web for handicap integrated training

environment (WHITE), I/03/B/F/PP-154143, 2003. We also thank all

the WHITE’s partners, and, in particular, the Accademia Musicale di

Caserta and Emilio Di Donato for his help during the testing. We

thank all the users that volunteered for testing our PAN. Finally we

thank the anonymous reviewers for insightful comments and sug-

gestions which considerably helped us in improving the paper.

7 Appendix

7.1 A URLs used for Bobby’s testing

• Airlines

• 1. America Airlines—http://www.aa.com/

• 2. Alitalia—http://www.alitalia.it/

• 3. Airfrance—http://www.airfrance.fr/

• 4. British airways—http://www.britishairways.com/

• 5. Korean Air—http://www.koreanair.com/

• Governments

• 6. USA: White House—http://www.whitehouse.

gov/

• 7. Italy: Prime Minister—http://www.governo.it/

• 8. Spain: Presidencia del Gobierno—http://www.

la-moncloa.es/

Table 2 Response time comparison of the Cg and Perl implemen-

tations based on 50 and 90-percentiles with the LightWorkload

Response time (ms)

Median 90-percentile

Perl CB filtering 14 228

Cg CB filtering 3 4.7

Table 3 Response time comparison of the Cg and Perl implemen-

tations based on 50 and 90-percentiles with the HeavyWorkload

Response time (ms)

Median 90-percentile

Perl CB filtering 3,200 16,200

Cg CB filtering 30 160

Fig. 16 Cumulative

distribution function for the

Colorblind (CB) LightWork-

load

304 Univ Access Inf Soc (2007) 6:285–306

123

http://www.aa.com/
http://www.alitalia.it/
http://www.airfrance.fr/
http://www.britishairways.com/
http://www.koreanair.com/
http://www.whitehouse.gov/
http://www.whitehouse.gov/
http://www.governo.it/
http://www.la-moncloa.es/
http://www.la-moncloa.es/

• 9. France: Portail du Governement—http://www.

premier-ministre.gouv.fr/

• 10. UK: The United Kingdom Parliament—http://

www.parliament.uk/

• Information

• 11. CNN—http://www.cnn.com/

• 12. The New York Times—http://www.nytimes.

com/

• 13. LaRepubblica (Italy)—http://www.repubblica.

it/

• 14. Financial Times Europe—http://www.ft.com/

home/europe

• 15. LeMonde (France)—http://www.lemonde.fr/

• Museums

• 16. Metropolitan Museum of Art (New York)—

http://www.metmuseum.org/

• 17. MuseiVaticani (Vatican City)—http://www.

vatican.va/phomeen.htm

• 18. Egyptian Museum (Cairo)—http://www.

egyptianmuseum.gov.eg/news.asp

• 19. Grand Canyon National Park—http://www.

grand.canyon.national-park.com/

• 20. Louvre—http://www.louvre.fr/

• Research

• 21. IEEE—http://www.ieee.org/portal/site

• 22. ACM—http://www.acm.org/

• 23. NASA—http://www.nasa.gov/home/

• 24. Medical Research Council—http://www.mrc.

ac.uk/

• 25. Human Genome Research—http://www.

genome.gov/

• Technology (Computer Science)

• 26. IEEE—http://www.apple.com/

• 27. Eclipse—http://www.eclipse.org/

• 28. SUN—http://www.sun.com/

• 29. Microsoft—http://www.microsoft.com/

• 30. W3C—http://www.w3.org/.

References

1. Asakawa, C., Takagi, H.: Annotation-based transcoding for

nonvisual web access. In: Assets ‘00: Proceedings of the Fourth

International ACM Conference on Assistive Technologies, pp.

172–179. ACM, New York (2000)

2. Barra, M., Grieco, R., Malandrino, D., Negro, A., Scarano, V.:

Text-ToSpeech: an heavy-weight Edge computing Service. In:

Poster Proceedings of 12th International World Wide Web

Conference. ACM, New York (2003)

3. Barra, M. Maglio, P., Negro, A., Scarano V.: GAS: Group

Adaptive System. In: Proceedings of the International Conference

on Adaptive Hypermedia and Adaptive Web-based Systems (AH

2002), pp. 47–57. ACM, New York (2002)

4. Barrett, R., Maglio, P.: Adaptive communities and Web places.

In: Proceedings of the 2nd Workshop on Adaptive Hypertext and

Hypermedia, HY 98 (1998)

5. Barrett, R., Maglio, P.P.: Intermediaries: an approach to manip-

ulating information streams. IBM Syst. J. 38(4), 629–641 (1999)

6. Barrett, R., Maglio, P.P.: WebPlaces: Adding people to the Web.

In: Proceedings of 8th International World Wide Web Confer-

ence. ACM, Toronto (1999)

7. Beazley, D., Fletcher, D., Dumont, D.: Perl extension building

with swig (1998)

8. BBCEducation Text to Speech Internet Enhancer (1999).

http://www.bbc.co.uk/education/betsie/

9. Brettel, H., Vienot, F., Mollon, J.D.: Computerized simulation of

color appearence for dichromats. J. Opt. Soc. Am. 14(10), 2647–

2655 (1997)

10. Brown, S.S., Robinson, P.: A World Wide Web mediator for

users with low vision. In: Proceedings of CHI 2001 Workshop

No. 14 (2001)

11. Chandra, S., Gehani, A., Ellis, C.S, Vahdat, A.: Transcoding

characteristics of web images. In: Kienzle, M., ChiFeng, W.

(eds.) Multimedia Computing and Networking (MMCN’01), vol.

4312, pp. 135–149. SPIE—The International Society of Optical

Engineering, San Jose, CA (2001)

12. Colajanni, M., Grieco, R., Malandrino, D., Mazzoni, F., Scarano,

V.: A scalable framework for the support of advanced edge ser-

vices. In: Proceedings of 2005 International Conference on High

Performance Computing and Communications (HPCC 2005),

September 2005 (Journal version is accepted for publication by

WWW Journal)

13. CSS Techniques for Web Content Accessibility Guidelines 1.0,

November 2000. http://www.w3.org/TR/WCAG10-CSS-TECHS/

14. How People with Disabilities Use the Web, W3C Working

Draft, 10 December 2004. http://www.w3.org/WAI/EO/Drafts/

PWD-Use-Web/Overview.html

15. Dougherty, R., Wade, A.: Vischeck: simulation of colorblind

vision and images correction for colorblind viewers.

http://www.vischeck.com

16. Fernando, R., Kilgard, M.J.: The Cg Tutorial: The Definitive

Guide to Programmable Real-Time Graphics. Addison-Wesley

Longman, Reading (2003)

17. Fox, A., Chawathe, Y., Brewer, E.A.: Adapting to Network and

Client variation using active proxies: lessons and perspectives.

IEEE Personal Commun. 5(4), 10–19 (1998)

18. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn.

Prentice-Hall, Englewood Cliffs (2002)

19. Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B.: Color2gray:

Salient-preserving color removal. ACM Trans. Graphic 24(3),

634–639 (2005)

20. Govindaraju, N.K, Gray, J., Kumar, R., Manocha, D.: Gputera-

sort: high performance graphics coprocessor sorting for large

database management. In: ACM SIGMOD International Con-

ference on Management of Data, Chicago, IL, USA, June (2006)

21. General-purpose computation using graphics hardware, August

2006. http://www.gpgpu.org/

22. Grieco, R., Malandrino, D., Mazzoni, F., Riboni, D.: Context-

aware provision of advanced Internet services. In: Proceedings of

the 4th Annual IEEE International Conference on Pervasive

Computing and Communications (PerCom 2006), Pisa, Italy

(2006)

23. Grieco, R., Malandrino, D., Scarano, V.: SEcS: scalable edge-

computing services. In: SAC ‘05: Proceedings of the 2005 ACM

Symposium on Applied Computing, pp. 1709–1713. ACM, New

York (2005)

24. W3C Note–Techniques for Web Content Accessibility

Guidelines 1.0, November 2000. http://www.w3.org/TR/

WCAG10-TECHS/

Univ Access Inf Soc (2007) 6:285–306 305

123

http://www.premier-ministre.gouv.fr/
http://www.premier-ministre.gouv.fr/
http://www.parliament.uk/
http://www.parliament.uk/
http://www.cnn.com/
http://www.nytimes.com/
http://www.nytimes.com/
http://www.repubblica.it/
http://www.repubblica.it/
http://www.ft.com/home/europe
http://www.ft.com/home/europe
http://www.lemonde.fr/
http://www.metmuseum.org/
http://www.vatican.va/phomeen.htm
http://www.vatican.va/phomeen.htm
http://www.egyptianmuseum.gov.eg/news.asp
http://www.egyptianmuseum.gov.eg/news.asp
http://www.grand.canyon.national-park.com/
http://www.grand.canyon.national-park.com/
http://www.louvre.fr/
http://www.ieee.org/portal/site
http://www.acm.org/
http://www.nasa.gov/home/
http://www.mrc.ac.uk/
http://www.mrc.ac.uk/
http://www.genome.gov/
http://www.genome.gov/
http://www.apple.com/
http://www.eclipse.org/
http://www.sun.com/
http://www.microsoft.com/
http://www.w3.org/
http://www.bbc.co.uk/education/betsie/
http://www.w3.org/TR/WCAG10-CSS-TECHS/
http://www.w3.org/WAI/EO/Drafts/PWD-Use-Web/Overview.html
http://www.w3.org/WAI/EO/Drafts/PWD-Use-Web/Overview.html
http://www.vischeck.com
http://www.gpgpu.org/
http://www.w3.org/TR/WCAG10-TECHS/
http://www.w3.org/TR/WCAG10-TECHS/

25. W3C Working Draft—Mobile Web Best Practices 1.0, January

2006. http://www.w3.org/TR/2006/WD-mobile-bp-20060113/

26. Gupta, S., Kaiser, G.: Extracting content from accessible web

pages. In: W4A ‘05: Proceedings of the 2005 International Cross-

Disciplinary Workshop on Web Accessibility (W4A), pp. 26–30.

ACM, New York (2005)

27. Gupta, S., Kaiser, G.E., Grimm, P., Chiang, M.F., Starren, J.:

Automating content extraction of HTML documents. World

Wide Web 8(2), 179–224 (2005)

28. Han, R., Bhagwat, P., Lamaire, R., Mummert, T., Perret, V.,

Rubas, J.: Dynamic Adaptation In an Image Transcoding Proxy

For Mobile Web Browsing. IEEE Personal Commun. 5(6),

December (1998)

29. Hanson, V.L., Brezin, J.P., Crayne, S., Keates, S., Kjeldsen, R.,

Richards, J.T., Swart, A., Trewin, S.: Improving Web accessi-

bility through an enhanced open-source browser. IBM Syst. J.

44(3), 573–588 (2005)

30. Hermsdorf, D.: WebAdapter: A Prototype of a WWW Browser

with new Special Needs Adaptations (1998)

31. Hori, M., Kondoh, G., Ono K., Hirose, S., Singhal, S.: Annota-

tion-based Web content transcoding. In: Proceedings of the 9th

International World Wide Web Conference. ACM, Amsterdam

(2000)

32. Iaccarino, G., Malandrino, D., Percio, M.D., Scarano V.: Efficient

edge-services for colorblind users. In: WWW ‘06: Poster Pro-

ceedings of the 15th International Conference on World Wide

Web, pp. 919–920. ACM, New York (2006)

33. ImageMagick 6.2.6, 2006. http://www.imagemagick.org/

script/index.php

34. Libwww-perl. http://sourceforge.net/projects/libwww-perl/

35. Parmanto, B., Ferrydiansyah, R., Saptono, A., Song, L., Sugi-

antara, I.W., Hackett, S.: AcceSS: accessibility through

simplification & summarization. In: W4A ‘05: Proceedings of the

2005 International Cross-Disciplinary Workshop on Web

Accessibility (W4A), pp. 18–25. ACM, New York (2005)

36. Parmato, B., Ferydiansyah, R., Zeng, X., Saptono, A., Sugiantara,

I.W.: Accessibility Transformation Gateway. In: Proceedings of

38th Hawaii International Conference on System Sciences (2005)

37. PerlMagick 6.22, 2005. http://www.imagemagick.org/script/

perlmagick.php

38. White project (Leonardo Da Vinci European UnionProgramme,

2004-2005. http://www.progettowhite.net/applications/pag HTM/

project.asp?Testo=P

39. Rao, C., Chen, Y., Chang, D.F., Chen, M.F.: iMobile: A proxy-

based platform for mobile services. In: Proceedings of the First

ACM Workshop on Wireless Mobile Internet (WMI 2001).

ACM, New York (2001)

40. Rasche, K.: Detail Preserving Color Transformation. Ph.D. thesis,

Clemson University (2005)

41. Rashe, K., Geist, R., Westal, J.: Detail preserving reproduction of

color images for monochromats and dichromats. IEEE Computer

Graphics and Applications, pp. 22–30, May-June (2005)

42. WAI Evaluation and Repair (ER) group. ‘‘Tablin: an HTML

Table linearizer’’. http://www.w3.org/WAI/References/Tablin/

43. Textualise; codix.net Ltd, 2003. http://aquinas.venus.co.uk/

44. Web Accessibility Initiative (WAI), 2005. http://www.w3.

org/WAI/

45. Wakita, K., Shimamura, K.: Smartcolor: disambiguation frame-

work for the colorblind. In: Proceedings Assets ‘05 (7th

International ACM SIGACCESS conference on Computers and

accessibility), pp. 158–165. ACM, New York (2005)

46. Web Content Accessibility Guidelines 1.0, W3C Recommenda-

tion, May 1999. http://www.w3.org/TR/WCAG10/

306 Univ Access Inf Soc (2007) 6:285–306

123

http://www.w3.org/TR/2006/WD-mobile-bp-20060113/
http://www.imagemagick.org/script/index.php
http://www.imagemagick.org/script/index.php
http://sourceforge.net/projects/libwww-perl/
http://www.imagemagick.org/script/perlmagick.php
http://www.imagemagick.org/script/perlmagick.php
http://www.progettowhite.net/applications/pag HTM/project.asp?Testo=P
http://www.progettowhite.net/applications/pag HTM/project.asp?Testo=P
http://www.w3.org/WAI/References/Tablin/
http://aquinas.venus.co.uk/
http://www.w3.org/WAI/
http://www.w3.org/WAI/
http://www.w3.org/TR/WCAG10/

	Personalizable edge services for Web accessibility
	Abstract
	Introduction
	Web accessibility
	Examples of Web accessibility systems
	Server-side accessibility systems
	Client-side accessibility systems
	Proxy-side accessibility systems

	Intermediary frameworks
	Edge services
	Edge servers that promote Web accessibility

	Scalable Intermediary Software Infrastructure (SISI)
	SISI features
	SISI architecture

	Personalizable accessible navigation
	Installation
	Configuration and profiles

	Pan services for accessibility
	Text-based edge services
	The CSS-Restyling service
	The TextColor-Restyling service

	Link-based services
	The RemoveLink service
	TheLinkAccessKey service
	The LinkRelationship service
	The DeleteTarget service
	The LinkLinearizing service

	Image-based services
	The ImageRemoval service
	The GIF-Deanimate service

	Filtering of other objects
	AnnojanceFilter service
	The HTMLClean service

	Support for colorblind users
	Colorblindness
	Colorblind filter service

	Summary of services features

	Testing effectiveness and efficiency
	Effectiveness
	User study
	Automated test

	Efficiency
	Graphical hardware
	The Colorblind filter on GPU
	A comparison of Colorblind filter and its GPU implementation

	Conclusions
	Acknowledgments
	Appendix
	A URLs used for Bobby’s testing

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

