1,125 research outputs found

    Contribution to the Control of a MAS's Global Behaviour: Reinforcement Learning Tools

    Get PDF
    Reactive multi-agent systems present global behaviours uneasily linked to their local dynamics. When it comes to controlling such a system, usual analytical tools are difficult to use so specific techniques have to be engineered. We propose an experimental dynamical approach to enhance the control of the global behaviour of a reactive multi-agent system. We use reinforcement learning tools to link global information of the system to control actions. We propose to use the behaviour of the system as this global information. The behaviour of the whole system is controlled thanks to actions at different levels instead of building the behaviours of the agents, so that the complexity of the approach does not directly depend on the number of agents. The controllability is evaluated in terms of rate of convergence towards a target behaviour. We compare the results obtained on a toy example with the usual approach of parameter setting

    Methodological Investigations in Agent-Based Modelling: With Applications for the Social Sciences

    Get PDF
    This open access book examines the methodological complications of using complexity science concepts within the social science domain. The opening chapters take the reader on a tour through the development of simulation methodologies in the fields of artificial life and population biology, then demonstrates the growing popularity and relevance of these methods in the social sciences. Following an in-depth analysis of the potential impact of these methods on social science and social theory, the text provides substantive examples of the application of agent-based models in the field of demography. This work offers a unique combination of applied simulation work and substantive, in-depth philosophical analysis, and as such has potential appeal for specialist social scientists, complex systems scientists, and philosophers of science interested in the methodology of simulation and the practice of interdisciplinary computing research.

    Individual-based modeling and predictive simulation of fungal infection dynamics

    Get PDF
    The human-pathogenic fungus Aspergillus fumigatus causes life-threatening infections in immunocompromised patients and poses increasing challenges for the modern medicine. A. fumigatus is ubiquitously present and disseminates via small conidia over the air of the athmosphere. Each human inhales several hundreds to thousands of conidia every day. The small size of conidia allows them to pass into the alveoli of the lung, where primary infections with A. fumigatus are typically observed. In alveoli, the interaction between fungi and the innate immune system of the host takes place. This interaction is the core topic of this thesis and covered by mathematical modeling and computer simulations. Since in vivo laboratory studies of A. fumigatus infections under physiological conditions is hard to realize a modular software framework was developed and implemented, which allows for spatio-temporal agent-based modeling and simulation. A to-scale A. fumigatus infection model in a typical human alveolus was developed in order to simulate and analyze the infection scenario under physiological conditions. The process of conidial discovery by alveolar macrophages was modeled and simulated with different migration modes and different parameter configurations. It could be shown that chemotactic migration was required to find the pathogen before the onset of germination. A second model took advantage of evolutionary game theory on graphs. Here, the course of infection was modeled as a consecutive sequence of evolutionary games related to the complement system, alveolar macrophages and polymorphonuclear neutrophilic granulocytes. The results revealed a central immunoregulatory role of alveolar macrophages. In the case of high infectious doses it was found that the host required fully active phagocytes, but in particular a qualitative response of quantitatively sufficient polymorphonuclear neutrophilic granulocytes.Der human-pathogene Schimmelpilz Aspergillus fumigatus verursacht tödliche Infektionen und Erkrankungen vorrangig bei immunsupprimierten Patienten und stellt die moderne Medizin vor zunehmende Herausforderungen. A. fumigatus ist ubiquitär präsent und verbreitet sich über sehr kleine Konidien durch Luftströmungen in der Athmosphäre. Mehrere Hundert bis Tausende dieser Konidien werden täglich durch jeden Menschen eingeatmet. Die geringe Größe der infektiösen Konidien erlauben es dem Pilz bis in die Alveolen der Lunge des Wirtes vorzudringen,in denen eine Primärinfektionen mit A. fumigatus am häufigsten stattfindet. Die Alveolen sind der zentrale Schauplatz der Interaktion zwischen dem Pilz und dem angeborenen Immunsystem, welche Gegenstand dieser Arbeit ist. Diese Interaktion wird mit Hilfe von mathematischen Modellen und Computersimulationen nachgestellt und untersucht, da eine A. fumigatus Infektion im Nasslabor in vivo unter physiologischen Bedingungen nur sehr schwer realisiert werden kann. Als Grundlage für dieses Vorhaben wurde ein modulares Software-Paket entwickelt, welches agentenbasierte Modellierung und entsprechende Simulationen in Raum und Zeit ermöglicht. Ein maßstabsgetreues mathematisches Infektionsmodell in einer typischen menschlichen Alveole wurde entwickelt und die Suchstrategien von Alveolarmakrophagen unter der Berücksichtigung verschiedener Parameter wie Migrationsgeschwindigkeit, dem Vorhandensein von Chemokinen, dessen Diffusion und Chemotaxis untersucht. Es zeigte sich, dass Chemotaxis, notwendig ist, um die Konidie rechtzeitig finden zu können. In einem weiteren Modell, welches auf das Konzept evolutionärer Spieltheorie auf Graphen zurückgegriff, wurde der Infektionsverlauf als aufeinanderfolgende Serie evolutionärer Spiele mit dem Komplementsystem, Alveolarmakrophagen und Neutrophilen nachgestellt. Aus den Simulationsergebnissen konnte eine zentrale immunregulatorische Rolle von Alveolarmakrophagen entnommen werden

    Ambidexterity and getting trapped in the suppression of exploration : a simulation model

    Get PDF
    The benefits of strategically balancing exploitation and exploration are well documented in the literature. However, many firms tend to overemphasize exploitation efforts, even in the face of the strong need to step up their exploration activities. We draw on system dynamics modeling and a case study to address this gap in the literature, and develop a theoretical framework of ambidexterity as a capacitated delay process. This framework describes how the interplay between cognitive processes and motivational factors at the top management level severely limits the formation of ambidextrous capability. As such, this paper provides a micro-level theory of how individual and interactional processes at the managerial level inhibit the development of ambidextrous capability

    Proceedings, MSVSCC 2017

    Get PDF
    Proceedings of the 11th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 20, 2017 at VMASC in Suffolk, Virginia. 211 pp

    Uncertainty Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments

    Get PDF
    This dissertation research is motivated by the potential and promise of 3D sensing technologies in safety and security applications. With specific focus on unmanned robotic mapping to aid clean-up of hazardous environments, under-vehicle inspection, automatic runway/pavement inspection and modeling of urban environments, we develop modular, multi-sensor, multi-modality robotic 3D imaging prototypes using localization/navigation hardware, laser range scanners and video cameras. While deploying our multi-modality complementary approach to pose and structure recovery in dynamic real-world operating conditions, we observe several data fusion issues that state-of-the-art methodologies are not able to handle. Different bounds on the noise model of heterogeneous sensors, the dynamism of the operating conditions and the interaction of the sensing mechanisms with the environment introduce situations where sensors can intermittently degenerate to accuracy levels lower than their design specification. This observation necessitates the derivation of methods to integrate multi-sensor data considering sensor conflict, performance degradation and potential failure during operation. Our work in this dissertation contributes the derivation of a fault-diagnosis framework inspired by information complexity theory to the data fusion literature. We implement the framework as opportunistic sensing intelligence that is able to evolve a belief policy on the sensors within the multi-agent 3D mapping systems to survive and counter concerns of failure in challenging operating conditions. The implementation of the information-theoretic framework, in addition to eliminating failed/non-functional sensors and avoiding catastrophic fusion, is able to minimize uncertainty during autonomous operation by adaptively deciding to fuse or choose believable sensors. We demonstrate our framework through experiments in multi-sensor robot state localization in large scale dynamic environments and vision-based 3D inference. Our modular hardware and software design of robotic imaging prototypes along with the opportunistic sensing intelligence provides significant improvements towards autonomous accurate photo-realistic 3D mapping and remote visualization of scenes for the motivating applications

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    Evidence and Formal Models in the Linguistic Sciences

    Get PDF
    This dissertation contains a collection of essays centered on the relationship between theoretical model-building and empirical evidence-gathering in linguistics and related language sciences. The first chapter sets the stage by demonstrating that the subject matter of linguistics is manifold, and contending that discussion of relationships between linguistic models, evidence, and language itself depends on the subject matter at hand. The second chapter defends a restrictive account of scientific evidence. I make use of this account in the third chapter, in which I argue that if my account of scientific evidence is correct, then linguistic intuitions do not generally qualify as scientific evidence. Drawing on both extant and original empirical work on linguistic intuitions, I explore the consequences of this conclusion for scientific practice. In the fourth and fifth chapters I examine two distinct ways in which theoretical models relate to the evidence. Chapter four looks at the way in which empirical evidence can support computer simulations in evolutionary linguistics by informing and constraining them. Chapter five, on the other hand, probes the limits of how models are constrained by the data, taking as a case study empirically-suspect but theoretically-useful intentionalist models of meaning
    • …
    corecore