280 research outputs found

    EUSPEN : proceedings of the 3rd international conference, May 26-30, 2002, Eindhoven, The Netherlands

    Get PDF

    Entwicklung einer Fully-Convolutional-Netzwerkarchitektur für die Detektion von defekten LED-Chips in Photolumineszenzbildern

    Get PDF
    Nowadays, light-emitting diodes (LEDs) can be found in a large variety of applications, from standard LEDs in domestic lighting solutions to advanced chip designs in automobiles, smart watches and video walls. The advances in chip design also affect the test processes, where the execution of certain contact measurements is exacerbated by ever decreasing chip dimensions or even rendered impossible due to the chip design. As an instance, wafer probing determines the electrical and optical properties of all LED chips on a wafer by contacting each and every chip with a prober needle. Chip designs without a contact pad on the surface, however, elude wafer probing and while electrical and optical properties can be determined by sample measurements, defective LED chips are distributed randomly over the wafer. Here, advanced data analysis methods provide a new approach to gather defect information from already available non-contact measurements. Photoluminescence measurements, for example, record a brightness image of an LED wafer, where conspicuous brightness values indicate defective chips. To extract these defect information from photoluminescence images, a computer-vision algorithm is required that transforms photoluminescence images into defect maps. In other words, each and every pixel of a photoluminescence image must be classifed into a class category via semantic segmentation, where so-called fully-convolutional-network algorithms represent the state-of-the-art method. However, the aforementioned task poses several challenges: on the one hand, each pixel in a photoluminescence image represents an LED chip and thus, pixel-fine output resolution is required. On the other hand, photoluminescence images show a variety of brightness values from wafer to wafer in addition to local areas of differing brightness. Additionally, clusters of defective chips assume various shapes, sizes and brightness gradients and thus, the algorithm must reliably recognise objects at multiple scales. Finally, not all salient brightness values correspond to defective LED chips, requiring the algorithm to distinguish salient brightness values corresponding to measurement artefacts, non-defect structures and defects, respectively. In this dissertation, a novel fully-convolutional-network architecture was developed that allows the accurate segmentation of defective LED chips in highly variable photoluminescence wafer images. For this purpose, the basic fully-convolutional-network architecture was modifed with regard to the given application and advanced architectural concepts were incorporated so as to enable a pixel-fine output resolution and a reliable segmentation of multiple scaled defect structures. Altogether, the developed dense ASPP Vaughan architecture achieved a pixel accuracy of 97.5 %, mean pixel accuracy of 96.2% and defect-class accuracy of 92.0 %, trained on a dataset of 136 input-label pairs and hereby showed that fully-convolutional-network algorithms can be a valuable contribution to data analysis in industrial manufacturing.Leuchtdioden (LEDs) werden heutzutage in einer Vielzahl von Anwendungen verbaut, angefangen bei Standard-LEDs in der Hausbeleuchtung bis hin zu technisch fortgeschrittenen Chip-Designs in Automobilen, Smartwatches und Videowänden. Die Weiterentwicklungen im Chip-Design beeinflussen auch die Testprozesse: Hierbei wird die Durchführung bestimmter Kontaktmessungen durch zunehmend verringerte Chip-Dimensionen entweder erschwert oder ist aufgrund des Chip-Designs unmöglich. Die sogenannteWafer-Prober-Messung beispielsweise ermittelt die elektrischen und optischen Eigenschaften aller LED-Chips auf einem Wafer, indem jeder einzelne Chip mit einer Messnadel kontaktiert und vermessen wird; Chip-Designs ohne Kontaktpad auf der Oberfläche können daher nicht durch die Wafer-Prober-Messung charakterisiert werden. Während die elektrischen und optischen Chip-Eigenschaften auch mittels Stichprobenmessungen bestimmt werden können, verteilen sich defekte LED-Chips zufällig über die Waferfläche. Fortgeschrittene Datenanalysemethoden ermöglichen hierbei einen neuen Ansatz, Defektinformationen aus bereits vorhandenen, berührungslosen Messungen zu gewinnen. Photolumineszenzmessungen, beispielsweise, erfassen ein Helligkeitsbild des LEDWafers, in dem auffällige Helligkeitswerte auf defekte LED-Chips hinweisen. Ein Bildverarbeitungsalgorithmus, der diese Defektinformationen aus Photolumineszenzbildern extrahiert und ein Defektabbild erstellt, muss hierzu jeden einzelnen Bildpunkt mittels semantischer Segmentation klassifizieren, eine Technik bei der sogenannte Fully-Convolutional-Netzwerke den Stand der Technik darstellen. Die beschriebene Aufgabe wird jedoch durch mehrere Faktoren erschwert: Einerseits entspricht jeder Bildpunkt eines Photolumineszenzbildes einem LED-Chip, so dass eine bildpunktfeine Auflösung der Netzwerkausgabe notwendig ist. Andererseits weisen Photolumineszenzbilder sowohl stark variierende Helligkeitswerte von Wafer zu Wafer als auch lokal begrenzte Helligkeitsabweichungen auf. Zusätzlich nehmen Defektanhäufungen unterschiedliche Formen, Größen und Helligkeitsgradienten an, weswegen der Algorithmus Objekte verschiedener Abmessungen zuverlässig erkennen können muss. Schlussendlich weisen nicht alle auffälligen Helligkeitswerte auf defekte LED-Chips hin, so dass der Algorithmus in der Lage sein muss zu unterscheiden, ob auffällige Helligkeitswerte mit Messartefakten, defekten LED-Chips oder defektfreien Strukturen korrelieren. In dieser Dissertation wurde eine neuartige Fully-Convolutional-Netzwerkarchitektur entwickelt, die die akkurate Segmentierung defekter LED-Chips in stark variierenden Photolumineszenzbildern von LED-Wafern ermöglicht. Zu diesem Zweck wurde die klassische Fully-Convolutional-Netzwerkarchitektur hinsichtlich der beschriebenen Anwendung angepasst und fortgeschrittene architektonische Konzepte eingearbeitet, um eine bildpunktfeine Ausgabeauflösung und eine zuverlässige Sementierung verschieden großer Defektstrukturen umzusetzen. Insgesamt erzielt die entwickelte dense-ASPP-Vaughan-Architektur eine Pixelgenauigkeit von 97,5 %, durchschnittliche Pixelgenauigkeit von 96,2% und eine Defektklassengenauigkeit von 92,0 %, trainiert mit einem Datensatz von 136 Bildern. Hiermit konnte gezeigt werden, dass Fully-Convolutional-Netzwerke eine wertvolle Erweiterung der Datenanalysemethoden sein können, die in der industriellen Fertigung eingesetzt werden

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Understanding, Modeling and Predicting Hidden Solder Joint Shape Using Active Thermography

    Get PDF
    Characterizing hidden solder joint shapes is essential for electronics reliability. Active thermography is a methodology to identify hidden defects inside an object by means of surface abnormal thermal response after applying a heat flux. This research focused on understanding, modeling, and predicting hidden solder joint shapes. An experimental model based on active thermography was used to understand how the solder joint shapes affect the surface thermal response (grand average cooling rate or GACR) of electronic multi cover PCB assemblies. Next, a numerical model simulated the active thermography technique, investigated technique limitations and extended technique applicability to characterize hidden solder joint shapes. Finally, a prediction model determined the optimum active thermography conditions to achieve an adequate hidden solder joint shape characterization. The experimental model determined that solder joint shape plays a higher role for visible than for hidden solder joints in the GACR; however, a MANOVA analysis proved that hidden solder joint shapes are significantly different when describe by the GACR. An artificial neural networks classifier proved that the distances between experimental solder joint shapes GACR must be larger than 0.12 to achieve 85% of accuracy classifying. The numerical model achieved minimum agreements of 95.27% and 86.64%, with the experimental temperatures and GACRs at the center of the PCB assembly top cover, respectively. The parametric analysis proved that solder joint shape discriminability is directly proportional to heat flux, but inversely proportional to covers number and heating time. In addition, the parametric analysis determined that active thermography is limited to five covers to discriminate among hidden solder joint shapes. A prediction model was developed based on the parametric numerical data to determine the appropriate amount of energy to discriminate among solder joint shapes for up to five covers. The degree of agreement between the prediction model and the experimental model was determined to be within a 90.6% for one and two covers. The prediction model is limited to only three solder joints, but these research principles can be applied to generate more realistic prediction models for large scale electronic assemblies like ball grid array assemblies having as much as 600 solder joints

    OCM 2015 - 2nd International Conference on Optical Characterization of Materials: March 18th - 19th, 2015, Karlsruhe, Germany

    Get PDF
    Each material has its own specific spectral signature independent if it is food, plastics, or minerals. During the conference we will discuss new trends and developments in material characterization. You also will be informed about latest highlights to identify spectral footprints and their realizations in industry

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2003 Conference and Exposition, Dec. 7-9, 1993, Anaheim, CA, are presented. Volume 2 features papers on artificial intelligence, CAD&E, computer hardware, computer software, information management, photonics, robotics, test and measurement, video and imaging, and virtual reality/simulation

    Thrust Area Report, Engineering Research, Development and Technology

    Full text link

    OCM 2013 - Optical Characterization of Materials - conference proceedings

    Get PDF
    The state of the art in optical characterization of materials is advancing rapidly. New insights into the theoretical foundations of this research field have been gained and exciting practical developments have taken place, both driven by novel applications that are constantly emerging. This book presents latest research results in the domain of Characterization of Materials by spectral characteristics of UV (240 nm) to IR (14 µm), multispectral image analysis, X-Ray, polarimetry and microscopy
    corecore