46 research outputs found

    Highly Resolved Synthetic Aperture Radar with Beam Steering

    Get PDF
    The present work deals with a highly resolved radar with a synthetic aperture (synthetic aperture radar - SAR), which uses a beam steering to improve performance. The first part of this work deals with the influence of various effects occurring in the hardware of the High-Resolution Wide-Swath SAR (HRWS SAR) system. A special focus was set to single bit quantization in multi-channel receiver. The second part of this work describes SAR processors for Sliding Spotlight mode

    Highly Resolved Synthetic Aperture Radar with Beam Steering

    Get PDF
    Diese Arbeit beschäftigt sich mit einem hochauflösenden Radar mit synthetischer Apertur. Der erste Teil dieser Arbeit beschreibt mögliche Auswirkungen verschiedener Effekte in dem Empfänger des High-Resolution Wide-Swath SAR (HRWS SAR) Systems. Darüber hinaus wird ein Konzept zu Reduktion von Quantisierungsbits in Systemen mit mehreren Empfangskanälen untersucht. Der zweite Teil der Arbeit betrifft die Datenverarbeitung eines hochauflösenden SAR-Systems in Sliding Spotlight Mode

    Analyse temps-frequence et traitement des signaux RSO à haute résolution spatiale pour la surveillance des grands ouvrages d'art

    Get PDF
    The thesis is composed of two research axis. The first one consists in proposing time-frequency signal processing tools for frequency modulated continuous wave (FMCW) radars used for displacements measurements, while the second one consists in designing a spaceborne synthetic aperture radar (SAR) signal processing methodology for infrastructure monitoring when an external point cloud of the envisaged structure is available. In the first part of the thesis, we propose our solutions to the nonlinearity problem of an X-band FMCW radar designed for millimetric displacement measurements of short-range targets. The nonlinear tuning curve of the voltage controlled oscillator from the transceiver can cause a dramatic resolution degradation for wideband sweeps. To mitigate this shortcoming, we have developed two time warping-based methods adapted to wideband nonlinearities: one estimates the nonlinear terms using the high order ambiguity function, while the other is an autofocus approach which exploits the spectral concentration of the beat signal. Onwards, as the core of the thesis, we propose a novel method for scattering centers detection and tracking in spaceborne SAR images adapted to infrastructure monitoring applications. The method is based on refocusing each SAR image on a provided 3D point cloud of the envisaged infrastructure and identifying the reliable scatterers to be monitored by means of four dimensional (4D) tomography. The refocusing algorithm is compatible with stripmap, spotlight and sliding spotlight SAR images and consists of an azimuth defocusing followed by a modified back-projection algorithm on the given set of points which exploits the time-frequency structure of the defocused azimuth signal. The scattering centers of the refocused image are detected in the 4D tomography framework by testing if the main response is at zero elevation in the local elevation-velocity spectral distribution. The mean displacement velocity is estimated from the peak response on the zero elevation axis, while the displacements time series for detected single scatterers is computed as double phase difference of complex amplitudes.Finally, we present the measurement campaigns carried out on the Puylaurent water-dam and the Chastel landslide using GPS measurements, topographic surveys and laser scans to generate the point clouds of the two structures. The comparison between in-situ data and the results obtained by combining TerraSAR-X data with the generated point clouds validate the developed SAR signal processing chain.Cette thèse s'articule autour de deux axes de recherche. Le premier axe aborde les aspects méthodologiques liés au traitement temps-fréquence des signaux issus d'un radar FMCW (à onde continue modulée en fréquence) dans le contexte de la mesure des déplacements fins. Le second axe est dédié à la conception et à la validation d'une chaîne de traitement des images RSO (radar à synthèse d'ouverture) satellitaire. Lorsqu'un maillage 3D de la structure envisagée est disponible, les traitements proposés sont validés par l'intercomparaison avec les techniques conventionnelles d'auscultation des grands ouvrages d'art.D'une part, nous étudions la correction de la non-linéarité d'un radar FMCW en bande X, à courte portée, conçu pour la mesure des déplacements millimétriques. La caractéristique de commande non linéaire de l'oscillateur à large bande, entraine une perte de résolution à la réception. Afin de pallier cet inconvénient, nous avons développé deux méthodes basées sur le ré-échantillonnage temporel (time warping) dans le cas des signaux à large bande non-stationnaires. La première approche estime la loi de fréquence instantanée non linéaire à l'aide de la fonction d'ambiguïté d'ordre supérieur, tandis que la deuxième approche exploite la mesure de concentration spectrale du signal de battement dans un algorithme d'autofocus radial.D'autre part, nous proposons un cadre méthodologique général pour la détection et le pistage des centres de diffusion dans les images RSO pour la surveillance des grands ouvrages d'art. La méthode est basée sur la ré-focalisation de chaque image radar sur le maillage 3D de l'infrastructure étudiée afin d'identifier les diffuseurs pertinents par tomographie 4D (distance – azimut – élévation – vitesse de déformation). L'algorithme de ré-focalisation est parfaitement compatible avec les images RSO acquises dans les différents modes (« stripmap », « spotlight » et « sliding spotlight ») : dé-focalisation en azimut suivie par rétroprojection modifiée (conditionnée par la structure temps-fréquence du signal) sur l'ensemble donné des points. Dans la pile d'images ré-focalisées, les centres de diffusion sont détectés par tomographie 4D : test de conformité à l'hypothèse d'élévation zéro dans le plan élévation – vitesse de déformation. La vitesse moyenne correspond au maximum à l'élévation zéro, tandis que la série temporelle des déplacements est obtenue par double différence de phase des amplitudes complexes pour chaque diffuseur pertinent.Nous présentons également les campagnes in situ effectuées au barrage de Puylaurent (et glissement de Chastel) : les relevés GPS, topographiques et LIDAR sol employées au calcul des maillages 3D. La comparaison entre les déplacements mesurés in situ et les résultats obtenus par l'exploitation conjointe de la télédétection RSO satellitaires et les maillages 3D valident la chaîne de traitement proposée.Teza cuprinde două axe principale de cercetare. Prima axă abordează aspecte metodologice de prelucraretimp-frecvenţă a semnalelor furnizate de radare cu emisie continuă şi modulaţie de frecvenţă (FMCW)în contextul măsurării deplasărilor milimetrice. În cadrul celei de-a doua axe, este proiectată şi validatăo metodă de prelucrare a imaginilor satelitare SAR (radar cu apertură sintetică) ce este destinatămonitorizării infrastructurii critice şi care se bazează pe existenţa unui model 3D al structurii respective.În prima parte a tezei, sunt investigate soluţii de corecţie a neliniarităţii unui radar FMCW în bandaX destinat măsurării deplasărilor milimetrice. Caracteristica de comandă neliniară a oscilatorului debandă largă determină o degradare a rezoluţiei în distanţă. Pentru a rezolva acest inconvenient, au fostelaborate două metode de corecţie a neliniarităţii, adaptate pentru semnale de bandă largă, ce se bazeazăpe conceptul de reeşantionare neuniformă sau deformare a axei temporare. Prima abordare estimeazăparametrii neliniarităţii utilizând funcţii de ambiguitate de ordin superior, iar cea de-a doua exploateazăo măsură de concentraţie spectrală a semnalului de bătăi într-un algoritm de autofocalizare în distanţă.În a doua parte a lucrării, este propusă o metodologie generală de detecţie şi monitorizare a centrilorde împrăştiere în imagini SAR în scopul monitorizării elementelor de infrastructură critică. Metoda sebazează pe refocalizarea fiecărei imagini radar pe un model 3D al structurii investigate în scopul identificăriicentrilor de împrăştiere pertinenţi (ţinte fiabile ce pot fi monitorizate în timp) cu ajutorul tomografiei SAR4D (distanţă-azimut-elevaţie-viteză de deplasare). Algoritmul de refocalizare este compatibil cu imaginiSAR achiziţionate în moduri diferite (« stripmap », « spotlight » şi « sliding spotlight ») şi constă într-odefocalizare în azimut urmată de o retroproiecţie modificată (condiţionată de structura timp-frecvenţă asemnalului) pe modelul 3D al structurii. Ţintele sunt identificate în stiva de imagini refocalizate cu ajutorultomografiei 4D prin efectuarea unui test de conformitate cu ipoteza că centrii de împrăştiere pertinenţivor avea elevaţie zero în planul local elevaţie-viteză. Viteza medie de deformare corespunde maximuluide pe axa de elevaţie nulă, iar seria temporară a deplasărilor se obţine printr-o dublă diferenţă de fază aamplitudinilor complexe corespunzătoare ţintelor identificate.În final sunt prezentate campaniile de măsurători pe teren efectuate la un baraj şi o alunecare de terendin regiunea Puylaurent (Franţa) destinate obţinerii modelului 3D al celor două elemente de infrastructurăprin măsurători GPS, topografice şi LIDAR. Comparaţia între deformările măsurate pe teren şi rezultateleobţinute prin combinarea imaginilor SAR cu modelele 3D au permis validarea metodologiei propuse

    PSI deformation map retrieval by means of temporal sublook coherence on reduced sets of SAR images

    Get PDF
    Prior to the application of any persistent scatterer interferometry (PSI) technique for the monitoring of terrain displacement phenomena, an adequate pixel selection must be carried out in order to prevent the inclusion of noisy pixels in the processing. The rationale is to detect the so-called persistent scatterers, which are characterized by preserving their phase quality along the multi-temporal set of synthetic aperture radar (SAR) images available. Two criteria are mainly available for the estimation of pixels' phase quality, i.e., the coherence stability and the amplitude dispersion or permanent scatterers (PS) approach. The coherence stability method allows an accurate estimation of the phase statistics, even when a reduced number of SAR acquisitions is available. Unfortunately, it requires the multi-looking of data during the coherence estimation, leading to a spatial resolution loss in the final results. In contrast, the PS approach works at full-resolution, but it demands a larger number of SAR images to be reliable, typically more than 20. There is hence a clear limitation when a full-resolution PSI processing is to be carried out and the number of acquisitions available is small. In this context, a novel pixel selection method based on exploiting the spectral properties of point-like scatterers, referred to as temporal sublook coherence (TSC), has been recently proposed. This paper seeks to demonstrate the advantages of employing PSI techniques by means of TSC on both orbital and ground-based SAR (GB-SAR) data when the number of images available is small (10 images in the work presented). The displacement maps retrieved through the proposed technique are compared, in terms of pixel density and phase quality, with traditional criteria. Two X-band datasets composed of 10 sliding spotlight TerraSAR-X images and 10 GB-SAR images, respectively, over the landslide of El Forn de Canillo (Andorran Pyrenees), are employed for this study. For both datasets, the TSC technique has showed an excellent performance compared with traditional techniques, achieving up to a four-fold increase in the number of persistent scatters detected, compared with the coherence stability approach, and a similar density compared with the PS approach, but free of outliers.Peer ReviewedPostprint (published version

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system

    A review of synthetic-aperture radar image formation algorithms and implementations: a computational perspective

    Get PDF
    Designing synthetic-aperture radar image formation systems can be challenging due to the numerous options of algorithms and devices that can be used. There are many SAR image formation algorithms, such as backprojection, matched-filter, polar format, Range–Doppler and chirp scaling algorithms. Each algorithm presents its own advantages and disadvantages considering efficiency and image quality; thus, we aim to introduce some of the most common SAR image formation algorithms and compare them based on these two aspects. Depending on the requisites of each individual system and implementation, there are many device options to choose from, for in stance, FPGAs, GPUs, CPUs, many-core CPUs, and microcontrollers. We present a review of the state of the art of SAR imaging systems implementations. We also compare such implementations in terms of power consumption, execution time, and image quality for the different algorithms used.info:eu-repo/semantics/publishedVersio

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Contribution to ground-based and UAV SAR systems for Earth observation

    Get PDF
    Mankind's way of life is the main driver of a planetary-scale change that is marked by the growing of human population's demand of energy, food, goods, services and information. As a result, it have emerged new ecological, economical, social and geopolitical concerns. In this scenario, SAR remote sensing is a potential tool that provides unique information about the Earth's properties and processes that can be used to solve societal challenges of local and global dimension. SARs, which are coherent systems that are able to provide high resolution images with weather independence, represent a suitable alternative for EO with diverse applications. Some examples of SAR application areas are topography (DEM generation with interferometry), agriculture (crop classification or soil moisture), or geology (monitoring surface deformation). In this framework, the encompassing objective of the present doctoral work has been part of the implementation and the subsequent evaluation of capabilities of two X-band SAR sensors. On the one hand, the RISKSAR-X radar designed to be operated at ground to monitor small-scale areas of observation and, on the other, the ARBRES-X sensor designed to be integrated into small UAVs. Despite its inherently dissimilar conception, the concurrence of both sensors has been evidenced along this manuscript. By taking advantage of the similarities between them, it has been possible to analogously assess both sensors to obtain conclusions. In this context, the common link has been the development of the polarimetric OtF operation mode of the RISKSAR-X, allowing this sensor to be operated equivalently to the ARBRES-X. Regarding the RISKSAR-X SAR sensor, several hardware contributions have been developed during part of this Ph.D. with the aim of improving the system performance. By endowing the system with the capability to operate in the fully polarimetric OtF acquisition mode, the relative long scanning time has been reduced. It is of great interest since the measured scatterers that present a short term variable reflectivity during the scanning time, such as moving vegetation, may degrade the extracted parameters from the retrieved data and the SAR image reconstruction. During this doctoral activity, it has been studied the image blurring, the decorrelation and the coherence degradation introduced by this effect. Furthermore, a new term in the differential interferometric coherence that takes into account the image blurring has been introduced. Concerning the ARBRES-X SAR system, one of the main objectives pursued during this Ph.D. has been the integration of the sensor into a small UAV MP overcoming restrictions of weight, size and aerodynamics of the platform. The use of this type of platforms is expected to open up new possibilities in airborne SAR remote sensing, since it offers much more versatility than the commonly used fixed wings UAVs. Different innovative flight strategies with this type of platforms have been assessed and some preliminary results have been obtained with the use of the ARBRES-X SAR system. During the course of the present doctoral work, much effort has been devoted to achieve the first experimental repeat-pass interfereometric results obtained with the UAV MP together with the ARBRES-X. Moreover, the sensor has been endowed with fully polarimetric capabilities by applying the improvements developed to the RISKSAR-X radar, which is another example of the duality between both systems. Finally, a vertical and a semicircular aperture have been successfully performed obtaining SLC images of the scenario, which envisages the capability of the UAV MP to perform tomographic images and complete circular apertures in the future. In conclusion, the UAV MP is a promising platform that opens new potentials for several applications, such as repeat-pass interferometry or differential tomography imaging with the realization of almost arbitrary trajectories.El mode de viure de la humanitat és el principal motor d'un canvi a escala planetària que està marcat per la creixent demanda d'energia, d'aliment, de béns, de serveis i d'informació de les poblacions humanes. Com a resultat, han sorgit noves inquietuds ecològiques, econòmiques, socials i geopolítiques. En aquest escenari, la detecció remota SAR és una eina potencial que proporciona informació única sobre les propietats i processos de la Terra que es pot utilitzar per resoldre reptes socials de dimensió local i global. Els SARs, que són sistemes coherents que poden proporcionar imatges d'alta resolució amb independència del temps, representen una alternativa adequada per a l'observació de la Terra. Alguns exemples d'àrees d'aplicació SAR són la topografia (generació de DEM amb interferometria), l'agricultura (classificació de cultius o humitat del sòl) o la geologia (monitoratge de deformació superficial). En aquest context, l'objectiu general del present doctorat ha estat part de la implementació i posterior avaluació de les capacitats de dos sensors SAR de banda X. D'una banda, el radar RISKSAR-X dissenyat per funcionar a terra i monitoritzar àrees d'observació a petita escala i, d'altra, el sensor ARBRES-X dissenyat per ser integrat en petits UAVs. Malgrat la seva concepció inherentment diferent, la concurrència d'ambdós sensors s'ha evidenciat al llarg d'aquest manuscrit. Aprofitant les similituds entre ells, s'han pogut avaluar de forma anàloga els dos sensors per obtenir conclusions. En aquest sentit, el vincle comú ha estat el desenvolupament del mode de funcionament polimètric OtF del RISKSAR-X, permetent que aquest sensor operi de forma equivalent a l'ARBRES-X. Pel que fa al sensor RISKSAR-X, s'han desenvolupat diverses contribucions hardware durant part d'aquest doctorat amb l'objectiu de millorar el rendiment del sistema. En dotar el sistema de la possibilitat d'operar en el mode d'adquisició totalment polarimètric OtF, s'ha reduït el relatiu llarg temps d'escaneig. Això és de gran interès ja que els blancs mesurats que presenten una reflectivitat variable a curt termini, com ara la vegetació en moviment, poden degradar els paràmetres extrets de les dades recuperades i la reconstrucció d'imatges SAR. Durant aquesta activitat doctoral s'ha estudiat el desenfocat de la imatge, la decorrelació i la degradació de la coherència introduïts per aquest efecte. A més, s'ha introduït un nou terme en la coherència interferomètrica diferencial que té en compte el desenfocat de la imatge. Pel que fa al sistema ARBRES-X, un dels principals objectius perseguits durant aquest doctorat ha estat la integració del sensor en un petit UAV MP superant les restriccions de pes, grandària i aerodinàmica de la plataforma. S'espera que l'ús d'aquest tipus de plataformes obri noves possibilitats en la detecció remota SAR aerotransportada, ja que ofereix molta més versatilitat que els UAV d'ales fixes habituals. S'han avaluat diferents estratègies de vol innovadores amb aquest tipus de plataformes i s'han obtingut resultats preliminars amb l'ús del sistema ARBRES-X. Durant el transcurs del present treball, s'ha dedicat molt esforç a assolir els primers resultats experimentals d'interferometria de múltiple passada obtinguts amb l'UAV MP conjuntament amb l'ARBRES-X. A més, el sensor ha estat dotat de capacitats totalment polarimètriques aplicant les millores desenvolupades al radar RISKSAR-X, el qual constitueix un altre exemple de la dualitat entre ambdós sistemes. Finalment, s'han realitzat amb èxit una apertura vertical i semicircular obtenint imatges SLC de l'escenari, el qual permet preveure la capacitat de l'UAV MP per a realitzar imatges tomogràfiques i apertures circulars completes en el futur. En conclusió, l'UAV MP és una plataforma prometedora que obre nous potencials per a diverses aplicacions, com ara la interferometria de múltiple passada o la tomografia diferencial amb la realització de trajectòries gairebé arbitràries.Postprint (published version
    corecore