6,371 research outputs found

    Short-term fire front spread prediction using inverse modelling and airborne infrared images

    Get PDF
    A wildfire forecasting tool capable of estimating the fire perimeter position sufficiently in advance of the actual fire arrival will assist firefighting operations and optimise available resources. However, owing to limited knowledge of fire event characteristics (e.g. fuel distribution and characteristics, weather variability) and the short time available to deliver a forecast, most of the current models only provide a rough approximation of the forthcoming fire positions and dynamics. The problem can be tackled by coupling data assimilation and inverse modelling techniques. We present an inverse modelling-based algorithm that uses infrared airborne images to forecast short-term wildfire dynamics with a positive lead time. The algorithm is applied to two real-scale mallee-heath shrubland fire experiments, of 9 and 25 ha, successfully forecasting the fire perimeter shape and position in the short term. Forecast dependency on the assimilation windows is explored to prepare the system to meet real scenario constraints. It is envisaged the system will be applied at larger time and space scales.Peer ReviewedPostprint (author's final draft

    Forest fire simulator system for emergency resources management support

    Get PDF
    Europe suffers approximately 65,000 fires every year, which burn, on average, half a million hectares of forest areas [1]. The main direct effect of forest fires is the destruction of the natural landscape and the consequent loss of ecosystem service that have drastic economic impact, but mainly and much more important, fires also result in the loss of human lives every year. Although being forest fires a problem present in all EU members, the most affected areas to this hazards are the southern countries due to their climatological conditions. All affected countries invest lots of resources to minimize fire damages, but many times when dealing with large fires, regional and national disaster management units are lack of efficient and reliable tools to help wildfire analysts. In this work, we describe a process to generate on-line wildfire simulations coupled with the regional weather forecast service (Servei Meteorològic de Catalunya, SMC) and the helicopter company (Helipistas S.L) who provides isochronous perimeters of the fire behaviour in a certain moment of the emergency and how both of this data sources feed the inputs for the simulation process.Europa sufre aproximadamente 65,000 incendios cada año, de media, medio millón de hectáreas forestales[1]. El principal efecto de los fuegos forestales es la destrucción de la superfície natural y como consecuencia la pérdida del ecosistema y el gran impacto económico, pero principamente y de manera mucho más importante el fuego tambien repercute en la pérdida de vidas humanas año tras año. Los fuegos forestales además de ser un problema para los miembros de la UE, se ven repercutidos, especialmente los paises del sur debido a sus condiciones climatológicas. Todos estos paises afectados invierten gran cantidad de recursos para minimizar estos efectos. Generalmente cuando se trata de grandes incendios forestales, las unidades de mando de estos medios de exinción a nivel regional y nacional se ven necesitados de herramientas eficientes y útiles para el análisis de la predicción del comportamiento de estos grandes incendios forestales. En este trabajo, describimos un sistema de predicción de incendios forestales acoplado con el servicio meteorológicos de catalunya (SMC) y la empresa de helicópteros (Helipistas S.L) los cuales proveen de los perímetros del incendio en un instante de tiempo de la emergencia y cómo estas dos fuentes de datos se anexan al proceso de simulación.Europa pateix aproximadament 65,000 incendis cada any, de mitja, cada mig-milió d'hectàrees forestals[1]. El principal efecte dels focs forestals es la destrucció de la superfície natural i com a conseqüència la pèrdua de l'ecosistema i el gran impacte econòmic, però principalment i de manera molt més important el foc, també, repercuteix en la pèrdua de vides humanes any rere any. Els focs forestals a més a més de representar un problema pels països membres de la UE, es veuen afectats els països del Sud degut a les seves condicions climatològiques. Tots aquests països afectats inverteixen grans quantitat de recursos per a minimitzar aquests efectes. Generalment quan es tracta de grans incendis forestals, les unitats de comandament d'aquests medis d'extinció a nivell regional i nacional es veuen necessitats d'eines útils i eficients per a l'anàlisis de la predicció en el comportament dels grans incendis forestals. En aquest treball, descrivim un sistema de predicció d'incendis forestals acoblat amb el servei meteorològic de Catalunya (SMC) i l'empresa d'helicòpters (Helipistas S.L) els quals proveïxen dels perímetres de l'incendi en un instant de temps de l'emergència i com aquestes dos fonts de dades annexen al procés de simulació

    A review of machine learning applications in wildfire science and management

    Full text link
    Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.Comment: 83 pages, 4 figures, 3 table

    Prediction Time Assessment in a DDDAS for Natural Hazard Management: Forest Fire Study Case ✩

    Get PDF
    This work faces the problem of quality and prediction time assessment in a Dynamic Data Driven Application System (DDDAS) for predicting natural hazard evolution. In particular, we used forest fire spread prediction as a case study to show the applicability of the methodology. The improvement on the prediction quality when using a two-stage DDDAS prediction framework has been widely proved. The two-stages DDDAS has a first phase where an adjustment of the input data is performed in order to be applied in the second phase, the prediction. This paper is focused on defining a new methodology for prediction time assessment under this kind of prediction environments by evaluating, in advance, how a certain combination of simulator, computational resources, adjustment strategy, and frequency of data acquisition will perform, in terms of prediction time. Since the time incurred in the hazard simulation is a crucial part of the whole prediction time, we have defined a methodology to classify the simulator’s execution time using Artificial Intelligence techniques allowing us to determine upper bounds for the DDDAS prediction time depending on the particular input parameter setting. This methodology can be extrapolated to any DDDAS for predicting natural hazards evolution, which uses the two-stage prediction scheme as a working framework. Keywords

    Efficient knowledge retrieval to calibrate input variables in forest fire prediction

    Get PDF
    Forest fires are a serious threat to humans and nature from an ecological, social and economic point of view. Predicting their behaviour by simulation still delivers unreliable results and remains a challenging task. Latest approaches try to calibrate input variables, often tainted with imprecision, using optimisation techniques like Genetic Algorithms. To converge faster towards fitter solutions, the GA is guided with knowledge obtained from historical or synthetical fires. We developed a robust and efficient knowledge storage and retrieval method. Nearest neighbour search is applied to find the fire configuration from knowledge base most similar to the current configuration. Therefore, a distance measure was elaborated and implemented in several ways. Experiments show the performance of the different implementations regarding occupied storage and retrieval time with overly satisfactory results.Los incendios forestales son una grave amenaza para seres humanos y para la naturalza desde el punto de vista ecológico, social y económico. Predecir su comportamiento usando simulaciones todavía da resultados poco fiables y sigue siendo una tarea desafiante. Trabajos más recientes, intentan calibrar variables de entrada, muchas veces imprecisas, aplicando técnicas de optimización como algoritmos genéticos. Para converger más rápido hacia soluciones más adecuadas, el algoritmo genético es guiado con conocimiento obtenido de fuegos históricos o sintéticos. Hemos desarrollado un método robusto y eficiente para almacenar y recuperar ese conocimiento. Aplicamos la búsqueda del vecino más cercano para encontrar la configuración del fuego más similar a la configuración actual dentro de la base de conocimiento. Para esto, hemos elaborado una función de distancia y la hemos implementado de diferentes maneras. Experimentos muestran el rendimiento de las distintas implementaciones considerando el almacenamiento ocupado y el tiempo de recuperación con resultados muy satisfactorios.Els incendis forestals són una amenaça important tant pels homes com per a la natura des d'un punt de vista ecològic, social i econòmic. La predicció del comportament dels incendis forestals utilitzant simulació encara genera resultats poc fiables i, per tant, segueix essent un desafiament important. Aproximacions recents a aquest problema, intenten calibrar les variables d'entrada dels simuladors, les quals sovint presenten un grau important d'incertesa, utilitzant tècniques d'optimització com poden ser els Algoritmes Genètics (AG). Per tal de que la convergència dels AG a una solució bona sigui ràpida, l'AG es guia mitjançant el coneixement obtingut d'històrics d'incendis o focs sintètics. Per aquest treball s'ha desenvolupat un mètode eficient i robust d'emmagatzemament i recuperació del coneixement. El mètode anomenat Nearest Neighbour Search s'aplica per trobar la configuracióo guardada en la base de coneixements que més s'assembli a la configuracióo real de l'incendi. Per a tal efecte, s'ha desenvolupat una mètrica de distància la qual ha estat implementada de diferents formes alternatives. L'experimentació realitzada mostra resultats encoratjadors en el rendiment de les diferents implementacions tenint en compte l'emmagatzemament ocupat i el temps de recuperació de la informació

    Distributed Particle Filters for Data Assimilation in Simulation of Large Scale Spatial Temporal Systems

    Get PDF
    Assimilating real time sensor into a running simulation model can improve simulation results for simulating large-scale spatial temporal systems such as wildfire, road traffic and flood. Particle filters are important methods to support data assimilation. While particle filters can work effectively with sophisticated simulation models, they have high computation cost due to the large number of particles needed in order to converge to the true system state. This is especially true for large-scale spatial temporal simulation systems that have high dimensional state space and high computation cost by themselves. To address the performance issue of particle filter-based data assimilation, this dissertation developed distributed particle filters and applied them to large-scale spatial temporal systems. We first implemented a particle filter-based data assimilation framework and carried out data assimilation to estimate system state and model parameters based on an application of wildfire spread simulation. We then developed advanced particle routing methods in distributed particle filters to route particles among the Processing Units (PUs) after resampling in effective and efficient manners. In particular, for distributed particle filters with centralized resampling, we developed two routing policies named minimal transfer particle routing policy and maximal balance particle routing policy. For distributed PF with decentralized resampling, we developed a hybrid particle routing approach that combines the global routing with the local routing to take advantage of both. The developed routing policies are evaluated from the aspects of communication cost and data assimilation accuracy based on the application of data assimilation for large-scale wildfire spread simulations. Moreover, as cloud computing is gaining more and more popularity; we developed a parallel and distributed particle filter based on Hadoop & MapReduce to support large-scale data assimilation

    Data-driven wildfire risk prediction in northern california

    Get PDF
    Over the years, rampant wildfires have plagued the state of California, creating economic and environmental loss. In 2018, wildfires cost nearly 800 million dollars in economic loss and claimed more than 100 lives in California. Over 1.6 million acres of land has burned and caused large sums of environmental damage. Although, recently, researchers have introduced machine learning models and algorithms in predicting the wildfire risks, these results focused on special perspectives and were restricted to a limited number of data parameters. In this paper, we have proposed two data-driven machine learning approaches based on random forest models to predict the wildfire risk at areas near Monticello and Winters, California. This study demonstrated how the models were developed and applied with comprehensive data parameters such as powerlines, terrain, and vegetation in different perspectives that improved the spatial and temporal accuracy in predicting the risk of wildfire including fire ignition. The combined model uses the spatial and the temporal parameters as a single combined dataset to train and predict the fire risk, whereas the ensemble model was fed separate parameters that were later stacked to work as a single model. Our experiment shows that the combined model produced better results compared to the ensemble of random forest models on separate spatial data in terms of accuracy. The models were validated with Receiver Operating Characteristic (ROC) curves, learning curves, and evaluation metrics such as: accuracy, confusion matrices, and classification report. The study results showed and achieved cutting-edge accuracy of 92% in predicting the wildfire risks, including ignition by utilizing the regional spatial and temporal data along with standard data parameters in Northern California

    Data Assimilation for Spatial Temporal Simulations Using Localized Particle Filtering

    Get PDF
    As sensor data becomes more and more available, there is an increasing interest in assimilating real time sensor data into spatial temporal simulations to achieve more accurate simulation or prediction results. Particle Filters (PFs), also known as Sequential Monte Carlo methods, hold great promise in this area as they use Bayesian inference and stochastic sampling techniques to recursively estimate the states of dynamic systems from some given observations. However, PFs face major challenges to work effectively for complex spatial temporal simulations due to the high dimensional state space of the simulation models, which typically cover large areas and have a large number of spatially dependent state variables. As the state space dimension increases, the number of particles must increase exponentially in order to converge to the true system state. The purpose of this dissertation work is to develop localized particle filtering to support PFs-based data assimilation for large-scale spatial temporal simulations. We develop a spatially dependent particle-filtering framework that breaks the system state and observation data into sub-regions and then carries out localized particle filtering based on these spatial regions. The developed framework exploits the spatial locality property of system state and observation data, and employs the divide-and-conquer principle to reduce state dimension and data complexity. Within this framework, we propose a two-level automated spatial partitioning method to provide optimized and balanced spatial partitions with less boundary sensors. We also consider different types of data to effectively support data assimilation for spatial temporal simulations. These data include both hard data, which are measurements from physical devices, and soft data, which are information from messages, reports, and social network. The developed framework and methods are applied to large-scale wildfire spread simulations and achieved improved results. Furthermore, we compare the proposed framework to existing particle filtering based data assimilation frameworks and evaluate the performance for each of them
    corecore