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ABSTRACT 

As sensor data becomes more and more available, there is an increasing interest in 

assimilating real time sensor data into spatial temporal simulations to achieve more accurate 

simulation or prediction results. Particle Filters (PFs), also known as Sequential Monte Carlo 

methods, hold great promise in this area as they use Bayesian inference and stochastic sampling 

techniques to recursively estimate the states of dynamic systems from some given observations. 

However, PFs face major challenges to work effectively for complex spatial temporal 

simulations due to the high dimensional state space of the simulation models, which typically 

cover large areas and have a large number of spatially dependent state variables. As the state 

space dimension increases, the number of particles must increase exponentially in order to 



converge to the true system state. The purpose of this dissertation work is to develop localized 

particle filtering to support PFs-based data assimilation for large-scale spatial temporal 

simulations. We develop a spatially dependent particle-filtering framework that breaks the 

system state and observation data into sub-regions and then carries out localized particle filtering 

based on these spatial regions. The developed framework exploits the spatial locality property of 

system state and observation data, and employs the divide-and-conquer principle to reduce state 

dimension and data complexity. Within this framework, we propose a two-level automated 

spatial partitioning method to provide optimized and balanced spatial partitions with less 

boundary sensors. We also consider different types of data to effectively support data 

assimilation for spatial temporal simulations. These data include both hard data, which are 

measurements from physical devices, and soft data, which are information from messages, 

reports, and social network. The developed framework and methods are applied to large-scale 

wildfire spread simulations and achieved improved results. Furthermore, we compare the 

proposed framework to existing particle filtering based data assimilation frameworks and 

evaluate the performance for each of them.   
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1 INTRODUCTION  

1.1 Background  

Spatial-temporal simulations are more and more widely used for studying complex 

spatial-temporal systems. They are found in a variety of applications, such as wildfire simulation 

[1], real time traffic simulation[2,3] and pedestrian crowd simulation [4,5]. Traditionally these 

simulations are used as offline tools without assimilating real time sensor data from the systems 

under study. However, with sensor data become more and more available, there is a need to 

assimilate real time sensor data into spatial temporal simulations for more accurate simulation or 

prediction results.  

Data assimilation is a process that iteratively corrects simulation result through feedback 

from physical environment. In traditional simulations, variants of factors may lead to incorrect 

prediction result. Two main factors are the “initial condition” and “model errors” [6].  The 

“initial condition” refers to input data for simulation; “model errors” represents the discrepancy 

between simulation model and physical model. For example, in wildfire simulation, the 

erroneous weather input data or geography information bring uncertainty to simulations and thus 

impact the final prediction accuracy; similarly, the simulation model itself is usually not a perfect 

model (i.e. the same as a physical model), so the simulation results will have errors compared 

with the physical system.  We are not applying data assimilation to correct input data nor correct 

the imperfect model. However, through available observations from a physical system, and based 

on current estimated system state, a better prediction can be achieved by an indirect 

“synchronization” between current estimated system state and physical system state [7]. Since 

data assimilation process itself needs observation data, it can also be considered as dynamic data 

driven by a real or physical system (DDDS). 
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In previous work, we have applied Particle Filters (PFs) [8], also known as Sequential 

Monte Carlo methods, to data assimilation for spatial-temporal simulations1. Compared with 

other notable data assimilation methods, such as Kalman filters [8], PFs are non-parametric 

methods and work well with systems that have non-linear and non-Gaussian behavior. This 

makes them a desirable data assimilation method for complex spatial-temporal simulations.  

PFs are sample-based methods, which represents the prediction of state by a posterior 

distribution of samples (also called as particles) [7]. A standard PFs method contains three main 

steps: sampling, weight calculation and resampling. Sampling step evolves system state of each 

particle to next data assimilation time point based on simulation model; weight calculation step 

calculates the weight for each particle based on observation data from physical system; 

resampling step selects a new set of particles by duplicating the samples with large weights and 

eliminate samples with negligible weights. 

1.2 Challenges for PFs based data assimilation in spatial temporal system 

In a spatial temporal system, the samples are drawn from space of unknowns and filtered 

by observations. However, applying PFs into a complex spatial temporal system has two main 

challenges. A major challenge is due to a large number of state variables.  As the state space for 

spatial system is usually very large, a small number of particles is difficult to achieve satisfactory 

results by having "correct combination" of all state variables. Another challenge is from 

observation data. In traditional particle filter, the importance weights of different particles for 

any chosen state variable are influenced by all observation data, even if those observation data 

are nearly independent of the particular state variable [9,10]. 

Also from observation data aspect, observations mainly from sensors have the limitations 

on amount and diversity of measurement. Since sensor can only sense information in a local area, 



3 

a small number of sensors can only provide feedbacks for partial physical space and is hard to 

reflect the global system state of a large physical spatial system. So the amount of sensor 

distributed over physical space has a great impact on prediction accuracy. Besides, most of the 

sensors are designed and produced for specified purposes. For example, ground temperature 

sensor only provides readings for environment temperature in a local area; laser sensor only 

detects the distance to a target; Infrared sensor measures infrared light radiating from objects 

within the detectable local area. Therefore, to get sufficient observations for a complex spatial 

temporal system, usually number of sensors with different natures and purposes need to be 

distributed. However, in a real world, overcoming these two limitations will also increase 

economic cost.  

1.3 Problem statement 

For a high dimensional spatial temporal system whose states and observation data is 

spatially distributed and have finite correlation lengths (i.e. the observation area is limited in a 

local area), the PFs methods have underestimated the uncertainty of the posterior distribution due 

to limit number of particles and overestimated the information available in the observation data 

by calculating particle’s weight based on all observations for a full state. Consider wildfire as an 

example, the observation data (e.g., ground temperature sensor data) from different regions of 

the fire typically reflect only the fire states in their corresponding regions, not others. However, 

in each particle the weight is calculated for a full state considering observations in all regions. 

And as a result, poor prediction performance may happen. This is because in the weight 

calculating step we are using all observations to weigh a particle, even part of which is 

independent of some observations. As a consequence, some particles with a low weight are 

removed even their sub-states are good. For example, in wildfire simulation, we have “particle 1” 
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generated in figure 1.1 left side.  The sensors represented by black dots are distributed randomly 

over the whole area. The gray line shows a real fire front while the red line shows a predicted fire 

front by bootstrap PFs. Obviously, as the predicted fire front deviates greatly from the real fire, 

this particle is assigned a low weight provided by measurement function.  We can also notice 

that a portion of the predicted fire front located in the orange circle is close to the real fire front. 

However, this good portion has a high chance to be discarded along the particle in resampling 

step because of an extremely small weight assigned to it. Also even for some “good” particles, 

we may neglect the “bad” sub-states. For example, in figure 1, the right side picture shows the 

system state in “particle 2”.  Although this particle is more likely to be maintained and 

duplicated in resampling because of a large weight assigned to it, the system state in an orange 

circle is even worse than that in “particle 1”.  Besides these examples, even in some situations 

where the proposal distribution is not perfect and, observations are not enough, all the particles 

may have extreme small weight, but the good portion is still maintained in a bad particle, which 

may lead to a failure of the algorithm.  

 
Figure 1.1 Example of ignorance of “spatial locality” nature in wildfire simulation. 

          Gray line shows the real fire front and red line shows the predicted fire front. Black dots are the location of sensors. 

 

 Furthermore, because of the limitations on observations, especially for the diversity of 

measurements, obtained observation data is not so sufficient that prediction accuracy needs to be 
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further improved. For example, in wildfire simulation, temperature sensors actually sense the 

closest ignition point in a circle area but cannot measure the direction to that point. Therefore, 

one particle with wrong ignition point but the same distance to sensor still can be assigned with a 

high weight and thus bring effect on the final prediction result.  

In this dissertation, we will solve these two problems and preserve “good” local sub-state 

by exploiting two important natures in spatial temporal system, which have been ignored in most 

studies. The first one is the spatial dependency nature, which means that both the state and sensor 

are spatially dependent. The overall system state is composed of state variables of sub-areas. 

Similarly, typically sensors are located in different locations across the overall space. The second 

feature is the spatial locality feature, which means system state is correlated locally.  And sensors 

can only sense the local information, which is limited in their own observation areas.  

Motivated by the spatial locality property of both system state and observation data, we 

extend the standard bootstrap filter algorithm and propose a spatially dependent particle filtering 

framework.  In this framework, we break state and observation into spatial regions and employ a 

divide and conquer strategy to reduce state dimension and data complexity. Also to improve the 

diversity of local observation data, there is a need to cooperate other kinds of data, e.g. soft 

sensor data that can be easily obtained from messages, reports, and social network and provide 

amounts of diverse information. Still, consider wildfire simulation, for example, soft data from 

the report can record fire spreading direction, fire speeding speed and even fire head location 

towards a landmark.   

1.4 Organization  

The rest of the work is organized as follows. Chapter 2 provides a literature review of 

related work. Chapter 3 exploits a spatially dependent particle filtering framework for data 
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assimilation in spatial temporal simulations by importing the two features. Chapter 4 studies 

automated partition methods for space partition based on the framework proposed in Chapter 3. 

Chapter 5 proposes PFs based data assimilation framework with hard/soft data. Chapter 6 

compares the spatially dependent particle filtering framework to the existing particle filtering 

frameworks. After that, Chapter 7 concludes this work and points out the future research 

directions of this dissertation. 
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2 RELATED WORK 

2.1 Overview of Data assimilation 

2.1.1 Data assimilation applications and methods 

Data assimilation, applied as the process for incorporating available observations to 

improve prediction results, has become more significant and popular in many spatial temporal 

systems, such as the fields in geoscience [11,12], ecosystems[13,14] and climate systems [15-

17]. In these systems, the system dynamic models evolve both in time and space.  So compared 

to the systems evolving only with time, the data assimilation for the spatial temporal system is 

even more complex. Recent studies have employed some stochastic methodologies in data 

assimilation, such as Kalman Filter, Extended Kalman filter(EKF) [18], Unscented Kalman 

filter(UKF) [19] and PFs.  However, Kalman filter is constrained by an assumption of the linear 

system. Even for non-linear variants of Kalman filter --- EKF and UKF, the assumption is still 

limited to Gaussian distributed systems [19]. So, for a spatial temporal system, where the system 

model is always non-linear, non-Gaussian and unstable, PFs are preferred as there are no such 

assumptions on a system model.   

2.1.2 Data assimilations with hard or soft data from local observations 

Data plays an important role in DDDS system. The diversity of simulation application 

causes the variety of data, because the data type always relies on the application of simulation 

system. To simulate a transportation system, Hunter et al. imported variance of information to 

accurately determine the current traffic and predict the future traffic situation, such as 

intersection signal controllers, traffic flow volume, traffic flow density and traffic flow speed 

[20]. To track a target’s position, the laser sensor is widely used to observe and infer the target’s 
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relative position [21]. To simulate wildfire spread, temperature data from sensors deployed in a 

forest provides important information in a dynamic data driven wildfire system [1].  

Importing soft data from human to provide real-time measurement of a system is a 

relatively new topic. The challenges come from the fact that soft data is fuzzy and usually hard to 

describe by a mathematic model, so the prediction of the system cannot depend only on soft data. 

Nevertheless, towards soft/hard data combination, some efforts have been made to improve the 

accuracy of prediction. Pravia et al. recently proposed a conceptual framework to assimilate both 

hard and soft data but did not provide realization of it [22]. Based on random finite set, Khaleghi 

et al. applied EKF (Evidential Kalman Filter) to incorporate both hard and soft data in target 

tracking application [21]. The proposed data fusion framework can only be applied to the linear 

system, and the experiments did not consider how to combine soft data and hard data that 

generated at the same time step.  It also provided a soft data representation method for target 

tracking report, which is improved in our work to make it suitable for more general applications. 

To deal with a combination of hard and soft data, Gross et al. converted hard data into soft-

compatible data, and used graph to associate all soft data [23]. Jenkins et al. employed fuzzy 

membership function to map qualitative estimations from human to quantitative values, which is 

used to score the similarity for data association and situation assessment [24].  

 

2.2 Particle filters (PFs) and its applications    

2.2.1 Overview of Particle Filters  

PFs is a set of methodologies using Sequential Monte Carlo experiments to estimate the 

internal state of a dynamic system when given partial observations. A dynamic state space model 

is represented by two equations.  One equation (1) is for state transition, showing how the system 
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state evolves xt−1 to next time step xt; the another one (2) is for measurement, matching the 

observation yt with predicted system state xt. The two equations are formulated as follows: 

   xt = f(xt−1) + vt      (1) 

   yt = g(xt) + λt      (2) 

where f is the transition function, g represents the measurement function. vt  and λt  are 

two independent random variables denoting added state noise and measurement noise. 

The goal of PFs is to use a set of particles to approximate a posterior distribution 

p(xt|y1:t) of system state (also called conditional distribution) based on the observations in a 

stochastic process. Each particle consists of an index i and a system state xt
(i)

. Initially, the state 

of particles can be predefined in a proper way according to the needs. Then, the basic PFs follow 

a prediction-update methodology at each iteration. In the prediction part, we draw particles 

through a proposal density  q(xt|xt−1
(i)

, yt)  (also called importance density) as described in 

equation (3). The proposal density q(∙) could be system dynamics represented as p(xt|xt−1), or 

an optimal distribution p(xt|xt−1,yt)  which also involves the latest observation  yt . After 

prediction, based on the latest observation, we assign each particle a weight ωt
(i)

 calculated 

through the likelihood density (yt|xt
(i)

) . The weight is then updated by multiplying the previous 

weight ωt−1
(i)

 as described in equation (4). After a number of recursions, the distribution of system 

state p(xt|y1:t) is estimated by these samples with probabilities proportional to the weights. The 

final distribution is approximated as in equation (5) where δ(x) is the Dirac delta function, and N 

is the number of particles[25,26]. If N → ∞, the approximated distribution approaches the true 

posterior distribution. 



10 

    xt~ q(xt|xt−1
(i)

, yt)      (3) 

   ωt
(i)

∝ ωt−1
(i) p(yt|xt

(i)
)p(xt|xt−1)

q(xt|xt−1
(i)

,yt)
     (4) 

    p(xt|y1:t) ≈ ∑ ωt
(i)δ(xt − xt

(i)
)N

i=1     (5) 

There are varieties of PFs. The basic PFs Sequential Importance Sampling (SIS) 

described above is the simplest one containing only the sampling and weight calculation steps at 

each iteration [27]. However, a degeneracy problem may happen and let the prediction fail. The 

degeneracy means that, after a few of iterations, one particle will have a significant weight; the 

others will have a negligible weight and have almost zero contribution to the estimation 

of p(xt|y1:t).  Thus, a lot of samples are wasted for computation, and the whole set cannot reflect 

the true posterior distribution correctly anymore. To deal with this problem, the sequential 

importance resampling (SIR) also called Bootstrap PFs is developed which uses importance 

resampling to generate a new set of particles with probabilities proportional to the weights.  In 

the resampling step, we remove the particles with low weight and duplicate the particles with 

high weight. Then the newly propagated particles are assigned the same weight equals to 1/N for 

the iteration of next step.  Furthermore, SIR chooses the system dynamic as the proposal 

distribution to obtain the new samples in the sampling step. 

2.2.2 PFs based applications 

Currently, numerous studies have been found using PFs for data assimilation work. 

Vermaak et al. [28] applied particle filter to approximate the clean speech and model parameters 

for the problem of speech enhancement. Towards the application of positioning, navigation and 

target tracking, Gustaffsson [29] presented a general framework implemented based on PFs.  

Nakamura et al. [30] assimilated real tide gauge data into the simulation by using PFs to correct 
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erroneous Tsnamic Simulation models. Mihaylova et al. [31] implemented PFs in freeway way 

traffic simulation which used a speed-extended cell transmission model for dynamics. Ruslan et 

al. [32] proposed PFs to predict flood water level for monitoring and tracking flood. But, most of 

them are for low-dimension space and the work implementing PFs in a large-scale spatial 

temporal system are quite few, because of a “curse of high dimensionality” [33]. 

2.3 Strategies towards complex spatial temporal simulations using PFs 

Recently, several strategies are explored to overcome the high dimensionality problem 

existed in particle filter for a large-scale spatial temporal system. The first strategy is the local 

analysis which takes advantage the "spatial locality" feature in a spatial temporal system. The 

next strategy is to import the concept of distributed and parallel computing. Another strategy is 

to optimize the proposal distribution in sampling step. Besides those three strategies for a general 

high dimensional system, state partitioning is used as another methodology especially towards a 

spatial temporal system. 

2.3.1 Local analysis 

The feature “Spatial locality” has well been considered in EnKF [34-36] to reduce state 

dimension locally for geophysical systems. Accordingly, there are two common localization 

methods in EnKF: covariance localization and local analysis. The covariance localization [35-37] 

defined a distance-based correlation function for updating state error covariance.  The local 

analysis applies localization in the local state variables (i.e. obtained by a sliding window) and 

updates states locally like LEKF[38,39] and LETKF [40]. Note that the local state vectors 

overlap when using a sliding window and thus leads to discontinuities across the system space. 

So Hunt et al. [40] proposed to use an error covariance matrix to reduce the impact from 
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boundary observations. Compared to covariance localization, the local analysis is more suitable 

for a large scale system since it is a scheme-independent method [41]. 

However, unlike EnKF, PFs do not reply on covariance matrix and may need resampling 

step to update ensemble (i.e. a set of particles). Hence different localization approaches are 

proposed in PFs. Lei and Bickel proposed a moment matching particle filter for a non-linear non-

Gaussian system to enable localization [42] . This method can keep the spatial smooth by 

avoiding the resampling step. Similar to the idea of the distance-based correlation function in 

covariance location of EnKF, a recent study in  [43] proposed a new localized particle filtering 

incorporating a localization function on the likelihood function to update the weights of particles. 

If the site of a single observation is far away from a state variable, the weight from that 

observation is almost 1; however, if it is close to the state variable, the weight become the same 

as before. Besides, the observations are assimilated sequentially, and for each observation, the 

weight updating and resampling step are performed based on the samples merged with prior 

particles.  Soon after that, Poterjoy and Anderson  [44]  implemented this localized particle 

filtering into a high-dimensional geophysical system for the first time. Penny and Miyoushi [45]  

also presented a local particle filter for geophysical systems. Morzfeld  et al. [46]  pointed out 

that localized PFs work for the systems with small enough sub-problem dimension.  

However, these local PFs require special operations on the system state and thus not 

applicable to a wildfire simulation model, such as DEVS-FIRE. In paper [42], state should be 

updated using a linear model based on EnKF by calculating the mean, which is also not 

applicable in DEVS-FIRE. As stated in previous response, either the localization function or 

merging operations in [43,44] is not suitable for wildfire simulation.     
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2.3.2 State partitioning 

Recently, the strategy state partitioning is explored especially towards a spatial temporal 

system. State partitioning is a method that divides state into multiple partitions and then applies 

data assimilation. Generally, there are two state partition methods in general, depending on 

whether the system is geophysical based or not.  

In a non-geophysical system, the system state is divided by exploring a complex 

hierarchical structure.  Partitioned sampling proposed in [47] is a novel sampling method that 

using state partitioning concept in tracking multiple objects. In this method, each target was 

considered as a single partition. Then the system dynamics and observations were broken into 

multiple components. Based on the partition, each component applied dynamics and resampling 

sequentially in a hierarchical manner. Later, MacCormick and Michael [48] implemented this 

method in hand tracking and again proved the advantage of partitioned sampling. Also for the 

hand tracking application, Brandao et al. [49] presented a similar subspace hierarchical particle 

filter in hand tracking, which partitions the state space according to some implicit structure 

inferred from observation functions. Especially, the fingers in hands are broken into multiple 

groups (probability unbalanced) and execute PFs through a directed acyclic graph structure. 

Deutscher and Reid [50] introduced a crossover operator from Genetic Algorithms to populate 

new particles in proposed annealed particle filtering.  Besides the object tracking in computer 

vision, the state partitioning is also used in other more applications, e.g. in multiple targets 

tracking, where the sensors are more diverse. Djuric ́et al. [51] partitioned the state dimensions 

into subspaces and applied particle filter in each partition for the target. Particularly, the state 

was decomposed according to the measurements by variance of sensors (e.g. signal strength, 

angle of signal arrive, direction of motion and absolute velocity of target).  
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 In a geophysical system, the state is divided by partitioning the spatial space. This 

method is straightforward since the state variables always have the same properties and are 

correlated with their neighbors in a geography map.  However, to the best of our knowledge, 

very few efforts focus on studying the impact from state partition on prediction accuracy in a 

geophysical system.  In data assimilation of numerical weather forecast (NWF), a simple way to 

get a partitioned region (i.e. a sliding window) with lower dimension is to form a patch of grid 

points (e.g. rectangle shape) centered at a specified grid point [52][39]. Although Rebeschini et. 

al [53] analyzed the performance of local PF theoretically based on partitioned sub-states (i.e. 

blocks), they did not discuss on how to do state partition but suggest to select a typical small 

block size.  

2.3.3 Optimization on proposal distribution 

“Spatial locality” is also used in PFs by optimizing the proposal distribution in sampling 

step. The optimal proposal incorporates the current real observation to get more possible samples 

[54]. This method restricts the search space to possible space that can generate the current 

observation and therefore reduces the sampling spaces. In paper [33], Snyder reviewed the 

optimal proposal methods and showed the sample size is reduced dramatically compared with 

standard proposal. In paper [55], Xue et al. proposed an effective proposal distribution and 

applied this in wildfire simulation. The results showed the results have been improved, especially 

in the cases standard particle filter fails. Although the optimal proposal distribution is 

demonstrated as an efficient schema to reduce the sample size, and the design a proper optimal 

proposal distribution in a specified application is hard for complex system.    
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2.3.4 Distributed and parallel computing 

Early studies on distributed PFs focus on minimizing the execution time by paralyzing 

the operations in the three main steps. The sampling and weight calculation step for each particle 

can be considered independent and simple to be parallized. But the resampling step is a 

centralized operation as it needs to gather and normalize all the weights from particles. So 

paralyzing resampling step is most critical. Miodrag [56] introduced novel resampling algorithms 

RNA (Resampling with proportional allocation) and RPA (Resampling with non-proportional 

allocation). It is implemented in a simple architecture, where several distributed processors (PEs) 

run sampling and compute weight for a sub-set of particles,  and a central processor(CU) fulfills  

particle collection and particle scheduling work in resampling step.  The resampling algorithms 

not only reduce the execution time and also the communications between PEs.  Later, still based 

on this simple architecture, Balakumar [57] proposed a statically resampling method to mix the 

particles in each PEs to maintain the diversity of particle populations.  Recently, Fan [58] found 

the unbalance problem among PEs after resampling. Therefore, with the purpose of reducing the 

total communication cost, he proposed multiple routing policies for selecting the surplus 

particles in a PE to another PE and proved the total transferring states has been minimized in the 

experiment of wildfire simulation. Also for the architecture, Shabany [59] proposed a new full 

parallel architecture for distributed resampling to fix the particle scheduling and thus make 

resampling step paralyzed completely. All the studies have proved that applying particle filter in 

a paralyzed manner efficiently reduce the computation time with a large sample size. But when 

state variables enlarge the sample size may exponentially increase also, we still need extremely 

huge set of samples to constitute the proposition of possible states and thus bring high overhead 
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in the processors. Also the hardware requirement constrains the implementation of distributed 

PFs. 

2.4  Overview of the DEVS-FIRE Simulation Model 

The DEVS-FIRE [60,61] model is a 2D cellular space model based on Discrete Event 

System Specification [62]. In DEVS-FIRE, the ground is modeled as a 2D cell space, which is 

divided into rectangle cells whose dimensions relying on the resolution of GIS fuel and terrain 

data.  Each cell is a DEVS atomic model, in which fuel and terrain are assumed to be uniform 

assigned. Cells are coupled with their 8-neighbors. Then a weather model is coupled to all cells 

to receive dynamically changed weather data (wind speed and wind direction). Fire spread 

simulation in DEVS-FIRE is modeled as a propagation process as burning cells ignite their 

unburned neighbors. The rate of spread and spread directions for one ignited cell are calculated 

based on Rothermel’s fire behavior model [63], depending on its fuel, slope, aspect, and weather 

data.    

In DEVS-FIRE, initially we set all cells as unburned (passive) state. Once a cell ignited, 

it changes to burning state.  After the maximum burn time expires (i.e. the length is computed by 

Rothermel’s model and mainly depends on the size of cell and fuel type in it), a burning cell 

converts to the burned state.  Figure 2.1 displays an example of simulation result with fuel type 

information in DEVS-FIRE.  It comes from a portion of global map, which is composed of a set 

of colored cells. Red represents the cells in burning state; black denotes the cells in burned state. 

The other colors display the levels of fuel type in the cells, and also denote unburned cells 

marked transparent inside.  
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Figure 2.1 An example of wildfire spread simulation result.  

 

The system state for DEVS-FIRE at time step t is defined as a vector of states for all cells, 

denoted by firet . Therefore, the system transition model for our wildfire simulation can be 

defined as  

  firet = DEVSFIRE(firet−1, θt, ∆t) + vt    (6) 

Where θt is a vector of model inputs(GIS, weather, and so on ), ∆t is the time duration.  

 

  

Burning

Burned

Unburned

Each	cell	has	three	
possible	states



18 

 

3 SPATIALLY DEPENDENT PARTICLE FILTERING FRAMEWORK  

3.1 Introduction  

A standard PFs algorithm contains three main steps at each iteration: sampling, weight 

calculation and resampling [64]. The sampling step is to evolve the system state of each particle 

to the next data assimilation time point; the weight calculation step is to compute the weights of 

particles based on observation data (i.e., sensor data); and the resampling step is to select a new 

set of particles based on particles’ normalized weights. The standard PFs provides a general 

framework for carrying out data assimilation. However, it faces challenges to work effectively 

for complex spatial temporal systems that have a large number of state variables due to the large 

spatial areas of interest [65]. For these systems, a small number of particles are difficult to 

achieve satisfactory results by having "correct combination" of all state variables.  Take a 

cellular space-based wildfire spread simulation as an example [60], in which the system state is 

composed from the state of each cell in the cell space. A  200 ∗ 200 cell space would have 

40,000 cells. In order to have accurate data assimilation results using particle filters, a large 

sample size (i.e. the number of particles) is needed in order to work well with large number state 

variables. However, increasing the sample size leads to higher computational cost. This is 

especially true for complex spatial temporal simulations because each particle involves a full-

scale simulation to the next observation time point.  

The goal of this work is to improve PFs-based data assimilation for spatial temporal 

simulations by exploiting important features of spatial temporal systems. In particular, we exploit 

two features that are common for spatial temporal systems. The first one is that both the state and 

sensor are spatially dependent. The overall system state is composed from state variables of sub-

areas. Similarly, typically sensors are located in different locations across the overall space. The 
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second feature is the spatial locality feature. The system state is correlated locally.  And sensors 

can only sense the local information, which is limited in their own observation areas. These 

features are seriously ignored in standard PFs implementation. For example, in standard PFs, the 

system state is treated as a whole when carrying sampling, weight, and resampling. Furthermore, 

the importance weights of different particles for any chosen state variable are influenced by all 

observation data, even if those observation data are nearly independent of the particular state 

variable [9,10]. For a high dimensional spatial temporal system whose states and observation 

data are spatially distributed and have finite correlation lengths, the standard particle filters thus 

overestimate the information available in the observation data and underestimate the uncertainty 

of the posterior distribution. Consider wildfire as an example, fire only spreads to the 

neighboring cells and the observation data (e.g., ground temperature sensor data) from different 

regions of the fire typically reflect only the fire states in their corresponding regions, not others. 

Currently the spatial locality feature has been taken advantage in large-scale geospatial systems 

to improve prediction accuracy, such as numerical weather forecast (NWF) system. Accordingly, 

several algorithms deriving from ensemble Kalman filter (EnKF) have been proposed to achieve 

prediction accuracy improvement at a modest computation cost via incorporating “spatial 

locality” feature [39]. Generally, in these algorithms, the global space is divided into sub-spaces, 

and then data assimilation is performed at each sub-space using state variables and observations 

locally. Similar idea can be found in [66], which provided mathematical proof on a local particle 

filtering – block particle filtering. Motivated by the spatial dependency and locality features of 

both system state and observation data, we extend the standard bootstrap filter algorithm and 

propose a new spatial partition-based particle filtering algorithm, especially for wildfire 
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simulation. This algorithm breaks state and observation into spatial regions and employs a divide 

and conquer strategy to reduce state dimension and data complexity. 

In this dissertation, we develop a new spatial partition-based particle filter framework. 

This new framework incorporates both the state partition and “spatial locality” in PFs based 

assimilation for simulations. We divide system state into multiple sub-states and conquer the 

processed sub-states into a full state to accomplish the iterations. Similar to standard PFs, it 

includes the three main steps at each iteration. Sampling is still based on a full state because 

simulation model needs the whole state to correctly simulate the evolution of the system state. 

However, unlike the standard PFs, weight calculation is based on each sub-state and takes into 

consideration the sensors that have observations coverage over the area the sub-state belongs to. 

Besides, resampling is also performed on sub-state.  And finally in order to cooperate with next 

iteration’s sampling step, we need to reconstruct sub-states in particles to form a full state. To 

support this framework, there are several issues we need to deal with, including how to divide a 

system state, how to calculate weight for each sub-state taking into account the boundary sensors 

(i.e. the sensors in which the observation area covers more than one sub-states), and how to carry 

out resampling to reconstruct new particles from sub-states. We propose methods for each of 

them. To evaluate the proposed framework, we applied it to wildfire-spread simulation. It is 

important to note the framework is general and can be applied to other spatial temporal systems. 

The contribution of this section is 1) we propose a spatially dependent PF framework, especially 

for wildfire simulation; 2) we point out the boundary sensor problem after dividing sub-states; 3) 

we provide a two-level spatial partition method to break a spatial area; 4) An case study in 

wildfire simulation have been conducted. 
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3.2 Overall Framework 

Before describing the overall framework, we need to clarify how the divide and conquer 

strategy is incorporated over system state. 1) In order to divide the system state we partition the 

simulation space. Let the entire space r = r1 ∪ r2 ∪ …  rj … ∪ rm , which is broken into n 

smaller regions rj for j = 1. . m. Then according to the divided regions, we can partition the full 

system state x and observation data y into subgroups because they are spatially dependent. In this 

proposal, we use sub-state to refer to a partial of system state, and sub-observation to represent a 

subgroup of observation data. Figure 3.1 shows one example of state partitioning by gridding 

space r. In figure 2, rj is one region in whole space r,  xrj
 is the sub-state located in  rj ,   yrj

 

denotes the sub-observations related to  rj  . Secondly, after performing some activities 

individually (to be described later), the sub-states are reconstructed to form a full state for future 

operations. An early version of the framework can be found in [67]. 

 
Figure 3.1 Example of state partitioning and generated sub-states and sub-observations. 

 

The new spatial partition-based particle filter framework contains a similar three steps 

flow for each iteration as described in the bootstrap PFs. However, it defers from the bootstrap 

PFs greatly since the divide and conquer strategy requires some operations to be accomplished 
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on a sub-state instead of a full system state. A general flow of this new framework can be found 

in figure 3.2. 

 

                  
 

Figure 3.2 General flow of spatially dependent particle filtering method. 

         Weight normalization is denoted by /. Resampling is denoted by *. 

 

As illustrated in figure 3.2, one more step for state partitioning is added, so there are 

about four steps totally at each iteration in SpSIR algorithm. 1) Sampling is still the first step. 

This sampling step shares the same sampling methods of Bootstrap filter, in which a transition 

equation is directly used to generate new full state for the samples given the last step’s full state. 

2) State partitioning is inserted as the second step. In order to partition a system state, we break a 

real system space into multiple regions while meeting some criteria.  And then according to those 

regions, a full system state is divided into multiple sub-states. 3) Weight calculation becomes the 

third step. This step differs significantly form the bootstrap filter algorithm.  We compute weight 

for each sub-state instead of a full system state. And the measurement equation for each sub-state 

becomes p(yt,rj
|xt,rj

), where  xt,rj
 represents a sub-state belongs to region rj and yt,rj

 denotes the 

observations associated to region rj respectively at time step t. After that, weights are normalized 

for each region represented by / in figure 3.2.  4) Resampling (denoted by * in figure 3.2) 
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remains the last step.  However, the particles are formed into multiple sets according to the 

number of regions m.  Each particle set is for one region, while for each particle the system state 

is the sub-state belongs to the region and the weight is corresponding sub-state’s weight.  Then 

resampling is performed in each set. After that, we combine the sub-states from those sets and 

reconstruct a full system state x.  

In order to implement this framework in a spatial temporal system, there are several 

problems we need to consider. These problems exist mainly in the last three steps of the flow.  

First of all, as state partitioning depends on space partitioning which has many variations, we 

need to find a proper way to design the partition. Another main problem called data association 

is found in weight calculation step. In this step, some boundary sensors located near the borders 

of regions may have observation coverage over several regions, but it is unknown that sub-state 

from which region impacts sensor and provides final real observation. So it is hard to give a 

correct association between the sub-state and observations. The last issue is how to apply 

resampling on each sub-state and reconstruct a new full system state. In the following sections, 

we will explain the solutions for each problem one by one.   

3.3 State Partitioning 

In a spatial temporal system, since system state evolves in a real space, state partitioning 

relies on a proper partition of space. Once a full space r  is divided into multiple smaller non-

overlapping regions denoted as  r1  to rm , we can get corresponding sub-states xr1
 to xrm

. 

Therefore, state partition indeed becomes space partitioning.   

To divide a 2D space, there are varieties of methods. Basically, three approaches can be 

directly applied and easily implemented. They are arbitrary partitioning, geography partitioning 
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and sensor clustering partitioning methods. Figure 3.3 shows the generated sub-regions separated 

by black line after performing these three partitioning methods on the same space. 

The first two methods---grid partitioning and geography partitioning are two 

straightforward space-partitioning approaches. Grid partitioning breaks a full space into multiple 

arbitrary grids (or other regular/irregular shapes). As it requires the least prior knowledge for 

partitioning, we will implement that in our experiment later. Geography partitioning process the 

geography information and then break the space according to location of city, forest, mountain, 

road and etc. 

 

Figure 3.3 The results after performing three basic state partitioning methods on the same space.  

                The generated regions are separated by black line. Black dots represent the sensor locations. 

 

The last basic approach to divide a space depends on the distribution of sensors. Since in 

data assimilation method our system state is validated and updated by real observations from 

sensors at each iteration, appropriately employing sensor’s observations is quite useful to 

improve the final prediction result. For example, if one region has no sensor 

located, the corresponding sub-state cannot be validated by real observation and thus is useless 

for obtaining a better forecast. K-mean sensor clustering partitioning is a classical sensor 

distribution based space partitioning schema. K equals to the provided number of sub-states m. 
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We consider sensor locations as 2D points in a plane space. In this partitioning method, by 

applying K-mean clustering on locations of sensors, the sensors are classified into K clusters, 

while each cluster has a center called centroid.  Consider the space as a plane consisting of a 

finite set of points, for each centroid we can get a corresponding region in which the points are 

closer to the centroid than to any other. Then we build a voronoi graph in the whole space.  

 

3.4 Weight calculation 

Weight calculation step differs greatly from standard PFs. Since the full system state is 

broken into multiple sub-states after state partitioning, we assign a weight to each sub-state in 

every particle at this step. Traditionally, each particle is associated with a weight w. But in this 

framework, each particle is assigned a weight set  {ωxr1
, ωxr2

, … , ωxrj
, … , ωxrm

}. The element 

ωxrj
in the weight set is for the weight of corresponding sub-state in rj.  To obtain the value of 

ω,xrj
, we should use following equation 

     ωxrj
= p(yrj

|xrj
)      (6) 

In this equation, xrj
represents the sub-state in region rj  and yrj

 denotes a set of 

observations impacted by system state in rj.  A standard PF takes accounts all the observations y 

to compute the weight for each particle. So in a standard PF, we can define a multivariate 

Gaussian distribution to calculate ω for the full system state in each sample. We assume the 

observations are independent, then a diagonal covariance matrix Σ is used in this multivariate 

Gaussian distribution as shown in equation (7) for nobs observations. This equation can also be 

written as (8) by defining a density function p(yk|x)~N(yk, δk
2 ) for each single observation, 

and δk
2

 is the variance . 
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   ω =
exp (−

1

2
(g(x)−y)′Σ−1(g(x)−y))

(2π)nobs/2|Σ|1/2
      (7) 

    ω = ∏ f(yk|xk )
nobs
k=1         (8) 

But here for each sub-state xrj
, the weight calculation way is different  as we only 

consider a subset of observations contributing to it. This owes to the spatial locality nature from 

sensor.  It means that a widely distributed sensor can only provide information limited in its own 

observation area. As the observation area from one sensor may overlap with each other, some 

location can be observed by multiple sensors, but not all sensors distributed in space.  Therefore, 

before calculating the weight for one sub-state, we need to assign observations to the possible 

sub-states. Since the assignment of sensor’s observation depends on whether one sub-state 

impact it or not, we consider all regions covered in the observation area. If the observation area 

covers only one region, the observation from sensor is simply assigned to the sub-state in the 

covered region. However, some boundary sensors located nearing regions’ border may cover two 

or more regions.  Then these boundary sensors’ can sense the sub-states from all covered 

regions. But it is unknown that which sub-states contribute to the final observation. So it is hard 

to assign a boundary sensor to the impacted sub-states correctly. Take the wildfire as an 

example, in which the ground temperature sensor is used to detect ignition point in a limited 

range.  In figure 3.4, the state space is decomposed into 4 regions and red line shows the fire 

front from one particle. Each sensor has an observation range represented by gray circle. Sensor 

A’s observation range limits in region 1 and only reflects the state in region 1; Similarly, sensor 

B’s observation range limits in region 2 and only reflects the state in region 2.  However, sensor's 

observation area can also across one or more sub-states like boundary sensor C and sensor D. 
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Sensor C locates at region 2 and covers both region 1 and region 2. It seems only reflect the fire 

information from region 1 in this particle. But we cannot simply assign it to region 1.  Because 

the ignition points from real fire impacting sensor C may come from Region 2. We cannot ignore 

this case. Otherwise, there may be a wrong assignment for sensors to sub-states.  Similarly, 

sensor D’s observation ranges across both region 1 and region 3 and could reflect the 

information for both these two regions. But assigning Sensor D to which region or sub-state is 

also a problem. 

                                         

 Figure 3.4 Example of sensor’s locality nature and sensor assignment problem in wildfire simulation. 

 

For boundary sensor, assigning to which sub-state becomes a classical data association 

problem. Currently, a series of algorithms have been developed for data association problem in 

target tracking, such as NNSF, PADF, JPDF[68], GNN[69,70]. However, in a general spatial 

temporal system, this problem could be more complex because of the diversity of sensors. The 

nature of sensor decides what process we should apply to associate observation with sub-state. A 

sensor’s observation can actually derive from a particular point, like laser sensor in target 

tracking and ground temperature sensor sensing the nearest ignition point in wildfire; It can also 

be a synthetic value from a range, like density sensor measuring traffic flow of a segment of road 
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in traffic simulation.   For the first kind of sensor, among all the covered sub-states, we need to 

find the most possible sub-state. For the second kind of sensor, we can either split the 

observation to all the covered regions according to some criteria (e.g. ratio of length or area 

among the sub-regions of observation) or directly build a likelihood function based on the real 

observation and simulated observation from sub-state.  Because of the complex of data 

association problem, we will not discuss it in details.  

In this paper, we only consider the ground temperature sensor for which the observation 

is impacted by the nearest ignition point from system state. Because in order to calculate 

simulated temperature, we must follow equation (9) to define measurement function 𝑔, where 𝑑 

is the closest distance between a sensor and ignition point[1]. 

    �̂� = 376𝑒−𝑑2/2𝜎2
+ 26     (9) 

In this case, that single ignition point may locate at all possible regions the observation 

covers in each particle. So we assume for each covered region, the probability containing that 

ignition point is the same. For each sub-state, to get the weight based on (6), we use the 

following equation to calculate the final weight. 

 ωxrj
= p (ỹrj

|xrj
, Jrj

)      (10) 

where ỹrj
 represents a set of observations which has a coverage area over region rj  and  

Jrj
 denotes the associations that the real observation in ỹrj

 is from the sub-state in region rj (i.e. 

region rj contains the particular point).  xrj
 , Jrj

  are jointed because only when data association is 

defined, then we can perform the measurement function. After normalizing the weights of all 

particles, the weight for particle i becomes 
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   ω̅t,xrj

(i)
=

p(  ỹt,rj

(i)
|Jt,rj

,xt,rj

(i)
   )

∑ p(ỹt,rj

(i)
|Jt,rj

,xt,rj

(i)
)n

i=1

     (11) 

To calculate  p (ỹt,rj

(i)
|Jt,rj

, xt,rj

(i)
) , assuming observations are independent, we can use a 

distribution in equation (12). The difference for weight calculation between a full system state 

and sub-state is that a new function  ℎ (𝐽
𝑡,𝑟𝑗,�̃�𝑡,𝑟𝑗,𝑘

) is used to represent the data association 

probability in sub-state.  

 p (ỹt,rj

(i)
|Jt,rj

, xt,rj

(i)
) = ∏ [g (Jt,rj

) ∙ f (ỹt,rj,k
(i)

|xt,rj

(i)
)]m

k=1     (12) 

where g (Jt,rj
) =

1

cỹrj

and k represents the kth observation in vector ỹi,t,rj
 

g (Jt,rj
)  and f(ỹk,i,t,rj

|xt,rj

(i)
) are two density functions. g(Jt,rj

) describes the probability that 

real observation is reflected by sub-state xt,rj

(i)
 in region rj and f(ỹt,rj,k

(i)
|xt,rj

(i)
)  shows the probability 

that sub-state xt,rj

(i)
 is a real system state.   cỹrj

is the number of regions observation yrj
 covering.  

So for example, if one observation covers 4 regions, then c equals to 4 and g (Jt,rj
) = 1/4 which 

means the chance the real observation impacted by this region is 1/4.  The definition of 

f(ỹt,rj

(i)
|xt,rj

(i)
)  depends on a specified application. Similar to that in standard PF, we use a Normal 

distribution for it as in equation (13). 

 𝑝 (�̃�𝑡,𝑟𝑗,𝑘|𝑥𝑡,𝑟𝑗

(𝑖)
) ~𝑁 (�̃�𝑡,𝑟𝑗,𝑘, 𝛿𝑘

2 )  

 =
1

𝛿𝑘√2𝜋
𝑒

−
( �̂�𝑡,𝑟𝑗,𝑘−�̃�𝑡,𝑟𝑗,𝑘)2

2(𝛿𝑘)2
       (13) 
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where 𝛿𝑘 is the variance used for the kth observation �̃�𝑡,𝑟𝑗,𝑘 in vector ỹt,rj

(i)
, �̂�𝑡,𝑟𝑗,𝑘 is 

obtained by equation (6) given sub-state 𝑥𝑡,𝑟𝑗

(𝑖)
. 

3.5 Resampling 

Resampling step is applied to generate a new set of samples to overcome degeneracy 

problem and increase the diversity of samples. There are several resampling algorithms as 

described in paper [27].  Still based on Bootstrap PF, we use the method that draws samples 

through a probability proportional to normalized weight.  

However, the resampling is for each sub-state separately instead of a full system state. 

After weight calculation, for each region  rj , we obtain a set of normalized weight 

{ω̅t,xrj

(1)
, … , ω̅t,xrj

(N)
}  corresponding to the set of sub-states {xt,rj

(1)
, … , xt,rj

(N)
}.  Then a new set of 

particles are resampled as {x̃t,rj

(1)
, … , x̃t,rj

(N)
} for region  rj. 

Another task in resampling step is to reconstruct a full system state to fulfill the sampling 

step for next iteration. Since the space is divided into M regions, we simply group the sub-state 

in the same particle (i.e. with same particle index) to form a full state. So we group 

{x̃t,r1

(i)
, … , x̃t,rm

(i)
} together to form a new full state, where x̃t,r1

(i)
 is a sub-state of region r1 from 

original ith particle. For each new group of sub-state set, we assume the system state does not 

have a high dependency spatially so that sub-states can be combined directly and integrated into 

a full system state.  

After resampling step, not only the local good particle is remained but also the diversity 

of particles is increased.  This is because that the sub-state with high weight is duplicated in 

resampling step even if the full system state it belongs has a relatively low weight. Also, each 
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sub-state is like a piece in gene, after resampling, the sub-states from different particle are 

reconstructed to form a new generation. This process is similar to crossover and thus increases 

the diversity of samples. 

However, there is a concern about the continuity of system state. This resampling step 

simply constructs a full system without considering the continuity of system state. So our 

algorithm may not fit well in other systems, e.g. numerical system models, where the state 

variables are some numerical values and need specific process to form a continuous full state 

(i.e. the neighboring state variables should have similar values). However, it is not a major issue 

in wildfire simulation. On the one hand, the fire spread does not depend on a continuous model 

for simulation. On the other hand, the burning cells in fire front still get a continuous flame front 

because the burning cells spread to their neighbor cells after some time and eventually a 

continuous fire front is formed.  

3.6 Experiment 

3.6.1 Experiment settings 

Since it is hard to get the real fire front and obtain sensor information in physical 

environment, we chose to use identical twin experiment to evaluate the prediction accuracy. 

First, we run a pure DEVS-FIRE simulation with no employment of data assimilation methods. 

And consider all those input data as the correct data, including weather data. Also, the 

corresponding output is considered as “true” result and generated sensor data are recorded as real 

observation data. Then we conduct another simulation applying data assimilation methods in 

condition of erroneous weather data and using ground temperature sensor data generated from 

the first run. For “correct” weather information, the wind speed 24 (m/s) was and wind direction 

was 30 degrees with random variances added every 30 minutes. Similarly, for “erroneous” 
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weather information, the wind speed was 22 (m/s) and wind direction was 60 degrees with 

random variances added every 30 minutes.  The random variance follows a uniform distribution. 

For wind speed, it ranges from -2 to 2 (m/s); for wind direction, it ranges from -30 to 30 

(degrees). Although the input data for weather differs in these two runs, the ignition points added 

for DEVS-FIRE model is the same. Initially, an ignition point was added at location (35,40). 

Later, at time step 4, another ignition point was added at location (45, -12).  The settings for both 

weather data and ignition points can also be found in following table. 

Table 3.1  Experiment setting for weather data and ignition points 

 Weather data Ignition Points 

“Correct” Speed: 24±2 m/s 

Direction: 30±30 degrees 

Point 1: (35,40), added at T=0 

Point 2: (45,-12),added at T=4 

“Erroneous” Speed: 22±2 m/s 

Direction: 60±30 degrees 

Point 1: (35,40), added at T=0 

Point 2: (45,-12), added at T=4 

 

According to different settings of experiments, three terms are defined for the simulated 

results. They are “real” fire front, “simulated” fire front and “filtered” fire front. The results 

generated through pure simulation model in condition of “correct” and “erroneous” weather data 

are called “real” fire fronts and “simulated” fire fronts respectively. However, for the results 

coming from data assimilation method with “erroneous” weather data and ground temperature 

sensor data, they are called “filtered” fire fronts. In order to evaluate the proposed spatial 

partition-based PF method, for the “filtered” fire fronts we also use the standard bootstrap PF to 

get results and then compare our results with that from the standard PF. More details are 

described later when we present the results. 

In simulation model, cell space is set as large as 200*200 where the side length for each 

cell is 30 (m). We use 12 time steps in the simulation, where for each time step the duration is 20 

minutes. Four–hundred sensors are distributed over the whole space. The observation area for 

each sensor is limited in a circle area with radius equal to 150 (m). In this proposal, two 
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distributions for sensors are considered. The four hundred sensors are distributed randomly and 

uniformly over the space. The following figure displays sensors’ location. The dots represent the 

locations of sensors.   

 

        Distribution-1:Uniform distribution 

Figure 3.5 Sensor distribution for Distribution -1. 

 

To test how the partition method impacts the prediction result, generally we used two 

partition strategies in this proposal. On the one hand, as grid partitioning is a straightforward 

division approach, it is employed to demonstrate the advantages on increasing partition number 

based on pre-knowledge of fire spreading information. Generally, six cases are designed for this 

partition strategy. For these six cases, we chose the partition number as 1,2,4,6,8,10 respectively. 

Note that, if partition number equals to 1, the system state indeed is not partitioned, so the 

prediction results based on this partition are the same as that from the standard PF based data 

assimilation method. Besides, for sensors’ distribution, we use Distribution-1. 50 particles are 

used to obtain the filtered results.  

The accuracy of prediction result is measured by mean square error (MSE): 

𝑀𝑆𝐸 =  
1

𝑁𝑐𝑒𝑙𝑙
∑ (𝑥𝑘,�̂� − 𝑥𝑘,𝑡)2

𝑁𝑐𝑒𝑙𝑙

𝑘=0
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where 𝑁𝑐𝑒𝑙𝑙 denotes the number of cells (i.e. total state variables) over space, 𝑥𝑘,�̂� 

represents the estimated state of the 𝑘th cell from filtered fire at last time step, 𝑥𝑘,𝑡 represents the 

𝑘th cell state from real fire at last time step. Note that we chose the filtered fire front with the 

highest weight among all the particles. Since we cannot directly apply subtraction for the cell 

states,  we define that if the estimated state differs from real state and one of them is “unburned”, 

then 𝑥𝑘,�̂� − 𝑥𝑘,𝑡 = 1, otherwise, 𝑥𝑘,�̂� − 𝑥𝑘,𝑡 = 0. This definition means that we care more about 

the fire front, and the errors happen if the filtered fire front outside or inside of real fire front.  

However, due to the discrete event nature in our wildfire simulation model DEVS-FIRE, 

it is difficult to directly apply other existing localized PFs or Monte Carlo methods into wildfire 

simulation as mentioned in Chapter 2 "Related Work". So to prove the improvement on 

prediction accuracy, we compare our method only to the standard PF (i.e. the cases when sub-

state number equals to 1). 

3.6.2 Experiment results and analysis 

To compare the results on increasing partition number with pre-knowledge of fire 

spreading information, we used grid partition method to generate six cases for six kinds of 

partitions manually. The corresponding sub-state number was increased from one to ten, which is 

selected from set {1,2,4,6,8,10}. These partitions were designed under two general principles. 1) 

More partitions are made around the first initial point. This is because the fire fronts eventually 

become larger from the initial ignition points. 2) The areas with great prediction errors are more 

likely to be separated from others. This is based on that we already known how fire spreads 

generally. 

After applying the spatial dependent PFs method, the filtered results of one run for all six 

cases were obtained as shown in figure 3.6. For each case in the figure, black line denotes the 
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“real” fire front, blue line represents the “simulated” fire front and red line indicates the 

“filtered” fire front.  Green areas show the symmetric differences of cell status between 

“filtered” fire front and “real” fire front.  

(a) Case 1: Grid_1S (standard PF) (b) Case 2: Grid_2S 

  
(c) Case 3: Grid_4S (d) Case 4: Grid_3S 

  
(e) Case 5: Grid_8S (f) Case 6:Grid_10S 

  
                           Figure 3.6 Experiment results for all six cases under grid partitioning. 

 

From figure 3.6, we can find that “simulated” fire front deviated a lot from “real” fire 

front. Also, the filtered fire fronts differed among all six cases and it’s shown that prediction 
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improved while the number of sub-states increased.  We compare the “filtered” fire front to 

“real” fire front for each case one by one.  

 In case 1, only a single sub-state is configured, so we can also consider this case 

as the standard PF. We can see that the “filtered” fire front was more close to the “real” 

one compared with “simulated” fire front as shown in figure 3.6(a). But due to the limit 

number of particles the predicted “filtered” fire front was still not precise (i.e. limitation in 

standard PF) since the symmetric difference of cells is as large as about one quarter of the 

“real” fire front area.  

 In case 2, where the whole space was divided into 2 regions as shown in figure 

3.6(b), the differences between “filtered” and “real” fire front was reduced significantly, 

especially in region “0”.  However, the “filtered” fire front in region “1” still spread “out” 

of the real one at most parts. Thus, more refinements are needed to reduce the impact from 

the northern part of the state to the whole state.  

 In case 3, we further divided the whole space into 4 regions in case 3 as shown in 

figure 3.6(c).  We can see that after refining, the northern “filtered” fire front became 

“better” and was more close to “real” fire front. But in region “2” of case 3, an unexpected 

fire head toward southeast was generated. This behavior owed to insufficient observations 

from sensors and data association problem from boundary sensors. 1) With insufficient 

observations, it is hard to provide a correct weight for a particle. Since region “2” was 

small, correspondingly the number of sensors distributed in this area was limited. Also, 

few sensors located nearing the “real” fire front in region “2” and fewer observations are 

obtained for this area. So, the calculated weight based on few observations cannot 

correctly represent if the sub-state of a particle is good or not, even if the weight is high. 



37 

2) Besides, boundary sensors also affect prediction accuracy when calculating weights for 

each sub-state. Overall, although some error exists in region “2”, the total error was still 

less than that in case 2.  

 Eventually, in case 4 and case 5, the whole space was divided into 6 and 8 regions 

separately. From figure 3.6(d) and 9(e), we can see that the differences in north part of fire 

front were decreased eventually. But at the southernmost area, the “filtered” front had a 

fire head inside of the “real” fire front in region “2” for both these two cases. It may 

happen because the results are only from one single run simulation.  The random noise 

added in the fire front may not be the same as that in previous cases.  

 In case 6, to further better predict that southernmost, the whole space was divided 

into 10 regions as shown in figure 3.6(f). As expected, the southernmost fire head in case 

5 “disappeared” and prediction performance was improved as a result. 

 

To show the quantitative results, we calculated MSEs for all six cases. Figure 10 displays 

average MSEs after 10 runs for each case, to reduce the impact of random noise added to the 

system.  From figure 10, we can find at final time step T=12, the MSE for case 1 was the largest 

among all six cases. But this error decreased eventually when the number of divided regions 

increased, where our spatial partition-based PF was truly applied.  At previous time steps, we 

also note that during the simulations, even if considering a larger number of sub-states, the MSE 

may be still higher than the case with less number of sub-state.  This unexpected result was 

mainly from the boundary sensors. But once the fire crossed another region, the error was 

reduced. For example, at T=9, MSE in case 6 (Grid_10S) is higher compared to case 4 
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(Grid_8S), but at T=10 when the fire spread over the border between region “2” and region “3”, 

MSE decreased in case 6 and was smaller than that in case 4.   

In summary, figure 3.6 and figure 3.7 show that the prediction accuracy has been 

increased significantly by increasing number of partitions. In figure 3.7, at final time step, about 

45% errors (i.e. number of cells with different states compared to real fire front) can be reduced 

by spatially partitioned method when 10 sub-states are generated, compared to standard PF 

method when a single sub-state is considered (i.e. no partitions). 

 
  Figure 3.7 Comparisons of MSE among all six cases.. 

 

 

3.7 Conclusion 

In this chapter, we propose a spatial partition-based particle filter framework for 

simulation and prediction in a spatial temporal system. This framework introduces the locality 

nature of system state.  We divide the whole space into several smaller regions and the full state 

is broken into correspondingly sub-states. Unlike the tradition calculation on a whole system 

state, it calculates a set of local sub-state weights for each particle and performs resampling in a 

group of local sub-states. Experiments demonstrate the improvement on prediction accuracy 
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when space is divided reasonable with some prior knowledge and when partition number is 

increased in a proper range. 
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4 AUTOMATED SPATIAL PARTITIONING METHODS 

To solve the boundary sensor problem existing in those basic approaches from Chapter 3, 

we propose a two-level automated partitioning method to provide an optimized balanced 

partition with less boundary sensors. The first level is a high level partitioning while the second 

level is a low level partitioning.  

4.1 High level partitioning 

The purpose of high-level partition is to find m-balanced regions, regarding some 

partition criteria. A general idea is that we break a full space into k atomic small blocks b1 to bk , 

then assign each block a score s  through a score function defined according to those partition 

criteria, and finally partition the whole space into m balanced regions r1 to rm by combining the 

atomic blocks and maximize the total score.  

To evaluate if a partition is good or not for scoring, we can consider several factors, such 

as sensor coverage rate Rcoverage, boundary sensor number NumbSensor and total sensor number 

in a region r. The first factor Rcoverage shows how a region is covered by the observation area. 

The second factor NumbSensorreprents how many boundary sensor exist in a region. The last 

factor total sensor number NumSensor tells the total number of sensors in a region including 

boundary sensors and non-boundary sensors.  These three factors work together to estimate a 

partitioning. A partitioning is good if and only if Rcoverage  is high and boundary sensor 

rate RbSensor is low which is calculated by a division of NumbSensor/NumSensor. Then a score 

function Score() is designed as in equation (14). In this equation, c1 and c2 are two coefficients 

to adjust the importance of coverage rate and boundary sensor rate. However, in most cases 

where sensors are distributed uniformly in space, we can ignore the factors Rcoverage and 

NumSensorand only take care of factor NumbSensor. Then another score function is designed as 
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in equation (15), where c3  is the average of number of boundary sensors calculated by 

NumSensor/m . In this proposal, we use the second score function for experiment and c3 equals 

to 100.  

 Score(r) = (100 ∗ Rcoverage + c1) ∗ (100 − 100 ∗
NumbSensor

NumSensor
+ c2) (14) 

 Score(r) = c3 − NumbSensor       (15) 

The high-level partitioning algorithm consists of two main steps. The first step is an 

initialization step for generalizing m balanced regions to obtain a coarse partition represented by 

P1 = {r1, … , rj, … , rm} where rj is a set of blocks. And the area for each region approximates to 

Area(Sp)/k. The second step is a refinement step for refining the m balanced regions by moving 

blocks between regions recursively to maximize total score of all regions. The algorithms of 

these two main steps are described in Algorithm 1 and Algorithm 2 separately. 

 ALGORITHM 1. Initialization of Partitioning 

Input: Two-dimensional area Sp for whole system space, number of total blocks 𝑘, 

sub-state number 𝑚, sensor locations, sensor observation range. 

Output: A coarse partition represented by P1 = {r1, … , rj, … , rm} where rj is a set of 

blocks 

1. Divide the whole space 𝑆𝑝 into 𝑘 equal atomic blocks. SB denotes the current 

block set containing the blocks without assignment. 
 𝑆𝐵 = {𝑏𝑗| 𝑗 = 1. . 𝑘 𝑎𝑛𝑑 𝑏𝑗  𝑖𝑠 𝑎 𝑏𝑙𝑜𝑐𝑘 𝑖𝑛 𝑠𝑝𝑎𝑐𝑒 } 

2. Initialize the partitioning as 𝑃1 = {𝑟𝑗|𝑗 = 1 …  𝑘 𝑎𝑛𝑑 𝑟𝑗  𝑖𝑠 𝑒𝑚𝑝𝑡𝑦} 

3. Randomly select m atomic blocks 𝑏𝑗
′
 from block set 𝑆𝐵, where 𝑗 = 1. . . 𝑚. Assign 

each selected atomic block 𝑏𝑗
′ to region 𝑟𝑗.  

𝑆𝐵 = 𝑆𝐵 − {𝑏𝑗
′|𝑗 = 1. . . 𝑘} 

4. Initialize index j as 0, j=0 

5. Repeat 

5.1 From 𝑆𝐵, find blocks neighboring to one of the blocks in the current region 𝑟𝑗. If 

nothing founded, randomly select one block 𝑏  from  SB  and go to step 5.3. 

Otherwise, record each founded atomic block as 𝑁𝑒𝑖𝑔ℎ𝑏𝑛, where n=1..s and s is 

the total number of founded neighboring atomic blocks. 
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5.2 For each Neighbn , calculate the combination score with current region 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐶𝑢𝑟𝑅𝑛,𝑗 = 𝑠𝑐𝑜𝑟𝑒(𝑁𝑒𝑖𝑔ℎ𝑏𝑛 ∪ 𝑟𝑗)  , and with other regions 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑂𝑡ℎ𝑒𝑟𝑛,𝑖 = 𝑠𝑐𝑜𝑟𝑒(𝑁𝑒𝑖𝑔ℎ𝑏𝑛 ∪ 𝑟𝑖)  where 𝑖 ≠ 𝑗 and 𝑖 = 1. . 𝑚 . Select the 

atomic block b which has minimum 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑂𝑡ℎ𝑒𝑟𝑚,𝑖  but then 

maximum  𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐶𝑢𝑟𝑅𝑚,𝑖.  

5.3 𝑆𝐵 = 𝑆𝐵 − {𝑏} , 𝑟𝑗 = 𝑟𝑗 ∪ {𝑏} , j=(j+1)%m. 

5. Until 𝐒𝐁 is empty; 

 

In initialization step, at beginning the regions in partition P1 are empty. Next we 

randomly select k atomic blocks from the original block set and then assign each region in P1 one 

selected atomic block. After that, from the remained block set excluded the k atomic blocks, we 

iteratively assign one block for each region. The selected block b has the worst combination 

score with other regions but good combination with current region. However, to maintain the 

continuous of the region, we start checking the blocks from neighbors. So for each region, we 

find the neighboring blocks in the remained block set SB and choose the block with minimum 

combination score with regions but then the maximum combination score with current region.  

However, if no neighboring blocks available, we randomly select one from set  SB . Finally 

selected block is excluded from the remained block set and combined with current region rj. This 

iteration stops when the remained block set is empty. After initialization step, an initial partition 

is built. But, this partition is not an optimized partition and the regions may be not continuous.  

So a refinement step is needed to maximize the total combination score and build continuous 

regions. 
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ALGORITHM 2. Refinement of Partitioning 

Input: A coarse partition P1 = {r1, … , rj, … , rm}, sub-state number 𝑚, maximum 

iteration times Tmax , maximum total score decreasing times 𝑇𝑑𝑒_𝑚𝑎𝑥, sensor 

locations, sensor observation range. 

Output: A refined partition P2 = {r1, … , rj, … , rm}  

1. Current iteration times Titer = 0,  

2. Repeat while 𝑇𝑖𝑡𝑒𝑟 <  𝑇𝑚𝑎𝑥  

2.1 Let Titer = Titer + 1 

2.2 Find all the boundary blocks for each region in partitioning P1and put them 

into a queue q. 

2.3 Repeat while 𝑞 is not empty  

2.3.1 For each boundary block 𝑏𝑗  in 𝑞 , calculate the total score gain 𝑔𝑎𝑖𝑛𝑖,𝑘 by 

moving it from original region 𝑟𝑖  to neighboring region 𝑟𝑘  according to 

equation (16). Then form a pair < 𝑏𝑗 , 𝑔𝑎𝑖𝑛𝑖,𝑘 > for each possible movement.  

2.3.2 Filter the movements that can maintain the balance of partitioning and 

then among the results select the movement pair < 𝑏𝑗 , 𝑔𝑎𝑖𝑛_𝑚𝑎𝑥𝑖,𝑘 > that has 

highest movement non-zero gain. 

2.3.3 If a certain movement pair is selected, perform the movement for it and 

remove 𝑏𝑗 from queue 𝑞.  Otherwise, break; 

2.3.4 Update each region and sensor information in P1. 

2.3.5 Calculate the total score of all regions. If total score decreases, 𝑇𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 + +; 

Otherwise, 𝑇𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 0 

2.3.6  If 𝑇𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑇𝑑𝑒_𝑚𝑎𝑥, goto step 3. 

2.3 Done 

2. Done 

3. If 𝑻𝒅𝒆𝒄𝒓𝒆𝒂𝒔𝒆 > 𝟎 , trace back to previous partition by undoing last 𝑻𝒅𝒆𝒄𝒓𝒆𝒂𝒔𝒆 

movements. 

 

 
In refinement step, partition is further refined by moving boundary blocks to neighboring 

regions. The algorithm contains at most a limited number of iterations, denoted by Tmax. At each 

iteration, initially all the boundary atomic blocks are put into a queue. Then for each block in 

queue, we calculate the gain of total region score after moving the block from current region to 

neighboring region. Each movement forms a pair < bj, gaini,k >  which means the total score 

gain for moving block bj  from region original ri  to neighboring region  rk  . And gaini,k  is 

computed by following equation. 
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gaini,k = [Score(ri − {bj}) + Score(rk + {bj}) ] + [Score(ri) + Score(rk) ] (16) 

After that, we filter the movements which can still maintain a relative balanced partition 

and then choose the block bj which has the highest movement gain gain_maxi,k. The relative 

balance partition means that after moving blocks the area of both two regions do not need to 

strictly the same as the average area of regions Area(Sp)/k. This can make the movement more 

flexible and increase the possibility to find an optimal partition. However, the area should be still 

constrained in a range defined in the equation below 

 c1 ∗ (
Area(Sp)

m
) ≤ Area(r) ≤ c2 ∗ (

Area(Sp)

m
)     (17) 

where c1 and c2 are two coefficients predefined by user. Then for the selected block bj, 

we move it to region  rk to achieve the max gain denoted by gain_maxi,k and simultaneously 

remove it from queue q. Next, both the regions and sensor’s belonging information will be 

updated while the total score will be re-calculated accordingly. After that, we count how many 

times the total score decreases continuously, if it reaches Tde_max  we assume the total score 

cannot be increased anymore and the optimal partitioning has already been found. Otherwise, the 

next block will be chosen from updated queue q. Before the termination of algorithm once q is 

empty or no block bj can be selected, q will be updated by rescanning the boundary blocks for all 

regions and a new iteration begins until iteration time reaches Tmax. At the end of algorithm, the 

partition should be traced back to the status with maximal total score so far. Since this algorithm 

uses Tde_max  to record the number of steps the total score reduces continuously at the last 

Tde_max movements, we need to undo these movements to recover the partition to that status. 

Later, in the experiment, c1 is set as 0.8, c2 is set as 1.2, Tmax is configured as 10 and Tde_max  is 

configured as 8. 
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4.2 Low level partitioning 

The goal of low-level partitioning is to further reduce the boundary sensor rate by 

merging or splitting sensor’s observation area based on a predefined partitioned space. The 

predefined partition can be generated either through those basic partitioning methods or the 

proposed high-level automated partition algorithm in previous section. From the previous 

section, we know that in order to decide whether a sensor is a boundary sensor or not we have to 

check if its observation area covers multiple regions. So through modifying one region’s area we 

can convert a boundary sensor to a normal sensor and eventually decrease the boundary sensor 

rate of the region. The modification is based on the observation area. Two operations --- merging 

and excluding are considered for modification.   

However, those two operations will change the boundary sensor rate in different 

situations. In general, four cases will happen as shown in figure 5 according to the relationship 

between a boundary sensor and non-boundary sensor. In figure 5, initially a rectangle space is 

divided into two equal regions R1 (left side) and R2 (right side). Sensor A, B and C are 

distributed over space.  The circle denotes the observation area of sensor. Row (1) shows the 

coverage of sensors in four cases. Row (2) shows the corresponding final partition after 

performing merging or excluding operation using low-level partitioning algorithm for each case. 

And the red line denotes the border of two regions. In all four cases, sensor A is a boundary 

sensor located in region R1 initially. Our goal in the low level partitioning algorithm is to merge 

or exclude A’s observation area for region R1 so that its boundary sensor number can be 

reduced. Thereby for each case, we have found a proper operation to achieve this goal. For case 

1, initially sensor A has no overlapped observation area with non-boundary sensor. After 

merging operation, number of boundary sensor for region R1 is decreased by 1.  For case 2, at 
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beginning, sensor A’s has overlapped observation area with non-boundary sensor B from the 

same region R1. After merging operation, number of boundary sensor for region R1 can also be 

decreased by 1. For case 3, sensor A has overlapped observation area with non-boundary sensor 

B from the other region R2. After excluding operation, number of boundary sensor in region 1 is 

still decreased by 1. However, for case 4, sensor A has overlapped observation area with non-

boundary sensors from both regions. After merging operation, although number of boundary 

sensor for region R1 has been decreased by 1, for region R2 it is also increased by 1 unlike the 

results in other cases where the number of boundary sensor in region R2 keeps unchanged.    

 

 Case 1 Case 2 Case 3 Case 4 

(1) 

    
 

     Merging Merging Excluding Merging 

    

 

(2) 

    

 
 

Number of 

Boundary Sensors 

R1 v.s. R2 

↓1 v.s. — 
 

 

Number of 

Boundary Sensors 

R1 v.s. R2 

↓1 v.s. — 
 

 

Number of 

Boundary Sensors 

R1 v.s. R2 

↓1 v.s. — 
 

 

Number of 

Boundary Sensors 

R1 v.s. R1 

↓1 v.s. ↑1 
 

 
Figure 4.1 The results after operations for merging or excluding observation area in general four cases.  

 

In figure 4.1, we only consider the observation area overlapping relationships between 
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modified accordingly. Although after merging or excluding operations, the original boundary 

sensor will definitely be converted to a non-boundary sensor, simultaneously it also affects the 

non-boundary sensors’ coverage situation and may lead to those non-boundary sensors change to 

boundary sensors. We do not expect this effect. So we have to find a proper operation in each 

case as shown in figure 4.1. However, if another sensor we considered is a boundary sensor, then 

no matter what operation is performed this boundary sensor with overlapped observation area 

cannot be converted to a non-boundary sensor in most cases unless multiple operations are 

carried out. So the result is the same to that in case 1 of figure above figures. And we could 

categorize this situation as case 1. But, in some special cases, the related boundary sensor can be 

converted to a non-boundary sensor only with single operation. For example, when original 

sensor’s observation area overlaps with that of another boundary sensor symmetrically 

distributed in another region, both the boundary sensors can be converted to non-boundary by 

splitting or merging and thus the boundary sensor number of each covered region is reduced.  

Based on the clarifying on operations done in different cases, an algorithm to adjust the 

boundary sensor rate for each region is designed as in Algorithm 3. In this algorithm, a threshold 

Thboundary for boundary sensor rate is predefined. However, this threshold cannot be set as 0. 

This is because of the overlapping of observation areas; so performing the two operations based 

on each sensor cannot guarantee all regions’ boundary sensor rate decrease to 0 unless only one 

region remained in the space and no overlapped observation area. After configuration for 

boundary sensor rate threshold, for each region, the merging or excluding operation is done 

based on each boundary sensor iteratively until the boundary sensor rate reduces to the limit or 

boundary sensors are all checked.  The decision to make merging or excluding operation depends 

on the total number of boundary sensor affected.  One of the operations can be performed only 
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when the total number of boundary sensor is decreased as a result according to the first three 

cases in previous figure. Otherwise, as in case 4, the operation merging will be performed if the 

neighboring regions have a boundary sensor rate lower than threshold Thboundary . In this 

proposal, we set Thboundary as 0.03 for experiments.  

ALGORITHM 3. Low-level Partitioning 

Input: A coarse partition P = {r1, … , rj, … , rm}, sub-state number 𝑚,  boundary sensor 

rate threshold Thboundary , sensor locations, sensor observation range. 

Output: A refined partition 𝑃′ = {r1, … , rj, … , rm}  

1. Initialization 𝑗 = 0 

2. Repeat  

2.1 Repeat while boundary sensor rate in region rj   > Thboundary  or boundary 

sensors are all checked 

2.1.1 Select one new boundary sensor Sensorb located in region rj  

2.2.2 Check  Sensorb ’s  overlapped observation area with other non-boundary 

sensors 

2.2.3 According to the first three cases in figure 4, exclude or merge the 

observation area of Sensorb if total number of boundary sensors in space is 

decreased and then go to step 2.2.5. Otherwise, continue on step 2.2.4. 

2.2.4 Merge the observation area of Sensorb if neighboring related region has a 

lower boundary sensor rate than threshold Thboundary. 

2.2.5 Update the observation coverage status for all sensors in the space and also 

sensor’s property information. 

2.1 Done 

j=j+1; 

1.2 Done 

 

4.3 Experiment 

4.3.1 Experiment settings 

This Chapter shares almost the same experiment settings with Chapter 3. However, the 

difference is that, we consider two distributions for sensors. The first distribution Distribution-1 

is also in Chapter 3, in which sensors are distributed uniformly. The second distribution 

Distribution-2 is a “mixed” distribution in which first two hundred sensors are distributed 
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randomly and uniformly over the space and the other two hundred sensors are distributed around 

point (-10,50) through a Gaussian distribution (0,15) on x and y separately.  

  
Distribution-1 

Uniform distribution 
Distribution-2 

“Mixed” distribution (Gaussian & Uniform) 
 

Figure 4.2 Two distributions for sensors. 

 

Automated partitioning methods are tested to explore the impact from boundary sensor 

and benefits on increasing partition number even without prior fire spreading information. In this 

strategy, we use Distribtuion-2 for testing boundary sensor problem and Distribution-1 for 

investigating the benefits by increasing number of sub-states. The unbalance distribution for 

sensors is employed to test the boundary sensor impact; the uniform distribution for sensors is set 

to explore the impact of partition number.  Similar to Chapter 3, 50 particles are used to obtain 

the filtered results. 

4.3.2 Experiment results and analysis 

If without prior knowledge on how state evolves over space, automated partitioning 

methods can be applied to get an optimized division with less boundary sensors. In this section, 

we performed two tests by applying automated partition algorithm. Since the goal of automated 

partitioning is to reduce boundary sensor number, in first test, we compared the prediction result 

from equally grid partition (with large amount of boundary sensor) with that from automated 

partition. The automated partition skipped the high-level initialization algorithm and use original 
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grid partition as the initiation for high-level refinement and low-level partition algorithm. Then, 

in second test, multiple partitions with different numbers of sub-states were generated by a 

complement automated partitioning algorithm (including all three algorithms described in 

Chapter 4.1 and 4.2), and prediction results were compared among them. 

In the first test, the initial partition is configured as a grid partition where whole space is 

divided into four balanced regions. This partition is named as “N4” shown in figure 4.3(a). Based 

on sensor distribution Distribution-2, auto partition algorithm then refined this initial partition 

into two partitions. We call the first partition as “R1” shown in figure 4.3(b), which was 

generated only by high-level refinement partition algorithm. The second partition was named as 

“R2” shown in figure 4.3(c), which was the result after applying low-level automated partition 

algorithm, based on R1. In each partition in figure, the whole space is divided into four regions 

denotes by four different colors. Dots represent the location of boundary sensors. Black dots 

denotes boundary sensor, while white dots denotes non-boundary sensors. In figure 4.3(b), since 

high-level refinement automated partition algorithm assigned some blocks to neighboring 

regions, the total boundary sensor number is reduced from 59 to 55. However, because densities 

of boundary sensors near border between red and pink region was high and similar in these two 

regions, high-level refinement automated partition algorithm failed to optimize the division 

around this area.  Therefore, high-level automated partition did not make a great change on the 

total number of boundary sensor. Next after low-level partition algorithm, R1 is further 

optimized mainly by merging or splitting observation area nearing border between red and pink 

region. And we can find that in R2 boundary sensor number is dropped from 55 to 34, which 

outperformed high-level refinement automated partition algorithm.  
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(a) N4 

Equally grid partition 

(b) R1 

High-level refinement 

automated partition 

(c) R2 

Low-level automated 

partition 
Figure 4.3 Partitions after using three different partitioning methods. 

 

                          
Figure 4.4 Comparisons of symmetric differences among three partitions in first test involving automated partition algorithm. 

 

Figure 4.4 compares the results of symmetric differences of filtered fire to real fire front 

among the three partitions based on 10 runs. We can see that R2 has the lowest symmetric 

differences through all time steps because of smallest boundary sensor number. However, since a 

new partition may just modify the region area instead of make a significant change on boundary 

sensor number, the prediction result may generate unexpected behavior. Take R1 as an example, 

for pink region it only merged one block from blue region and did not reduce a lot of boundary 

sensors in it.  So as shown in figure 4.4, when time step T equals to 7 and 8, since “real” fire did 

not across the blue region then, R1 even generated higher symmetric differences compared with 

grid partition. As fire eventually spread across the three borders and impact from boundary 
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sensors was decreased over time. So at final time step, although grid partition has the highest 

symmetric difference, the result was very close to that from R2 and R1. 

In second test, we increased sub-state number from 2 to 121 and used the uniform 

distribution of sensors from Distribution-1. Since the block size was as large as 10*10 and cell 

space size is 200*200, there were totally 200 blocks in space. The maximum sub-state number 

was 200. When sub-state number equaled to 121, each sub-state may contain only 1 or 2 blocks. 

So there was no need to further increase sub-state number and make regions smaller than 1 

block. The number of sub-states was selected from set {2, 4, 8, 9, 16, 25, 32, 49, 64, 81, 100, 

121}.  Each number was for one case. And for each case, we generate 20 partitions using only 

high-level automated partition algorithm and 20 partitions using a complete two-level partition 

algorithm. We should note that in this test high-level automated partition algorithm applied 

greedy algorithm to build an initial partition and then refined.  Since the greedy algorithm needs 

randomly generated seeds, the 20 partitions in each case were different from each other.   

 

          
Figure 4.5 Comparisons of symmetric differences at last time step for different partition numbers in second test involving 

complete automated partition algorithm. 

 

Figure 4.5 shows the average symmetric difference of 20 partitions for R1 and R2 at last 

time step when sub-state number is increasing from 2 to 121. 1) For both R1 and R2, they have 
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the same behavior of symmetric differences. We can see that initially when sub-state number 

was increasing, the symmetric difference deceased. But after a certain point, it stopped 

decreasing and became stable. This behavior maintained until sub-state number reached another 

point and then symmetric difference eventually arrived next summit. Finally, it changes within a 

small range. Although, the symmetric difference increased during some interval, the final 

symmetric difference is still less than that in the cases with few sub-state numbers. And we can 

still find a point with lowest symmetric difference, which is around sub-state number 25 in this 

test. Therefore, this figure demonstrates that prediction result improves when sub-state number 

increases, but will eventually become worse when sub-state number is over a certain value and 

stay relative stable finally.  2) Also because this test is based on uniform distributed sensors, 

there is no great difference on sensor densities across the whole space.  Since the impact from 

boundary sensor is less, the symmetric differences between R1 and R2 is quite close.  

4.4 Conclusion 

In this part, automated partitioning methods are proposed to reduce the total boundary 

sensor number. Apparent prediction accuracy improvements are found in experiments after 

performing the automated partitioning method. However, data association problem may still 

exist even after performing automated partitioning method. 
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5 DATA ASSIMILATION WITH HARD/SOFT DATA  

5.1 Introduction  

In dynamic data driven simulation (DDDS), observations are assimilated into a real 

system or a computer model to provide better estimates than can be obtained by only the data or 

the model. The idea of assimilating observation data into running simulation models has found 

application in many problems, including ocean forecasting, weather forecast, oil well placement, 

transportation system, and wildfire simulation[71,75].  In previous work [1], we developed 

dynamic data driven simulation that assimilates ground temperature sensor data into a wildfire 

spread simulation model called DEVS-FIRE for improving simulation results. The ground 

temperature data assimilated in that work is an example of hard data, which refers to quantified 

observations and measurements from physics-based sources [76]. The physics-based sources 

mostly mean the physical-based sensor, such as radar, EO/IR (i.e., visible/thermal infrared) 

cameras, and ground temperature sensors.  

Besides hard data, another type of data, referred to as soft data, can also provide valuable 

information for the system under study. Different from hard data, soft data refers to observation 

from human-based sources [76], such as human reports, intercepted text and audio 

communications and other open sources such as website, newspaper and TV broadcast. 

Compared with the quantified hard data, soft data are qualitative, fuzzy, unstructured, and often 

subject to interpretation. For example, to describe temperature in a room, a temperature sensor 

may provide a quantified data like 80F, while a person may report the temperature as “hot”, 

which could mean different temperatures according to the variant views by different persons. 

Another difference between hard data and soft data is on the representation format; the former is 

usually represented in numeric format (e.g., numbers), while the latter is usually represented in 
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linguistic format (e.g., natural language).  Despite its differences from hard data, soft data can 

provide information complement to that from hard data. Considering the wildfire example, the 

observations in wildfire simulation is not just limited to the temperature data, soft data from 

human reports such as fire spread direction and speed can also be combined to improve the 

accuracy of simulation result. This information is difficult to be measured directly by hard data 

but can be obtained from human reports (if available).  

In this chapter, we consider soft data in dynamic data driven simulation and develop a 

method that combines both soft data and hard data in data assimilation for improving simulation 

results. We apply the hard/soft data assimilation to the application of wildfire simulation. Note 

that even though we base our work on the wildfire application in this proposal, the data 

assimilation method can be adapted to other spatial temporal systems. The remainder of this 

chapter is organized as follows. Section 5.2 introduces the related work of soft/hard data 

assimilation both in the application and methodology. And then Section 5.2 presents the basic 

particle filter framework and the soft/hard data assimilation method. To validate the method, 

Section 5.4 shows the experimental studies. Finally, Section 5.4 draws the conclusion. 

5.2 Soft/Hard  Data  Assimilation Using Particle Filter In Wildfire Simulation 

5.2.1 PFs-based Soft/Hard data Assimilation Framework 

In soft/hard data assimilation, the sources of real observations derive from hard or soft 

data. Considering the differences between these two types of data, the basic framework should be 

extended appropriately so that soft and hard data can be incorporated to improve prediction 

accuracy. The main extension is dividing measurement function into two parts according to the 

data type it measures. Figure 5.1 shows the extended framework based on the application of 

wildfire data assimilation. As shown in the figure, the samples are represented by Firet−1, which 
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are the fire front samples at last time step t-1. Firet−1 evolves to new fire front samples Firet for 

the current  time step through the system transition model (i.e. the DEVS-FIRE simulation 

model). Then Firet are measured by the soft and data measurement functions respectively. After 

that, the simulated observations are compared with real observations, which include both hard 

data (such as temperature information form temperature sensors) and soft data (such as fire 

spread situation reported by humans). Then based on the divergence, the weight for each sample 

is updated. Finally, samples are processed in the resampling step to avoid degeneration which is 

the same as in the basic framework.  

While the extended framework largely follows the same steps as in the basic framework, 

the soft observation data is significantly different from the typical hard data to be assimilated. As 

soft data is qualitative, the representation is more complex than that of hard data. Accordingly, 

the way to compute weight is also different.  Below we present how soft data is represented in 

our framework and how it influences the weight computation [77]. 

 

        

Figure 5.1 PF-based Soft/Hard data assimilation framework in wildfire simulation 
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5.2.2 Soft data representation 

Soft data comes from reports provided by human observers. In the real world, the soft 

data may be newspaper, text message or professional reports that are written in natural 

language[78]. Before representing soft data in a structured format that can be assimilated, we 

need to extract important information (e.g., key words) from the soft data. Information extraction 

from unstructured natural language descriptions is not the focus of our work. In this proposal, we 

assume that information has already been extracted and focus on how to represent the soft data in 

a structured way for carrying out the data assimilation. In general, we propose that the soft data 

has a structured format as below: 

Soft data = {Report} 

Report = < Parameter, Time, Observer_location, Observer_range, Description> 

Description = < Reference_location, Value, Qualifier> 

 

Soft data is a collection of “Report”. Each “Report” contains five elements as shown 

above. The first element “Parameter” refers to the feature of the report that determines the 

“Report” type. The second element “Time” refers to the time when the soft data is reported. The 

“Observer_location” element is the human observer’s geography location at the time of report, 

which can be measured by the observer’s GPS device. “Observer_range” is the spatial range 

within which the reported data is meaningful. This is similar to the detection range of hard 

sensors such as ground temperature sensor. The last element “Description” is the most important 

element that refers to the observation description of specified “Parameter”. 



58 

Among the five elements, “Observer_location” and “Observer_range” together specify a 

2D observation area. The range of human observation is affected by many factors, such as 

geography, weather and individual vision. However, in this proposal, the range is simplified as a 

circle around “Observer_location”, where radius is the “Observer_range” in a report. 

The two other elements “Parameter” and “Description” describe a specific observation 

within the corresponding observation area.  The “Parameter” describes the type of the 

observation, such as temperature, distance or speed. Each “Parameter” corresponds to a 

formatted “Description” which consists of three elements: Reference_location, Value, and 

Qualifier. The Value provides the content information about the “Parameter”. Unlike hard data 

described by numbers, soft data are usually expressed with linguistic words. Therefore, the 

parameter values are words rather than numbers. In our work, we limit the word selection within 

a corresponding finite set (see examples later). The next element “qualifier” constrains the 

“value” and shows the incertitude degree of “value”. Same as the “value”, “qualifier” must be 

chosen from a finite set (e.g. {certainly, almost, slightly, perhaps} [ 79]). For the element 

“Reference_location” in the report, it is defaulted as the “observation_location” that is the 

location of the human observer. Nevertheless, reference location can be different from the 

observation location. To help limit the location of the observed object, we introduce the concept 

of landmarks.   

The “Reference_location” could be one or more landmarks.  Landmarks are similar to the 

real world landmarks, which generally represent interested or well-known places, such as a 

highway, a river, a building and so on. For instance, both cases (A) and (B) in figure 5.2 show 

“fire is at northwest side and close to the observer”, where the short dash line represents the fire 

front, the smile face is the observer and the dot line circle describes the observation area. The 
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long dash line denotes a highway near the observer, which can be used as a landmark in this 

situation. With this landmark, the soft data “fire is at the west of highway” distinguish case (A) 

from case (B) because in case (B) fire already passed highway leading to fire at both west and 

east sides of the highway.  

 

  

(A) (B) 

                  Figure 5.2 Observations with landmark 

 

Following the above structured format, in this proposal we represent several types of soft 

data for data assimilation in wildfire simulation. We are interested in information about the 

spreading fire front, and thus divide the “Parameters” for fire front into two categories. One is 

fire spread information and the other is fire location information. Fire spread observation is about 

the moving direction and speed of the observed fire. It uses the observer’s location as the 

reference point. Fire location observation is about the location (location distance and location 

direction) of the fire. To locate a fire, it can refer to multiple reference locations, predefined by 

landmark or defaulted as the observer’s location. 

More specifically, we have four types of soft data: fire spread speed, fire spread direction, 

fire location distance, and fire location direction. Each of them is described by a “Parameter”. 

The four finite sets designed for each parameter are as follows: 
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FSS (Fire Spread Speed) Set:    {fast, slow, normal}   

FSDR (Fire Spread Direction) Set: {E, N, W, S, NE, NW, SE, SW}  

FLD (Fire Location Distance) Set: {far, close, covered}   

FLDR (Fire Location Direction) Set:  {E, N, W, S, NE, NW, SE, SW} 

 

For FLD, a reference location may be covered by fire; therefore, we use “covered” to 

illustrate this situation. 

Similarly, “Qualifier” is also selected from a finite set: 

Qualifier Set: {very, seems, maybe} 

Figure 5.3 shows an example of soft data reported by an observer. The reports are in the 

bottom box. The yellow smile figure represents the observer; the gray circle shows the 

observation area for this observer; the red line is the current fire front line while dash light red 

line is the fire front 30 minutes ago. In this example, the observer provided four formatted 

reports at 12:30 pm on 5/2/2013, which describes that the fire locates at the very northwest side 

and maybe far away, and the fire spreads very slowly and seems on the east side of Highway I-

75. 
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                            Figure 5.3 An example of soft data and corresponding fire shape 

 

5.2.3 Measurement Function 

We note that even though the real soft data is described in linguistic format, the 

measurement function for soft data still output quantitative values. Also note that when soft data 

include multiple reports, each of which corresponds to a particular parameter, for each report a 

measurement function needs to be defined.  

For the wildfire application considered in this work, there are four parameters: Fire 

spread direction, fire spread speed, fire location direction, fire location distance. Then four 

measurement functions are defined respectively as MFfsdr,MFfss, MFfldr, and MFfld. 

MFfsdr = Direct(CPFiret
, CPFiret+1

) Where Direct (x, y)  is a function calculating the 

direction from point x to point y. CPFiret
, CPFiret+1

 are the fire shape center points of fire fronts 

within observation range for current and next time step respectively. 

MFfss = Dist(CPFiret
, CPFiret+1

)/T  In which Dist (x, y)  calculates the distance between 

point x to point y. Time unit T equals to one-time slot.  
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MFfldr = LocDirect (RefLoc, Firet )  In which LocDirect is a function calculating the 

direction from RefLoc to observed fire front at time step t.  RefLoc denotes observer’s location or 

the landmark composed by a series of points. 

MFfld = LocDist (RefLoc, Firet )  In which LocDist  calculate the shortest distance 

between RefLoc and observed Firet. 

5.2.4 Weight updating and data assimilation 

At weight updating step, each sample is assigned a new weight according to the 

discrepancy between simulated observation and real observation. The process is modeled by a   

multivariate normal distribution: 

 P(y|xi(k)) = 

 
1

 (2π)n/2|∑|1/2 exp [−
1

2
(MF − Y)T∑−1(MF − Y)]                  (18)     

Where y = [y1, … , yn]Tare real observations come from hard sensor readings and soft 

data reports, MF = [MF1, … , MFn]T, Y = [Y1, … , Yn]T .  Yi   and yi  are real and simulated ith 

atomic observation respectively, MFi is the measurement function to calculate yi. Yi is a numeric 

number transformed from the real linguistic report, as each attribute value in the finite set should 

be mapped to a quantified number. ∑ is a covariance matrix. Assuming all the observations are 

independent ∑   is simplified to a diagonal matrix. 

∑ = [
δ1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ δn

2
] (19) 
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The element δi
2

 in the diagonal matrix shows the confidence of real atomic 

observation Yi. If the qualifier shows higher certainty, δi
2
  is higher because its confidence level 

is higher (i.e. qualifier has a lower uncertainty). 

For soft data, each report is an atomic observation.  For hard data, the atomic observation 

is the reading from one physical sensor. The value of sigma for hard data depends on the 

accuracy of the sensor. For a specific report in soft data, the qualifier’s confidence of the report 

decides the value of δi
2

for the report. To calculate δi
2

 in our work, assuming there are k 

qualifiers for a specific report and they are ordered decreasingly as q1, q2, … qj , … qk according 

to their confidence level j, we assign δi
2
relates to the qualifier qj as below:   

δ
2

i,qj
= [1 − (

1

2
)j]

Ri

ni
 (20) 

Where Ri is the range of element’s quantified value in the finite set i, while ni  is the 

number of elements in the finite set i. For example, if three qualifiers are used to express the 

confidence for parameter’ value, each of them should be assigned a sigma value as follows: 

δ
2

i,very    = [1 − (
1

2
)1]

Ri

ni
 (21) 

δ
2

i,seems = [1 − (
1

2
)2]

Ri

ni
 (22) 

δ
2

i,maybe = [1

− (
1

2
)3]

Ri

ni
 

(23) 
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Figure5 shows б varies according to different qualifier when constrains the direction, 

which ranges from -180 degrees to 180 degrees and has 8 elements in its finite set (i.e. R=360 

and n=8). Compared with “Very”, “Maybe” has a wider range of x with a weight greater than 0. 

 

 

                          Figure 5.4 Normal distribution for the direction with different quantifiers 

As can be seen, in our work each soft data report is treated an observation just as a hard 

sensor reading does and plays the same role in influencing the importance weights of particles. 

Nevertheless, the processing of soft data (e.g., data representation, measurement function, and 

sigma used in computing weight) is different from that of hard data as described above. By using 

this multivariate normal distribution, we can not only combine the parameters from different soft 

data reports, but also incorporate the observations for both soft and hard data in an effective 

manner.  

5.3 Experiment 

5.3.1 Experiment settings 

As it is hard to get the observation and fire front from the real environment, we use 

identical-twin experiment, which is widely used in data assimilation research, to evaluate the 

soft/hard data assimilation method. Initially, a simulation (purely DEVS_FIRE) is run and the 

corresponding data are recorded. The corresponding data are considered as the real observation; 
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the corresponding simulation result is considered as the real fire. Then based on some 

“erroneous” input data, we can run another simulation (purely DEVS_FIRE) and the result 

represents the simulated fire. After that, experiments with enhanced data assimilation simulation 

in different cases will be executed, and the results are considered as filtered fire. 

The simulation to generate real fire is based on the correct real weather information, in 

which the real wind speed and direction are 8(mph) and 180(degrees) with random variances 

added every 10 minutes. The simulation to generate simulated fire and filtered fire uses the error 

weather information, in which wind speed is randomly generated, based on 6(mph) with 

variances added in the range of -2 to 2 (mph), and wind direction has no errors. 

To validate our method, four cases are designed to show the improvement by 

incorporating soft data. In case1, temperature sensor is deployed every 10 cells, and the number 

of temperature sensor is sufficient for the simulation to provide relatively good result. In case 2, 

several observers are added over the map and provide reports at some time. However, in case 3, 

only part of the map is distributed with sensors. In case 4, based on the partially distributed 

sensors in case 3, several observers are added. The simulated results for these four cases are all 

filtered fires. We use 50 particles in these four experiments. Each experiment   has 8 time steps; 

the duration for each step is 20 minutes. 

From the simulated “real fire”, for experiment purpose we assume in each time step there 

are soft data available (besides the hard data) for data assimilation. These soft data are listed in 

Table 5.1 below： 
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                                        Table 5.1: Real Observations of soft data from real fire 
 

T ObsLoc R Parameter    RefLoc Value Qualifier 
1 5 20 10 FLDR null SW SEEMS 

1 5 20 10 FLD null FAR VERY 
2 5 20 10 FLDR null S VERY 
2 5 20 10 FLD null CLOSE SEEMS 
2 5 20 10 FLDR null NE VERY 
2 5 20 10 FSS null SLOW VERY 
3 -30 15 10 FLD null FAR VERY 
3 -30 15 10 FLDR A E SEEMS 
3 -30 15 10 FLD A FAR VERY 
3 5 20 10 FLD null CLOSE VERY 
3 5 20 10 FLDR null E VERY 
3 5 20 10 FSS null SLOW VERY 
3 15 5 10 FLDR null W VERY 
3 15 5 10 FLD null FAR SEEMS 
4 -30 15 10 FLDR A E SEEMS 
4 -30 15 10 FLD A CLOSE SEEMS 
4 -30 15 10 FLDR null W VERY 
4 -30 15 10 FSS null SLOW VERY 
5 5 20 10 FLDR null SW MAYBE 
5 5 20 10 FLD null CLOSE VERY 
6 -10 30 10 FLD null FAR MAYBE 
6 -15 40 10 FLD null FAR SEEMS 
6 -30 15 10 FLDR A NE SEEMS 
6 -30 15 10 FLD A COVERE-D VERY 
6 15 5 10 FLDR null W VERY 
6 15 5 10 FLD null FAR SEEMS 
6 15 5 10 FLDR null E VERY 
6 15 5 10 FSS null SLOW VERY 
7 -10 30 10 FLDR null W VERY 
7 -10 30 10 FSS null NORM-AL SEEMS 
7 -15 40 10 FLDR null NE VERY 
7 -15 40 10 FSS null FAST VERY 
7 5 20 10 FLD null CLOSE VERY 

 

In Table5.1, at each time step, there are multiple reports related to different “Parameters”. 

The ranges “R” for all observations are set as 10. And only one landmark named as “A” exists in 

the map. The “null” in column “RefLoc” means that the observation description considers the 

observation location as the reference location. For instance, when “T” equals to 6, a person 

locates at coordinate (-30, 15) provides a report for fire direction with a description: “Fire locates 

at seems NE side of reference location landmark A”. 
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5.3.2 Experiment result and analysis 

After incorporating fire reports into the four cases, we compare the results shown from 

Figure6 to Figure9. Each figure shows a part of the map, while the complete map has a size of 

200*200 with origin located at the center. Gray dot is the location of temperature sensor; Blue 

circle is the location of human observer. Green straight line is the landmark “A”. Blue line 

represents real fire front, black line shows the simulated fire front with imprecise weather data, 

and red line represents filtered fire front in current case.  

As shown in these four figures, in all four cases the filtered fire front is much closer to 

the real fire front than the simulated one, no matter whether soft data is assimilated or not. This 

indicates that our fundamental PF-based Data Assimilation framework has improved the 

prediction accuracy.  

In order to study the influence of soft data on prediction accuracy, we first compare the 

results in case 1 and case 2 in which hard data are distributed in whole map as shown in figure 

5.5 (a) and (b) .  In case 1, the filtered fire front has slightly difference from the real fire front, 

but around the center of the map, there is an obvious fire head out of the real front bound. 

However, in case 2, this error has been reduced because of the useful reports about how fire 

spreads and the location of fire from nearby observer’s. For example, a report at time step 6 

contains information that “fire spread very slowly to very east side”, showing a correct behavior 

of real fire. Therefore, at final time step the sample fire front satisfying this information is 

assigned a higher weight and ultimately the fire front that moves slowly to the very east is 

chosen as final filtered fire front. 

Moreover, we compare case 3 and case 4 where hard data does not cover the whole map 

as shown in figure 5.5 (c) and (d).  Case 3 shows that at the northwest part of this map where 
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hard data are not distributed, there is a great gap between the real fire front and filtered fire front. 

But in case 4, the reports from northwest part provide useful information and improve the fire 

front prediction accuracy at that part.  However, at the northeast part which is another 

observation blind area of hard data, we can still find some unexpected fire heads. This means soft 

data can improve fire front accuracy to some extent, but as it is still fuzzy and might not provide 

relative enough information, the prediction result may be not as perfect as expected. So, to 

ensure the prediction accuracy our framework should also incorporate sufficient quantified hard 

data. Or we need to design more parameters in the report to constrain a fire front.   

 

 (a) Case 1 

 

 (b) Case 2 

 

 (c) Case 3 

 

 (d) Case 4 

                                                     Figure 5.5 Simulation results for 4 cases.  

                (Blue line represents real fire front; black line represents simulated fire front; red line represents filtered fire front.) 

 



69 

Therefore, the fire fronts for case 1 to case 4 explicitly shows that it is useful for 

incorporating soft data in the dynamic system. The next step is to use some quantitative data to 

analyze our result.  

First, we calculate areas for each filtered fire front in all cases. After that, those areas are 

compared with that of real fire front to get the area differences. Figure 5.6 displays the final 

result of area differences for all 4 cases in each time step. As shown in figure 5.6, case 2 and case 

4 has less area differences than the other two cases at the final time step.  

 

Figure 5.6 Comparison of area difference with real fire front for four cases 

Second, we compute the number of cells with different state from real fire front. Figure 

5.7 shows the number of different cells for all cases in each time step. During all time steps, case 

2 has the minimal number of different cells. Case 3 has the most number of different cells 

because of the insufficiency of real observations.  Case 4 shows higher number of different cells 

than case 1 because the quantity of soft data report is relatively not enough.  

It can be concluded from figure 5.6 and figure 5.7 that case 2 has the best result which 

again proves our extended PFs based Data Assimilation Framework improves the prediction 

accuracy. 
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                                         Figure 5.7 Comparison of number of different cells 

 

5.4 Conclusion 

In this chapter, a new PF-based data assimilation framework has been proposed to 

incorporate both soft and hard data in dynamic data driven system. For the framework, as soft 

data are qualitative and fuzzy compared to hard data, a general format of soft data report is 

designed to represent observations from humans. The experiment result shows that introducing 

soft data significantly improves the prediction accuracy.  Although the proposal distribution 

applied in this paper is the system transition model, but it could also be replaced by more 

effective proposal distribution when importing real observations. One alternative method for 

improving the proposal distribution is to sample based on both hard and soft data. However, 

recently most research focuses on hard data, ignoring the soft data. So another future research 

problem can be how to sample from fuzzy soft data to generate optimal proposal distribution. 
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6 PERFORMANCE EVALUATION AND COMPARISON ON VARIANTS OF PFS 

FRAMEWORK FOR DATA ASSIMILATION IN SPATIAL-TEMPORAL 

SIMULATIONS 

6.1 Introduction 

Recently, variations of PFs based data assimilation frameworks have been proposed to 

incorporate observations to improve prediction accuracy in multiple spatial temporal simulations, 

such as wildfire simulation, traffic simulation and pedestrian simulation. They are designed 

based on different requirements and towards different applications. Traditionally, researchers 

employed standard PFs (also named as whole state PF in this dissertation) to make predictions. 

However, due to the high dimensional problem existing in the applications of large spatial 

temporal system, derivations of PFs based data assimilation framework have been studied. For 

example, sub-state PF reduce the state pace by dividing the system state into multiple sub-states 

and run single standard PFs in each sub-state. Component set PF [80] aim to increase the 

diversity of samples during resampling step by introducing crossover concept [81] from genetic 

algorithm. Spatially dependent PF calculate weight for each sub-state and do resampling based 

on groups of sub-states which are more suitable to applications where system dynamic model 

cannot be divided. However, to the best of our knowledge, there are few studies on the 

evaluation and comparisons of PFs based framework for data assimilation [82,83].  

In this chapter, we investigate the fundamental methodologies of existing PFs based 

frameworks for data assimilation. In general, mainly according to the differences in sampling, 

weight calculation and resampling steps, there are four kinds of PFs based data assimilation 

frameworks as described above. They are whole state particle filtering, sub-state particle filtering, 

component set particle filtering and spatially dependent particle filtering. We first compare the 



72 

general frameworks of these four particle filtering methods.  And then we summarize the 

potential issues for each them. At last we conduct experiments and simulations to evaluate the 

prediction accuracies of these four particle filtering methods. 

6.2 Whole state PF 

The whole state PF derives from the standard particle filtering. They are used widely as a 

conventional particle filtering method in data assimilation frameworks. Notice that during each 

iteration of whole state PF all the three basic steps (i.e. sampling, weight updating and 

resampling steps) are based on a whole and complete system state. The procedure for whole state 

PF is listed in Algorithm 4 below. 

ALGORITHM 4. Whole state PF 

1. Initialization 

Draw N samples 𝑿0
(𝑖)

  from the prior   

𝑥0
(𝑖)

  ~    𝑝(𝑥0),                  𝑖 = 1, … , 𝑁 

and set  

𝑤0
(𝑖)

 =    1/𝑁  

2. At each time step, repeat 

   2.1. Sampling 

   Draw N samples 𝑿𝑡
(𝑖)

  from the dynamic model: 

𝑥𝑡
(𝑖)

  ~    𝑝(𝑥𝑡|𝑥𝑡−1
(𝑖)

) 

   2.2. Weight Updating 
   2.2.1 Calculate new weight for each particle based on all observations. 

𝑤𝑡
(𝑖)

 =     𝑝(𝑦𝑡|𝑥𝑡
(𝑖)

)  

   2.2.2 Normalize weights by 

�̃�𝑡
(𝑖)

 =   
𝑤𝑡

(𝑖)

∑ 𝑤𝑡
(𝑖)𝑁

𝑖=1

  

    2.3 Resampling 

       Draw N new samples from the set 𝑿𝑡
(𝑖)

 by sampling the indices 1…N, in 

proportional to the importance weights �̃�𝑡
(𝑖)
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As described in algorithm 4, initially all particles are randomly distributed and with equal 

weights. Then system states 𝑥𝑡
(𝑖)

  and weights 𝑤𝑡
(𝑖)

  are updated at each time step when 

observations are available. During the sampling step, the system state in each particle is evolved 

to next time step by state transition model 𝑝(𝑥𝑡|𝑥𝑡−1
(𝑖)

) (i.e. system dynamical model). After that, 

based on 𝑝(𝑦𝑡|𝑥𝑡
(𝑖)

) , each particle is assigned a new weight by comparing the all "simulated" 

observations calculated from measurement function to real observations collected from sensors. 

In order to solve the sample degeneracy problem, in resampling step the weights of all particles 

are normalized so that N new samples are drawn from the set 𝑿𝑡
(𝑖)

  with probabilities proportional 

to the weights �̃�𝑡
(𝑖)

. 

Assume we use a sample set of three particles to predict the system state 𝑥, Figure 6.1 

shows how the sample set is updated at a certain time step 𝑡. Initially, each particle has a full 

system state associated with a weight from last time step.  For instance, the system state 𝑥𝑡−1
(1)

  in 

particle 1 is assigned a weight 𝑤𝑡−1
1 .  Then in the sampling step, the full system state 𝑥𝑡−1

(1)
 is 

evolved to the system state 𝑥𝑡
(1)

 by the dynamic model. Next the weight associated to 𝑥𝑡−1
(1)

 also is 

updated based on measurement model and all obtained real observations. Particle 2 and 3 

perform the same steps to get new pairs < 𝑥𝑡
(2)

 , 𝑤𝑡
(2)

> and < 𝑥𝑡
(3)

 , 𝑤𝑡
(3)

> of system state and 

associated weight respectively. To draw new samples, the weights from each particle are 

summed and normalized so that �̃�𝑡
(1)

+ �̃�𝑡
(2)

+ �̃�𝑡
(3)

= 1 . Assume �̃�𝑡
(1)

= 0.6, �̃�𝑡
(3)

= 0.3,

�̃�𝑡
(2)

= 0.1, since �̃�𝑡
(1)

 has a higher weight, particle 1 has higher probability to be duplicated, 

while �̃�𝑡
(2)

= 0.1 has a much smaller weight, particle 2 is more likely to be eliminated. So in 
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resampling, particle 1 is duplicated, particle 2 is eliminated and particle 3 is maintained. Then 

this new set of particles are sent to next time step with new indices. 

 

                                                     Figure 6.1 One example of whole state PFs.   

 

6.3 Sub-state PF 

Sub-state PF is a set of methods that decompose a system state into multiple sub-states 

and perform different particle filtering independently in each of the sub-states. This particle 

filtering method suits for a system in which the system state has a low dependency and system 

dynamic is dividable. This could be reasonable in a large spatial temporal system especially for a 

geophysical system where the system state crosses over a large space so that state variables far 

away from each other have no relations. Compared to whole state PFs, the sub-state PFs reduce 

searching spaces for the system state and thus provide one solution for the high dimensional 

issues in standard PFs.  The procedure for sub-state PFs is listed in algorithm 5 below. 
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ALGORITHM 5. Sub-state PF 

1. Divide a state space 𝑆𝑝 into 𝑀 sub-spaces (i.e. regions)  

𝑆𝑝 =  {𝑟𝑗|𝑗 = 1, . . , 𝑀} 

2. For each sub-space 𝑟𝑗, run a whole state PFs independently 

2.1. Initialization 

Draw N samples 𝑿0,𝑟𝑗

(𝑖)
  from the prior   

𝑥0,𝑟𝑗

(𝑖)
  ~    𝑝(𝑥0,𝑟𝑗

),                  𝑖 = 1, … , 𝑁 

and set  

𝑤0,𝑟𝑗

(𝑖)
 =    1/𝑁  

2.2. At each time step, repeat 

   2.2.1. Sampling 

   Draw N samples 𝑿𝑡
(𝑖)

  from the "divided" dynamic model: 

𝑥𝑡,𝑟𝑗

(𝑖)
  ~    𝑝 (𝑥𝑡,𝑟𝑗

|𝑥𝑡−1,𝑟𝑗

(𝑖)
) 

    2.2.2. Weight Updating 
      2.2.2.1 Calculate new weight for each particle based on all observations. 

𝑤𝑡,𝑟𝑗

(𝑖)
 =     𝑝 (𝑦𝑡,𝑟𝑗

|𝑥𝑡,𝑟𝑗

(𝑖)
)  

      2.2.2.2 Normalize weights by 

�̃�𝑡,𝑟𝑗

(𝑖)
 =   

𝑤𝑡,𝑟𝑗

(𝑖)

∑ 𝑤𝑡,𝑟𝑗

(𝑖)𝑁
𝑖=1

  

   2.3 Resampling 

       Draw N new samples from the set 𝑿𝑡,𝑟𝑗

(𝑖)
 by sampling the indices 1…N, in 

proportional to the importance weights �̃�𝑡,𝑟𝑗

(𝑖)
 

 

From Algorithm 5, we can see that sub-state PFs is similar to whole state PFs. However, 

before proceeding the three steps, there is a pre-process to each full system state, in which a full 

system state is divided into multiple sub-states {𝒙𝑟𝑗
|𝑖 = 1 … 𝑀} by partitioning the whole state 

space into smaller regions {𝑟𝑗|𝑗 = 1, . . , 𝑀} .  Each sub-state 𝑥𝑟𝑗

(𝑖)
 then runs a single particle 

filtering independently.  To implement sub-state PFs in a specific application, two issues should 

be taken into consideration. One issue is from the system dynamics. Sub-state PFs requires that 

the system dynamics is dividable so that a sub-state can evolve to the next iteration based on the 

dividable system dynamics. Another issue comes from the observations.  In a spatial temporal 
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system, since both system states and observations are spatially distributed, for each sub-state 

only the sub-observations observing it should be calculated in likelihood function. But in the real 

world, most sensors provide measurements around a specific field crossing one or multiple sub-

states, but not others. Then assigning observation to which sub-state becomes a problem. 

Still based on the example in Figure 6.1 of Section 6.2, Figure 6.2 shows how the sub-

state evolves during each iteration of sub-state particle filtering. Assume the state space is 

partitioned into two regions 𝑟1 and 𝑟2 , thus a full system state is consisted of two sub-states 𝑥𝑟1
 

and 𝑥𝑟2
  accordingly. Then two groups of particles are running for each sub-state separately.  

One group is for sub-state in r1, and the other is for sub-state r2. Each group has three particles. 

For each group, of each particle the sub-state is evolved based on a "divided" dynamic model and 

weight is updated based on the sub-state and local observations through measurement model. So 

after weight updating step, the weights assignments vary in these two groups. Assume  in the 

particle group for sub-state in r1, the weights for particle 1 to 3 are assigned  as �̃�𝑡,𝑟1

(1)
=

0.6, �̃�𝑡,𝑟1

(3)
= 0.1, �̃�𝑡,𝑟1

(2)
= 0.3 , so in resampling step  particle 1 is duplicated, particle 2 is 

eliminated and particle 3 is maintained. Similarly, assume  in the particle group for sub-state in r2, 

if we have �̃�𝑡,𝑟2

(1)
= 0.2, �̃�𝑡,𝑟1

(3)
= 0.1, �̃�𝑡,𝑟1

(2)
= 0.7, so in resampling step  particle 1 is maintained, 

particle 2 is eliminated but particle 3 is duplicated.  
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                                                     Figure 6.2 One example of sub-state PF.   

 

6.4 Component set PF 

Component-set PF is another set of particle filter methods based on component 

resampling methods Component resampling is inspired by genetic algorithm, in which crossover 

operator is used between particles to improve the diversity of samples in resampling step. One 

problem in whole-state PFs is that a “good” sub-state belonging to a “bad” particle has a high 

chance to be eliminated during resampling step. Crossover operator updates the population of 

samples and may let “good” sub-state combine with other “good” sub-state from other particles. 

Thus the diversity of samples is improved so that the distribution of samples is more 

“satisfactory”.  

Algorithm 6 illustrates the general steps fulfilled in component-set PF. Component set PF 

shares the same steps with whole state PF until the resampling step. In resampling step, before 

drawing new samples, we break the system state of each particle into several components (i.e. 
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sub-states) xt
(i)

   =    {xt,rj

(i) |j = 1, … , M}  by partitioning the state space into multiple smaller 

regions. Each component inherits the weight the same as the particle it belongs to. Among all the 

particles, the components from same space forms a group. Then we perform the resampling step 

in each of the component group. The next step is to obtain N new particles with a full state in 

each of them. At this step, a new full state is constructed by randomly selecting a component 

𝑥𝑡,𝑟𝑚

(𝑞𝑚)
 from each group.  

ALGORITHM 6 Component Set PFs 

1. Initialization 

Draw N samples 𝑿0
(𝑖)

  from the prior   

𝑥0
(𝑖)

  ~    𝑝(𝑥0),                  𝑖 = 1, … , 𝑁 

and set  

𝑤0
(𝑖)

 =    1/𝑁  

2. At each time step, repeat 

   2.1. Sampling 

   Draw N samples 𝑿𝑡
(𝑖)

  from the dynamic model: 

𝑥𝑡
(𝑖)

  ~    𝑝(𝑥𝑡|𝑥𝑡−1
(𝑖)

) 

   2.2. Weight Updating 
   2.2.1 Calculate new weight for each particle based on all observations. 

𝑤𝑡
(𝑖)

 =     𝑝(𝑦𝑡|𝑥𝑡
(𝑖)

)  

   2.2.2 Normalize weights by 

�̃�𝑡
(𝑖)

 =   
𝑤𝑡

(𝑖)

∑ 𝑤𝑡
(𝑖)𝑁

𝑖=1

  

    2.3 Resampling 
      2.3.1 Divide the system state of each particle into 𝑀 sub-states by partitioning the 

whole state space into 𝑀 regions {𝑟𝑗|𝑗 = 1, . . , 𝑀} 

𝑆𝑝 =  {𝑟𝑗|𝑗 = 1, . . , 𝑀} 

𝑥𝑡
(𝑖)

   =    {𝑥𝑡,𝑟𝑗

(𝑖)
|𝑗 = 1, … , 𝑀}  

   2.3.2 Form M component sets 𝑿𝑡
(𝑚)

 of new particles by grouping the sub-states from 

same regions 

 𝑿𝑡
(𝑚)

= {𝑥𝑡,𝑟𝑚

(𝑖)
|𝑖 = 1, . . , 𝑁}  

𝑿𝑡 = {𝑿𝑡
(𝑚)

|𝑚 = 1, . . , 𝑀} 

              and associate each sub-state 𝑥𝑡,𝑟𝑚

(𝑖)
 the weight �̃�𝑡,𝑟𝑚

(𝑖)
 belonging to its full state 𝑥𝑡,𝑟𝑚

(𝑖)
 

�̃�𝑡,𝑟𝑚

(𝑖)
= �̃�𝑡

(𝑖)
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   2.3.3 Do resampling in each component set 𝑿𝑡
(𝑚)

 . 

       Draw N new samples from the set 𝑿𝑡
(𝑚)

 by sampling the indices 1…N, in 

proportional to the importance weights �̃�𝑡,𝑟𝑚

(𝑖)
. 

   2.3.4 Construct N new particles with a whole system state in it. 
              For each new particle, the system state is formed by randomly select a sub-state 

𝑥𝑡,𝑟𝑚

(𝑞𝑚)
 from each component set. 

𝑞𝑚~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (𝑀) 

𝑿𝑡
(𝑖)

= {𝑥𝑡,𝑟𝑚

(𝑞𝑚)
|𝑚 = 1 … 𝑀} 

 

 

 
 

Figure 6.3 provides an example of component-set PFs with three particles, the particle 

setting of which is identical to that of whole state PFs in Figure 6.1. However, after weight 

updating steps, two component sets are obtained for sub-state in r1 and r2 respectively. Different 

from sub-state PFs in which the sub-states from the same particle are assigned different weights, 

the sub-states from the same particle have same weights inherited from the particle. So assume 

�̃�𝑡
(1)

= 0.6, �̃�𝑡
(3)

= 0.3, �̃�𝑡
(2)

= 0.1 , after forming the component sets, since both  𝑥𝑡,𝑟1

(1)
 and 

𝑥𝑡,𝑟1

(1)
 are from the same particle 1, �̃�𝑡,𝑟1

(1)
= �̃�𝑡,𝑟2

(1)
= �̃�𝑡

(1)
 =0.6. Similarly, we have �̃�𝑡,𝑟1

(3)
= �̃�𝑡,𝑟2

(3)
=

�̃�𝑡
(3)

 =0.3 and �̃�𝑡,𝑟1

(2)
= �̃�𝑡,𝑟2

(2)
= �̃�𝑡

(2)
 =0.1 . So in component set for sub-state in r1, the set 

{𝑥𝑡,𝑟1

(1)
 , 𝑥𝑡,𝑟1

(2)
 , 𝑥𝑡,𝑟1

(3)
 } are resampled proportional to probability set {�̃�𝑡,𝑟1

(1)
, �̃�𝑡,𝑟1

(2)
, �̃�𝑡,𝑟1

(3)
}={0.6,0.3,0.1}; 

in r2, the set { 𝑥𝑡,𝑟2

(1)
 , 𝑥𝑡,𝑟2

(2)
 , 𝑥𝑡,𝑟2

(3)
 } are resampled proportional to probability set 

{�̃�𝑡,𝑟1

(1)
, �̃�𝑡,𝑟1

(2)
, �̃�𝑡,𝑟1

(3)
}={0.6,0.3,0.1}. With the same probability set, the same particle index sets are 

drawn from these two component sets. Thus, in both of two component sets, particle 1 duplicates, 

particle 3 remained.  Finally, the sub-states from each group are randomly combined to form full 

states. On the one hand, the full state maybe combined by sub-states from same particles. For 

example, 𝑥𝑡,𝑟1

(1)
 and  𝑥𝑡,𝑟2

(1)
  from the same particle 1 form a new full system state. On the other hand, 
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the full state maybe combined by sub-states from different particles. For example, 𝑥𝑡,𝑟1

(1)
from 

particle 1 and 𝑥𝑡,𝑟2

(3)
 from particle 2 construct a new full state {𝑥𝑡,𝑟1

(1)
, 𝑥𝑡,𝑟2

(3)
}. Since new full states 

are generated by component set resampling, the diversity of particles has been improved. 

Compared to whole state PFs, the degeneracy problem of samples is further reduced. 

 

Figure 6.3 One example of component set PFs. 

 

Compared to sub-state PFs, component-set PFs can be applied to more general cases, 

since the system dynamics does not have to be dividable. Besides, there is no need to worry 

about the data association problem when calculating weight for each particle. But, since 

resampling step is based on the weight for a full system state, a “good” sub-state still can be 
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hided with a very small weight before it combines with other sub-states from other particles. So 

spatially-dependent PFs is proposed to deal with this issue. 

6.5 Spatially dependent PF 

We know that since both the system state and observations are spatially distributed in a 

spatial temporal system, system state is spatially dependent. However, the PFs described in 

section 6.1, 6.2 and 6.5 have ignored important features in a spatial temporal system. On the one 

hand, a sub-state almost has no impact on the other sub-states which locates in a region far away. 

On the other hand, the observations can only reflect the status of system state in limited 

observation areas, but not whole system space.   Therefore, spatially dependent PF is developed 

to take advantage of these important features. The main difference between spatially dependent 

PF and other PFs is that it calculates weights and resamples on a smaller local system state other 

than the large global system state. Details of the spatial dependent PFs can be found in algorithm 

7 below. 

As described in Algorithm 7, during each iteration, state partitioning is added as one 

important step between sampling and weight updating. The sampling step is still based on a full 

system state. So no modifications should be made to the original dynamic model.  After state 

partitioning step, the weight for each sub-state 𝑤𝑡,𝑟𝑚

(𝑖)
 is calculated based on local observations 

instead of inheriting the weight 𝑤𝑡
(𝑖)

 from a whole state based on all observations. So unlike 

component set PF, the weight for a sub-state 𝑤𝑡,𝑟𝑚

(𝑖)
 may not be equal to the 𝑤𝑡

(𝑖)
. Then, the 

particles of different regions have distinctive weight distributions.  As a result, among regions 

the particles are resampled independently.  Therefore, the particles even with low weight of full 

state are duplicated because of a high weight of sub-state in it. Finally, since dynamic model is 
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based on a full state, the sub-states from different regions are grouped by randomly selecting an 

index 𝑞𝑚 from the particles following by the uniform distribution. 

ALGORITHM 7. Spatially-dependent PFs 

1. Initialization 

Draw N samples 𝑿0
(𝑖)

  from the prior   

𝑥0
(𝑖)

  ~    𝑝(𝑥0),                  𝑖 = 1, … , 𝑁 

and set  

𝑤0
(𝑖)

 =    1/𝑁  

2. At each time step, repeat      

  

   2.1. Sampling 

   Draw N samples 𝑿𝑡   from the dynamic model: 

𝑥𝑡
(𝑖)

  ~    𝑝(𝑥𝑡|𝑥𝑡−1
(𝑖)

) 

   2.2. State Partitioning 

Divide the system state of each particle into 𝑀 sub-states by partitioning the whole 

state space into 𝑀 regions {𝑟𝑗|𝑗 = 1, . . , 𝑀} 

𝑆𝑝 =  {𝑟𝑗|𝑗 = 1, . . , 𝑀} 

𝑥𝑡
(𝑖)

   =    {𝑥𝑡,𝑟𝑗

(𝑖)
|𝑗 = 1, … , 𝑀}  

 

    2.3. Weight Updating 
   2.3.1 For each particle, calculate new weight for each sub-state based on associated local 

observations. 

𝑤𝑡,𝑟𝑚

(𝑖)
 =     𝑝(𝒚𝒕,𝒓𝒎

|𝑥𝑡,𝑟𝑚

(𝑖)
)  

   2.3.2 Form M  sets 𝑿𝑡
(𝑚)

 of new particles by grouping the sub-states from same regions 

 𝑿𝑡
(𝑚)

= {𝑥𝑡,𝑟𝑚

(𝑖)
|𝑖 = 1, . . , 𝑁}  

𝑿𝑡 = {𝑿𝑡
(𝑚)

|𝑚 = 1, . . , 𝑀} 

              and associate each sub-state 𝑥𝑡,𝑟𝑚

(𝑖)
 the weight 𝑤𝑡,𝑟𝑚

(𝑖)
 

   2.2.2 In each set of new particles, normalize weights by  

�̃�𝑡,𝑟𝑚

(𝑖)
 =   

𝑤𝑡,𝑟𝑚

(𝑖)

∑ 𝑤𝑡,𝑟𝑚

(𝑖)𝑁
𝑖=1

  

    2.4 Resampling 

    2.4.1 Do resampling in each set 𝑿𝑡
(𝑚)

 . 

       Draw N new samples from the set 𝑿𝑡
(𝑚)

 by sampling the indices 1…N, in 

proportional to the importance weights �̃�𝑡,𝑟𝑚

(𝑖)
 

    2.4.2 Construct N new particles with a whole system state in it. 
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              For each new particle, the system state is formed by randomly select a sub-state 

𝑥𝑡,𝑟𝑚

(𝑞𝑚)
 from each set  𝑿𝑡

(𝑚)
 

𝑞𝑚~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (𝑀) 

 𝑿𝑡 = {𝑥𝑡,𝑟𝑚

(𝑞𝑚)
|𝑚 = 1 … 𝑀} 

 

 

As described in algorithm 7, during each iteration, state partitioning is added as one 

important step between sampling and weight updating. The sampling step is still based on a full 

system state. So no modifications should be made to the original dynamic model.  After state 

partitioning step, the weight for each sub-state 𝑤𝑡,𝑟𝑚

(𝑖)
 is calculated based on local observations 

instead of inheriting the weight 𝑤𝑡
(𝑖)

 from a whole state based on all observations. So unlike 

component set PF, the weight for a sub-state 𝑤𝑡,𝑟𝑚

(𝑖)
 may not be equal to the 𝑤𝑡

(𝑖)
. Then, the 

particles of different regions have distinctive weight distributions.  As a result, among regions 

the sets of resampled particles are different.  Finally, since dynamic model is based on a full 

state, the sub-states from different regions are grouped by randomly selecting an index 𝑞𝑚 from 

the particles following by the uniform distribution. 

Figure 6.4 shows how a "good" sub-state in a "bad" full state particle is maintained in one 

iteration of spatially dependent PF.  After sampling step, the full state in each particle is broken 

into two sub-states for r1 and r2 separately according to the space partitioning result.  Then 

independent weight updating is performed for the sub-states in each region. Assume for region r1 

, the weights for all three sub-states from different particles are as �̃�𝑡,𝑟1

(1)
= 0.6, �̃�𝑡,𝑟1

(3)
= 0.1,

�̃�𝑡,𝑟1

(2)
= 0.3; for region r2 the weights for all three sub-states from different particles are �̃�𝑡,𝑟2

(1)
=

0.2, �̃�𝑡,𝑟2

(3)
= 0.1, �̃�𝑡,𝑟2

(2)
= 0.7. So in resampling step, in region r1  particle 1 is duplicated, particle 

2 is remained; in region r2 , particle 1 is remained but particle 2 is duplicated.   Although 
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originally particle 3 has a low weight assigned for its full state, after division, a good portion of 

state is discovered by the weight on a sub-state. Finally, this good portion forms another new 

system state with other sub-states. Thus, the good sub-state in a "bad" particle is not hidden 

anymore.  

 

Figure 6.4 One example of spatially dependent PF. 

 

6.6 Comparisons 

Previous sections have detailed the procedure in four kinds of particle filtering methods 

for data assimilation in spatial temporal system. In this section, we first compare each other PF 

methods to the whole state PF and summarize the differences in the general three basic PF steps.  

Next, we compare the potential issues in these four PF methods. 
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1） Comparisons on the general PFs steps 

Although each of the particle filtering methods described in this part follows the three 

main steps of stand PFs, the implementation in each step differs from each other according to the 

scale of state based on. Through Table 6.1, we can clearly find that only whole state PF uses a 

whole state for each particle to accomplish the three steps. However, the other three particle 

filtering methods also use sub-state in a smaller region to perform all or part of the three steps. 

Specifically, in sub-state PF, all the three steps are based on sub-states instead of full states.  The 

component set PF only apply sub-states in resampling step to instance new set of full states by 

cross over operator. Besides resampling on sub-states, the spatially dependent PF also calculates 

weights for each sub-state in weight updating step.  

Table 6.1: Comparisons on the general PFs steps among four kinds of particle filtering methods 
 

General PFs steps Whole state PFs Sub-state PFs Component Set 

PFs 

Spatially 

Dependent 

PFs 

Sampling Whole state  Sub-state Whole state Whole state 

Weight Updating Whole state  Sub-state Whole state Sub-state 

Resampling Whole state  Sub-state Sub-state Sub-state 

 

2） Comparisons on potential issues 

Although we have discussed multiple particle filtering methods, some potential issues 

cannot be ignored. In general, there are four potential issues. They are concerned with data 

association, state partitioning, state dependency and applications as listed in Table 6.2.  

 Data association 

To calculate the weight for a sub-state instead of full-state, only the local 

observations should be considered. However, due to the diversity of sensors, how to 
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assign a boundary sensor to the real sub-state it observers is a problem. So before apply 

spatially-dependent particle filtering, there should be a solution to fix this problem. 

However, for the other PF methods, there is no need to consider the issue of data 

association. 

 State partitioning 

To obtain a sub-state, we should first partition the full state. However, the state 

partitioning result has effects on the final prediction result in all the particle filtering 

methods in which sub-states are related. For example, in component set PF, if a divided 

region is small and never touched (e.g. a fire never spread there), all the particles may 

have same sub-state in that region so that the diversity of samples is not improved even 

with crossover operator. Another example is spatially dependent PF, if a divided region 

has no sensors surrounded and no observation covered, the weights for all the sub-states 

are the same (i.e. 1/N) so that   the goal to select good sub-state in a bad full-state 

particle cannot be achieved. Therefore, to apply the particle filtering methods 

encountered state portioning, we should be careful to choose a good state partitioning 

method. 

 State dependency 

State partitioning nowadays has been widely used in spatial temporal simulations to 

reduce space dimension and increase prediction accuracy with lower computational cost. 

Sub-state PF requires that the system state is lowly dependent, otherwise independent PF 

cannot be implemented for each region. However, if the system state is highly dependent 

and there is no way to divide it, only whole state PF can be used.  When the system state 
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is not highly dependent, we can also consider both component set PF and spatially 

dependent PF.  

 Applications 

In these our algorithms, only whole state PFs can be applied to all applications. 

However, due to problems described above, the other three particle filter methods can 

only be applied to application of special filed. For example, we can use whole state PF, 

component set PF and spatially dependent PF in DEVS based wildfire simulation. But 

since each cell still correlates the neighboring cells and the system dynamic is not 

dividable, sub-state PFs cannot be applied in wildfire simulation.  

Table 6.2: Comparisons on potential issues among four kinds of particle filtering methods 
 

Potential Issues Whole state PFs Sub-state PFs Component Set PFs Spatially 

Dependent 

PFs 

Data Association NO  YES NO YES 

State Partitioning NO   YES YES YES 

State Dependency HIGH  LOW ? ? 

Applications ALL PARTIAL PARTIAL PARTIAL 

 

6.7 Experiment 

To compare the prediction accuracy of these four PF methods, we conducted a case study 

in wildfire simulation. We designed three cases for experiments. The experiment settings for 

these three cases are as following: 

(1) Case 1: A single fire with uniform distributed sensors 
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We started our experiments from a general case, where there was only a single fire and 

400 sensors were uniformly distributed.   For “correct” weather information, the wind speed 

varied between 20 and 24 (m/s) and wind direction ranges from 120 to 160 degrees. Similarly, 

for “erroneous” weather information, the wind speed ranged from 21 to 25 m/s and direction 

ranged from 30 to 70 degrees.   There was only one ignition point at (55,-10), which was added 

at first time step. Details of experiment setting can be found at Table 6.3. To apply component 

PF and spatially dependent PF, we divided the system space into two equal regions. Region 1 

was on top of the map, region 2 is on bottom of the map. And we used 50 particles for each 

particle filtering methods. 

Table 6.3  Experiment setting for weather data and ignition points in case 1 

 Weather data Ignition Points 

“Correct” Speed: 22±2 m/s 

Direction: 140±20 degrees 

 (55,-10) 

“Erroneous” Speed: 23±2 m/s 

Direction: 50±20 degrees 

 (55,-10) 

 

From figure 6.5 (a) we can find out that since the direction in erroneous weather 

information has great errors, the simulated fire front (in blue) diverged a lot from the real fire 

front. Although the filtered fire front in red from whole state PF results was better than the 

simulated fire front, the number of cells with different system states (in green) is still large. After 

applying component set PF, this difference is reduced as the filtered fire front at bottom shrinked. 

However, spatially dependent PF further reduced this symmetric difference by guiding fire 

spread to a correct direction. Figure 6.6 compares the number of cells with symmetric differences 

during all time steps among these three particle filtering methods. We can see that initially these 

three PF methods generate similar results, however after some time step, component set PF and 

spatially dependent PF generate better result with less number of cells with symmetric 

differences compared to whole state PF. Although the error at final step is still large, but 
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compared to traditional whole state PF, component set PF and spatially dependent PF both 

improved prediction accuracy, especially for spatially dependent PF. 

 

 

   

(a) Whole state PF (b) Component Set PF (c) Spatially Dependent PF 

Figure 6.5 Simulation results at last time step for three particle filtering methods in case 1 

 

           

Figure 6.6 Comparison of symmetric differences among three particle filtering methods in case 1 
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Case 2 has the same sensor deployment as in case 1, however there are two single fires in 

the scenario. Since sub-state PF does not apply to the application of wildfire simulation, in which 

the dynamic model is not dividable, we design this special case and consider the two single fires 

are independent to each other so that the even for a full dynamic model these two fires evolves 

separately as they never merge. Then the sub-state PF can be converted spatially dependent PF in 

this case when using 2 sub-states, in two equally divided regions --- one on top and the other on 

the bottom. So in case 2, we can assume the spatially dependent PF has the same prediction 

result as in sub-state PF. More detailed setting of case 2 can be found in table 6.4.  

Table 6.4  Experiment setting for weather data and ignition points in case 2 

 Weather data Ignition Points 

“Correct” Speed: 17±3 m/s 

Direction: 140±20 degrees 

 (25, 20) and (10, -50)  

 added at initial time step 

“Erroneous” Speed: 15±3 m/s 

Direction: 120±20 degrees 

 (25, 20) and (10, -50)  

added at initial time step 

 

 Figure 6.7 shows the simulations results in case 2 under different kinds of particle 

filtering methods. In figure 6.7(a) for the results in whole state PF, the green area was larger 

compared to that in figure 6.7 (b) and 6.7(c). This means that both component set PF and 

spatially dependent PF has improved the prediction result, even for the sub-state PF. Figure 6.8 

illustrates the change of number of cells with symmetric differences using ten time steps for all 

particle filtering methods. Although around time step 7, the number of cells with symmetric 

differences in component set PF is similar to to that in whole state PF. But it quickly dropped to 

a similar level as spatially dependent PF after time step 8.  This happens because from time step 

6 to time step 7, the fire spread fast and changed dramatically so that even for component PF it is 

hard to provide a good prediction result. 
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(a) Whole state PF (b) Component Set PF (c) Spatially Dependent 

PF(Sub-state PF) 

Figure 6.7 Simulation results at last time step for three particle filtering methods in case 2 

 

       

Figure 6.8 Simulation results at last time step for three particle filtering methods in case 2 
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(3) Case 3: A single fire with unevenly distributed sensors 

The goal of this case is to test the impact of sensor distribution on prediction accuracy of 

different PF methods. In this case, there were 150 sensors distributed unevenly over map. 100 

sensors were distributed around (0, 20) through a Gaussian distribution with mean 15 and 

variance 0 on both x an y coordinate; another 50 sensors were deployed nearing (-20,75) through 

the same Gaussian distribution. 50 particles were used for each method. And system space was 

broken into three regions, one of them are on the top and the other is on bottom. 

Table 6.5  Experiment setting for weather data and ignition points in case 2 

 Weather data Ignition Points 

“Correct” Speed: 22±2 m/s 

Direction: 120±20 degrees 

 (55,0) 

“Erroneous” Speed: 22±2 m/s 

Direction: 70±20 degrees 

 (55,0) 

 

Figure 6.9 shows that since there were no enough sensors to observe the global fire 

spreading information, the whole state PF method provided the worst result with largest number 

of cells with symmetric differences (in green area). Normally, more particles should be added to 

cover more possible system states in unobserved areas. However, by using component PF the 

diversity of particles was increased, and good sub-states located at observed area have high 

chances to be combined. Similar to spatially dependent PF, the sub-states nearing sensor clusters 

can be weighted and thus generate more accurate result than whole state PF. Through figure 6.10, 

we note that although component set PF outperformed whole state PF at each time step, around 

time step 5, the spatially dependent PF even provided worse result than whole state PF. This due 

to the uneven distribution of sensors. Since at time step 5, the real fire started to spread to region 

2 and top of region 1 where few sensors were distributed, the sub-state in region 2 was not 

observed by any other or had few sensor observations. The uncertainty of sub-state in region 2 

leads to higher errors. However, when fire pass this region to region 3 with a high density of 
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sensors, the number of sensors began to drop. Note that even at last time step, in this case the 

results in component set PF and spatially dependent PF are close to each other. The component 

set PF even had higher prediction accuracy than spatially dependent PF. 

 

   

(a) Whole state PF (b) Component Set PF (c) Spatially Dependent PF 

Figure 6.9 Simulation results at last time step for three particle filtering methods in case 3 

 

         

Figure 6.10 Comparison of symmetric differences among three particle filtering methods in case 3 
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6.8 Conclusion 

In this part, we have compared four existing particle filtering methods applied in spatial 

temporal systems by analyzing their commons and differences in main steps of a standard PF. 

Also we have summarized the issues and limitations for each particle filtering methods. The 

general issues should be considered when choosing particle filtering methods are the data 

association problem, state partition way, state dependency and characteristics of applications. At 

last, the experiments show that the other three particle filtering methods outperforms the 

conventional whole state PF. Besides, the spatially dependent PF provides the best prediction 

results in most cases, where the sensors are not unevenly distributed over the space. 
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7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

In this work, we developed a localized particle filtering to support PFs-based data 

assimilation for large-scale spatial temporal simulations. We proposed a spatial partition-based 

particle filter framework for simulation and prediction in a spatial temporal system. This 

framework introduces the locality nature of system state.  We divide the whole space into several 

smaller regions and the full state is broken into correspondingly sub-states. Unlike the tradition 

calculation on a whole system state, it calculates a set of local sub-state weights for each particle 

and performs resampling in a group of local sub-states. Experiments demonstrate the 

improvement on prediction accuracy when space is divided reasonable with some prior 

knowledge and when partition number is increased in a proper range.  Furthermore, we also find 

out data association problem from boundary sensors.  So within this framework, the automated 

partitioning method with two levels is proposed to reduce the total boundary sensor number. 

Apparent prediction accuracy improvements are found in experiments after performing the 

automated partitioning method. However, data association problem may still exist even after 

performing automated partitioning method.  

Besides, we also considered different types of data to support data assimilation for spatial 

temporal simulations. We incorporated both hard data from physical devices and soft data from 

messages, report and social networks to data assimilation and achieved the improvement on the 

prediction result. Although soft data is fuzzy, it supplements the observation especially to the 

area with few sensors surrounded.  

At last, we compared our spatially dependent particle filtering to the existing particle 

particle filtering for large spatial temporal simulations. Each particle filtering framework has its 
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own merits and limitations when applying to different applications. Although the whole state 

particle filtering can be applied to most applications, it has worst performance on the prediction 

accuracy.  Sub-state particle filtering works only for the systems when the dynamic model is 

dividable. Component set particle filtering increases the diversity of samples but it can still hide 

the samples with good sub-states before resampling. Spatially dependent particle filtering is a 

localized particle filtering and achieves better prediction accuracy when state is partitioned in a 

proper way. 

7.2 Future work 

Although space division has been proved as an appropriate way to improve prediction 

performance, it also brings another problem from observation. This is a classical data association 

problem in multi-target tracking.  Since sensor has observation area, when this area is broken 

into several part it is hard to decide which part the real observation reflects. In this paper, those 

observations are from the boundary sensors nearing borders of divided regions. From 

experiments, we found that boundary sensors have great impact on prediction accuracy. In this 

paper, for how to assign real boundary observation to possible sub-states or decide real sensor is 

stimulated by which region, we present a general solution, which treats each covered regions 

with the equal probability to trigger the sensor. However, we need to note that this solution may 

not be the best method to solve data association problem. It is possible that we can assign the 

probability with ratio of covered observation area in different region. Also, the data association 

may become complex due to the different nature of sensor observations and applications. 

Therefore, improving current solution for data association problem and developing alternative 

methods towards data association problem for complicated sensors in a spatial temporal system 

is also a future work for this dissertation. 
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The next direction for the future work is to improve the proposed spatial dependent 

particle filtering framework in other application, such as traffic simulation and pedestrian 

simulation.  But more challenges emerge because of the characteristics of sensors in different 

applications. For example, there are two main challenges to be considered in traffic simulation 

when developing the spatially dependent particle filtering framework. One of the main 

challenges is from data association problem because of the specialty of observation data. In 

traffic simulation, usually sensor can reflect information for multiple regions. For example, 

density sensor reflects the density in a road segment.  If the road segment falls in different 

regions, we need to find a solution to separate their impact to related regions.   

Since this work is for the large-scale system, it exists one common problem, which is 

high computation cost. Therefore, another future work is to develop an effective data-driven 

framework in cloud computing to reduce time cost or to use parallel & distributed techniques to 

reduce workload in a single node. As my current work proposed to divide space into multiple 

regions and concentrate on local information instead of whole space in some steps, it is feasible 

to process local information in each node, and reduce both time cost and workload finally. 
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