6,597 research outputs found

    eStorys: A visual storyboard system supporting back-channel communication for emergencies

    Get PDF
    This is the post-print version of the final paper published in Journal of Visual Languages & Computing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.In this paper we present a new web mashup system for helping people and professionals to retrieve information about emergencies and disasters. Today, the use of the web during emergencies, is confirmed by the employment of systems like Flickr, Twitter or Facebook as demonstrated in the cases of Hurricane Katrina, the July 7, 2005 London bombings, and the April 16, 2007 shootings at Virginia Polytechnic University. Many pieces of information are currently available on the web that can be useful for emergency purposes and range from messages on forums and blogs to georeferenced photos. We present here a system that, by mixing information available on the web, is able to help both people and emergency professionals in rapidly obtaining data on emergency situations by using multiple web channels. In this paper we introduce a visual system, providing a combination of tools that demonstrated to be effective in such emergency situations, such as spatio/temporal search features, recommendation and filtering tools, and storyboards. We demonstrated the efficacy of our system by means of an analytic evaluation (comparing it with others available on the web), an usability evaluation made by expert users (students adequately trained) and an experimental evaluation with 34 participants.Spanish Ministry of Science and Innovation and Universidad Carlos III de Madrid and Banco Santander

    Trialing Innovative Technologies in Crisis Management - “Airborne and Terrestrial Situational Awareness” as Support Tool in Flood Response

    Get PDF
    Flooding represents the most-occurring and deadliest threats worldwide among natural disasters. Consequently, new technologies are constantly developed to improve response capacities in crisis management. The remaining challenge for practitioner organizations is not only to identify the best solution to their individual demands, but also to test and evaluate its benefit in a realistic environment before the disaster strikes. To bridge the gap between theoretic potential and actual integration into practice, the EU-funded project DRIVER+ has designed a methodical and technical environment to assess innovation in a realistic but non-operational setup through trials. The German Aerospace Center (DLR) interdisciplinary merged mature technical developments into the “Airborne and terrestrial situational awareness” system and applied it in a DRIVER+ Trial to promote a sustainable and demand-oriented R&D. Experienced practitioners assessed the added value of its modules “KeepOperational” and “ZKI” in the context of large-scale flooding in urban areas. The solution aimed at providing contextual route planning in police operations and extending situational awareness based on information derived through aerial image processing. The user feedback and systematically collected data through the DRIVER + Test-bed approved that DLR’s system could improve transport planning and situational awareness across organizations. However, the results show a special need to consider, for example, cross-domain data-fusion techniques to provide essential 3D geo-information to effectively support specific response tasks during flooding

    Usability of disaster apps : understanding the perspectives of the public as end-users : a dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Emergency Management at Massey University, Wellington, New Zealand

    Get PDF
    Listed in 2020 Dean's List of Exceptional ThesesMultiple smartphone applications (apps) exist that can enhance the public’s resilience to disasters. Despite the capabilities of these apps, they can only be effective if users find them usable. Availability does not automatically translate to usability nor does it guarantee continued usage by the target users. A disaster app will be of little or no value if a user abandons it after the initial download. It is, therefore, essential to understand the users’ perspectives on the usability of disaster apps. In the context of disaster apps, usability entails providing the elements that effectively facilitate users in retrieving critical information, and thus enabling them to make decisions during crises. Establishing good usability for effective systems relies upon focussing on the user whereby technological solutions match the user’s needs and expectations. However, most studies on the usability of disaster context technologies have been conducted with emergency responders, and only a few have investigated the publics’ perspectives as end-users. This doctoral project, written within a ‘PhD-thesis-with-publication’ format, addresses this gap by investigating the usability of disaster apps through the perspectives of the public end-users. The investigation takes an explicitly perceived usability standpoint where the experiences of the end-users are prioritised. Data analysis involved user-centric information to understand the public’s context and the mechanisms of disaster app usability. A mixed methods approach incorporates the qualitative analysis of app store data of 1,405 user reviews from 58 existing disaster apps, the quantitative analysis of 271 survey responses from actual disaster app users, and the qualitative analysis of usability inquiries with 18 members of the public. Insights gathered from this doctoral project highlight that end-users do not anticipate using disaster apps frequently, which poses particular challenges. Furthermore, despite the anticipated low frequency of use, because of the life-safety association of disasters apps, end-users have an expectation that the apps can operate with adequate usability when needed. This doctoral project provides focussed outcomes that consider such user perspectives. First, an app store analysis investigating user reviews identified new usability concerns particular to disaster apps. It highlighted users’ opinion on phone resource usage and relevance of content, among others. More importantly, it defined a new usability factor, app dependability, relating to the life-safety context of disaster apps. App dependability is the degree to which users’ perceive that an app can operate dependably during critical scenarios. Second, the quantitative results from this research have contributed towards producing a usability-continuance model, highlighting the usability factors that affect end-users’ intention to keep or uninstall a disaster app. The key influences for users’ intention to keep disaster apps are: (1) users’ perceptions as to whether the app delivers its function (app utility), (2) whether it does so dependably (app dependability), and (3) whether it presents information that can be easily understood (user-interface output). Subsequently, too much focus on (4) user-interface graphics and (5) user-interface input can encourage users to uninstall apps. Third, the results from the qualitative analysis of the inquiry data provide a basis for developing guidelines for disaster app usability. In the expectation of low level of engagement with disaster app users, the guidelines list recommendations addressing information salience, cognitive load, and trust. This doctoral project provides several contributions to the body of knowledge for usability and disaster apps. It reiterates the importance of investigating the usability of technological products for disasters and showcases the value of user-centric data in understanding usability. It has investigated usability with particular attention to the end-users’ perspectives on the context of disaster apps and, thus, produces a theoretical usability-continuance model to advance disaster app usability research and usability guidelines to encourage responsible design in practice

    Fireground location understanding by semantic linking of visual objects and building information models

    Get PDF
    This paper presents an outline for improved localization and situational awareness in fire emergency situations based on semantic technology and computer vision techniques. The novelty of our methodology lies in the semantic linking of video object recognition results from visual and thermal cameras with Building Information Models (BIM). The current limitations and possibilities of certain building information streams in the context of fire safety or fire incident management are addressed in this paper. Furthermore, our data management tools match higher-level semantic metadata descriptors of BIM and deep-learning based visual object recognition and classification networks. Based on these matches, estimations can be generated of camera, objects and event positions in the BIM model, transforming it from a static source of information into a rich, dynamic data provider. Previous work has already investigated the possibilities to link BIM and low-cost point sensors for fireground understanding, but these approaches did not take into account the benefits of video analysis and recent developments in semantics and feature learning research. Finally, the strengths of the proposed approach compared to the state-of-the-art is its (semi -)automatic workflow, generic and modular setup and multi-modal strategy, which allows to automatically create situational awareness, to improve localization and to facilitate the overall fire understanding

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Information Systems and Health Care XIII: Examining the Critical Requirements, Design Approaches and Evaluation Methods for a Public Health Emergency Response System

    Get PDF
    Research pertaining to emergency response systems has accelerated over the past few years, particularly since 9/11 events, and more recently due to Hurricane Katrina and concern of the avian flu pandemic. This study examines the requirements that are the most demanding with respect to software and hardware, and the associated design strategies for a public health emergency response system (ERS) for electronic laboratory diagnostics consultation. In addition, this study illustrates ways to evaluate the design decisions. An important goal of a public health ERS is to improve the communication and notification of life-threatening diseases and harmful agents. The system under study is called Secure Telecommunications Application Terminal Package or STATPack. STATPack supports distributed laboratories to communicate information and make decisions regarding biosecurity situations. The intent of the system is to help hospital laboratories enhance their preparedness for a bioterrorism event or other public health emergency. The practical nature of this research concerns how an ERS diagnostic and consultation system was designed to alert and support first responders and Subject Matter Experts (SMEs). The academic nature of the research centers on the critical requirements of an ERS and how these unique needs can be met through careful design. Understanding the critical requirements will assist developers to better meet the expectations of the users. Specifically, I conducted a thirteen month study analyzing the requirements, design, and implementation of the system

    Design principles for conversational agents to support Emergency Management Agencies

    Get PDF
    Widespread mis- and disinformation during the COVID-19 social media “infodemic” challenge the effective response of Emergency Management Agencies (EMAs). Conversational Agents (CAs) have the potential to amplify and distribute trustworthy information from EMAs to the general public in times of uncertainty. However, the structure and responsibilities of such EMAs are different in comparison to traditional commercial organizations. Consequently, Information Systems (IS) design approaches for CAs are not directly transferable to this different type of organization. Based on semi-structured interviews with practitioners from EMAs in Germany and Australia, twelve meta-requirements and five design principles for CAs for EMAs were developed. In contrast to the traditional view of CA design, social cues should be minimized. The study provides a basis to design robust CAs for EMAs

    Designing a solution to enable agency-academic scientific collaboration for disasters

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Society 22 (2017): 18, doi:10.5751/ES-09246-220218.As large-scale environmental disasters become increasingly frequent and more severe globally, people and organizations that prepare for and respond to these crises need efficient and effective ways to integrate sound science into their decision making. Experience has shown that integrating nongovernmental scientific expertise into disaster decision making can improve the quality of the response, and is most effective if the integration occurs before, during, and after a crisis, not just during a crisis. However, collaboration between academic, government, and industry scientists, decision makers, and responders is frequently difficult because of cultural differences, misaligned incentives, time pressures, and legal constraints. Our study addressed this challenge by using the Deep Change Method, a design methodology developed by Stanford ChangeLabs, which combines human-centered design, systems analysis, and behavioral psychology. We investigated underlying needs and motivations of government agency staff and academic scientists, mapped the root causes underlying the relationship failures between these two communities based on their experiences, and identified leverage points for shifting deeply rooted perceptions that impede collaboration. We found that building trust and creating mutual value between multiple stakeholders before crises occur is likely to increase the effectiveness of problem solving. We propose a solution, the Science Action Network, which is designed to address barriers to scientific collaboration by providing new mechanisms to build and improve trust and communication between government administrators and scientists, industry representatives, and academic scientists. The Science Action Network has the potential to ensure cross-disaster preparedness and science-based decision making through novel partnerships and scientific coordination.The authors thank the David and Lucile Packard Foundation for a grant to undertake this project and enable participation of a wide range of participants and interviewees. We thank the Center for Ocean Solutions and ChangeLabs for their oversight and support
    • 

    corecore