3,686 research outputs found

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Lifecycle Management of Automotive Safety-Critical Over the Air Updates: A Systems Approach

    Get PDF
    With the increasing importance of Over The Air (OTA) updates in the automotive field, maintaining safety standards becomes more challenging as frequent incremental changes of embedded software are regularly integrated into a wide range of vehicle variants. This necessitates new processes and methodologies with a holistic view on the backend, where the updates are developed and released

    Kuksa*: Self-Adaptive Microservices in Automotive Systems

    Full text link
    In pervasive dynamic environments, vehicles connect to other objects to send operational data and receive updates so that vehicular applications can provide services to users on demand. Automotive systems should be self-adaptive, thereby they can make real-time decisions based on changing operating conditions. Emerging modern solutions, such as microservices could improve self-adaptation capabilities and ensure higher levels of quality performance in many domains. We employed a real-world automotive platform called Eclipse Kuksa to propose a framework based on microservices architecture to enhance the self-adaptation capabilities of automotive systems for runtime data analysis. To evaluate the designed solution, we conducted an experiment in an automotive laboratory setting where our solution was implemented as a microservice-based adaptation engine and integrated with other Eclipse Kuksa components. The results of our study indicate the importance of design trade-offs for quality requirements' satisfaction levels of each microservices and the whole system for the optimal performance of an adaptive system at runtime

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India
    corecore