6,796 research outputs found

    A Comparison of Three Recent Nature-Inspired Metaheuristics for the Set Covering Problem

    Get PDF
    The Set Covering Problem (SCP) is a classic problem in combinatorial optimization. SCP has many applications in engineering,including problems involving routing, scheduling, stock cutting, electoral redistricting and others important real life situations. Because of its importance, SCP has attracted attention of many researchers. However,SCP instances are known as complex and generally NP-hard problems.Due to the combinatorial nature of this problem, during the last decades,several metaheuristics have been applied to obtain efficient solutions.This paper presents a metaheuristics comparison for the SCP. Three recent nature-inspired metaheuristics are considered: Shuffled Frog Leaping,Firefly and Fruit Fly algorithms. The results show that they can obtainn optimal or close to optimal solutions at low computational cost

    Why simheuristics? : Benefits, limitations, and best practices when combining metaheuristics with simulation

    Get PDF
    Many decision-making processes in our society involve NP-hard optimization problems. The largescale, dynamism, and uncertainty of these problems constrain the potential use of stand-alone optimization methods. The same applies for isolated simulation models, which do not have the potential to find optimal solutions in a combinatorial environment. This paper discusses the utilization of modelling and solving approaches based on the integration of simulation with metaheuristics. These 'simheuristic' algorithms, which constitute a natural extension of both metaheuristics and simulation techniques, should be used as a 'first-resort' method when addressing large-scale and NP-hard optimization problems under uncertainty -which is a frequent case in real-life applications. We outline the benefits and limitations of simheuristic algorithms, provide numerical experiments that validate our arguments, review some recent publications, and outline the best practices to consider during their design and implementation stages

    Optimizing transport logistics under uncertainty with simheuristics: concepts, review and trends

    Get PDF
    Background: Uncertainty conditions have been increasingly considered in optimization problems arising in real-life transportation and logistics activities. Generally, the analysis of complex systems in these non-deterministic environments is approached with simulation techniques. However, simulation is not an optimization tool. Hence, it must be combined with optimization methods when our goal is to: (i) minimize operating costs while guaranteeing a given quality of service; or (ii) maximize system performance using limited resources. When solving NP-hard optimization problems, the use of metaheuristics allows us to deal with large-scale instances in reasonable computation times. By adding a simulation layer to the metaheuristics, the methodology becomes a simheuristic, which allows the optimization element to solve scenarios under uncertainty. Methods: This paper reviews the indexed documents in Elsevier Scopus database of both initial as well as recent applications of simheuristics in the logistics and transportation field. The paper also discusses open research lines in this knowledge area. Results: The simheuristics approaches to solving NP-hard and large-scale combinatorial optimization problems under uncertainty scenarios are discussed, as they frequently appear in real-life applications in logistics and transportation activities. Conclusions: The way in which the different simheuristic components interact puts a special emphasis in the different stages that can contribute to make the approach more efficient from a computational perspective. There are several lines of research that are still open in the field of simheuristics.Peer ReviewedPostprint (published version

    Teaching metaheuristics in business schools

    Get PDF
    In this work we discuss some ideas and opinions related with teaching Metaheuristics in Business Schools. The main purpose of the work is to initiate a discussion and collaboration about this topic,with the final objective to improve the teaching and publicity of the area. The main topics to be discussed are the environment and focus of this teaching. We also present a SWOT analysis which lead us to the conclusion that the area of Metaheuristics only can win with the presentation and discussion of metaheuristics and related topics in Business Schools, since it consists in a excellent Decision Support tools for future potential users.Metaheuristics, Teaching Business

    Current Trends in Simheuristics: from smart transportation to agent-based simheuristics

    Get PDF
    Simheuristics extend metaheuristics by adding a simulation layer that allows the optimization component to deal efficiently with scenarios under uncertainty. This presentation reviews both initial as well as recent applications of simheuristics, mainly in the area of logistics and transportation. We also discuss a novel agent-based simheuristic (ABSH) approach that combines simheuristic and multi-agent systems to efficiently solve stochastic combinatorial optimization problems. The presentation is based on papers [1], [2], and [3], which have been already accepted in the prestigious Winter Simulation Conference.Peer ReviewedPostprint (published version

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page

    A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems

    Get PDF
    Many combinatorial optimization problems (COPs) encountered in real-world logistics, transportation, production, healthcare, financial, telecommunication, and computing applications are NP-hard in nature. These real-life COPs are frequently characterized by their large-scale sizes and the need for obtaining high-quality solutions in short computing times, thus requiring the use of metaheuristic algorithms. Metaheuristics benefit from different random-search and parallelization paradigms, but they frequently assume that the problem inputs, the underlying objective function, and the set of optimization constraints are deterministic. However, uncertainty is all around us, which often makes deterministic models oversimplified versions of real-life systems. After completing an extensive review of related work, this paper describes a general methodology that allows for extending metaheuristics through simulation to solve stochastic COPs. ‘Simheuristics’ allow modelers for dealing with real-life uncertainty in a natural way by integrating simulation (in any of its variants) into a metaheuristic-driven framework. These optimization-driven algorithms rely on the fact that efficient metaheuristics already exist for the deterministic version of the corresponding COP. Simheuristics also facilitate the introduction of risk and/or reliability analysis criteria during the assessment of alternative high-quality solutions to stochastic COPs. Several examples of applications in different fields illustrate the potential of the proposed methodology.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (grant TRA2013-48180-C3-P), FEDER, and the Ibero-American Programme for Science and Technology for Development (CYTED2014-515RT0489). Likewise we want to acknowledge the support received by the Department of Universities, Research & Information Society of the Catalan Government (Grant 2014-CTP-00001) and the CAN Foundation (Navarre, Spain) (Grant 3CAN2014-3758)
    • 

    corecore