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Abstract: Background: Uncertainty conditions have been increasingly considered in optimization
problems arising in real-life transportation and logistics activities. Generally, the analysis of complex
systems in these non-deterministic environments is approached with simulation techniques. However,
simulation is not an optimization tool. Hence, it must be combined with optimization methods when
our goal is to: (i) minimize operating costs while guaranteeing a given quality of service; or (ii) maxi-
mize system performance using limited resources. When solving NP-hard optimization problems,
the use of metaheuristics allows us to deal with large-scale instances in reasonable computation times.
By adding a simulation layer to the metaheuristics, the methodology becomes a simheuristic, which
allows the optimization element to solve scenarios under uncertainty. Methods:This paper reviews
the indexed documents in Elsevier Scopus database of both initial as well as recent applications of
simheuristics in the logistics and transportation field. The paper also discusses open research lines
in this knowledge area. Results: The simheuristics approaches to solving NP-hard and large-scale
combinatorial optimization problems under uncertainty scenarios are discussed, as they frequently
appear in real-life applications in logistics and transportation activities. Conclusions: The way in
which the different simheuristic components interact puts a special emphasis in the different stages
that can contribute to make the approach more efficient from a computational perspective. There are
several lines of research that are still open in the field of simheuristics.

Keywords: simheuristics; transportation; logistics; optimization; uncertainty

1. Introduction

Real-life logistics and transportation (L&T) challenges are usually characterized by
different levels of uncertainty. Many of these challenges can be modeled as stochastic
optimization problems, and they are often NP-hard and large-scale in nature. Thus, exact
optimization methods show limitations when high-quality solutions are required in reason-
ably short computing times, and approximated optimization methods, such as heuristics
and metaheuristics, are usually employed for solving these problems in many practical
applications.

When dealing with stochastic uncertainty, many experts employ simulation methods,
since they allow for analyzing different scenarios that can be helpful in decision-making
processes. Still, simulation is not an optimization tool. Therefore, hybrid simulation-
optimization methodologies have been proposed to efficiently cope with large-scale stochas-
tic optimization problems.

Simheuristics, the combination of simulation with metaheuristics, is one of these
simulation-optimization methods. Its efficiency as a method for solving different com-
binatorial optimization problems with stochastic elements has been shown in different
studies [1]. According to Juan et al. [2], this is due to its ability to evaluate solutions using
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simulation and problem-specific analytical expressions. Research related to simheuristics
has been growing in recent years as shown in Figure 1, which presents the number of arti-
cles indexed per year from the Elsevier Scopus database for the term “simheuristics”. These
results show an increasing trend in the number of publications involving simheuristics.
This trend might be related to the fact that simheuristics is a methodology designed to
better cope with the complexity of real problems when searching for the optimal solution
in environments under uncertainty, as is the case for many L&T problems [3].

Figure 1. Time evolution of Scopus-indexed documents for ‘simheuristics’ and ‘simheuristics in logis-
tics’ or ‘simheuristics in transport / transportation’ (searched as ‘transport*’ to include both terms).

The growing interest in the development of these methodologies has motivated the
appearance of literature reviews on the use of simheuristics. Hence, Juan et al. [1] compiles
all the papers published until 2017. As a complement to this review, our paper presents
a literature review on simheuristics applied to optimization problems in L&T, focusing
on the analysis of papers published after 2017. Figure 1 also shows an increasing number
of articles indexed in the Elsevier Scopus database for the search “simheuristics AND
(transport OR logistics)” in the title, abstract, and keywords of publications after 2017. In
addition, Figure 2 illustrates the main journals that have published articles indexed in
the aforementioned database. One can notice a growing interest in this methodology in
journals that belong to areas as diverse as Operations Research, Industrial Engineering,
Simulation, and Applied Sciences. All in all, this paper aims at presenting a comparative
analysis between the existing simheuritic approaches, highlighting the main problems
addressed problems and how different authors have employed simheuristics to tackle
uncertainty in L&T optimization problems.

Hence, the main contributions of this work are: (i) an extension of the traditional
concept of simheuristics, which also includes a machine learning component to enhance
the searching process and reduce computational times; (ii) a review of related works,
recently published, in solving different routing problems with stochastic components;
and (iii) a cross-problem analysis of the computational results obtained when solving the
aforementioned optimization problems, which allows us to extract common patterns on
the application of simheuristics in L&T. All these elements make this article a valuable
reference for many researchers interested in solving stochastic optimization problems in this
field. The rest of the paper is structured as follows: Section 2 contextualizes simheuristics
inside the big area of simulation-optimization. Section 3 presents the fundamentals of
simheuristics. Section 4 summarizes the applications of simheuristics before 2018 in the
L&T field. Section 5 reviews recent applications (on 2018 or after) of simheuristics in L&T.
Section 6 illustrates some numerical examples using several simheuristics approaches.
Finally, Section 7 summarizes the main conclusions of this work and open research lines.



Logistics 2022, 6, 42 3 of 15

Figure 2. Scopus-indexed articles by Journal for ‘simheuristics’ and ‘simheuristics in logistics’ or
‘simheuristics in transport / transportation’ (searched as ‘transport*’ to include both terms).

2. Simulation-Optimization and Simheuristics

Since simulation alone cannot be used to solve stochastic optimization problems with
large solution spaces, many authors have proposed the combination of simulation and
optimization methods to handle such problems [4,5]. Simulation-optimization approaches
include different optimization methods, such as mathematical programming, metaheuris-
tics, and machine learning. In addition, statistical and machine learning methods can be
used to build surrogate models based on the simulation output [6]. These models represent
analytical relations among the system variables, and can be employed to obtain estimates
of the simulation output in shorter computing times. Figueira and Almada-Lobo [4] classi-
fied simulation-optimization approaches based on the simulation usage. Thus, according
to these authors, simulation could be utilized to: (i) evaluate an objective function, or a
constraint, in a stochastic optimization problem; (ii) generate solutions for an optimiza-
tion problem; or (iii) enhance an analytical model. Excellent reviews and tutorials on
simulation-optimization approaches can be found in Fu et al. [7], Chau et al. [8], and Jian
and Henderson [9].

Hybridizing metaheuristics with simulation is becoming popular as a standard pro-
cedure to deal with stochastic optimization problems [10,11]. Glover et al. [12,13], and
April et al. [14] are among the first authors discussing the marriage of both methodologies.
These authors developed the OptQuest software (www.opttek.com/products/optquest,
last accessed on 11 May 2022), a proprietary simulation-optimization engine that is inte-
grated into several commercial simulation packages. Still, being a proprietary software, it
performs like a ‘black-box’ approach, with internal mechanisms that are not fully explained.
Following similar principles, simheuristic algorithms also combine metaheuristics with sim-
ulation. Hence, they can be classified as a subset of simulation-optimization methods and,
in particular, of simulation-based optimization procedures [14]. As it will be discussed later
in more detail, simheuristic algorithms are ‘white-box’ approaches specifically designed
to solve large-scale and NP-hard combinatorial optimization problems with stochastic
elements, which can be present in the form of stochastic objective functions or probabilistic
constraints [15]. Some reviews of simheuristics concepts and applications can be found in
Juan et al. [1] and Chica et al. [3].

www.opttek.com/products/optquest
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3. Fundamentals of Simheuristics

The development of simheuristic algorithms was motivated by the need to address
real-life optimization problems characterized by high stochasticity. Simheuristics combine
metaheuristics with simulations, such as Monte Carlo simulation (MCS), to deal with
the stochastic part of the problem. These algorithms belong to the hybrid simulation-
optimization methodology used to generate efficient solutions to combinatorial optimiza-
tion problems with random components. In the L&T field, these stochastic elements can be,
for example, random demands or random travel times and might be part of the objective
function (e.g., total travel time that depends on random travel times) or the constraints (e.g.,
probability of delivery times inside given time windows) in the optimization problems.

In real life, we face a huge variety of optimization problems, including vehicle routing
problems (VRP), facility location problems (FLP), arc routing problems (ARP), team orien-
teering problems (TOP), etc. Typically, the goal of each problem is to maximize the total
reward or to minimize the total cost associated with the activity. Figure 3 presents an illus-
trative example of the structure of each of these main optimization problems. For example,
the objective function in a VRP is usually to minimize the total cost, which is the sum of
fixed plus variable cost. In the TOP, the objective is to maximize the rewards collected by
vehicles when visiting customers. Many of the problems that arise in real-life T&L are
stochastic in nature. Thus, in a VRP, ARP, or TOP, the time a vehicle needs to travel from
one node to another might not be deterministic. On the contrary, it might be influenced
by factors like the weather conditions, traffic congestion level, etc. Besides, probabilistic
constraints might also be present in real-life problems. These challenges make the problem
troublesome. However, simheuristic algorithms allow us to provide high-quality solutions
to these problems in short computing times. A traditional mathematical formulation of
these stochastic problems is given below:

Optimize f (x) = E[F(x, T)] (1)

s.t.: P(hi(x, T) ≥ li) ≤ qi ∀i ∈ I (2)

k j(x) ≤ rj ∀j ∈ J (3)

x ∈ X (4)

In the previous expression, F(x, t) is the objective function that needs to be optimized,
x refers to a possible solution inside the solution space X, and T is a vector of random
variables. The term E[F(x, t)] represents the expected value of the objective function.
Equation (1) is the general form of the objective function in a stochastic optimization
problem. Constraints (2) represent probabilistic constrains, e.g.: the probability that a
customer is visited after a given time li > 0 is limited by a threshold qi. Constraints (3) are
the traditional deterministic constraints in any optimization problem. Finally, Equation (4)
defines the solution space.

In order to solve the aforementioned optimization problem, we can benefit from a
simheuristic approach. A schematic presentation of the simheuristic approach is shown
in Figure 4. This presentation is an extension of the approach introduced in Juan et al. [2].
The approach starts by defining the deterministic version of the optimization problem.
The stochastic problem is simplified in this definition, e.g., the random variables are
replaced by their expected values to form an associated mean-value problem [16]. This
step is based on the assumption that solutions to the deterministic problem might be
promising solutions to the stochastic problem under low and medium uncertainty. Hence,
for instance, a solution that minimizes total travel time in the deterministic VRP is likely
to be a good-quality solution (in terms of expected travel time) if just a small uncertainty
level is introduced into the VRP. Thus, solution x is associated with a deterministic value,
det(x), for the deterministic version of the problem, and with a stochastic value, stoch(x),
for the stochastic version. The stoch(x) value can be estimated using simulation. Notice,
however, that the relationship between det(x) and stoch(x) does not imply the existence
of a perfect correlation, especially as the uncertainty level increases. Thus, solution x1
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could be better than solution x2 in terms of deterministic conditions, but solution x2
could be better than solution x1 under stochastic conditions. Accordingly, the relation
between their associated values could be presented as det(x1) ≤ stoch(x2) ≤ stoch(x1) in
a minimization problem and stoch(x1) ≤ stoch(x2) ≤ det(x1) in a maximization problem.
The deterministic values present the lower and upper bounds for the stochastic values in
the minimization and maximization problems, respectively. Notice also that for large levels
of uncertainty, the performance of the solution is too variable to make decisions based on
its expected value alone.

Figure 3. Illustrative examples of the main addressed problems with simheuristics in L&T.

After simplifying the stochastic optimization problem, the first stage of the simheuristic
approach starts (Figure 4). A metaheuristic algorithm is responsible for exploring the
solution space and generating solutions to the deterministic problem. First, each generated
solution x∗ is examined to identify whether it is a promising solution or not. In the first
case, the solution is assessed using simulation to estimate its stochastic value, stoch(x∗).
This value is not limited to the average: it could represent the variance, percentiles, and
useful probabilistic information required to compute the reliability of solutions. In this
stage, the number of simulation runs is limited, and several techniques could be utilized to
speed up the simulation runs, such as techniques presented in Rabe et al. [17] and Fippel
and Brainlab [18]. The simulation output is used to: (i) estimate the stochastic performance
of solutions; and (ii) update the machine learning component that is added to the approach.
Moreover, the machine learning component utilizes the simulation output to: (i) update
the parameters of the metaheuristic algorithm to enhance the solution space search for
promising solutions under stochastic conditions; (ii) build a prediction model to identify
promising solutions and, hence, reduce simulation time; and (iii) develop a surrogate model
that can estimate the value of a stochastic objective function or probabilistic constraints for
solutions found by the metaheuristic algorithm.
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Figure 4. Simulation–optimization approach schema with a machine learning component.

The first stage ends when the maximum allowed time for the stage is reached, and
an elite list of solutions is passed to the second stage. This elite list contains solutions
with relatively good performance under stochastic conditions. In the second stage, the
solutions in the elite list are investigated intensively using a more significant number of
simulation runs compared to the investigation in the first stage. The last stage utilizes the
simulation output for risk and reliability analysis. The output of this analysis is passed to
decision-makers to support them in selecting solutions and, hence, enhance the decision-
making process.

4. Initial Works on Simheuristics in L&T

As a solving methodology, simheuristics has succeeded to make pervasive contribu-
tions in different fields, such as manufacturing, production, healthcare, transportation,
logistics, supply chain management, and so on. In this article, however, we focus in
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the applications of simheuristics in the L&T field. In particular, this section reviews the
simheuristics papers published before 2018. Table 1 summarizes these contributions, mainly
the ones indexed in the Elsevier Scopus database.

Table 1. Main simheuristics publications in L&T indexed in Scopus before 2018.

Paper Considered Problem Solving Approach Remarks

Juan et al. [19] VRP with stochastic
demand

Metaheuristics and
MCS

considering a safety stock for vehicles capacity,
and transform the VRPSD instance to a limited set
of CVRP instances

Juan et al. [20] VRP with stochastic
demand

Metaheuristics and
MCS

using parallel and distributed computing systems,
considering a safety stock for vehicles capacity

Juan et al. [21] stochastic inventory-
routing problems simheuristics considering a set of alternative refill policies for

each retail center and safety stock
Gruler et al. [22] VRP simheuristics waste collection problem in smart cities

Gruler et al. [23] multi-depot VRP

simheuristics (biased
randomization
techniques,
metaheuristics,
and MCS)

multi-depot stochastic waste collection problem,
uncertain demand for waste

Grasas et al. [24] VRP, ARP, FLP, PFSP biased randomized
procedures (BRPs)

using BRPs based on the use of skewed theoretical
probability distributions

Jesica et al. [25] stochastic
uncapacitated FLP simheuristics considering the uncertainty on the service costs

Quintero-Araujo et al. [26] VRP simheuristics using horizontal collaboration strategies

Quintero-Araujo et al. [27] multi-depot VRP simheuristics discussing the benefits of horizontal cooperation in
transportation activities

Gonzalez-Martin et al. [28] VRP and ARP simheuristics -

Quintero-Araújo et al. [29] multi-depot VRP simheuristics evaluating the impact of horizontal cooperation,
using safty stock for demand

Calvet et al. [30] rich VRP simheuristics -

The combination of simulation and optimization has received a lot of attention from
researchers. In the beginning, there was not a strong link between these two parts, but over
time this connection became stronger when the researchers figured out that the solutions
improved significantly when they apply simulation and optimization in an integrated
way [2]. One of the initial works, Jung et al. [31] addresses the demand uncertainty by using
a simulation-based optimization method. This work proposes a framework to determine
the safety stock level in planning and scheduling applications in supply chains. Since the
demand is considered an uncertain parameter, MCS is employed in the presence of other
uncertain parameters, such as delivery times and production delays. The main limitation of
this work is the long time that is required to address problems. Thus, the approach cannot
support different tactical analyses with the abundant information provided by simulation.
In another work, Wan et al. [32] propose a simulation-based optimization framework for
analyzing a supply chain under uncertainty. This framework employs a surrogate model,
together with domain reduction and incremental sampling, to capture the relation between
decision variables and supply chain performance. They apply the proposed approach to
optimize base stocks for a three-stage supply chain.

As one of the first simheuristics, Juan et al. [19] propose a flexible simulation method-
ology for the VRP with stochastic demands. A simplified VRP model is shown in Figure 3.
In this work, the authors consider the VRPSD as a limited set of capacitated VRP (CVRP) by
assigning different values to the safety stock level for each problem. Considering a safety
stocks helps to reserve a part of the load capacity of the vehicles to deal with unexpected
customers with high demands. Hence, the chance of route failure decreases significantly.
However, employing safety stock increases the fixed cost in the problem. They applied
metaheuristics to solve the CVRP and then a MCS to estimate the expected total costs of
different routes obtained. In another research, Juan et al. [20] discuss how parallel and dis-
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tributed computing systems can be employed to solve the VRPSD efficiently. Using parallel
and distributed computing systems decreases the computation time to solve the problem
and shows that a near-optimal solution can be obtained in just a few seconds. In this work,
safety stock for vehicle capacities is considered to deal with high customer demands and
prevent route failure. For each safety stock level, a different scenario is defined for the
problem, and they are solved by integrating MCS inside the heuristics process.

Juan et al. [21] propose simheuristics for solving stochastic inventory-routing problems.
The goal is to define a routing plan that minimizes the expected total cost of the inventory
and routing in a network. This work has two main contributions: first, the methodology
can consider personalized refill policies for each retail center, which decreases the total cost
significantly compared to other solution approaches; and secondly, the solving approach
uses no probability distribution function for the random demand of each retail center. Later,
Quintero-Araujo et al. [26] apply horizontal collaboration strategies, which are based on
the collaboration of different supply chain sections in urban areas, to analyze the cost
reduction in the urban transportation model under uncertainty. They define two scenarios:
collaborative and non-collaborative. The first one is considered as one multi-depot VRP, and
the other one is modeled as a series of vehicle routing problems. They apply simheuristics
based on local search, biased-randomized, and MCS techniques.

Real transportation and logistic problems are characterized by high uncertainty. For
example, a smart city problem consists of many random variables. Therefore, applying
a deterministic model to solve this problem is unpractical. In this case, Gruler et al. [22]
discuss the need for a solution method to consider the waste collection problem in smart
cities. They define a deterministic waste collection problem and developed metaheuristics
based on a variable neighborhood search framework. Then, they extend the problem to
a stochastic version and develop simheuristics for solving it. Their results include a risk
analysis considering the variance of the waste level and vehicle safety capacities. In another
work, Gruler et al. [23] discuss a multi-depot stochastic waste collection problem with co-
operation among vehicles from different depots. In this problem, the demand for collecting
waste is considered as a random variable, and a clustered urban area (in the case of a real
metropolitan area) is considered. They used a hybrid algorithm combining metaheuristics
with simulation. This combination consists of biased-randomization techniques, meta-
heuristics, and MCS. Jesica et al. [25] studied the stochastic uncapacitated facility location
problem (UFLP), where the service costs are assumed to be random. A simplified facility
location problem is illustrated in Figure 3. They apply the simheuristics methodology to
solve this problem. First, they use fast saving-based heuristics to obtain the deterministic
optimal values and decrease the high computational solving times. Then, they apply
simheuristics by combining a metaheuristic with MCS techniques. In the end, the results
show that simheuristics can provide optimal solutions in very short computation times.

Working with simheuristics has started in the past decade to find the best solution
in problems with uncertainty. It has become a powerful alternative to the use of other
stochastic methodologies, such as stochastic programming, fuzzy programming, dynamic
programming, etc. [4].

5. Recent Works on Simheuristics in L&T

After defining the simheuristic approach and utilizing it in solving various problems,
including combinatorial optimization problems such as the ones in Figure 3, researchers
extended their interest in exploring a variety of new problems. Table 2 summarizes some
contributions utilizing simheuristics in transportation or logistics; most of these contribu-
tions are indexed in the Scopus database after 2018. As explained in Section 4, commonly
solved optimization problems are vehicle/arc routing/orienteering problems. Additional
constraints were added to these problems to form new variants that present real-world
cases that are difficult to solve by employing traditional approaches.
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Table 2. Summary of published papers in Elsevier Scupos database since 2018 applying simheuristics
in logistics or transportation.

Paper Considered Problem Solving Approach Remarks

Peng et al. [33] multi-objective route
optimization problem MCS and NSGA-II introduce data driven strategy to reduce

computation time and considered risk assessment
de León et al. [34] maritime logistics NSGA-II combine deterministic and stochastic objectives

Latorre-Biel et al. [35] vehicle routing
problem

machine learning and
petri nets correlated demands were considered

Rabe et al. [36] team orienteering
problem

biased randomized
simheuristics

case study associated with the distribution of
medical supplied during COVID-19 pandemic

Juan et al. [37] team orienteering
problem

genetic algorithm
and MCS

applied to the coordeination of unmanned aerial
vehicles

Martínez-Reyes et al. [38] Location Routing
Problem

Iterated Local Search
algorithm with MCS

distribution of medical supplies (Personal
Protective Equipment)

Ramirez-Villamil et al. [39] two-echelon vehicle
routing problem simheuristics case study of a delivery company and consider the

CO2 emission

Ghorpade and Corlu [40] selective pick-up and
delivery problem

GRASP metaheuristic
with MCS variant of traveling salesman problem

Ramírez-Villamil et al. [41] two-echelon vehicle
routing problem simheuristics used real data from Bogota, Columbia

Yazdani et al. [42] evacuation simheuristics opposition-based learning concept was developed

Raba et al. [43] animal feed supply
chain

biased-
randomization
techniques with a
simheuristic

propose the combination of internet of things and
simheuristics

Onggo et al. [44] inventory routing
problem

MCS within an
iterated local search

agri-food supply chain with a single fresh food
supplier

Calvet et al. [45] multidepot vehicle
routing problem

MCS with a
metaheuristic
algorithm

a variant of capacitated vehicle routing problem

Estrada-Moreno et al. [46] multi-depot vehicle
routing problem

simulation within a
biased-randomized
heuristic

consider weather dependent probability
distribution of traveling times

Souravlias et al. [47] Quay crane
scheduling

Iterated Local Search
with Monte Carlo
Sampling

assumed productivity rates due to the effect of the
offshore wind

Reyes-Rubiano et al. [48] vehicle routing
problem

MCS with a
multi-start
metaheuristic, which
also employs biased-
randomization
techniques

considered limited driving-range capacity of
electrical vehicles

Rabe et al. [49]
a multi-period
capacitated facility
location problem

hybrid modeling
approach

in the approach, system dynamics, a heuristic to
solve facility location problem, and MCS are
combined

Zhou et al. [50] maritime logistics a review of simulation and optimization
applications in maritime logsitics

Gök et al. [51] scheduling problem
vehicle routing
problem with time
window

Scheduling aircraft turnarounds at airports

For example, researchers solved variants of routing problems, such as the multi-depot
vehicle routing problem. In this variant, customers are served by limited capacity vehicles
departing from different depots. Calvet et al. [45] solved the stochastic demands version of
the problem. The two-dimensional vehicle routing problem (2L-VRP) is another variant of
the VRP, and the stochastic version was solved by Guimarans et al. [52]. Problems solved
using simheuristics are not limited to routing problems. They also include challenges such
as the berth allocation problem concerning fining berthing position and time of vessels that
arrive at a port [34]. Green logistics and the utilization of autonomous driving vehicles
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gain importance in the study of smart cities. Thus, researchers have defined problems
in the context of smart cities. For example, Reyes-Rubiano et al. [48] solved the vehicle
routing problem in which vehicles are electric. Thus, a limited driving range was added as
an additional constraint to the traditional VRP, and the driving range of an electric vehicle
and the travel time are considered stochastic.

As Table 2 shows, a variety of real-world case studies were solved using a simheuristic
approach. For example, Onggo et al. [44] solved the perishable inventory routing problem
with stochastic demand. In this problem, fresh food is stored and distributed, while
the objective function minimizes costs. They used MCS to handle the stochasticity, and
combined MCS with iterated local search. Another example is the case study of distributing
medical supplies during COVID-19 pandemic [36]. Simheuristics usage was extended
to form a base in decision support systems, such as ones developed by Rabe et al. [53].
These systems are designed to recommend promising solutions for real-world optimization
problems. Thus, these systems need to handle complex optimization problems, including
uncertainty.

Different types of uncertainty were defined and introduced to optimization problems.
Researchers utilized simheuristics to handle stochastic uncertainty in optimization prob-
lems. Currently, the simheuristics concept is extended to solve optimization problems
considering fuzzy uncertainty. For example, Tordecilla et al. [54] introduced a fuzzy layer to
combine simulation, metaheuristics, and fuzzy logic to handle fuzzy uncertainty of travel
times and customers’ demands. Another type of uncertainty in problem characteristics
might be modeled as a correlation between different problem elements. For example,
Latorre-Biel et al. [35] considered stochastic and correlated customer demand in the vehicle
routing problem, and used simheuristics to solve the VRP.

Simulation is an expensive tool to be used in optimization problems. Thus, approaches
are defined to utilize simulation when it is needed to reduce total computation time and still
get promising solutions. Rabe et al. [17] discussed several concepts concerning the number
of simulation runs and their need. Even though they based their work on a manufacturing
system, similar approaches could be considered in transportation and logistics. Speeding
up simheuristics is an important issue in real-world cases. Decisions are made in a short
time or instantaneously. Therefore, recommended solutions to optimization problems are
required within a few seconds. In another work, Muravev et al. [55] use a stochastic
two-stage optimization problem to model intermodal terminal main parameters, which is
also called dry port. They apply an agent-based system dynamics simulation model and
show that the combination of agent-based models with the simulation approaches improves
the solutions significantly, and also helps the decision-making process associated with the
selection of strategic facility planning in intermodal terminals. In the end, they consider
a case study on Yiwu dry port. The results show that the model tries to minimize the
costs by reducing the total distance despite increasing traffic flows. Finally, Sibul et al. [56]
analyze the navigation along the Northern Sea route considering ice conditions and weather
changes. The main objective of this work minimizes the costs despite the decreasing speed
of the sailings due to the severe weather conditions. They create a path-finding algorithm
to connect the shipping operational parameters with the environmental conditions and
used available environment data to test the algorithm.

6. Cross-Problem Analysis of Computational Results

This section presents the results obtained with simheuristics in different works avail-
able in the literature, where well-known transport optimization problems under uncertainty
conditions are solved. Table 3 lists the seven selected L&T problems and the references used
to collect the computational results, while Table 4 presents the solution values reported
by the different authors for the listed problems. The first column identifies the reference
where the solution values have been gathered, while the second column identifies the prob-
lem. Subsequently, the next three columns report their optimal/near-optimal deterministic
solution (OBD), the solution obtained when their deterministic solution is evaluated in a
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stochastic scenario (OBD-S), and their solution provided by the simheuristic (OBS), respec-
tively. Finally, the last two columns show the percentage gaps of the deterministic solution
(OBD) with respect to the stochastic solutions (OBD-S and OBS).

Table 3. Selected transportation problems.

Problem Acronym Reference

Time Capacitated Arc Routing Problem with Stochastic Demands TCARPSD [57]
Arc Routing Problem with Stochastic Demands ARPSD [58]
Stochastic Team Orienteering Problem STOP [59]
Two-dimensional VRP with Stochastic Travel Times 2L-VRPST [52]
Electric VRP with Stochastic travel Times EVRPST [48]
Capacitated Location Routing Problem with Stochastic Demands CLRPSD [60]
VRP with Stochastic Demands VRPSD [19]

Table 4. Information on the selected transportation problems.

Reference Problem OBD [1] OBD-S [2] OBS [3] GAP [1–2] GAP [1–3]

Keenan et al. [57] TCARPSD 3473.0 5014.0 4770.0 44.37% 37.35%
Gonzalez-Martin et al. [58] ARPSD 5412.7 6223.0 5669.2 14.97% 4.74%
Panadero et al. [59] STOP 528.2 359.1 468.8 32.02% 11.26%
Guimarans et al. [52] 2L-VRPST 1549.2 1874.6 1825.6 21.00% 17.84%
Reyes-Rubiano et al. [48] EVRPST 16,490.1 19,995.7 19,339.9 21.26% 17.28%
Quintero-Araujo et al. [60] CLRPSD 98,587.0 112,464.3 111,545.9 14.08% 13.14%
Juan et al. [19] VRPSD 816.8 930.3 859.2 13.90% 5.20%

The gaps between the different solutions for the analyzed works are presented in
Figure 5, where the y-axis represents the gap between the value of the stochastic solutions
with respect to the OBD. This value is considered as a lower bound and is used as a
reference in a scenario with perfect information of a stochastic optimization problem, while
the stochastic value OBD-S could be considered as an upper bound to the optimal stochastic
solution. Thus, the solution generated by a simheuristic algorithm (OBS) lies between these
two bounds.

Figure 5. Gaps between OBS and OBD-S with respect to OBD (baseline 0% gap).
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According to the results, the solutions provided by the simheuristic (OBS) outperform
the best deterministic solutions when they are used in a stochastic scenario in the analyzed
problems. However, the particular problem under study and its associated uncertainty
influence the difference obtained between OBD and OBD-S. The numerical analyses have
shown that the optimal or near-optimal solutions for the deterministic version of the
problem are sub-optimal solutions when performed in real scenarios under uncertainty.
Thus, in real problems, deterministic solutions (OBD) generate inefficient solutions when
making decisions, which impacts the costs of the companies. In general, costs increase as the
level of uncertainty increases. This requires the implementation of hybrid methodologies,
which integrate simulation with metaheuristics when solving stochastic optimization
problems.

7. Conclusions and Future Work

This paper has reviewed the concept of simheuristics, which hybridizes simulation
with metaheuristic algorithms with the purpose of solving stochastic optimization problems.
The manuscript also explains why this optimization approach can be effective when solving
NP-hard and large-scale combinatorial optimization problems under uncertainty scenarios,
as they frequently appear in real-life applications in L&T activities. The way in which
the different simheuristic components interact has been also discussed, putting a special
emphasis in the different stages that can contribute to make the approach more efficient
from a computational perspective.

Recent applications of simheuristics in L&T have also been commented on, and a
numerical summary of previous works illustrating the capabilities of simheuristics to
provide high-quality solutions to different stochastic problems in the field is also provided.

There are several lines of research that are still open in the field of simheuristics;
among them we can highlight the following ones: (i) the introduction of more advanced
machine learning methods–especially those based on supervised learning and reinforce-
ment learning–that enrich the feedback provided by the simulation component to the
metaheuristic one, which allow for an accurate classification of promising solutions, and ex-
pedite the buildup of surrogate models that can speed up computations even further; (ii) the
efficient and easy integration of metaheuristic code developed with modern programming
languages with commercial simulators like FlexSim, which currently supports a friendly
interaction with Python; and (iii) the extension of simheuristics into fuzzy simheuristics,
which allow us to consider non-stochastic as well as stochastic uncertainty, as illustrated in
Tordecilla et al. [54].
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