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Abstract

Many decision-making processes in our society involve NP-hard optimization problems. The large-

scale, dynamism, and uncertainty of these problems constrain the potential use of stand-alone

optimization methods. The same applies for isolated simulation models, which do not have the po-

tential to find optimal solutions in a combinatorial environment. This paper discusses the utilization

of modelling and solving approaches based on the integration of simulation with metaheuristics.

These ‘simheuristic’ algorithms, which constitute a natural extension of both metaheuristics and

simulation techniques, should be used as a ‘first-resort’ method when addressing large-scale

and NP-hard optimization problems under uncertainty –which is a frequent case in real-life ap-

plications. We outline the benefits and limitations of simheuristic algorithms, provide numerical

experiments that validate our arguments, review some recent publications, and outline the best

practices to consider during their design and implementation stages.
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1 Introduction

Decision makers in areas such as transportation, logistics, supply-chain management,

health care, production, telecommunication systems, and finance have to face complex

challenges when tackling optimization problems in real-world applications. Most of

these optimization problems are NP-hard, while others have a lack of complete informa-

tion that makes their exact definition or formulation quite challenging if not impossible.

These facts limit the use of exact optimization methods to small- and medium-sized
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instances, in which the optimal values can be obtained in reasonable computing times.

Moreover, traditional optimization methods might require the use of simplifying as-

sumptions, which do not always reflect the actual system characteristics in a proper

manner. Driven by economic and technological factors, real-world systems are becom-

ing increasingly large and complex. Among these factors, we could include trends such

as globalization, increased computing power, information technologies, as well as the

availability of vast amounts of data (Xu et al., 2015).

Metaheuristic algorithms have gained popularity as a predominant approach for solv-

ing real-world optimization problems (Dokeroglu et al., 2019). These algorithms are

able to deal with non-trivial objective functions (e.g., multi-objective, non-convex, non-

smooth, and noisy functions), soft constraints, and decision variables of different nature.

Metaheuristics allow decision makers to obtain near-optimal solutions to large and com-

plex problems in reasonably low computing times, sometimes even in real time (e.g., a

few seconds). Therefore, they have become effective methodologies in application areas

where optimization of system resources is needed. In addition, approaches hybridiz-

ing exact methods with metaheuristics are also widely used. For instance, matheuristics

(Boschetti et al., 2009) combine both approaches to get the best from each of them.

Typically, they employ the metaheuristic component to deal with the large global prob-

lem, while the exact component is used to cope with specific parts of it (Fischetti and

Fischetti, 2018). Nonetheless, both exact optimization methods and metaheuristics fre-

quently assume that the problem inputs, the underlying objective functions, and the set

of optimization constraints are deterministic or follow simple probabilistic rules. These

are strong assumptions and, as a consequence, many deterministic models are over-

simplified versions of real-world systems. Coping with the inherent uncertainty of the

systems to optimize during problem solving has recently gained relevance (Keith and

Ahner, 2019). For instance, robust approaches for metaheuristics have been proposed

to handle such uncertainty (Beyer and Sendhoff, 2007). Most of these approaches are

extensions of exact optimization models, and they can be classified as deterministic (i.e.,

based on a set of plausible scenarios), probabilistic (i.e., assuming a given probabilistic

function), or possibilistic (i.e., fuzzy-interval measures).

Simulation can be understood as the process of model ‘execution’ that takes a model

through its evolution over time. This evolution can produce changes in the system state

or not (stationary system). In addition, these changes can occur discretely or continu-

ously through time. In discrete simulation, the event-oriented view works with the logic

occurring at the instantaneous discrete events themselves, rather than with entities and

resources (Wainer, 2017). However, the process-oriented world-view describes how en-

tities move through various processes, where each process may require one or more

resources and takes a certain (usually stochastic) amount of time (Couture et al., 2018).

Simulation allows us to represent the real system in detail and can maintain better con-

trol over experimental conditions than by experimenting with the real system itself. A

simulation model can be defined as a set of rules (e.g., equations, flowcharts, or state

machines) that define how the system evolve in the future and how uncertain the system
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is at its present state. A valid simulation model might be able to capture the existing

complex reality in a realistic and precise way. A well validated simulation should be

one of the preferred approaches to employ when modelling uncertainty in real-world

complex optimization problems. As Lucas et al. (2015) noted, “simulation is now an

option that should be, in many ways, regarded as the method of choice for analysing

complex systems in the face of astounding advances in affordable processing power,

modelling paradigms and tools, and supporting analysis capabilities”. Still, stand-alone

simulation methods show limitations when dealing with optimization problems of com-

binatorial nature, since a classical simulation approach does not incorporate efficient

search methods to explore vast solution spaces.

Hence, both simulation-optimization (Fu, 2015) and simulation-based optimization

(Gosavi, 2015) methods can provide practitioners with a flexible and rich tool when

dealing with optimization problems in uncertain domains. In particular, we focus here

on a subset of these methods that uses metaheuristics for the optimization compo-

nent. When properly designed, these ‘simheuristics’ are capable of solving NP-hard and

stochastic optimization problems where the simulation component copes with the uncer-

tainty of the system and interacts with the metaheuristic component (Juan et al., 2018).

The latter component, in turn, searches the solution space for a near-optimal result. In the

past, some optimization problems have been solved by using simulation to evaluate the

quality of solutions in engineering. Notice, however, that simheuristic algorithms go one

step beyond in the sense that: (i) the feedback from the simulation should also be used to

guide the metaheuristic search process itself; and (ii) all the information provided by the

simulation component for a solution to the stochastic optimization problem (stochastic

solution) allows considering a risk / reliability analysis; then, this analysis can be used to

assess alternative stochastic solutions to the stochastic optimization problem. All these

characteristics, plus the fact that integration of simulation techniques with metaheuristic

algorithms is relatively simple, make simheuristics a ‘first-resort’ method when dealing

with real-world optimization problems under uncertainty conditions. In this paper, we

analyse some of the advantages of using simheuristics over traditional methods, as well

as some of their limitations. Advantages range from a better understanding of the sys-

tem behaviour to the use of the generated information through the different simheuristic

stages. For example, visualization, machine learning, and sensitivity analysis can be eas-

ily used to obtain richer information about the optimization process. We also describe

how this combination of metaheuristics and simulation can be carried out to build a suc-

cessful simheuristic. Several construction guidelines are given to help researchers and

practitioners reach their goals. Thus, for instance, validation and stakeholders’ discus-

sion of the simulation model used within the simheuristic design and testing stages are

encouraged. As simulation can tolerate far less restrictive modelling assumptions, even

simple simulations must be correctly validated (Chica et al., 2017) and agreed to by as

many decision makers as possible in order to lead to better decisions (Voinov and Bous-

quet, 2010). These guidelines promote the use of different stages to avoid jeopardizing

the optimization process itself, thus obtain the best possible results with reduced com-
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puting times. The paper also includes some computational experiments that contribute

to support our claims, as well as a number of references to recent publications with addi-

tional numerical results. These ‘auxiliary’ references show applications of simheuristics

to different fields.

The rest of the paper is structured as follows: Section 2 provides a short overview

of metaheuristic algorithms. Section 3 discusses how uncertainty has been traditionally

addressed in optimization problems. Section 4 analyses the basic concepts behind a

simheuristic approach. Section 5 reviews previous simheuristic applications in terms

of their constituent components and general results. Section 6 lists the most important

advantages of using simheuristics, while Section 7 studies their main limitations and

how they can be partially overcome. Section 8 provides some guidelines that can be

useful during the design and implementation stages of a simheuristic algorithm. Finally,

concluding remarks are provided in Section 9.

2 An overview on metaheuristic optimization

According to Glover and Kochenberger (2006), metaheuristics can be defined as “an

iterative process that guides the operation of one or more subordinate heuristics (which

may be from a local search process to a constructive process of random solutions) to

efficiently produce quality solutions for a problem”. Metaheuristics are a family of ap-

proximate non-linear optimization techniques that provide acceptable solutions (typ-

ically near-optimal ones), in a reasonable amount of time, for solving computation-

ally hard and complex problems in science, engineering, and other fields. Unlike exact

optimization algorithms, metaheuristics do not guarantee provably optimal solutions.

However, for many large-scale real-world problems, metaheuristics might be preferred

over gradient-based methods or mathematical programming (Singh and Jana, 2017). The

same is true in the case of optimization problems with non-smooth objective functions

(Juan et al., 2020). There are also effective gradient-based methods, like the simulta-

neous perturbation stochastic approximation one (Spall, 2005). These methods are suit-

able for adaptive modelling and optimization under uncertainty (Bhatnagar et al., 2003)

and control optimization (Li, Jafarpour and Mohammad-Khaninezhad, 2013). However,

these methods show limitations in the presence of non-smooth objective functions (like

the ones due to the existence of realistic soft constraints), where gradients cannot be eas-

ily computed. Metaheuristics, on the other hand, are derivative-free optimization meth-

ods.

Metaheuristics can be classified according to various characteristics (Talbi, 2009):

nature-inspired vs. not nature-inspired, deterministic vs. stochastic, population-based

vs. single-solution, iterative vs. greedy, etc. Another issue to be taken into account when

selecting a metaheuristic is its exploration versus exploitation capabilities. This concept

is usually linked to different sub-families. Thus, while single-solution-based algorithms

manipulate and transform a single solution during the search (high intensification),
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population-based algorithms evolve a whole population of solutions (high diversifica-

tion). Single-solution-based metaheuristics could be viewed as ‘walks’ through neigh-

bourhoods or search trajectories across the search space of the problem at hand. They

are performed by iterative procedures that move from the current solution to another one

based on local search methods. Among others, some of the most prominent metaheuris-

tics of this sub-family are: tabu search (Glover and Laguna, 2013), simulated anneal-

ing (Kirkpatrick, Gelatt and Vecchi, 1983), variable neighbourhood search (Hansen,

Mladenovic and Moreno, 2010), the greedy randomized adaptive search procedure, or

GRASP (Feo and Resende, 1995), and iterated local search (Lourenço, Martin and

Stutzle, 2010). Within the set of population-based metaheuristics, evolutionary algo-

rithms and, in particular, genetic algorithms are frequently used in many engineer-

ing and production problems (Lee, 2018). There are many other algorithms that are

based on handling a set of solutions at every iteration. These are ant-colony optimiza-

tion (Dorigo and Stützle, 2004), particle-swarm optimization (Kennedy, 2010), scatter

search (Laguna and Marti, 2012), and estimation of distribution algorithms (Larranaga

and Lozano, 2002), among others. Finally, memetic algorithms (Moscato and Math-

ieson, 2019) can be seen as a marriage between population-based metaheuristics and

single-solution metaheuristics. A recent and complete review on metaheuristics can be

found in Hussain et al. (2019).

3 Handling with uncertainty in optimization problems

The traditional formulation of optimization problems is inherently static and determinis-

tic. However, reality is dynamic and uncertain: environmental parameters fluctuate, ma-

terials wear down, processing or transportation times vary, clients change their demands,

etc. (Beyer and Sendhoff, 2007). When uncertainty is absent from the optimization for-

mulation, the optimized solutions for those systems may be unstable and sensitive to

small changes in the input parameters. A traditional way to tackle this uncertainty in op-

timization is by providing a high degree of robustness in the solutions. In optimization

problems, robust solutions are those that remain relatively unchanged when exposed to

uncertainty. Thus, a robust solution can be seen as one which is less sensitive to the

perturbation of their environmental or operating conditions, uncertainties in the model

outputs, and / or imprecision when measuring the decision variables. Strictly speaking,

robust solutions are guaranteed to remain insensitive to changes in the system –at least

within a certain range. Recoverable robustness requires that a solution is recoverable in

all outcomes. Beyond these definitions, there are more relaxed and attainable degrees

of robustness. In general, a robust solution possesses some specified minimum level of

reliability or performance level over all outcomes and eventualities (Faulin et al., 2008).

Taguchi (1989) envisioned a three-stage design methodology for robust optimization:

the system, parameters, and tolerance designs. In Taguchi’s method, there are two main

classes of optimization parameters: (i) controllable parameters x that are to be tuned;
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and (ii) uncontrollable noise factors ξ, such as environmental conditions or production

tolerances. In a real-world system, an optimal design has to face different types of ro-

bustness depending on the source of uncertainties on the latter parameters: changing en-

vironmental and operating conditions, production tolerances and actuator imprecision,

uncertainties in the system output, and feasibility uncertainty. These types of uncer-

tainties are usually handled by optimization methods in three different ways (Beyer and

Sendhoff, 2007): deterministic, probabilistic, and possibilistic. A common approach fol-

lowed in robust optimization is to consider the worst-case scenario. However, this is a

conservative approach since it can result in poor optimization performance, and even in

a solution that is useless in reality. Another methodology is to consider a predefined set

of deterministic scenarios, where some of the parameters of the problem are uncertain

or depend upon future actions (Chica et al., 2016). As an extension of this approach, an

associated probability distribution could be assigned to each of these potential scenar-

ios. Also, the search for optimal robust designs often appears as a multi-criteria decision

problem, e.g.: while optimizing a conditional expectation and a large dispersion or vari-

ance. In all these cases there is a trade-off between maximal expected performance and

variance. For example, one proposal along these lines is the multi-objective six sigma of

Shimoyama, Oyama and Fujii (2005), who define robustness as “stability of the system

against uncertainty”.

Simulation-optimization methods in general (Fu, 2002), and simulation-based op-

timization in particular (Gosavi, 2015) constitute an excellent choice to deal with op-

timization problems with stochastic components. Modern computing hardware, mod-

elling paradigms, and advanced simulation software have together made these approaches

the methods of choice that can produce results to complex stochastic problems, which

cannot be easily and efficiently addressed using more traditional methodologies. Sim-

ulation optimization has benefited from the development of both general computing,

metaheuristics, stochastic programming, and simulation-specific modelling paradigms.

Thus, simulation-optimization methods –which include simulation-based optimization

and simheuristics, among others– might be an excellent choice when solving complex

problems where time dynamics and uncertainty are important. Simheuristics (Juan et al.,

2018) can be seen as a particular type of simulation-based optimization. Combining

metaheuristics with simulation models is becoming popular as an effective procedure

to deal with complex combinatorial optimization problems. To the best of our knowl-

edge, it was with the work of Glover, Kelly and Laguna (1996, 1999) and April et al.

(2003) where this combination was popularized. These authors were the promoters of

OptQuest, a ‘black-box’ optimum-seeking software product that is currently integrated

into several commercial simulation-modelling packages. By using this commercial soft-

ware in concert with simulation-modelling packages, a stochastic simulation model is

developed for a given system. Then, the input parameters of interest are changed in an

attempt to optimize a designated output performance metric (Kleijnen and Wan, 2007).

To end this section, one should mention other approaches that are also used to deal

with stochastic optimization problems. One of the most popular is stochastic program-
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ming (Prékopa, 2013). Stochastic programming integrates uncertainty consideration in

mathematical programming models. This approach might be highly efficient when con-

sidering multi-stage decision processes with a reduced number of possible scenarios at

each stage. However, it might also have scalability issues as the number of scenarios

and stages grows. The literature on stochastic programming is quite huge, so the in-

terested reader is referred to Ruszczyński and Shapiro (2003) for a nice overview of

stochastic programming models. Similarly, stochastic Petri nets (Tigane, Kahloul and

Bourekkache, 2017) provide a powerful set of building blocks for specifying the state-

transition mechanism and event-scheduling mechanism of a discrete-event stochastic

system. These nets are well suited to represent concurrency, synchronization, prece-

dence, and priority phenomena. As such, they have been used in optimization problems

under uncertainty scenarios (Melani et al., 2019). Finally, chaos theory allows analysing

patterns of outcomes over time that evolve according to a deterministic equation, with

these outcomes being extremely sensitive to the initial conditions. This paradigm allows

for the modelling of events that are unexpected, i.e.: ‘black swan’ events (Taleb and

Swan, 2008). Chaos theory can be combined with optimization techniques to address

stochastic optimization problems (Anter and Ali, 2020).

4 The simheuristic approach

As discussed in Hubscher-Younger et al. (2012), it is not always possible to apply a

simulation-optimization software directly out of the box. Instead, it needs to be adapted

to the specific characteristics of the problem. Thus, researchers in the optimization com-

munity proposed more flexible and ‘white-box’ approaches. Basically, simheuristics

make use of a simulation paradigm to extend existing and efficient metaheuristics. As

metaheuristics are primarily designed to cope with deterministic problems, simheuris-

tics can be seen as a metaheuristic extension to be employed when solving optimization

problems under uncertainty. This simheuristics approach can be considered a subset of

the simulation-for-optimization paradigm. For example, Andradóttir (2006) elaborates

on the subject of simulation-based optimization methods, providing a survey on opti-

mization add-ons for discrete-event simulation software. As pointed out by Figueira and

Almada-Lobo (2014), simulation-optimization methods are designed to combine the

best of both approaches in order to deal with: (i) optimization problems with stochastic

components; and (ii) simulation models with optimization requirements. Among these

simulation-optimization methods, the combination of simulation with metaheuristics is

a promising approach for solving stochastic optimization problems that are frequently

encountered by decision makers in the aforementioned industrial sectors (Glover et al.,

1996, 1999). A discussion on how random search can be incorporated in simulation-

optimization approaches is provided in Andradóttir (2006), while reviews and tutorials

on simulation-optimization can be found in Chau et al. (2014) and Jian and Hender-

son (2015). Likewise, simheuristics can be seen as a specialized case of simulation-
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based optimization (April et al., 2003). Hybridization of simulation techniques with

metaheuristics allows us to consider stochastic variables in the objective function of the

optimization problem, as well as probabilistic constraints in its mathematical formula-

tion. Hence, a simheuristic algorithm contains a particular simulation for an optimiza-

tion approach, and it is oriented efficiently to tackle an optimization problem involving

stochastic components. These stochastic components can be either located in the ob-

jective function (e.g., random customers’ demands, random processing times, etc.) or

in the set of constraints (e.g., customers’ demands that must be satisfied with a given

probability, deadlines that must be met with a given probability, etc.). Therefore, most

of the metaheuristic frameworks can be easily extended to simheuristics, as discussed in

Ferone et al. (2019) for the GRASP. For this reason, when dealing with large-scale NP-

hard optimization problems –where uncertainty is present–, researchers should consider

simheuristics as a ‘first-resort’ method, since they empower metaheuristic approaches

to cope with more realistic stochastic models.

While exact and analytical methods offer superior performance in the optimality di-

mension (i.e., the capacity to reach optimal values), they have severe limitations in other

relevant dimensions such as scalability (i.e., ability to deal with large-scale problems),

modelling (i.e., capacity to develop models that accurately represent the real-life sys-

tem), uncertainty (i.e., ability to cope with non-deterministic scenarios), or computing

times (especially for large-scale instances of complex optimization problems). Being an

offspring of metaheuristics and simulation, simheuristics inherits the best properties of

both methodologies, thus extending metaheuristics so they can deal with uncertainty. At

the same time, by adding a metaheuristic optimization component, they also extend sim-

ulation methods with the capability of coping with optimization problems successfully.

Seminal research on these concepts showed applications of this methodology to differ-

ent fields. Thus, for instance, April et al. (2006) constructed a simheuristic based on a

discrete-event simulation model of a hospital emergency room. Their goal was to deter-

mine the optimal configuration of resources that results in the shortest average length of

stay for patients. These authors also developed a simulation-optimization algorithm to

minimize staffing levels for personal claims processing in an insurance company. Juan

et al. (2011) employed a basic simheuristic to deal with the vehicle routing problem with

stochastic demands. An enhanced and extended version of their approach was developed

by Calvet et al. (2019) to solve the multi-depot stochastic vehicle routing problem. Juan

et al. (2014) used a simheuristic to solve the single-period inventory routing problem

with stochastic demands and stock outs, while Gruler et al. (2020a) extended the previ-

ous approach to the stochastic multi-period inventory routing problem. Gonzalez-Neira

et al. (2017) and Hatami et al. (2018) presented simheuristic approaches for solving dif-

ferent permutation flow-shop problems with stochastic processing times. An example of

simheuristic applications to distributed computer networks can be found in Cabrera et al.

(2014), where discrete-event simulation is combined with a simple metaheuristic frame-

work to optimize a very large, dynamic network of non-dedicated computers offering

online services over the Internet. Gruler et al. (2017a, 2020b) developed simheuristic
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approaches for supporting stochastic waste-collection management in urban areas. In

De Armas et al. (2017), the authors extended a metaheuristic approach into a simheuris-

tic one in order to cope with a stochastic version of the facility location problem. Gruler

et al. (2019) propose the use of simheuristics to model human network behaviour. Fi-

nally, Reyes-Rubiano et al. (2019) introduce a simheuristic algorithm for solving the

electric vehicle routing problem with stochastic travel times. Most of the aforementioned

applications refer to the integration of Monte Carlo (MC) simulation with a metaheuris-

tic framework. However, other simulation paradigms are also possible (Rabe, Deininger

and Juan, 2020). Overall, we distinguish four main simulation paradigms to be used

within a simheuristic. Apart from MC simulation, discrete event simulation (Heath et al.,

2011), system dynamics (Sterman, 2001), and agent-based modelling (Kasaie and Kel-

ton, 2015) are specially suitable depending on the optimization-problem characteristics

and available resources.

5 Analysis of existing work and some numerical results

In this section, we reflect on the previous implementations of simheuristics and begin

by analysing the structure of simheuristics when they are applied to different problem

domains. We also consider possible future simheuristic developments, and focus on the

general results that emerge from simheuristic algorithms applied to different fields. Like-

wise, similarities that exist among simheuristic applications are also discussed, as well

as the evolution of the simheuristic framework. Firstly, each simheuristic has the follow-

ing common steps: (i) an input deterministic equivalent model of the stochastic combi-

natorial optimization problem; (ii) an iterative search stage that integrates information

from simulation testing of candidate solutions; and (iii) one or several best stochastic

solutions (i.e., solutions for the stochastic version of the problem), which are returned

as the output at the end of the algorithm. Regarding the variety of cases that arise when

considering different problem domains, the following can be said: in some cases, the

simulation component – which is typically a Monte Carlo simulation or a discrete-event

simulation – is used only in a parameter initialization phase, where the expected costs

of some predefined policies are approximated. This is the case, for instance, in which

the fixed costs are a function of the decision variables but the stochastic/variable costs

are not. In most of the applications considered so far, demand has been the stochastic

element. Other applications consider processing time uncertainty, service costs, node

availability, and cash flows. The simheuristic framework is easily extensible for mul-

tiple stochastic elements. Most simheuristic implementations employ a distinct initial

solution procedure. In some cases this is required because the metaheuristic compo-

nent is, by itself, only capable of considering perturbations of a current base solution.

In other applications the initialization procedure is used because it had been found that

the quality of the initial solution had a significant impact on the quality of the final

solution. In more recent applications, it has become increasingly common to use biased-
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randomized greedy constructive algorithms (Quintero-Araujo et al., 2017) to generate

initial solutions. One of the advantages of such an approach is that it facilitates the use

of multi-start metaheuristics, which guarantee a more comprehensive exploration of the

search space in question. A similar trend can be seen in the choice of the metaheuristic

algorithm. Early applications tended to consider relatively simple but efficient heuris-

tics. Thus, for example, in Gonzalez-Martin et al. (2018) a randomized savings heuristic

for the arc routing problem is utilized. Some simheuristics used a local search algorithm

as the metaheuristic component. Others, such as the one in Pagès-Bernaus et al. (2019),

used iterated local search. Yet, more recent applications use the more advanced variable

neighbourhood search metaheuristic (VNS) framework (Panadero et al., 2020). One of

the advantages of VNS algorithms is that they use multiple neighbourhood structures,

which improve both the exploration and intensification properties of the search trajec-

tory. Given these considerations, the combination of biased-randomization and a VNS

search is a very strong approach for ensuring the quality of the optimization component

of a simheuristic. In general, the choice of the specific metaheuristic framework should

account for the complexity of the simulation component of the problem, as longer sim-

ulation times extend the required run times. In other words, simpler simulation models

enable the use of more complex metaheuristic algorithms and vice-versa.

Another recurrent theme in simheuristic algorithms is that of using the determin-

istic value of a candidate solution as a criteria for determining whether that solution

should be tested in the integrated simulation component – i.e., as a potential candidate

stochastic solution. In applications where simulation runs are not computationally ex-

pensive, all candidate solutions can be tested in the integrated simulation model. In dif-

ferent simheuristic applications, the role of the integrated simulation component varies.

In some cases the simulation is used to check whether a candidate solution adheres to

a number of arbitrary constraints, such as a minimum reliability level (Cabrera et al.,

2014). However, by far the most common purpose of the simulation component is that

of estimating the stochastic value of a candidate solution. One of the advantages of

the simheuristic framework is that both multiple objectives and arbitrary constraints

can be handled easily, so future applications could use more of the information output

from simulation runs. On the whole, the simulation component of a simheuristic can

be utilized during an initial parameter-estimation stage, an optimization stage, and a

reliability-analysis stage. The output of simheuristics takes the form of a best stochas-

tic solution or a pool of elite stochastic solutions. Having a pool of elite solutions can

be useful for three reasons: (i) for storing promising stochastic solutions and complete a

risk / reliability analysis over them; (ii) for storing a Pareto front of non-dominated solu-

tions –in cases where multiple goals are considered, as in Gruler et al. (2017b); and (iii)

for providing decision makers with a range of alternative solutions, so that they might

be able to select a solution that satisfies a number of other arbitrary constraints. In gen-

eral, it can be seen that a simheuristic is built from a number of relatively fixed steps,

including the choice of simulation paradigm, metaheuristic methodology, and output

type. In addition, simheuristics have seen an increasing number of optional steps, in-
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cluding: using simulation to provide initial parameter estimates, the use of a distinct

initial solution method, and a final detailed reliability analysis. Recent applications tend

to include previously introduced steps whilst introducing new ones.

Having discussed the evolving simheuristic framework in some detail, we now con-

sider their possible future evolution. For instance, the input problem that the meta-

heuristic component searches directly is always the deterministic equivalent model of

the stochastic model, where the stochastic variables are replaced by their means. An-

other approach that could be tested in future applications is to periodically change the

deterministic equivalent model by generating random realizations, according to the re-

spective distributions, of some or all of the stochastic variables. Such an approach pro-

vides an additional escape mechanism from local stochastic optima. It could also help

to improve the diversity of the final elite solution set. Additionally, this represents an

alternative method of integrating simulation within the metaheuristic search process.

Another possible extension would be to dynamically adjust the number of simulation

runs used in the integrated simulation component. For example, the integrated simula-

tion could be terminated as soon as the confidence interval of its stochastic value falls

entirely below that of the current best stochastic solution. Such an approach will ben-

efit the run-time of a simheuristic. Yet another possibility would be to generalize the

structure of simheuristic algorithms to the extent that it becomes a decision variable.

For example, the structure of a simheuristic could be encoded as an integer string. The

first integer could correspond to the choice of the initial solution generation method, the

second to the choice of the metaheuristic, and so on. Such an approach adds an addi-

tional layer to the search, and would thus be most useful for cases where sufficient time

is available for generating a solution. In such an investigation, fair testing can be ensured

by setting a simulation budget for each instance of a simheuristic algorithm.

Figure 1 displays the gaps of the best deterministic solutions (those associated with

the deterministic version of the problem when they are used in a stochastic environment)

and the best stochastic solutions (those associated with the stochastic version) found by

different simheuristic algorithms. These gaps are computed with respect to the best-

known solution for the deterministic version of the problem when it is assessed in a sce-

nario without uncertainty. From this figure, one can conclude that optimal/near-optimal

deterministic solutions might have a poor performance in stochastic scenarios. Notice

that this result holds in a wide variety of problem domains. In the following, deter-

ministic scenarios/solutions are denoted as det, while stochastic scenarios/solutions are

denoted as stoch. For example OBSdet,stoch refers to the objective value of our best deter-

ministic solution when evaluated in a stochastic scenario. Then, the Figure also supports

the following general result for a minimization problem: BKSdet,det ≤ E [OBSstoch,stoch]≤
E [OBSdet,stoch], i.e.: the deterministic value of the best-known deterministic solution

(BKSdet,det ) is a lower bound for the stochastic value of the best stochastic solution

(OBSstoch,stoch). At the same time, the latter has the stochastic value of the best-known

deterministic solution (OBSdet,stoch) as an upper bound. Figure 1 also highlights the po-

tential benefits of employing a simheuristic in problems that feature uncertainty.
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Figure 1: Relative gaps of the best stochastic and deterministic solutions found by simheuristics

compared to the deterministic value of the best-known solutions.

Figure 2: Optimality gaps and relative solutions times of simheuristics compared to exact formu-

lations over a range of simheuristic applications and problem domains.
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Figure 2 displays optimality gaps and solution times relative to those of several exact

methods, for the cases where such experimental results are available. This figure shows

that simheuristics are very competitive in terms of the trade-off between solution quality

and solution time. Hence, simheuristics are able to generate solutions that are very close

to optimality, and can do so in a small fraction of the time required by exact solution

approaches.

Likewise, Figure 3 illustrates the effect that the level of variance in the stochastic

instance has on the value of the simheuristic solution, as compared with the deterministic

value of the best-known solution for the deterministic version of the problem. This figure

shows that, in approximately 50% of the cases, increasing the variance of the stochastic

parameters of an instance also raises the gap of the stochastic solution relative to the

deterministic value of the best-known deterministic solution. In the remaining 50% of

the cases, increasing the variance of the stochastic parameters of a problem instance has

little or no effect.

Figure 3: The effect of increasing the variance of the stochastic variables on the relative gap

between the value of our best stochastic solutions and the deterministic value of the best-known

deterministic solution.
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6 Advantages of using simheuristics in optimization

This section highlights the main advantages of employing simheuristics, which justify

why we propose this methodology as a ‘first-resort’ method for dealing with optimiza-

tion problems under uncertainty:

• Embracing reality by a validated simheuristic: As opposed to the use of stand-

alone analytical models, integrating simulation within a metaheuristic/matheuristic

approach allows researchers and decision makers to construct and study valid mod-

els of complex systems. Most recent simulation paradigms also allow for analysis

of optimization problems under uncertainty with a low number of assumptions.

These paradigms also facilitate involvement of stakeholders, who are not directly

the modellers of the simheuristic, i.e., participatory modelling (Voinov and Bous-

quet, 2010). There are new simulation-optimization paradigms that can better rep-

resent complex reality, and powerful computational resources to run demanding

simulation models. Model validation is a central pillar within the simulation com-

munity, as evidenced by its ubiquity in the leading texts over the years (Kelton,

Sadowski and Zupick, 2015). But validation should be applied to all modelling, in-

cluding analytical, so this is not a disadvantage – but a requirement – when using

simulation-optimization.

• Risk assessment of alternative solutions and sensitivity analysis: Once a simula-

tion is built and validated, finding robust policies and comparing the merits of

various policies are two of the main goals (Kleijnen et al., 2005). Joint use of sim-

ulation and metaheuristics/matheuristics within a simheuristic framework can help

attain these two goals and has advantages compared to other stand-alone method-

ologies. The results of the simulations can be used to obtain additional information

about the probability distribution of the quality of each stochastic solution. This

information is then used to introduce a risk/reliability analysis within the decision-

making process. The risk-analysis capability of simheuristics is one of its major

advantages. This is due to the ability of metaheuritics to generate a set of dif-

ferent solutions, as well as to the ability of the simulation model to provide an

observational sampling of the system. Thus, for instance, stochastic solutions with

similar expected cost might show different variance, or even different reliability

levels; i.e., some routing plans might have a high probability of failure when put

into practice, while others might be more reliable. Running a sensitivity analysis

(Saltelli et al., 2008) is another advantage of using a simulation together with a

metaheuristic method. Sensitivity analysis reveals those input parameters that are

most critical in determining the value of key output performance metrics. Usually,

this is achieved by exploring the model sensitivity to a particular parameter con-

figuration and input-value options. Sensitivity analysis is typically carried out to

gain insights into existing or prospective systems, and this should lead to better

decisions and to improved managerial outcomes. This sensitivity analysis can be
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directly run by studying the output of the different simulation runs. Although a

complete sensitivity analysis requires more advanced methods and specific tools

to this end (Chica et al., 2017), the simheuristic learning process can give the

modeller a first approach to a deeper sensitivity analysis of the system whose op-

timization is sought.

• System understanding and output analysis: When the simheuristic finishes, we

can collect the output-data results and analyse them through machine-learning

algorithms to discover hidden properties or relationships. The goal is to enable

researchers to identify system patterns interactively, run high-dimensional explo-

rations, or even check the veracity of the approximately-optimized simulation sys-

tem (Lucas et al., 2015). This is also called the innovization process in evolutionary-

computation research (Deb et al., 2014). It means that a set of trade-off optimal or

near-optimal solutions, found using metaheuristics, are analysed to decipher use-

ful relationships among problem entities. It provides a better understanding of the

problem to a designer or a practitioner. We extend here this concept by adding

the simulation face of the simheuristic to enrich the innovization process. Addi-

tionally, visualization methods (e.g., histograms, box plots, or scatter plots) can

be directly used to visualize post-run simulation outputs that go beyond the tra-

ditional analysis of the results. There is an increasing number of studies demon-

strating that visualization combined with optimization can promote design innova-

tions and provide decision makers with an improved understanding of the problem

(Bonissone, Subbu and Lizzi, 2009). A good visualization enables decision makers

to enhance insight into the problem and the different solutions to identify differ-

ences and similarities before coming to the final decision (Miettinen, 2014). Ex-

ploratory analysis of the input / output variables space of a model is also employed

to strengthen confidence in the model realism and to improve understanding of the

behaviour of the optimization and simulation models. By analysing the distribu-

tion of the model variables and parameters, the modeller can move forward to

a simpler and easier-to-understand setting. Use of this exploration, together with

sensitivity analysis, provides information on influential factors that significantly

affect the variability of the model results, and allow modellers to reach a deeper

understanding of the complexity of the model, its uncertainties, interrelationships,

and its potential future scenarios (Ligmann-Zielinska et al., 2014).

7 Limitations of Simheuristics

As with any methodology, there are also limitations when using simheuristics. In this

section, we highlight some of these limitations as well as some positive aspects that

ameliorate their negative impact on the optimum-seeking process.
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• Results are not expected to be truly provably optimal: Metaheuristics do not ensure

an optimal solution to an optimization problem, but rather an acceptable solution

in a reasonable amount of time. This fact is amplified when using a simulation to

be optimized. Even more, this simulation is a non-linear complex stochastic sys-

tem that cannot be analytically treated. Therefore, simheuristics are an interesting

alternative for practical cases requiring simple and flexible methods that do not

need to be globally optimal, although they are usually near-optimal.

• Additional stakeholders’ effort is demanded to define the system: The set of advan-

tages and ‘white-box’ paradigms used in a simheuristic also requires additional

effort when defining the simulation system and analysing the results provided by

the simheuristic. However, we think this design and validation effort is justified as

modellers and decision makers can better understand their system from the results

of the simheuristics and can adopt the final optimum-seeking results with higher

confidence.

• More computational resources are required compared to traditional methods: The

integration of a simulation engine within a metaheuristic requires high computa-

tional effort and also depends on the selected type of simulation paradigm. As will

be discussed in Section 8, different strategies can be applied in order to allevi-

ate this effort, such as: (i) ‘filtering’ the solutions generated by the metaheuristic

engine, so that only the ‘promising’ ones are actually sent to the simulation com-

ponent; and (ii) using a small number of simulation runs in a first stage, and then

analysing in more detail only those that can be classified as ‘very promising’ so-

lutions.

8 Best design and implementation practices

In this section we outline a set of guidelines or best practices to build a simheuristic

algorithm appropriately.

• Do not overload simheuristics with long simulations: In general, the modeller has

to be careful not to let the simulation jeopardize the computing time given to the

entire simulation-metaheuristic process. Otherwise, the metaheuristic would not

have time to converge to a good solution if the dimension of the search space is

high. Therefore, we recommend decomposing the simheuristic into various stages.

For instance, a three-stage approach could be considered. During the first stage,

only fast simulations are included in the simheuristic framework. This can be

achieved by running the simulation only a limited number of times to obtain rough

estimates, or by running the simulation for only those new solutions of the meta-

heuristic that can be considered as ‘promising’ ones (e.g., solutions with good
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deterministic performance). During this stage, the simulation component of the

simheuristic is used not only as a natural way to model the real system, but it also

can provide valuable information to the metaheuristic component (i.e., the search

process is simulation-driven). For example, it can be used to filter low quality solu-

tions quickly. In a second stage, the best solutions identified in the previous stage

are sent throughout a new simulation process with a larger number of iterations to

obtain more precise estimates of the uncertain values of the model. The specific

number of iterations might be given by error measures such as confidence inter-

vals of the parameters with high uncertainty. Finally, a third and final stage can

be used to complete a risk / reliability analysis on the best solutions selected by

the decision maker. Dimensions other than the expected value of the solution need

to be considered in a high-uncertainty environment, since a solution with a low

expected value could also show more variability than other alternative solutions.

For example, in a flow-shop scheduling problem with stochastic processing times

there might be several solutions (job permutations) that offer a similar expected

makespan; however, some of these solutions might show a higher variability than

others, or a lower probability of finishing before a given deadline. Similarly, in

a vehicle routing problem with stochastic demands, several solutions might of-

fer similar expected costs, but some of these solutions might also show a higher

variability than others. Consequently, the decision maker would need more infor-

mation to decide which solution to choose based on her / his utility function and

aversion to risk, or would even need more advanced optimization methods – such

as multi-objective optimization – to have a set of solutions with different trade-offs

between expected cost value and robust behaviour in the environment.

• Choose a simulation paradigm that is understandable to decision makers: Three

main goals must be accomplished when developing and selecting the simulation

model (Kleijnen et al., 2005): (i) develop a basic understanding of the simulation

model and the system it emulates; (ii) find robust policies and decisions; and (iii)

compare the merits of various policies or decisions. As mentioned, there is a wide

set of available simulation paradigms and within each variant, many variations

and possible designs arise. Our guideline here is to use, as much as possible, a

participatory simulation-modelling process to increase and share the knowledge

and understanding of the system between all the actors involved in the optimiza-

tion action (Voinov and Bousquet, 2010). This involvement would also clarify and

identify the impacts of solutions to a given problem, usually related to the final

decision-making support.

• Choose an appropriate simulation paradigm for each stage of a simheuristic: Dif-

ferent simulation paradigms can be used for each of the stages of the simheuris-

tic. Then, a more enriched and computationally-intensive simulation model (e.g.,

agent-based modelling) can be used for the last stages of the simheuristic and
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applied only to a reduced set of the solutions provided by the metaheuristic. In

contrast, lighter computational simulation models (e.g., a simple Monte Carlo sim-

ulation over the stochastic simulation model) might be required in the first stage

of the simheuristic. Each individual modelling paradigm has a rich history and ex-

emplar cases in which the strengths of the respective methodology make it a good

choice for a particular modelling situation. There also possibilities for combining

each pair of approaches to develop hybrid models where each paradigm exploits its

strengths (Heath et al., 2011). For instance, Djanatliev and German (2013) present

different multi-paradigm simulation methods.

• Validate the simulation model before running the simheuristic: A decisive phase

when modelling a real-world system is model validation (Oliva, 2003). In our view,

this is also a main guideline when designing the simheuristic, as it applies to the

simheuristic itself and specifically to its simulation component. The validation

requires testing a set of hypotheses, the significance of their behavioural compo-

nents (by assuming that the behaviour is a consequence of the system structure),

and the historical model fitting. Validation is also measured in terms of degrees of

confidence or quality, which is usually difficult to obtain for most non-linear sim-

ulation models in use (Forrester, 2007). The validation and testing of any model

or decision-support system is a decisive step for ensuring its managerial adoption.

Decision makers are all rightly concerned about whether results of each model are

correct (Sargent, 2005). However, the validation of non-linear models and their

effectiveness for real-world problems is not straightforward. The validation stage

can be seen as a learning process where the modeller’s understanding is enhanced

through her / his interaction with the formal and mental model (Morecroft, 2007).

As this process evolves, both the formal and mental perceptions of the modellers

change, leading to a successive approximation of the formal model to reality. Ad-

ditionally, the utility and effectiveness of many non-linear models and their out-

puts are often judged by stakeholders and decision makers (Voinov and Bousquet,

2010). Therefore, it is highly recommended to perform the validation of the mod-

els correctly. A set of validation techniques such as calibration (Sargent, 2005),

sensitivity analysis (Saltelli et al., 2008), boundary adequacy, and extreme cases

tests (Qudrat-Ullah and Seong, 2010) should be carried out for the corresponding

simheuristic component in order to guarantee that the simulation model is a valid

representation of the underlying system.

9 Concluding remarks

The motivation of this paper is to advocate that a combination of simulation models

and metaheuristics / matheuristics should be considered as a first-resort method when

dealing with large-scale NP-hard optimization problems with stochastic components,
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which is a quite common case when considering real-world challenges. In effect, many

real-life optimization problems in areas such as logistics, transportation, scheduling,

etc., are complex, large-scale, and involve uncertainties regarding their constraints, in-

put values, and objective functions. Although there are metaheuristic applications that

add probabilistic and robustness capabilities to analytical models, they are extensions

to the original deterministic model formulation. As we have discussed, integration of

simulation methods with metaheuristics and matheuristics is a natural way to cope with

these problems. Although prohibitive and unaffordable in the past, advanced simula-

tion methods are now commonly used in research and practice due to widespread and

affordable availability of high-performance computing resources and much-improved

software for simulation modelling and analysis. The same is true for metaheuristics and

matheuristics. As it has been shown in a number of recent publications containing exten-

sive computational experiments, the simheuristics methodology can better face complex

reality when seeking optima in uncertain environments.

In this paper we highlighted three main advantages of using simheuristics. First, it is

a better way to embrace the reality of the systems we are seeking to optimize. There is

no need to include many strong and over-simplifying assumptions to render a tractable

model. Second, a simheuristic can easily provide a risk assessment of the optimization-

problem solutions. Third, simheuristics facilitate the understanding of the system’s be-

haviour. A posteriori analysis applied to the output provided by the simheuristic can help

modellers to understand the system dynamics. For instance, one can observe the most

sensitive parameters, or even apply statistical analysis to the returned set of optimization

solutions to find relationships between them. Visualization techniques are also useful to

generate insights about the system, based on the output of the simheuristic method.

Additionally, we have presented the main simulation paradigms to be used within a

simheuristic, and a list of guidelines to take into account when designing a simheuristic.

We suggested the use of a multi-stage approach to alleviate the required computation

effort of the simulation, and the utilization of different simulation paradigms within the

simheuristic. Likewise, the need for using a validated simulation model was affirmed.

Finally, we encourage the use of a simheuristic paradigm that can be aligned with the

‘white-box’ paradigm: being understandable and enhancing the decision makers’ par-

ticipation.
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Andradóttir, S. (2006). An overview of simulation optimization via random search. Handbooks in Opera-

tions Research and Management Science, 13, 617–631.

Anter, A. M. and Ali, M. (2020). Feature selection strategy based on hybrid crow search optimization

algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems.

Soft Computing, 24, 1565–1584.

April, J., Glover, F., Kelly, J. P. and Laguna, M. (2003). Simulation-based optimization: practical introduc-

tion to simulation optimization. In Proceedings of the Winter Simulation Conference, Piscataway, New

Jersey, pp. 71–78. IEEE.

April, J., Better, M., Glover, F., Kelly, J. and Laguna, M. (2006). Enhancing business process management

with simulation optimization. In Proceedings of the Winter Simulation Conference, Piscataway, New

Jersey, pp. 642–649. IEEE.

Beyer, H.-G. and Sendhoff, B. (2007). Robust optimization–a comprehensive survey. Computer Methods

in Applied Mechanics and Engineering, 196, 3190–3218.

Bhatnagar, S., Fu, M. C., Marcus, S. I. and Wang, I.-J. (2003). Two-timescale simultaneous perturbation

stochastic approximation using deterministic perturbation sequences. ACM Transactions on Modeling

and Computer Simulation, 13, 180–209.

Bonissone, P. P., Subbu, R. and Lizzi, J. (2009). Multicriteria decision making: a framework for research

and applications. IEEE Computational Intelligence Magazine, 4, 48–61.
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