5,051 research outputs found

    Geometry-Aware Neighborhood Search for Learning Local Models for Image Reconstruction

    Get PDF
    Local learning of sparse image models has proven to be very effective to solve inverse problems in many computer vision applications. To learn such models, the data samples are often clustered using the K-means algorithm with the Euclidean distance as a dissimilarity metric. However, the Euclidean distance may not always be a good dissimilarity measure for comparing data samples lying on a manifold. In this paper, we propose two algorithms for determining a local subset of training samples from which a good local model can be computed for reconstructing a given input test sample, where we take into account the underlying geometry of the data. The first algorithm, called Adaptive Geometry-driven Nearest Neighbor search (AGNN), is an adaptive scheme which can be seen as an out-of-sample extension of the replicator graph clustering method for local model learning. The second method, called Geometry-driven Overlapping Clusters (GOC), is a less complex nonadaptive alternative for training subset selection. The proposed AGNN and GOC methods are evaluated in image super-resolution, deblurring and denoising applications and shown to outperform spectral clustering, soft clustering, and geodesic distance based subset selection in most settings.Comment: 15 pages, 10 figures and 5 table

    Geometric robustness of deep networks: analysis and improvement

    Full text link
    Deep convolutional neural networks have been shown to be vulnerable to arbitrary geometric transformations. However, there is no systematic method to measure the invariance properties of deep networks to such transformations. We propose ManiFool as a simple yet scalable algorithm to measure the invariance of deep networks. In particular, our algorithm measures the robustness of deep networks to geometric transformations in a worst-case regime as they can be problematic for sensitive applications. Our extensive experimental results show that ManiFool can be used to measure the invariance of fairly complex networks on high dimensional datasets and these values can be used for analyzing the reasons for it. Furthermore, we build on Manifool to propose a new adversarial training scheme and we show its effectiveness on improving the invariance properties of deep neural networks

    Manitest: Are classifiers really invariant?

    Get PDF
    Invariance to geometric transformations is a highly desirable property of automatic classifiers in many image recognition tasks. Nevertheless, it is unclear to which extent state-of-the-art classifiers are invariant to basic transformations such as rotations and translations. This is mainly due to the lack of general methods that properly measure such an invariance. In this paper, we propose a rigorous and systematic approach for quantifying the invariance to geometric transformations of any classifier. Our key idea is to cast the problem of assessing a classifier's invariance as the computation of geodesics along the manifold of transformed images. We propose the Manitest method, built on the efficient Fast Marching algorithm to compute the invariance of classifiers. Our new method quantifies in particular the importance of data augmentation for learning invariance from data, and the increased invariance of convolutional neural networks with depth. We foresee that the proposed generic tool for measuring invariance to a large class of geometric transformations and arbitrary classifiers will have many applications for evaluating and comparing classifiers based on their invariance, and help improving the invariance of existing classifiers.Comment: BMVC 201

    Bayesian Inference on Matrix Manifolds for Linear Dimensionality Reduction

    Full text link
    We reframe linear dimensionality reduction as a problem of Bayesian inference on matrix manifolds. This natural paradigm extends the Bayesian framework to dimensionality reduction tasks in higher dimensions with simpler models at greater speeds. Here an orthogonal basis is treated as a single point on a manifold and is associated with a linear subspace on which observations vary maximally. Throughout this paper, we employ the Grassmann and Stiefel manifolds for various dimensionality reduction problems, explore the connection between the two manifolds, and use Hybrid Monte Carlo for posterior sampling on the Grassmannian for the first time. We delineate in which situations either manifold should be considered. Further, matrix manifold models are used to yield scientific insight in the context of cognitive neuroscience, and we conclude that our methods are suitable for basic inference as well as accurate prediction.Comment: All datasets and computer programs are publicly available at http://www.ics.uci.edu/~babaks/Site/Codes.htm
    • …
    corecore