2,434 research outputs found

    Reasoning over Taxonomic Change: Exploring Alignments for the Perelleschus Use Case

    Get PDF
    abstract: Classifications and phylogenetic inferences of organismal groups change in light of new insights. Over time these changes can result in an imperfect tracking of taxonomic perspectives through the re-/use of Code-compliant or informal names. To mitigate these limitations, we introduce a novel approach for aligning taxonomies through the interaction of human experts and logic reasoners. We explore the performance of this approach with the Perelleschus use case of Franz & Cardona-Duque (2013). The use case includes six taxonomies published from 1936 to 2013, 54 taxonomic concepts (i.e., circumscriptions of names individuated according to their respective source publications), and 75 expert-asserted Region Connection Calculus articulations (e.g., congruence, proper inclusion, overlap, or exclusion). An Open Source reasoning toolkit is used to analyze 13 paired Perelleschus taxonomy alignments under heterogeneous constraints and interpretations. The reasoning workflow optimizes the logical consistency and expressiveness of the input and infers the set of maximally informative relations among the entailed taxonomic concepts. The latter are then used to produce merge visualizations that represent all congruent and non-congruent taxonomic elements among the aligned input trees. In this small use case with 6-53 input concepts per alignment, the information gained through the reasoning process is on average one order of magnitude greater than in the input. The approach offers scalable solutions for tracking provenance among succeeding taxonomic perspectives that may have differential biases in naming conventions, phylogenetic resolution, ingroup and outgroup sampling, or ostensive (member-referencing) versus intensional (property-referencing) concepts and articulations.The article is published at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.011824

    On Computing the Maximum Parsimony Score of a Phylogenetic Network

    Get PDF
    Phylogenetic networks are used to display the relationship of different species whose evolution is not treelike, which is the case, for instance, in the presence of hybridization events or horizontal gene transfers. Tree inference methods such as Maximum Parsimony need to be modified in order to be applicable to networks. In this paper, we discuss two different definitions of Maximum Parsimony on networks, "hardwired" and "softwired", and examine the complexity of computing them given a network topology and a character. By exploiting a link with the problem Multicut, we show that computing the hardwired parsimony score for 2-state characters is polynomial-time solvable, while for characters with more states this problem becomes NP-hard but is still approximable and fixed parameter tractable in the parsimony score. On the other hand we show that, for the softwired definition, obtaining even weak approximation guarantees is already difficult for binary characters and restricted network topologies, and fixed-parameter tractable algorithms in the parsimony score are unlikely. On the positive side we show that computing the softwired parsimony score is fixed-parameter tractable in the level of the network, a natural parameter describing how tangled reticulate activity is in the network. Finally, we show that both the hardwired and softwired parsimony score can be computed efficiently using Integer Linear Programming. The software has been made freely available

    Reasoning over Taxonomic Change: Exploring Alignments for the Perelleschus Use Case

    Full text link
    Classifications and phylogenetic inferences of organismal groups change in light of new insights. Over time these changes can result in an imperfect tracking of taxonomic perspectives through the re-/use of Code-compliant or informal names. To mitigate these limitations, we introduce a novel approach for aligning taxonomies through the interaction of human experts and logic reasoners. We explore the performance of this approach with the Perelleschus use case of Franz & Cardona-Duque (2013). The use case includes six taxonomies published from 1936 to 2013, 54 taxonomic concepts (i.e., circumscriptions of names individuated according to their respective source publications), and 75 expert-asserted Region Connection Calculus articulations (e.g., congruence, proper inclusion, overlap, or exclusion). An Open Source reasoning toolkit is used to analyze 13 paired Perelleschus taxonomy alignments under heterogeneous constraints and interpretations. The reasoning workflow optimizes the logical consistency and expressiveness of the input and infers the set of maximally informative relations among the entailed taxonomic concepts. The latter are then used to produce merge visualizations that represent all congruent and non-congruent taxonomic elements among the aligned input trees. In this small use case with 6-53 input concepts per alignment, the information gained through the reasoning process is on average one order of magnitude greater than in the input. The approach offers scalable solutions for tracking provenance among succeeding taxonomic perspectives that may have differential biases in naming conventions, phylogenetic resolution, ingroup and outgroup sampling, or ostensive (member-referencing) versus intensional (property-referencing) concepts and articulations.Comment: 30 pages, 16 figure

    ASP at Work: An ASP Implementation of PhyloWS

    Get PDF

    The evolutionary approach to history:sociocultural phylogenetics

    Get PDF

    Simple identification tools in FishBase

    Get PDF
    Simple identification tools for fish species were included in the FishBase information system from its inception. Early tools made use of the relational model and characters like fin ray meristics. Soon pictures and drawings were added as a further help, similar to a field guide. Later came the computerization of existing dichotomous keys, again in combination with pictures and other information, and the ability to restrict possible species by country, area, or taxonomic group. Today, www.FishBase.org offers four different ways to identify species. This paper describes these tools with their advantages and disadvantages, and suggests various options for further development. It explores the possibility of a holistic and integrated computeraided strategy
    • …
    corecore