745 research outputs found

    Adaptive Neural Network Feedforward Control for Dynamically Substructured Systems

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    A Stability Analysis for the Acceleration-based Robust Position Control of Robot Manipulators via Disturbance Observer

    Full text link
    This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using Disturbance Observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of DOb, then the position error asymptotically goes to zero in regulation control and is uniformly ultimately bounded in trajectory tracking control. As the bandwidth of DOb and the nominal inertia matrix are increased, the bound of error shrinks, i.e., the robust stability and performance of the position control system are improved. However, neither the bandwidth of DOb nor the nominal inertia matrix can be freely increased due to practical design constraints, e.g., the robust position controller becomes more noise sensitive when they are increased. The proposed stability analysis provides insights regarding the dynamic behavior of DOb-based robust motion control systems. It is theoretically and experimentally proved that non-diagonal elements of the nominal inertia matrix are useful to improve the stability and adjust the trade-off between the robustness and noise sensitivity. The validity of the proposal is verified by simulation and experimental results.Comment: 9 pages, 9 figures, Journa

    Advance Servo Control for Hard Disk Drive in Mobile Application

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Proceedings of the 4th field robot event 2006, Stuttgart/Hohenheim, Germany, 23-24th June 2006

    Get PDF
    Zeer uitgebreid verslag van het 4e Fieldrobotevent, dat gehouden werd op 23 en 24 juni 2006 in Stuttgart/Hohenhei

    Motion control and synchronisation of multi-axis drive systems

    Get PDF
    Motion control and synchronisation of multi-axis drive system

    ADVANCED SENSOR FUSION AND VIBRATION CONTROL TECHNOLOGIES FOR ULTRA-HIGH DENSITY HARD DISK DRIVES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Computer Control: An Overview

    Get PDF
    Computer control is entering all facets of life from home electronics to production of different products and material. Many of the computers are embedded and thus ``hidden'' for the user. In many situations it is not necessary to know anything about computer control or real-time systems to implement a simple controller. There are, however, many situations where the result will be much better when the sampled-data aspects of the system are taken into consideration when the controller is designed. Also, it is very important that the real-time aspects are regarded. The real-time system influences the timing in the computer and can thus minimize latency and delays in the feedback controller. The paper introduces different aspects of computer-controlled systems from simple approximation of continuous time controllers to design aspects of optimal sampled-data controllers. We also point out some of the pitfalls of computer control and discusses the practical aspects as well as the implementation issues of computer control. Published as a Professional Briefs by IFAC

    Design of a Haptic Interface for Medical Applications using Magneto-Rheological Fluid based Actuators

    Get PDF
    This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy weight can significantly undermine the stability and transparency of a teleoperated system. In this work, the potential benefits of MRF-based actuators to the field of haptics in medical applications are studied. Devices developed with such fluids are known to possess superior mechanical characteristics over conventional servo systems. These characteristics significantly contribute to improved stability and transparency of haptic devices. This idea is evaluated and verified through both theoretical and experimental points of view. The design of a small-scale MRF-based clutch, suitable for a multi-DOF haptic interface, is discussed and its performance is compared with conventional servo systems. This design is developed into four prototype clutches. In addition, a closed-loop torque control strategy is presented. The feedback signal used in this control scheme comes from the magnetic field acquired from embedded Hall sensors in the clutch. The controller uses this feedback signal to compensate for the nonlinear behavior using an estimated model, based on Artificial Neural Networks. Such a control strategy eliminates the need for torque sensors for providing feedback signals. The performance of the developed design and the effectiveness of the proposed modeling and control techniques are experimentally validated. Next, a 2-DOF haptic interface based on a distributed antagonistic configuration of MRF-based clutches is constructed for a class of medical applications. This device is incorporated in a master-slave teleoperation setup that is used for applications involving needle insertion and soft-tissue palpation. Phantom and in vitro animal tissue were used to assess the performance of the haptic interface. The results show a great potential of MRF-based actuators for integration in haptic devices for medical interventions that require reliable, safe, accurate, highly transparent, and stable force reflection

    Control of switched reluctance machines

    Get PDF
    This thesis is concerned with the control of switched reluctance machines for both motoring and generating applications. There are different control objectives in each case. For motoring operation, there are two possible control objectives. If the SRM is being employed in a servo-type application, the desire is for a constant output torque. However, for low performance applications where some amount of torque ripple is acceptable, the aim is to achieve efficient and accurate speed regulation. When the SRM is employed for generating purposes, the goal is to maintain the dc bus voltage at the required value while achieving maximum efficiency. Preliminary investigative work on switched reluctance machine control in both motoring and generating modes is performed. This includes the implementation and testing through simulation of two control strategies described in the literature. In addition, an experimental system is built for the development and testing of new control strategies. The inherent nonlinearity of the switched reluctance machine results in ripple in the torque profile. This adversely affects motoring performance for servo-type applications. Hence, three neuro-fuzzy control strategies for torque ripple minimisation in switched reluctance motors are developed. For all three control strategies, the training of a neurofuzzy compensator and the incorporation of the trained compensator into the overall switched reluctance drive are described. The performance of the control strategies in reducing the torque ripple is examined with simulations and through experimental testing. While the torque ripple is troublesome for servo-type applications, there are some applications where a certain amount of torque ripple is acceptable. Therefore, four simple motor control strategies for torque ripple-tolerant applications are described and tested experimentally. Three of the control strategies are for low speed motoring operation while the fourth is aimed at high speed motoring operation. Finally, three closed-loop generator control strategies aimed at high speed operation in single pulse mode are developed. The three control strategies are examined by testing on the experimental system. A comparison of the performance of the control strategies in terms of efficiency and peak current produced by each is presented
    corecore