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Abstract

This thesis provided solutions to the following three major problems that HDD

servo system encountered in the application of mobile consumer devices: acoustic

noise and residual vibrations problem induced from track seeking, smooth settling

problem during mode-switching, and disturbances rejection problem for high pre-

cision tracking accuracy. To reduce the seeking acoustic noise, a pseudo sinusoidal

current profile for any seeking span was designed for the 2DOF seeking controller

with consideration of driver saturation, and a design method was derived to chose

a set of proper values of the parameters for the current profile such that the resid-

ual vibrations due to the dominant structural resonances can be minimized. To

achieve the smooth and fast settling for dual stage servo systems which are the

servo mechanism for next generation high density HDD, a feedforward compen-

sator was proposed based on zero phase error tracking control. This feedforward

compensator can be used to cancel the undesired transitions due to the non-zero

initial states of VCM actuators, and hence achieve smooth and fast settling while

switching from seeking mode to following mode. To achieve better tracking accu-

racy, an approach combining the KYP lemma together with H2 optimal method

was proposed. This method can be used to shape the sensitivity function of the

HDD servo loop to attenuate a few dominant disturbances at a specific frequency

range and achieve the minimization of overall track misregistration of the servo

system.

1



Chapter 1

Introduction

1.1 Background of HDD and Magnetic Recording

Magnetic hard disk drives (HDD) are non-volatile random access storage devices

which store digitally encoded data on rapidly rotating platters using a motor-

driven spindle in a protective enclosure. In 1957, IBM first introduced HDD as

a data storage device for IBM accounting computer. With the rapid progresses

of magnetic recording related technologies in servo, mechanics, signal processing,

magnetic recording physics, media materials, recoding head processing, and tribol-

ogy, the data storage areal density of HDD has been increasing dramatically at

the average compound growth rate of around 60% per year through the 1990’s, as

shown in Figure 1.1. Today, the areal density has achieved around 400 Gbits/in2,

and the corresponding track density is around 300,000 tracks per inch (TPI), with a

data transfer rate of more than 125 MBytes/second. Therefore, the market applica-

tions of HDDs have expanded from general purpose computers to most computing

applications including a lot of consumer applications, like digital video recorders,

digital audio players, personal digital assistants, digital cameras, and video game

consoles, etc.

2



1.1 Background of HDD and Magnetic Recording

Figure 1.1: Data storage density for disk drives versus time [1].

Areal density, also sometimes called bit density, refers to the amount of data that

can be stored in a given amount of hard disk platter. Areal density is a measure

of the number of bits that can be stored in a unit of area. It is usually expressed

in bits per square inch (BPSI).

Being a two-dimensional measure, areal density is computed as the product of two

other one-dimensional density measures:

1. Track density: This is a measure of how tightly the concentric tracks on the

disk are packed. It is specified by tracks per inch (TPI), which tells how

many tracks can be placed down in one inch of radius on the platters.

2. Linear or recording density: This is a measure of how tightly the bits are

packed within a length of track. It is specified by bits per inch (BPI), which

tells how many bits can be written along one inch of track.

3



1.2 Servo Control Issues in HDD

There are two ways to increase areal density: increase the linear density by packing

the bits on each track closer together so that each track holds more data; or increase

the track density so that each platter holds more tracks. Typically new generation

drives improve both measures. It’s important to realize that increasing areal density

leads to drives that are not just bigger, but also faster. The reason is that the areal

density of the disk impacts both of the key hard disk performance factors: the

track to track positioning speed and data transfer rate.

Increasing the areal density of disks is a difficult task that requires many technolog-

ical advances and changes to various components of the hard disk [2]. As the data

is packed closer and closer together, problems result with interference between bits.

This is often dealt with by reducing the strength of the magnetic signals stored

on the disk, but then this creates other problems such as ensuring that the signals

are stable on the disk and that the read/write (R/W) heads are sensitive and close

enough to the surface to pick them up. Changes to the media layer on the platters,

actuators, control electronics and other components are made to continually im-

prove areal density. Every few years a R/W head technology breakthrough enables

a significant jump in density, which is why hard disks have been doubling in size

so frequently, as shown in Figure 1.1 .

1.2 Servo Control Issues in HDD

The HDD servo systems play a vital role in the demand of increasingly high track

density and high performance HDDs. In HDDs, the servo system provides two

major functions: track seeking and track following. The track seeking servo moves

R/W head from one track to another in minimal time, which is seeking time. The

less the seeking time is, the faster the data can transfer. The track following servo

maintains the R/W head position over the center of a target track. The measured

deviation of R/W head from the center of the track is called position error signal

4



1.2 Servo Control Issues in HDD

(PES). It is the performance of track following servo that limits the achievable

track density. The tracking accuracy of HDD servo is often measured by a 3σ

number of PES, assuming a Gaussian distribution. This performance measure is

also called as track misregistration (TMR). Typical TMR is 12% of the track width,

which matches with the off-track-reading-capability (OTRC) of the coding channel.

OTRC is a measure of the R/W system’s ability to read previously-written data

as a function of servo tracking-error, and proximity of an adjacent data-track. If

TMR is larger than 12%, the data reading channel will have unrecoverable error.

In general, the HDDs have top performance if TMR is less than 5% of track 99.7%

of the time.

The track-following control in HDDs is an inherently difficult problem, as the plant

is marginally stable and it becomes unstable in the presence of delays due to sam-

pling and computation. Besides this, the HDD servo system is non-collocated, as

sensors are placed at the read head while control is applied at the voice-coil-motor

(VCM) [3] [4]. Furthermore, the servo system in HDD is non-minimum phase

system, which imposes limits on tracking performance [5]. The servo robustness

and tracking accuracy are limited by the following factors: (1) resonance and gain

variations between heads, at different radius, ages, and temperatures; (2) excessive

three-dimensional vibrations; (3) mechanical constraints (e.g. form factor) limit

the dynamic properties of the plant, which in turn place limitations on the con-

troller performance; (4) uncertainties, and nonlinearities, such as friction due to

near contact recording and pivot, and backlash/hysteresis of micro-actuator/milli-

actuator.

Traditionally, HDD servos are designed using linear control theory. Current disk

drive utilizes typical linear feedback digital control systems based on error signal,

PES. The PES is demodulated from the position information that is encoded onto

the disks during the manufacturing process. PID controllers were used initially,

and they are subsequently augmented with notch filters to suppress the mechanical

5



1.2 Servo Control Issues in HDD

resonant modes, thereby increasing the bandwidth. The performances of these

methods are limited by the effects of Bode Integral Theorem [6]. As a consequence

of this theory, servo loop will amplify vibrations at other frequencies [7], if the

servo sensitivity transfer function is designed to reject more vibrations in some

frequencies. This is also known as waterbed effect.

Another formidable challenge for track-following controller is to achieve precise

tracking accuracy so as to satisfy the requirement for ultra-high track density higher

than 500k TPI, despite the presence of uncertainties in the dynamic model. PES

demodulation noise in HDD is scaled with signal to noise ratio (SNR) of head and

media, and used to be the major TMR sources. However, for high density HDD

in mobile applications, disturbances are no longer limited to PES noise, but also

disk motion, air flow, and external vibration, etc. Although external sensors, such

as accelerometers, can be used in the suppression of external vibrations in order

to maintain the tracking accuracy [8] [9] [10] [11], the relationship between XY

acceleration and PES may be highly nonlinear, which results in further difficulties

in the design of feed forward controllers. In addition, some nonlinearities currently

being neglected or simplified in control system design must be taken into account

for a system with such a high accuracy requirement. The nonlinearities preventing

the system accuracy of a hard disk drive from further improvement include ribbon

flexibility and nonlinear friction of the actuator pivot of a HDD [12] [13] [14].

Furthermore, inconsistencies of system parameters between units are prevalent as

HDDs are mass-produced products. These parameters vary with age and thermal

effects, although the time scales are usually sufficiently large such that they can be

considered to be slowly-varying or even time-invariant.

Therefore, the track-following servo controller are designed with two kinds of funda-

mental trade off, performance trade-off due to bode integration, and performance

trade-off with system robustness due to uncertainties of plant dynamic and dis-

turbances. The performance versus robustness trade-off is an important aspect

6



1.2 Servo Control Issues in HDD

of the development of H∞ control theory [15] [16]. Many papers are published

on the loop-shaping design methods to look for the reasonable trade-off between

robustness and performance [17] [18] [19].

A few researchers have investigated the feasibility of applying adaptive or learning

algorithms like neural network and fuzzy control. In [20] [21] [22] [23], an adaptive

neural network controller is designed to compensate for the pivot nonlinearity. In

[24], a model-based adaptive controller is added to a linear time invariant (LTI) sta-

bilizing controller to minimize the tracking error of the read/write head. In [25], an

adaptive robust controller was developed, which is applicable to both track-seeking

and track-following. In [26] [27] [28] [29], an adaptive notch filter was designed to

compensate for the resonant modes with uncertain frequencies. However, most of

the adaptive algorithms are not feasible in HDD servo due to either robustness,

or degraded performance with existence of noise and disturbances, or the slow

convergence of adaptation.

In a traditional HDD servo system, nonlinear controllers such as proximate time-

optimal servo (PTOS) [30] [31] [32] are widely used for track-seeking. Other efforts

include designing a unified control structure for both track-seeking and following,

such as two-degree-of freedom (2DOF) servo mechanism with adaptive robust con-

trol and zero phase error tracking techniques [33] [34] [35]. Most of these works

focus on reducing seeking and settling time. But for the HDDs application in

consumer electronics where the quietness is essential, such as home entertainment

system, car navigation and digital video recorder, HDD acoustic noise is one of the

key performance indices most concerned. Another challenge for the seeking/settling

controller is the residual vibrations induced in the transition switching from seek-

ing to track-following [36] [37] [38]. The residual vibrations are not only one of the

significant TMR sources, but may also induce acoustic noise.
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1.3 Outline of Chapters

1.3 Outline of Chapters

The contributions presented in this dissertation include the following: (1) Pro-

posed an advanced systematic loop shaping method using Kalman-Yakubovic-

Popov (KYP) Lemma to optimize the track-following controller with considera-

tions of the spectrum models of input disturbances, output disturbances and sens-

ing noise. The method was experimentally validated in our servo writing platform;

(2) Proposed a method to design an optimal seek current profile for the seeking

controller to reduce acoustic noise and residual vibrations; (3) Proposed and ex-

perimentally validated a novel settling controller for dual-stage servo system to

achieve fast and smoothly settling on target track.

The dissertation is organized as follows. In Chapter 2, the mechanical components

used in current HDDs are described. It details the possible sources of TMR during

normal operation and when the HDD is subjected to external shock and vibrations.

It also provides the modeling of the typical VCM actuator, piezoelectric (PZT)

micro-actuator, disturbances and noises.

In Chapter 3, the seeking process in HDDs is detailed. We propose a direct ap-

proach to design the pseudo-sinusoidal seek current profile, which is able to reduce

both the acoustic noise and residual vibrations. With consideration of both cur-

rent saturation limit and maximum seeking velocity limit, the saturation period,

frequency of sinusoidal wave, and coasting time can be optimally designed for ar-

bitrary seeking span to reduce residual vibrations.

In Chapter 4, the dual-stage servo system in HDD is first introduced. We formulate

the problem due to the initial values of states in the transition from track-seeking

to track-following. After a brief discussion of the conventional initial value compen-

sation (IVC) method, we describe the new proposed method initial error shaping

(IES) basing on the zero-phase error tracking (ZPET), followed by the experimental

results.

8



1.3 Outline of Chapters

In Chapter 5, a general KYP-method is introduced to shape the sensitivity function

and suppress the disturbances at certain frequencies. With the spectrum model of

disturbances and noises, an H2 optimal method is introduced to design an optimal

feedback control to achieve overall an optimal tracking performance. A systematic

procedure is then presented to design an optimal track-following controller com-

bining KYP-lemma with H2 optimal control. We introduce the servo loops in the

servo writing experimental platform and present experimental results to verify the

performances of controller designed with different approaches.

In the final chapter, Chapter 6, the major results and achievements of this research

are summarized. Further, a recommendation for future work is also outlined.
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Chapter 2

HDD Servo Mechanism and
Modeling

VCM Arm

Suspension Disk StackRecording Head

Pivot Bearing

Flexi-Cable Base Casting

Spindleu-actuator

Tracks

Figure 2.1: The mechanism inside a conventional HDD.

Figure 2.1 shows an overview of the mechanism inside a HDD. The major compo-

nents in a modern HDD include: 1) device enclosure, which usually consists of a

base plate and a cover to provide supports to the spindle, actuator, and electronics

card; 2) disk stack assembly, where several disks are stacked on the spindle motor

shaft and rotate at up to 15,000 rotations per minute (RPM) in high end 3.5-inch

drives and 5,400 - 7,200 RPM in 2.5-inch drives. On the surface of a disk, sev-

eral hundred thousand data tracks are magnetically recorded, and the latest track

10



2.1 The Servo Loop in HDD

pitch is about 80 nm; 3) head stack assembly which contains of a voice coil motor

(VCM), actuator arm, suspension and gimbal assembly. A slider is supported by

a suspension and a carriage, and is suspended at less than ten nanometers above

the disk surface. The VCM actuates the carriage and moves the slider on a de-

sired track. To increase the servo bandwidth to improve positioning accuracy for

higher track density drives, dual-stage servo using a suspension-driven PZT micro-

actuator has been commercially applied to HDD; 4) electronics circuit board which

involves drivers for spindle motor and VCM, read/write (R/W) electronics, servo

channel demodulator, a micro processor/digital signal processor (DSP) for servo

control and the interface to host computer. The position signals are recorded mag-

netically on each disk using a servo track writer (STW). The position signals are

recorded in a certain time interval on each track. Consequently, the PES between

the head and the reference track center can be detected directly by reading the

position signal.

2.1 The Servo Loop in HDD

The head-positioning servomechanism in HDD is a control system that moves the

R/W head from current track near to another target track (track-seeking), and

re-positions the R/W head over a desired track center with minimum statistical

deviation from the track center (track-following). A settling controller is used in

between the above seeking and following modes. Figure 2.2 shows the typical

functional block diagram where plants involve VCM and PZT actuators for the

dual-stage servo system in HDD. The plant dynamics (P (s) + ∆P (s)) include the

dynamic of arm, suspension, and driver, and y is the position of R/W head (it is

the sum of VCM and PZT output for dual-stage HDD). yr is the reference input

of the desired track center. pest is the true PES signal which tells exactly how

well the R/W head follows the reference track center. n is measurement noise

11



2.1 The Servo Loop in HDD

Figure 2.2: A typical servo loop in HDD.

which includes the electronic noise of demodulation circuit, head noise, and media

noise. pes is the measured error for feedback control. di is the input disturbance

which includes torque disturbances and external shock disturbances. do is the

output disturbance which includes the disk vibrations,slider vibrations, suspension

vibrations, and spindle vibrations. Ts is the sampling time, which is decided by

the sector number in one revolution and the rotation speed of spindle.

Figure 2.2 shows that the HDD servo has four features:(a) typical error feedback

controller (b) sampled digital servo control (c) disturbance suppression control

including high servo bandwidth design, and (d) transient response control such as

mode-switching control (MSC).

For the single-stage servo in track-following mode, we have

pest(k) = −P (z)S(z)di(k) + S(z)do(k)− S(z)P (z)C(z)n(k), (2.1.1)

from Figure 2.2. where P (z) is the transfer function of the discretized plant model

P (s), C(z) is the track-following controller, and the sensitivity function or error

rejection function is given by

S(z) =
1

1 + P (z)C(z)
. (2.1.2)
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2.2 Mechanical Structural Resonances

which is shown as in Figure 2.3.

(2.1.1) tells that the servo tracking accuracy (3σ(pest)) is limited by the disturbance

rejection capability of sensitivity function and the distribution of disturbances in

frequency domain. An improved mechanical design is expected to have less internal

structural vibrations and provides the actuator with better dynamic performance.

On the other hand, a good closed-loop servo system is expected to be able to reject

more disturbances. This typically demands a high servo bandwidth, which requires

actuators to be of better dynamic performance. A low hump with amplification of

less than 6 dB in error transfer function will also be observed.

rejection

amplification

0 dB cross frequency

Figure 2.3: The bode plot of a typical sensitivity function.

2.2 Mechanical Structural Resonances

2.2.1 Spindle Motor

The structures of ball bearing and fluid dynamic bearing motors are shown in

Figure 2.4 [1]. Fluid dynamic bearing (FDB) motors provide improved acoustics

over traditional ball bearing spindle motors. The source of acoustic noise in the

HDD is the dynamic motion of the disk and spindle motor components. The

sound components are generated from the motor magnet, stator, bearings, and

13



2.2 Mechanical Structural Resonances

Figure 2.4: The structure of ball bearing and fluid dynamic bearing.

disks. These sound components are all transmitted through the spindle motor to

the HDD base casting and top cover. Eliminating the bearing noise by the use

of FDB spindle motors reduces one area of the noise component that contributes

to acoustic noise. In addition, the damping effect of the lubricant film further

attenuates any noise contributed from the spindle motor components. This results

in lower acoustic noise from HDDs employing FDB spindle motors. Industrial data

has shown a 4 dB or more decrease in idle acoustic noise for some HDD designs [1].

Spindle speed ranges from around 3600 RPM to 15k RPM. A higher RPM causes

a higher data transfer rate, but larger vibrations generated by disks and spindle as

shown in Figure 2.5.
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2.2 Mechanical Structural Resonances

Figure 2.5: The spindle resonant modes: pitch and radial.

2.2.2 Disks Platter

The disk platters have significant mechanical resonant modes which are excited by

the turbulent air flow over the disk surface [39]. Many vibration modes exist with

its inner diameter clamped. The modes are denoted as (m,n), where m denotes

the number of nodal circles and n denotes the number of nodal diameter in the

mode [39]. Figure 2.6 shows the typical disk modes shape. Most these modes have

a large contribution to the output disturbances do [40] [41].

575 Hz   (0,0) mode567 Hz   (0,1) mode

676 Hz   (0,2) mode 1.09 KHz   (0,3) mode

Figure 2.6: The typical eigenmodes of disk.
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2.2 Mechanical Structural Resonances

2.2.3 Suspension and Arm

The arm and suspension are the linkage between VCM (actuation part, control

input) and slider (the sensor part, system output). The dynamic modes of sus-

pension and arm make the servo system more non-collocated, thus degrading their

performance. Figure 2.7 shows the typical four eigenmodes of suspension. The

First Bending, 4898Hz First Torsion, 5026Hz

Second Torsion, 8383Hz Second Bending, 8658Hz

Figure 2.7: The eigenmodes of suspension.

bending mode impacts less on the tracking accuracy as it is out-of-plane. The first

torsion mode usually is small in amplitude, but is easily excited by air flow. As

such, it has a significant contribution to the out disturbance do.

 

 

( a ) ( b ) (a) (b)

Figure 2.8: The typical arm mode shapes: (a) lateral QR mode and (b) lateral
bending mode.

Figure 2.8 shows the typical mode shapes of an arm, the lateral quasi-rigid (QR)

body mode at around 5.23 kHz and lateral in-plane bending mode at around 11.5
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2.3 Modeling of Servo System

kHz. QR mode is typically the first mode which limits the servo bandwidth, and it

is usually compensated with phase-stable design, notch filters, or active damping

[3].

2.3 Modeling of Servo System

2.3.1 Modeling of VCM Actuator

vk

s
yk

s
( )dH s

yu v

Rigid body

Figure 2.9: The block diagram of VCM model.

The VCM is a rotatory actuator. It contains a coil which is rigidly attached to

the actuator arm. The coil is suspended in a magnetic field generated by a pair of

permanent magnets. When current passes through the coil, a torque is produced

which accelerates the actuator radially inward or outward, depending on the direc-

tion of the current. The dynamic of VCM can be modeled as a rigid body model

(double integrator) and flexi-body resonances [30], as shown in Figure 2.9. The

dynamics of the VCM can be expressed as,

y =
kvky
s2

Hd(s)u, (2.3.3)

kv = Kt/m, (2.3.4)

where u is the current input to the actuator. y and v are the displacement and the

velocity of the R/W head. ky is the position measurement gain. m is the actuator

mass, and kt is the torque constant. The resonant modes Hd(s) can be modeled as
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2.3 Modeling of Servo System

Figure 2.10: Bode plots of frequency response for VCM. (solid line: measured;
dotted: identified; dash-dotted: double integrator)

the following transfer function

Hd(s) =
n
∑

k=1

b2kωks+ b2k−1ω
2
k

s2 + 2ξkωks+ ω2
k

, (2.3.5)

which is a parallel combination of n resonances. For typical lightly damped res-

onance, 0.005 ≤ ξk ≤ 0.05. Note that, the Hd(s) includes the resonant modes of

both the suspension and the arm.

In Figure 2.10, the solid line is the measured frequency response of a VCM actuator.

Its deviation from the double-integrator model at low frequencies is due to the non-

linearities of pivot friction. By curve fitting of each resonant mode, one can obtain

the parameters of the transfer function as the dotted line shown in Figure 2.10.

2.3.2 Modeling of Micro-actuator

Conventional HDDs with single stage VCM actuator have limits to the tracking

accuracy since the source of actuation is the voice coil which is at one end of the
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2.3 Modeling of Servo System

Figure 2.11: The technology evolution for micro-actuator.

actuator, while the magnetic heads are on the other end. This implies a non-

collocated system.

Dual stage actuation places a fine positioning actuator close to the recording heads

in order to complement the coarse motion of the voice coil using smaller motion

closer to the recording head. The secondary actuator typically uses piezoelectric

devices that move the heads across a narrow range in order to provide higher

precision motion control and offer a higher track density than that is achievable

using a single stage actuator.

As shown in Figure 2.11, there are three major popular types of micro-actuator

[42]. They are suspension-driven (first generation), slider-driven (2nd generation),

and head-driven micro-actuator (3rd generation). But the 2nd generation needs

complicated head-gimbal assembly (HGA) and 3rd generation needs a lot of changes

in head fabrication process. At present, only the first generation is commercially

used in HDDs. For example, Seagate released the first commercial drive (Cheetah

10K7) with suspension-driven micro-actuator as shown in Figure 2.12.

A piezoelectric-based microactuator located on the suspension as shown in Figure

2.13 is considered in this section. The mechanical operation of the microactuator
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2.3 Modeling of Servo System

Figure 2.12: The dual-stage actuator inside Seagate Cheetah 10K7 HDD.

Figure 2.13: A PZT actuated suspension.
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2.3 Modeling of Servo System

can be understood via an equivalent spring-mass system. The compliance of the

base plate is simplified as a single spring Kb, and the compliance of the flex hinge

elements is simplified as a single rotational spring Kr.

Figure 2.14: Equivalent spring mass system of PZT microactuator.

An important point for PZT microactuator modeling is that the PZT element acts

in series with the base plate springs. Thus, the displacement of the PZT element

results in displacements of the springs. The PZT and the base plate with spring

constants Km and Kb can be equivalent to a single spring with spring constant

KT =
2

1
Km

+ 1
Kb

. (2.3.6)

The model is derived by applying forces at the interface of the piezo element and

the base plate spring and by summing moments about the pivot point. The free

expansion of the piezoelectric element is expressed as

θf =
LmdexpV

cl1
, (2.3.7)

where Lm is the length of the piezo element, dexp is the piezo expansion coefficient,

V is the voltage, c is the thickness of piezo element, and l1 is the length as indicated

in Figure 2.14.
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Figure 2.15: A typical frequency response of PZT microactuator.

The following second order differential equation can be derived to capture the

dynamic behavior of the micro-actuator [43]

K
d2θ

dt
+ C

dθ

dt
+ (Kr +KT l

2
1)θ =

KTLmdexpl1
c

V, (2.3.8)

where K is the torsional inertia, C is the damping factor, and Kr is the torsional

spring rate. A typical frequency response of PZT microactuator from voltage input

to PZT output is shown in Figure 4.4.

Note that the frequency response of suspension-driven PZT from its voltage input

to the head position should include the dynamics of the suspension as shown in

Figure 2.7. The resonances can be modeled with the same formula as (2.3.5)

excluding the resonant modes of arm.

2.3.3 Modeling of Disturbances

In modeling of HDDs, plant dynamics modeling and disturbance modeling are

important. A high servo bandwidth does not always achieve better positioning

accuracy due to existing disturbances. As will be shown in Chapter 3, disturbance

model can be used for servo loop shaping to achieve better tracking accuracies.
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2.3 Modeling of Servo System

Vibrations in disk drives cause the deviation of the R/W head positioning from the

desired track center. It is the combination of the repeatable runout (RRO) and the

non-repeatable runout (NRRO). Runout that is the same for every revolution of

the disk is called RRO. Hence RRO has identical magnitude at each servo wedge

of a track. Since RRO is synchronized with the frequency of rotation of spindle,

its spectrum is distributed only at the fundamental frequency of spindle rotation

and its harmonics. Disk slip is one of the major causes of RRO. Another major

source of RRO occurs during servo-writing. Servo-writing is the process of writing

servo patterns onto the magnetic disk. Any tracking errors during servo-writing are

permanently written onto each servo pattern and become RRO during the normal

operation of HDD. Other sources of RRO arise from imperfections in the spindle

bearing and magnetic imbalance in the spindle motor. NRRO has many periodic

components as well, but they are not synchronous to the spindle rotation. The

major sources of NRRO are PES demodulation noise, disk vibrations, actuator arm

vibrations, disk enclosure vibrations, and windage [4]. As the repeatable runout is

compensated by iterative adaptive feedforward [44] [45] [46], we focus on the model

of NRRO.

Figure 2.16 shows a simplified block-diagram of disk drive servo loop. y is the

position of the R/W head and e is the position error signal. The signal d1 represents

all the torque disturbances to the system. Such disturbances include any torque

due to air-turbulence force on the actuator, the suspension, and the slider. The

effects of the torque disturbances are dominant at frequencies that are relatively low

as compared to the servo bandwidth. The signal d2 represents output disturbances

that are due to non-repeatable motions of the disk and motor, which are directly

added to the relative position of the R/W head and the reference track. The sensing

noises n includes media noise, head noise, electric noise, and A/D quantization noise

in the PES demodulation circuit. Therefore it is reasonable to model the sensing

noise signal n as a broad-band white noise.
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2.3 Modeling of Servo System

With closed-loop servo system, the PES (e(k)) can be measured and collected with

synchronization of the track index. From Figure 2.16,

e(k) = −P (z)S(z)d1(k)− S(z)d2(k) + S(z)n(k), (2.3.9)

where P (z) is the transfer function of the discretized plant model P (s) and the

sensitivity function S(z) is given by

S(z) =
1

1 + P (z)C(z)
. (2.3.10)

Figure 2.16: Block diagram of closed-loop with disturbances

Assuming that d1, d2, and n are uncorrelated, the power spectrum denoted by Se

of the error signal e is given by,

Se = |P (z)S(z)|2Sd1 + |S(z)|2Sd2 + |S(z)|2Sn (2.3.11)

where Sd1 , Sd2 , and Sn are spectrum of d1, d2, and n respectively.

The spectrum of NRRO component can be calculated from the collected PES data

[47]. Figure 2.17 shows the NRRO spectrum of PES measured in a commercial

HDD. Two humps are obviously observed in the baseline curve. One is in the

frequency range at around 300 Hz, the other one is at around 1500 Hz. As we know

that d2 includes disk vibrations and suspension vibrations which are caused by the

resonant modes of disks and suspension, they appear as spikes in the spectrum

domain as shown in Figure 2.18. We also know that n, sensing noise, can be

looked as a white noise. As such, its contribution to PES spectrum, |S(z)|2Sn,

has the same shape as |S(z)|2, which is very small at low frequencies around 300
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disk vib.(d�)
susp. vib.(d�)d�

Figure 2.17: The NRRO spectrum measured in a commercial HDD.

Frequency (Hz)

Figure 2.18: The bode plot of sensitivity function for a commercial HDD.
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2.3 Modeling of Servo System

Hz. The torque disturbances, d1, is usually distributed at low frequencies because

it is caused by external environmental vibrations and air-flow turbulence force on

VCM arm. With consideration of (2.3.11) and the distribution of S(z), Sd1 , Sd2 ,

and Sn, we know that the second hump in Figure 2.18 is caused by S(z) through

|S(z)|2Sn, and the first hump is due to d1 through P (z)S(z) with a hump in a

lower frequency range. Therefore Sd1 , Sd2 , and Sn can be decoupled from the PES

NRRO spectrum by fitting weighted versions of P (z)S(z) and S(z) to the baseline

curve of the spectrum and the spikes are considered as the effect of d2. As such,

the steps to obtain Sd1 , Sd2 , and Sn are

Step 1) Find Sb(j), the base line of PES spectrum,

Sb(j) =
jq

min
i=1+(j−1)q

Se(i), j = 1, 2, · · · , L/q, (2.3.12)

where L is the length of Se and q is as small as possible.

Step 2) Compute Sd1 given by

Sd1 = WL(z)Sb/|P (z)S(z)|2, (2.3.13)

whereWL is a low-pass filter used as weighting function to select Sb in low frequency

range.

Step 3) Compute Sn with

Sn = WHSb/|S(z)|
2, (2.3.14)

where WH is the high-pass filter used as weighting function to select Sb in high

frequency range.

Step 4) The baseline curve Sb can be fit well by the identified Sd1 and Sn. The

remaining part of the spectrum is regarded as Sd2 . Thus,

Sd2 = {Se − [|P (z)S(z)|2|D1(z)|
2 + |S(z)|2|N(z)|2]}/|S(z)|2. (2.3.15)
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2.3 Modeling of Servo System

Step 5) Find stable D1(z), D2(z), and N(z) such that

|D1(z)|
2 = Sd1 , (2.3.16)

|D2(z)|
2 = Sd2 , (2.3.17)

|N(z)|2 = Sn. (2.3.18)

Step 6) Calculate the models D1(s), D2(s), and N(s) from D1(z), D2(z), and N(z)

using the bilinear approximation method [48].

Figure 2.19: Control system with augmented disturbance and noise models.

In Figure 2.17, the thin gray line is the PES spectrum calculated from disturbances

model, which matches well with the measured one (thick black line). The servo

control system can be augmented with disturbance model as shown in Figure 2.19,

where wi (i = 1, 2, 3) are independent white noises with unity variance.
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Chapter 3

Design Pseudo-sine Current
Profile for Smooth Seeking

Hard disk drive is widely used in consumer electronics where acoustic noise is

becoming a more important performance index. Quiet seeking is required since

seeking noise is one of the major source of acoustic noise. Residual vibrations

are a significant factor not only to the acoustic problem, but also to the tracking

performance of HDD.

In HDDs, the servo system moves R/W head from one track to another target track

during track seeking. Conventionally, nonlinear controllers such as proximate time-

optimal servo (PTOS) mechanism [30] [31] [32] are widely used for track-seeking.

Other efforts include designing a unified control structure for both track-seeking and

following, such as two-degree-of freedom (2DOF) servo mechanism with adaptive

robust control or zero phase error tracking techniques [33] [34] [35][49]. For most of

these works, the current profile as shown in Figure 3.1 is designed to compromise

between the seek time and smooth switching from seeking to tracking. In Figure

3.1, the actuator is accelerated at maximum positive control effort until it reaches

the maximum velocity. It is kept moving at constant velocity for a certain period,

then it is decelerated at maximum negative control effort until it reaches close
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to target track at almost zero velocity. Finally, it switches to the linear track-

following mode. In the procedure of seeking, the current profile is not continuously

smooth,and is named as “jerk”-the rate of change in acceleration. This kind of

“jerk” generates significant acoustic noise, and also excites the structural resonant

modes of the servo mechanism such that ripples appear in the current profile after

switching to track-following. The ripples existed in the control effort and/or in the

position output is so called “residual vibrations”. The residual vibrations causes

longer time for the R/W head to settle down on reference track to operate properly,

it is also one significant source of TMR.

Figure 3.1: The current profile for conventional seeking controller.

In [50], ramped sinusoids was proposed to design the seek current profile to reduce

residual vibrations. However, the effect was not sufficient and the tuning process

was not straightforward. [51] [52] presented a method to design velocity trajectory

for seeking based on minimizing the jerk together with a seek controller based on

velocity control. This method can effectively suppress the high harmonics of the

actuator acceleration and the residual vibrations after seek operation. But it is

only applicable to short-span seek.

In this chapter, a systematic method is proposed to design a seek current pro-

file which is able to reduce both acoustic noise and residual vibrations. Unlike the

conventional seek profile, which usually excites the mechanical resonances and gen-

erates acoustic noise, a pseudo-sinusoidal wave is used to design a smooth current
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3.1 Problem Formulation for Track-seeking

profile without “jerk”. The current saturation limit and maximum velocity limit

are also considered in the design of current profile to achieve arbitrary seek-length.

A systematic method with a set of design parameters is proposed to minimize the

residual vibrations caused by the most significant resonant mode.

3.1 Problem Formulation for Track-seeking

The rigid model VCM plant in Figure 2.9 can be expressed in state space as,

Ẋ = ApX +Bpu

y = CpX (3.1.1)

where

Ap =







0 ky

0 0






, Bp =







0

kv






, Cp =

[

1 0

]

, X =
[

y v

]T

The objective of seeking controller is to move actuator from initial state [0 0]T

to target state [y0 0]T . The time optimal controller [30] problem is to minimize

the cost function in (3.1.2) to achieve the fastest seeking, which results maximum

acceleration and deceleration in the velocity profile.

J =
∫ tf
0 1dt, when |u| ≤ um. (3.1.2)

The time optimal controller will cause chattering at switching point in existence of

noise. PTOS [30] introduces a linear region for switching to overcome chattering

problem.

3.1.1 Minimum Jerk Seeking

For consideration with acoustic noise, one more state x3 = u̇ is introduced, which

is the rate of change in acceleration. For a typical seeking process, the initial states
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3.2 2DOF with Model Referenced Position and Current Feedforward
Control

and terminating conditions are
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,

respectively.

Note that tf is fixed, and no constraint is placed for u(t) for simplifying the problem.

The control objective is to find an optimal u∗(t), t ∈ [0, tf ] which minimizes the

cost function J

J =
∫ tf
0 x2

3(t)dt. (3.1.3)

The optimal control for the minimum jerk seeking is [51],

u∗(t) = −
120x0

1

t5f
t3 +

180x0
1

t4f
t2 −

60x0
1

t3f
t. (3.1.4)

In Figure 3.2, the solid line shows the optimal current profile when x0
1 = −20, tf =

2, and it is very similar to the dashed line which is a sinusoidal curve.

The optimal current profile in (3.1.4) is derived when the current and velocity

are not limited. It is only applicable for short-span seeking in practice. However,

it infers that smooth sinusoidal current profile causes less jerk and generates less

acoustic noise.

3.2 2DOF with Model Referenced Position and Current

Feedforward Control

Figure 3.3 shows the block diagram of 2DOF structure with current and the model-

referenced feedforward (MRF) control [35], where the VCM plant P (s) is simplified

as a double integrator plus resonant modes Hd(s). kv and ky are scaling factors for

velocity and position, respectively, and yd is the target track. Ir is desired current

profile which will be discussed in the next section. C(z) is a nominal linear tracking
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Control

Figure 3.2: The optimal current profile for minimum jerk.

controller, and P̂ (s) is the reference model to generate the position reference profile

yr.

Figure 3.3: Block diagram of the model referenced feedforward control.

Assuming that C(s) is the corresponding continuous controller, it can be obtained

from Figure 3.3 that

y =
P (s)/P̂ (s) + P (s)C(s)

1 + P (s)C(s)
P̂ (s)Ir
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3.3 The Strategy to Design Pseudo-sine Current Profile

=
P (s)/P̂ (s) + P (s)C(s)

1 + P (s)C(s)
yr, (3.2.5)

and

e = yr − y =
1− P (s)/P̂ (s)

1 + P (s)C(s)
yr (3.2.6)

(3.2.5) and (3.2.6) show that the output y will follow the reference track profile yr

exactly if the reference model P̂ (s) is the same as the plant P (s). The advantage

of using the MRF lies in the fact that the VCM actuator can be driven directly

by the feedforward current signal, whose profile can be customized by designers.

Furthermore, the feedforward current loop is not limited by inherent sampling

frequency of HDD servo system, which is determined by the number of servo sectors

and spindle rotational speed. As such, a novel current profile can be designed to

minimize the residual vibrations which is discussed in Section 3.3.

3.3 The Strategy to Design Pseudo-sine Current Profile

In HDD servo channel, the current driver can only provide limited value of current

as shown in Figure 3.3. In addition, the maximum seeking velocity is also limited to

keep the read/write head flying properly and to ensure reading back the full servo

patterns in servo wedges. A proper current profile Ir(t), as shown in Fig. 3.4, has

acceleration (0 to t1), coasting (t1 to t2), and deceleration (t2 to t5) stages. I1(t)

is a current profile with no saturation and coasting for short-span seeking. The

velocity of VCM increases until the maximum value reaches during the acceleration

stage. During the coasting stage, the acceleration is zero and the velocity keeps

at its maximum value. During the deceleration stage, the velocity of VCM is

reduced from its maximum to zero before settling down on a target track. Both

the acceleration and deceleration stages are divided into three segments: rising

transition (S1, S4), saturation (maximum acceleration/deceleration), and falling

transition (S2, S3).
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Figure 3.4: Pseudo sinusoidal current profile.

To reduce seeking noise, the VCM current should have a very smooth profile during

seeking. Therefore, a perfect half period cosine wave is chosen to be the rising

transition and falling transition. In Figure 3.4, S1 and S2 will form a cosine wave

with offset of one. The amplitude is half of the saturation level, which ensures a

smooth transition during saturating. The current profile is designed as

Ir(t)

Im/2
=




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
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

−cosωit+ 1, 0 ≤ t < T1

2, T1 ≤ t < T1 + Th

−cosωi(t− Th) + 1, T1 + Th ≤ t < t1

0, t1 ≤ t < t2

cosωi(t− t2)− 1, t2 ≤ t < t3

−2, t3 ≤ t < t4

−cosωi(t− t4)− 1, t4 ≤ t < t5

0, t5 ≤ t

(3.3.7)

with

T1 =
π

ωi

, t1 = Th + 2T1,
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3.3 The Strategy to Design Pseudo-sine Current Profile

t2 = t1 + Tc, t3 = t2 + T1,

t4 = t3 + Th, t5 = t4 + T1,

where ωi is the frequency of cosine wave, Th is saturation time, and Tc is coasting

time. With the current profile and the reference model, we can derive the trajectory

of the velocity and position. A rigid VCM plant model, a double integrator with

velocity and position scaling factor kv and ky as shown in Fig. 3.3, is used as

reference model in this chapter. The velocity and position reference trajectory

can be derived from the current profile directly. In practical implementation, the

position reference trajectory can be generated from reference model directly.

3.3.1 Pseudo-sine Current Profile Generation

Before deriving a proper current profile for seeking the target track yd, the following

parameters need to be specified:

1. The frequency of the sinusoidal wave (ωi) with consideration of reducing

acoustic noise:

It determines the acceleration of current which will affect the amplitude of

acoustic noise and seek time. The acoustic noise is mainly caused by the

jerk in acceleration. As such, a low frequency will result in low acoustic

noise but relatively long seek time. As the relationship in between seeking

acoustic noise and frequency is not clearly known yet, the determination of

the frequency is based on trial and error.

2. The maximum current (Im):

It is specified by current driver.

3. The maximum velocity (Vmax):

It is set to ensure read/write head to fly properly [53] and to read back a full

servo pattern properly.
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3.3 The Strategy to Design Pseudo-sine Current Profile

According to the velocity and position trajectories generated from reference model,

we can determine the velocity or reached target tracks at the following transitions:

1. Vf1: the velocity reached at the end of transition S1;

2. Thmax =
Vmax−2Vf1

kv
: the saturation time for actuator to reach the maximum

velocity;

3. yd1: the maximum target track reached using profile I1(t) without saturation

and coasting;

4. yd2: the target track reached using profile Ir(t) with the maximum saturation

time but without coasting.
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Figure 3.5: The process to generate current profile.

Having these parameters, the process to generate the current profile for yd is shown

in Figure 3.5. For cases when yd1<yd≤yd2, the value can be derived using look-up

table for easy implementation.
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3.3 The Strategy to Design Pseudo-sine Current Profile

3.3.2 Minimizing Residual Vibrations

The seeking residual vibrations are caused by the lightly-damped structural reso-

nant modes of the actuator. The residual vibrations are actually the response of

the resonant dynamics Hd(s) (in Fig. 3.3) to the transients, such as S1, S2, S3, and

S4 in the current profile.

According to the current profile shown in Fig. 3.4, we have,

S2(t)=−S1(t−T1−Th), (3.3.8)

S4(t)=−S3(t−T1−Th). (3.3.9)

Define Vri(t) as the response of Hd(s) to Si(t) for i=1, 2, 3, 4. Note that

Vr2=−Vr1(t−T1−Th), (3.3.10)

Vr4=−Vr3(t−T1−Th). (3.3.11)

The total residual vibrations due to S1 and S2 denoted by V12(t), and that due to

S3 and S4 denoted by V34(t) can be calculated

V12(t) = Vr1(t)− Vr1(t− T1 − Th), (3.3.12)

V34(t) = Vr3(t)− Vr3(t− T1 − Th), (3.3.13)

respectively.

Since there is usually one dominant resonant mode in Hd(s) whose frequency is

ωr, both Vr1 and Vr2 are slowly decayed periodical signals with period Tr=
2π
ωr
. If

T1+Th=N×Tr with N being an integer, V12 is minimized by using the response to

S2 to cancel the response to S1. The same scenario is applied to V34.

On the other hand for short-span seek where Th is zero, T1 needs to be multiples

of Tr to minimize residual vibrations. In addition, as V34 can be regarded as −V12

delayed by (2T1+Th+Tc), we can choose T1, Th, and Tc to be multiples of Tr to

achieve minimum residual vibration for all cases.
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3.4 Simulation and Comparison with PTOS

Note that Tc and Th are not arbitrary selected but calculated from yd. When

the calculated values are not multiples of Tr, the following strategy can be applied.

First, set the value to the closest multiples of Tr by increasing the calculated values.

As such, the reached target track will be different from yd, e.g. ŷd. We can then

scale the amplitude of current profile by the factor yd
ŷd
.

3.4 Simulation and Comparison with PTOS

Table 3.1: Parameters for resonant modes
ω1(rad/s) ζ1 b11 b12 ω2(rad/s) ζ2 b21 b22 kv ky
2π·3400 0.0258 1 0 2π·8300 0.01 0 0.273 1.174e3 9.7677e4

In the simulation, two most significant resonant modes are considered. The plant

dynamics are expressed as

P (s) =
kvky
s2

· (
b12ω1s+ b11ω

2
1

s2 + 2ζ1s+ ω2
1

+
b22ω1s+ b21ω

2
2

s2 + 2ζ2s+ ω2
2

) (3.4.14)

where the parameters are listed in Table 3.1.

The maximum current is Im=0.25(A). The first resonant mode is dominant in caus-

ing residual vibrations. As such, ωr=2π·3400 (rad/sec). The sampling frequency

chosen is 20.4k Hz. The frequency of the sinusoidal wave is chosen to be 850 Hz,

which is one fourth of the first resonant frequency. As such, we have T1=2Tr=12Ts.

For comparison, a PTOS controller [30] is designed as shown in Figure 3.6. It

consists of a state estimator and a sliding surface. The state vector of the observer

is [ŷ v̂ d̂]T , where disturbance d̂ is an augmented state. yref is the reference track

center, ŷ is the estimated position of output from PES signal and track number.

The gain of the observer is chosen as L=[1.3083 0.01086 0.008]T . The sliding

surface is designed as

e = yr − ŷ, (3.4.15)

u = sat(k2(f(e)− v̂)− d̂), (3.4.16)
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f(e) =











k1
k2
(e), for |e| ≤ yl

sgn(e)[
√

2αImkv|e| −
Im
k2
], for |e| > yl

(3.4.17)

where yl=
Im
k1
, k1 and k2 are chosen to be 0.032 and 2.7581, respectively.
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Figure 3.6: The block diagram of PTOS.

In MRF as shown in Figure 3.7, the controller C(z) is the same as the linear

tracking controller (state estimator and sate feedback) designed in PTOS.
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Figures. 3.8 and 3.9 show the position output, velocity, and current profiles for

one track seeking, where thin lines are for PTOS and thick lines are for MRF. As

the full-scaled current profile I1(t) shown in Figure 3.4 can reach 19.839 tracks, the

feedforward current can be derived as [I1(t)/19.839]. From the position curves, it

can be seen that the residual vibration is significantly reduced in MRF, which is

also confirmed in velocity trajectory. The seek time for MRF is even less than that

for PTOS. Although the starting current and ending current in MRF are smaller

than those in PTOS, the intermediate acceleration and deceleration in MRF are

larger, which enable that the MRF scheme can provide rather smooth signal for

starting and ending currents as well as faster seeking.

Figure 3.10 and Figure 3.11 show the results for fifty-track seek when saturation

happens. Similar results are observed. For fifty-track seek, the calculated satura-

tion time Th is 9.5971·Ts, and Tc=0. To attenuate residual vibrations, Th is set to

be 12Ts which is two times of Tr. However, such a full scaled current profile can

reach 59.5171 tracks, so an appropriate feedforward current profile is Ir(t) scaled

by 50/59.5171 with Th=12Ts.
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Figure 3.10: Position output for 50 tracks seeking.

Figure 3.12 shows the input current profiles for different T1 without saturation and
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Figure 3.11: Velocity and current profile for 50 tracks seeking.

coasting. It shows clearly that when T1=12Ts, i.e., twice of the period of resonant

mode Tr, the input current has the least oscillations. Other cases show that the

oscillation is significantly enlarged even when the frequency of sinusoidal wave is

reduced i.e., T1=13, 14Ts. Figure 3.13 shows the input current profiles for different
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Figure 3.12: Input current while seeking with different T1.

Th with T1=12Ts but without coasting. It shows clearly that when Th=0Ts or 6Ts

which is 0 or one time of Tr, the input current has less oscillations than other cases.
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For coasting time, we can obtain the similar results as those shown in Figure 3.13.

All the above analysis verifies the conclusion drawn in Section 3.3.2.

3.5 Conclusions

A smooth near optimal pseudo-sinusoidal seek current profile for arbitrary seek

length has been proposed for minimizing the jerk to reduce seek acoustic noise.

With the parameters for the current profile properly designed, residual vibrations

due to the dominant resonant modes can be minimized. The simulation results

have shown the advantage and performance improvement of the proposed method

over PTOS method with respect to both the seek time and residual vibrations.
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Chapter 4

IES Settling Controller for
Dual-stage Servo System

Dual-stage servo system is one of the most obvious technologies to achieve the

high servo performance [54] [55] [56] [40] [57] [58]. The design of tracking/seeking

controller proposed in Chapter 3 and 4 can be applied to dual-stage servo systems

for the requirements of HDD in consumer applications. In this chapter, a settling

controller is proposed for dual-stage servo systems. There are a few algorithms

developed to achieve fast and smooth settling in current literature. The most

famous is initial value compensation (IVC) method [59] [60]. This method is quite

effective for the single stage servo loop with voice coil motor (VCM). However, it

will encounter problem if the servo system has double roots, which lead to a singular

matrix whose inverse does not exist. Another method is command shaping [61] [62]

method, which only considers initial value of displacement. In the method proposed

in this chapter, the transient response of the position error due to the VCM nonzero

initial states is taken into account, and a compensation signal is generated and

injected at the controller input to shape the position error signal and thus cancel the

undesired transitions due to the initial states. This is the called initial error shaping

(IES) method. The IES method can be used to deal with transient problems caused

by both initial position and initial velocity. With this method, only one feedforward

controller is needed, and the implementation is straightforward using look up table
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4.1 Settling Problem in Dual-stage Servo Systems

(LUT) without requirement of much computation resources.

Figure 4.1: Parallel-type dual-stage servo system.

4.1 Settling Problem in Dual-stage Servo Systems

Figure 4.1 shows a typical parallel dual-stage servo structure in on-track mode. The

seeking algorithm for dual-stage systems is the same as single-stage systems such as

2DOF scheme in [55], which uses the VCM actuator to achieve fast seeking. In on-

track mode, dual-stage system responds to command much faster than single stage

due to the boosted high servo bandwidth. The whole system has no obvious slow

modes, since PZT is used to compensate the slow modes in VCM loop. However, it

has a relatively large overshoot, as shown in section 4.4. Therefore, it is important

to deal with the non-zero VCM states for smooth and fast settling when switching

from seeking to track-following.

The major initial values of VCM states that need to be considered are the initial

velocity and initial position. The other states due to resonances are not consid-

ered because it is difficult to estimate these states accurately and their impacts

to the settling transition are relatively small in practice. Denote VCM plant as

Pv: (Av, Bv, Cv, Dv), where Dv = 0, and PZT plant as Pm: (Am, Bm, Cm, Dm),

where Dm = 0, using states Xv and Xm respectively. According to Figure 4.1, the
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4.1 Settling Problem in Dual-stage Servo Systems

dual-stage plant P (s) = [Pv(s), Pm(s)] is described as,

Xp =







Xv

Xm





 , u =







u1

u2





 ,



























Xp(k + 1)−







X0

0






= ApXp(k) +Bpu(k)

y(k) = y1(k) + y2(k) = CpXp(k)

,

(4.1.1)

where

Ap =







Av 0

0 Xm






, Bp =







Bv 0

0 Bm






, Cp =

[

Cv Cm

]

. (4.1.2)

The controller C(z)T = [Cv(z) Cm(z)] is written in state space as,











Xc(k + 1) = AcXc(k) +Bc(yr(k)− y(k)),

u(k) = CcXc(k) +Dc(yr(k)− y(k)).
(4.1.3)

The output of the closed-loop system is obtained as

y = [
C · adj(zI − A)B

|zI −A|
+D]yr +

C · adj(zI − A)z

|zI −A|







X0

0





 , (4.1.4)

where

A =







Ap − BpDcCp BpCc

−BcCp Ac





 , B =







Bp

Cc





 , C =
[

Cp 0

]

, D = 0. (4.1.5)

X0 is the plant initial states including initial position y0 and initial velocity v0 of

VCM actuator. yr is the command reference signal. Given yr being zero during

tracking, we could deduce the transient response to the non-zero VCM actuator ini-

tial states y0 and v0 from (4.1.4) after mode-switching [63]. This transient response

to non-zero initial states of VCM can lead to a longer settling time.
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4.2 IES for Dual-Stage Systems

Figure 4.2: Equivalent closed-loop control system with IES for initial position and
velocity.

4.2 IES for Dual-Stage Systems

Instead of designing the initial values for the controller states or injecting external

signal at the plant input to cancel the transient response in the plant output due

to the nonzero initial states of VCM actuator [59], a compensation signal will be

designed and injected at the controller input to shape the position error signal

due to nonzero VCM initial states before it is fed into the nominal on-track mode

controller.

Figure 4.2 shows the system block diagram with IES, where the injected signals uc1

and uc2 are used to compensate initial position y0 and initial velocity v0, respec-

tively. For the initial position y0 of VCM, it is equivalent to applying a disturbance

at the output as shown in Figure 4.2. Let Tv(z) denote the transfer function from

initial velocity v0 to PES that can be derived from (4.1.4). From Figure 4.2, the

PES is given as,

PES = PES|yr + PES|y0 + PES|v0 (4.2.6)
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4.2 IES for Dual-Stage Systems

where

PES|yr = Tc(z)yr, (4.2.7)

PES|y0 = −y0 + Tc(z)F (z)y0, (4.2.8)

PES|v0 = Tc(z)F (z)x(t) + Tv(z)V0, (4.2.9)

where

Tc(z) =
P (z)C(z)

1 + P (z)C(z)
. (4.2.10)

is the closed-loop transfer function.

The objective is to design a feedforward controller F (z) and external injected signal

x(t) to improve the transients due to y0 in (4.2.8) and v0 in (4.2.9).

4.2.1 IES for Initial Position

If there is no IES compensation in (4.2.8), i.e. F (z) = 1, the transient state of

PES in settling is the same as the transient part of step response of the closed-loop

system. In order to improve the transient response in settling, the mode added by

F (z) should be the inverse of the transient response of the closed-loop system.

If the closed-loop transfer function Tc(z) can be inverted, perfect settling can be

achieved by setting F (z) as

F (z) =
1

Tc(z)
=

1 + P (z)C(z)

P (z)C(z)
. (4.2.11)

Generally, F (z) is not invertible due to the existence of unstable zeros. For such a

case, F (z) can be designed as the following using ZPET method [64]. The closed-

loop transfer function in (4.2.8) can be written as,

P (z)C(z)

1 + P (z)C(z)
=

B(z)

A(z)
, (4.2.12)

A(z) = a0 + a1z + ... + anz
n, (4.2.13)

B(z) = Ba(z)Bu(z) = b0 + b1 + ... + bmz
m. (4.2.14)
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4.2 IES for Dual-Stage Systems

where Ba(z) and Bu(z) include stable and unstable zeros of B(z) respectively.

Stable zero means that the zeros are inside the unit circle in the complex plane.

Let

Bu(z) = bu0 + bu1 + ... + buqz
q. (4.2.15)

Define its complex conjugate as

Bu∗

(z−1) = bu0 + bu1z
−1 + ...+ buqz

−q, (4.2.16)

we can design F (z) as

F (z) =
A(z)Bu∗

(z−1)

zn−m+qBa(z)[Bu(1)]2
. (4.2.17)

Now from (4.2.8), we have

PES|y0 = −y0 +
P (z)C(z)

1 + P (z)C(z)
F (z)y0

= −y0 +
Ba(z)Bu(z)

A(z)

A(z)Bu∗

(z−1)

Ba(z)[Bu(1)]2
z−n+m−qy0

= −y0 +
Bu(z)Bu∗

(z−1)

[Bu(1)]2
z−n+m−qy0. (4.2.18)

Note that Bu∗

(z−1) is the complex conjugate of Bu(z). Thus, after (n − m + q)

steps delay, the second part in (4.2.18) is the moving average of y0. Since y0 is the

initial value of position, its moving average is the same, which means that PES|y0

converges to zero after (n−m+ q) steps delay.

4.2.2 IES for Initial Velocity

Since F (z) is designed as (4.2.17), (4.2.9) can be expressed as

PES|v0 =
Bu(z)Bu∗

(z−1)

[Bu(1)]2
z−(n−m+q)x(t) + Tv(z)v0, (4.2.19)

where x(t) can be designed as

X(z) = zn−m+q[−Tv(z)v0]. (4.2.20)
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4.3 More Considerations in Designing F (z)

We have,

PES|v0 =
Bu(z)Bu∗

(z−1)

[Bu(1)]2
z−(n−m+q)zn−m+q[−Tv(z)v0] + Tv(z)v0

=
Bu(z)Bu∗

(z−1)

[Bu(1)]2
[−Tv(z)v0] + Tv(z)v0. (4.2.21)

Notice again that Bu∗

(z−1) is the complex conjugate of Bu(z), thus the first part

of the above equation is the moving average of −Tv(z)v0, which is very close to

−Tv(z)v0 due to the fact that −Tv(z)v0 is the smooth transient response to slow

decaying of energy stored in VCM. Thus, it cancels the Tv(z)v0 due to the initial

velocity.

4.3 More Considerations in Designing F (z)

In the previous section, all the stable zeros of Tc(z) are treated as acceptable and

are cancelled by the corresponding poles of F (z). If the zero is close to the unit

circle, and is not exactly cancelled by pole in the F (z) due to model estimation

error, oscillations will occur in the output and input current which is so-called as

“acoustic” problem, as shown in section 4.4.

To avoid the acoustic problem, an acceptable circle inside unit circle will be de-

fined with radius less than one. Generally, it is chosen as 0.96 (typical structural

resonances with damping ratio of less than 0.1 are located outside this circle). The

acceptable zeros located inside the acceptable circle will be cancelled by corre-

sponding poles in F (z), and others are cancelled by the corresponding conjugate

zeros in F (z).

Usually, the closed-loop transfer Tc(z) for dual stage servo system is a high-order

system. Some of its zeros are already cancelled by the poles nearby, and these

poles and zeros can be neglected during designing F (z) to reduce the order of

F (z). However, if the zero is located around the positive real axis near unit circle,

it is a slow mode. For a slow mode zero, it should be included in the design of F (z)
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4.4 Design Example

even it has a corresponding pole around canceling it.

In conclusion, we can design the F (z) according to the ZPET rule as the following

steps:

1. Analyze the poles and zeros of the closed-loop transfer function. Ignore those

poles and zeros that are matched well except the slow mode zeros;

2. Identify the acceptable and unacceptable zeros;

3. Cancel all the unmatched poles by placing the corresponding zeros into F (z);

4. Cancel all the acceptable zeros by placing the corresponding poles into F (z);

5. Cancel all the unacceptable zeros by placing the their complex conjugate

zeros into F (z). For example, if a+ bi is one unacceptable zero, then place a

zero a−bi
a2+b2

into F (z);

6. Place proper number of poles at 0 into F (z) to balance the order between

the denominator and numerator of F (z);

7. Scale F (z) such that it has unit gain.

Step 6 will increase order and delay. However, the delay induced is cancelled by

designing X(z) = zn−m+q[−Tv(z)v0] which includes corresponding steps advanced.

The injected compensation signals −F (z)X(z) and y0(1− F (z)) are precalculated

in practical implementation using look-up table, thus the increased order will not

increase the complexity of computation.

4.4 Design Example

The frequency responses of the VCM and PZT actuator are shown in Figure 4.3

and Figure 4.4, where the dotted line is the measured response while the solid line
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Figure 4.3: Frequency response of VCM actuator.
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Figure 4.4: Frequency response of PZT micro-actuator.
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4.4 Design Example

is the modeled response with a sampling frequency of 20 kHz. The VCM plant

model is identified with gain scaled as

Pv(z) =
numv(z)

denv(z)
,

where

numv(z) = −0.002798z7 + 0.1322z6 + 0.9935z5 + 1.989z4

+1.533z3 + 0.3883z2 − 0.02272z − 0.006695,

denv(z) = z8 − 0.5764z7 − 0.09174z6 + 0.04249z5 − 1.182z4

+0.5602z3 − 0.2009z2 − 0.1413z + 0.592.

PZT plant is identified as

Pm(z) =
−0.008044z3 + 0.03511z2 + 0.06053z + 0.01584

z3 + 1.176z2 + 1.236z + 0.8588
.

The controllers (together with notch filter) for PZT and VCM are

Cv(z) =
1.063z6 − 1.38z5 + 1.828z4 − 1.914z3 + 1.071z2 − 0.656z + 0.004298

100(z6 − 2.306z5 + 2.298z4 − 1.407z3 + 0.4805z2 − 0.06531z)
,

Cm(z) =
5.105z3 − 1.002z2 + 4.112z − 2.461

z3 − 1.769z2 + 0.9234z − 0.1503
,

respectively. Figure 4.5 shows the step response of the closed-loop system. As

Figure 4.5: Step response of the dual-stage servo system.
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4.4 Design Example

Table 4.1: Characteristic of poles/zeros in tracking.
No. poles zeros Remark
1 -0.9833 ± 0.040256i -0.9833 ± 0.040256i cancelled
2 -0.8541 -1.0422 not matched well
3 -0.1947±0.6855i -0.1956±0.6855i cancelled
4 -0.1710±0.5611i -0.1204±0.8550i not matched well
5 -0.1487±0.9779i -0.1487±0.9779i cancelled
6 -0.1472±0.9775i -0.1531±0.9674i almost cancelled

(acoustic problem)
7 0.9997±0.0005i 0.9997±0.0005i cancelled
8 0.9388±0.0151i 0.9473±0.0213i almost cancelled

(slow mode)
9 0.9917 0.9917 cancelled
10 0.5798±0.1152i 0.5318±0.1094i almost cancelled
11 0.4647±0.5657i not matched
12 0.3897±0.00000033i 0.38967±0.00000022i cancelled
13 0.3222±0.8359i 0.3210±0.8176i almost cancelled
14 0.3000±0.5777i 0.2523±0.5777i almost cancelled
15 0.0004 0.0008 cancelled
16 -0.33412965418467 not matched
17 5.74196058627462 not matched

Figure 4.6: Poles/zeros map of the closed-loop system.

54



4.4 Design Example

stated previously, it responds to the command reference fast but has a relatively

large overshoot.

The pole/zero map of the closed-loop transfer function is depicted in Figure 4.6,

and all poles/zeros are listed in Table 4.1. First, we treat all unmatched stable

zeros as acceptable. Thus according to the above design procedure, a 7th order

F (z) is designed. The simulation results are lines marked with “B” as shown in

Figure 4.7 and Figure 4.8 with initial position y0 = 1 track. The overshoot of the

dotted curve is smaller with compensation. However, there is one slow transition

left uncompensated which is due to the slow zero in Figure 4.6. In Figure 4.8 there

is an obvious acoustic oscillation in the control effort. This is due to the acoustic

zero, which is very close to the unit circle and can be seen in Figure 4.6.
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Figure 4.7: Settling transient due to initial position y0 = 1 track (A: no compensa-
tion; B: with compensation and without considering acoustic and slow modes; C:
with compensation considering acoustic and slow modes).

Next, the above acoustic zero is treated as unacceptable and F (z) is redesigned.

Meanwhile, the partially cancelled slow zero/pole, as indicated in Figure 4.6, is

retained and considered into the design of F (z). An F (z) of 13th order is derived
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4.4 Design Example

as

F (z) =
numf(z)

denf (z)
,

numf(z) = 0.1308z13 − 0.0278z12 + 0.0806z11 − 0.0854z10 − 0.1512z9 + 0.0696z8,

−0.1065z7 + 0.0778z6 − 0.0011z5 − 0.0310z4 + 0.0460z3 − 0.0080z2

+0.0179z − 0.0031

denf(z) = z8(z5 − 1.319z4 + 0.6345z3 − 0.7997z2 + 0.2697z + 0.2237).

Figure 4.8: VCM controller output with initial position compensation (B: acoustic
oscillation observed; C: no acoustic problem).

A smooth and fast settling within 0.3 ms is achieved as that is observed in the “C”

curve in Figure 4.7. Also, there is no more acoustic problem observed in the “C”

curve in Figure 4.8.

Figure 4.9 shows the result for compensating the transients due to initial velocity

(v0 = 2000 track/second), where the curve “A” is the response of closed-loop

system to the initial velocity, curve “B” is the injected signal (uc2), curve “D” is

the response of closed-loop system to injected signal only, and curve ”C” is the
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Figure 4.9: Settling transient due to initial velocity.

settling transition after compensation. It clearly shows that much faster settling is

achieved with compensation.

4.5 Implementation Method

As shown in Figure 4.2 with F (z) designed as (4.2.14) and X(z) designed as

(4.2.20), we know that

Uc1(z) = (1− F (z))y0,

Uc2(z) = zn−m+q[F (z)Tv(z)]v0. (4.5.22)

Both F (z) and Tv(z) are pre-designed or known. If initial values are estimated or

measured, the injected uc1 and uc2 can be calculated. With the assumption that

rp(k) is the time domain signal corresponding to 1 − F (z) and rv(k) is the time

domain signal corresponding to zn−m+q[F (z)Tv(z)], the injected signal uc(k) when

switching at (p0, v0) can be calculated according to superposition theory as

uc(k) = y0 · ry(k) + v0 · rv(k). (4.5.23)
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4.6 Switching Conditions

Since F (z) has a static gain of one, uc1 converges to zero. The static gain of Tv(z)

is zero, and hence uc2 also converges to zero as the curve “B” shown in Figure 4.9.

For realtime implementation, only a finite number of ry(k) and rv(k) are stored

into a look-up table for calculating the signal uc(k).

4.6 Switching Conditions

The above settling scheme is designed with consideration of improving the transient

response of closed-loop system in track-following. During settling, the PZT cannot

be in saturation. Otherwise, the servo system is no longer a linear system. It is

therefore important to select proper switching conditions to avoid the saturation

of PZT actuator.

Figure 4.10 shows the responses of PZT to different initial conditions shown as in

Table 4.2. If the PZT is not saturated, the dual-stage system is a LTI system. For

a general initial condition (V0, P0), the PZT output is,

f(t) =
v0

1000
× f1(t) + p0 × f3(t). (4.6.24)

Table 4.2: PZT output at different initial conditions.
PZT output Initial Velocity (track/second) Initial Position (track)

f1(t) 1000 0
f2(t) -1000 0
f3(t) 0 1
f4(t) -2500 1
f5(t) 1000 1

To avoid saturating PZT, f(t) must be less than 1.25 tracks (track pitch is 0.25um),

which is full stroke for the PZT actuator corresponding to a output range of ±8v

for the PZT driver we used. From Figure 4.10, it can be seen that f4(t) and f5(t)

are at the margin to saturate PZT. As such, v0 must satisfy −2500(track/s) ≤

v0 ≤ 1000(track/s) to avoid saturating PZT if the p0 is 1 track. Apparently, p0
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Figure 4.10: PZT output under different initial conditions with IES.

must be confined to be less than 1.25 tracks for the PZT of maximum stroke of

1.25 tracks. When the initial position error is smaller, the allowable initial velocity

is also larger.

4.7 Experimental Setup and Results

In the experiment setup, as shown in Figure 4.11, the Laser Doppler Vibrometer

(LDV) is used as a position sensor to measure the off-track position with laser

shining at the side of slider. DSPACE, a real time development system, is used to

implement the servo controllers, which includes a finite impulse response (FIR) fil-

ter as seeking controller with velocity estimator and dual-stage servo with IES. As

shown in Figure 4.12, we first use the seeking controller to perform four tracks seek-

ing. When head is arriving at the third track, we switch from seeking to tracking

with/without enabling IES. Two LUTs are used in experimental implementation

for IES, namely, one for initial velocity compensation and one for initial position

compensation. The LUT is used to store the normalized values of uc1 and uc2 for
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Figure 4.11: Experiment setup for dual-stage servo.

a short settling period. To implement online compensation, the values in LUT are

scaled by the corresponding initial values of velocity/postion and injected into the

nominal controller.

The experimental results are shown in Figure 4.13, where y0 is 1 track, and v0 is

an estimated value around 1345 tracks/second at the switching point from seeking

to settling. It can be seen that the settling transient with IES (persistent curve B)

is significantly improved, and a settling time of less than 0.35ms is achieved.

4.8 Conclusions

In this chapter, an effective and easily implemented settling scheme has been pre-

sented to achieve fast and smooth track settling for a dual-stage servo system. In

this scheme, a feedforward compensator can be used to cancel the error caused by

the initial position and velocity of VCM during mode-switching.

Based on ZPET, a systematic pole/zero cancelation scheme is used in the design

of the IES feedforward compensator.
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4.8 Conclusions

Figure 4.12: Seeking profile with FIR seeking controller.

Figure 4.13: Experimental results with IES (A: no compensation; B: with compen-
sation).
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4.8 Conclusions

Both simulation and experiment results show that this method can improve settling

performance significantly. In future, it is valuable to study the optimal switching

conditions.
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Chapter 5

Design Feedback Controller Using
Advanced Loop Shaping

To shape the frequency responses of closed-loop transfer functions such as sensitiv-

ity/complementary sensitivity functions, H∞ optimization together with frequency

weighting is a commonly used method. However, the frequency weighting func-

tions increase the system and controller complexities since the weighting functions

usually are of high orders in order to formulate the desired specifications accu-

rately. The process of choosing appropriate weighting function is also tedious and

time-consuming.

The KYP lemma [65] establishes the equivalence between a frequency domain in-

equality (FDI) for a transfer function and a linear matrix inequality associated with

its state space realization. It provides a solution to characterize various properties

of dynamic systems in the frequency domain in terms of linear matrix inequalities.

The standard KYP Lemma is only applicable for the infinite frequency range, while

the generalized KYP Lemma [66] establishes the equivalence between a frequency

domain property and a linear matrix inequality over a finite frequency range, which

allows designers to impose expected performance requirements over selected finite

or infinite frequency ranges. Therefore, the generalized KYP is very suitable for

63



analysis and synthesis problems in practical applications where different specifica-

tions over different frequency ranges are required.

The KYP Lemma-based loop shaping method does not count for overall positioning

error minimization which can be translated into the H2 optimal control problem

by taking into consideration the disturbance and noise models. On the other hand,

the H2 control design which incorporates all disturbance and noise models can

result in an average performance across the entire frequency range and a high

order controller. Thus, it usually does not have the flexibility to specifically reject

disturbances in certain frequency ranges, which however may be the dominant

factors that influence the overall performance. Therefore, there is a need to suppress

disturbances of specific frequencies when minimizing the positioning error, which is

the motivation to incorporate the KYP lemma-based method with the H2 control

method. With the selected specific disturbances handled by the KYP Lemma-

based design, the H2 control is formulated with a lower order disturbance model,

excluding the disturbances covered in the above design. This will not only reduce

the computation time in the H2 control design, but also result in a lower order

controller.

In this chapter, the generalized KYP lemma is applied to design a feedback control

such that the sensitivity function can attenuate the disturbances at some specific

frequency ranges. Unlike the standard KYP lemma, the matrix inequality in the

generalized KYP lemma involves a matrix variable which is not necessarily posi-

tive definite, and thus the Schur complement cannot be applied to convexify the

controller design. To overcome this difficulty, the Youla parametrization approach

is used to parameterize the closed-loop transfer function. The search for the coeffi-

cients of the parameter Q(z) is then converted to a linear matrix inequality problem

within the generalized KYP lemma framework. Next, considering the system with

an augmented disturbance model, the generalized KYP lemma is combined the H2
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5.1 Control Design Using Generalized KYP Lemma

method to design a controller for minimization of tracking error as well as attenu-

ation of dominant disturbances at certain frequencies. Lastly, the two methods are

applied to design track-following controller for our STW experiment platform.

5.1 Control Design Using Generalized KYP Lemma

5.1.1 Problem Description

It is known that the power spectrum of PES in Figure 2.16 is given by

Se = |P (z)S(z)|2Sd1 + |S(z)|2Sd2 + |S(z)|2Sn, (5.1.1)

where the sensitivity function S(z) shows the disturbance rejection capability of

the servo loop. It becomes rather significant to design a controller such that the

sensitivity function reject dominant disturbances with known frequencies.

The problem can be stated as: To design a dynamic feedback controller C(z) for
plant P (z) such that the closed-loop system is stable and for some prescribed positive
scalars ri and frequency ranges (fi1, fi2), i = 1, ..., N , such that

|S(f)| < ri, when fi1 ≤ f ≤ fi2. (5.1.2)

A smaller ri means the less contribution of the disturbance in frequency range

(fi1, fi2) to the error.

5.1.2 Generalized KYP Lemma

Figure 5.1 shows a equivalent system where the transfer function from w to z is

the same as the sensitivity function, S(z), in Figure 2.16. The state-space model

of the plant under consideration is denoted as (Ap, Bp, Cp, Dp). The state-space

representation of the system in Figure 5.1 is given by

x(k + 1) = Apx(k) +Bpu(k), (5.1.3)

z(k) = −Cpx(k) + w(k)−Dpu(k), (5.1.4)
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Controller with Q parameterization

Figure 5.1: Equivalent system for KYP analysis.

where x ∈ Rn is the state vector of dimension n, z ∈ Rp is the controlled output

vector of dimension p, w ∈ Rq is the disturbance vector of dimension q, u ∈ Rr is

the control input vector of dimension r, Ap is the state matrix of dimension n× n,

Bp is the input matrix of dimension n × r, Cp is the output matrix of dimension

p× n, and Dp is the feedthrough matrix of dimension p× r.

Let a state-space representation of the controller C(z) be given by (Ac, Bc, Cc, Dc).

Assuming that D = 1+DcDp is invertible, then a state-space representation of the

sensitivity function can be given by (Ã, B̃, C̃, D̃), where

Ã =







Ap − BpD
−1DcCp BpD

−1Cc

−BcCp +BcDpD
−1DcDp Ac − BcDpD

−1Cc





 , (5.1.5)

B̃ =







BpD
−1Dc

Bc − BcDpD
−1Dc





 , (5.1.6)

C̃ =
[

−Cp +DpD
−1DcCp −DpD

−1Cc

]

, (5.1.7)

D̃ = 1−DpD
−1Dc. (5.1.8)

A special case of the generalized KYP lemma that relates the bounded realness of

the sensitivity function over finite frequency ranges to its state space representation

is given below [66].
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5.1 Control Design Using Generalized KYP Lemma

Lemma 5.1.1 Consider the sensitivity function S(z) = C̃(zI − Ã)−1B̃ + D̃ with
Ã being stable. Then, for a given scalar r > 0, |S(ejθ)| ≤ r over a finite frequency
range if and only if there exist Hermitian matrices U and V ≥ 0 such that









[

Ã B̃
I 0

]

∗

Σ

[

Ã B̃
I 0

]

+

[

0 0
0 −r2

]

[

C̃ D̃
]

∗

[

C̃ D̃
]

−I









≤ 0, (5.1.9)

where

(i) for low frequency range |θ| ≤ θl,

Σ =

[

−U V
V U − (2cosθl)V

]

; (5.1.10)

(ii) for middle frequency range θ1 ≤ θ ≤ θ2,

Σ =

[

−U ejθcV
e−jθcV U − (2cosθd)V

]

,

θc = (θ1 + θ2)/2, θd = (θ2 − θ1)/2; (5.1.11)

(iii) for high frequency range |θ| ≥ θh,

Σ =

[

−U −V
−V U + (2cosθh)V

]

. (5.1.12)

For a given controller C(z), the above gives a necessary and sufficient condition to

evaluate whether |S(z)| ≤ r over some given frequency range in terms of an LMI.

However, (5.1.9) is no longer an LMI when the controller C(z) = (Ac, Bc, Cc, Dc)

is to be designed, since Ã and B̃ involve the unknown parameters Ac, Bc, Cc and

Dc. Further, it is not possible to convert to an LMI via Schur complement as the

matrix Σ is not definite.

5.1.3 YOULA Parametrization

Let K(z) be a state feedback controller with a state estimator, i.e.,

x̂(k + 1) = Apx̂(k) +Bpu(k) + L(z(k) + Cpx̂(k)), (5.1.13)

u(k) = −Mx̂(k). (5.1.14)
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5.1 Control Design Using Generalized KYP Lemma

where L is the estimator gain, and M is state feedback gain. A set of sensitivity

functions can be parameterized as [67]

S(z) = T11(z) + T12(z)Q(z)T21(z), (5.1.15)

where Q(z) is a stable transfer function to be designed and







T11(z) T12(z)

T21(z) 0





 = CT (zI − AT )
−1BT +DT ,







AT BT

CT DT





 =





















Ap −BpM 0 Bp

−LCp Ap − BpM + LCp L Bp

−Cp DpM 1 −Dp

−Cp Cp 1 0





















. (5.1.16)

If Q(z) has the state-space realization (Aq, Bq, Cq, Dq), the designed controller C(z)

is given by

Ac =







Ap −BpM + LCp +BpDqCp BpCq

BqCp Aq





 , (5.1.17)

Bc =







L+BpDq

Bq






, (5.1.18)

Cc =
[

−M +DqCp Cq

]

, (5.1.19)

Dc = Dq. (5.1.20)

The controller C(z) is now of the structure as shown in Figure 5.1.

Denote the state-space representations of T11(z) and T12(z)T21(z) by (At11, Bt11,

Ct11, Dt11) and (At, Bt, Ct, Dt), respectively, a state space model of S(z) can be

written as from (5.1.15)

Ã =















At11 0 0

0 At 0

0 BqCt Aq















, (5.1.21)
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B̃ =















Bt11

Bt

BqDt















, (5.1.22)

C̃ =
[

Ct11 DqCt Cq

]

, (5.1.23)

D̃ = Dt11 +DqDt. (5.1.24)

Let Q(z) be an FIR filter, such that

Q(z) = q0 + q1z
−1 + q2z

−2 + ...+ qτz
−τ , (5.1.25)

q = [q0 q1 q2, ... , qτ ], (5.1.26)

which is to be designed so that the required bounded realness of the sensitivity

function is satisfied. It is known that a state-space realization for Q(z) can be

given by

Aq =







0 Iτ−1

0 0





 , Bq =







0(τ−1)×1

1





 ,

Cq = [qτ qτ−1 · · · q1] , Dq = q0,

where Iτ−1 is the identity matrix of dimension (τ − 1) × (τ − 1) and 0(τ−1)×1 is

the zero matrix of dimension (τ − 1) × 1. Note that the filter parameter q to be

designed only appears in Cq and Dq. From (5.1.21)-(5.1.24), we know that q exists

in C̃ and D̃ only. In this case, (5.1.9) defines an LMI in terms of the variables

U , V , and q. As such, U , V , and the design parameter q can be computed via a

convex optimization.

5.1.4 Design Procedures Using KYP Lemma

The KYP lemma-based control design can be carried out according following steps:

Step 1. Compute M and L using Matlab commands

M = dlqr(Ap, Bp, C
T
p Cp, R),

L = Ap · dlqe(Ap, Bp,−Cp,Wd,Wv),
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5.2 H2 Optimal Control

where R is the weighting for the control input in the cost function

J =
∑

(x̂TCT
p Cpx̂+ uTRu)

for linear quadratic regulator design, and Wd and Wv are the variance matrices of

process noise and measurement noise for the Kalman estimator design. In the KYP

lemma-based control design, R, Wd, and Wv can be chosen as identity matrices.

Step 2. Compute T11(z), T12(z), and T21(z) from (5.1.16).

Step 3. Obtain the state-space model (Ã, B̃, C̃, D̃) in (5.1.21)-(5.1.24).

Step 4. Based on disturbance spectrum, specify the positive scalars ri and frequency

points fi(i = 1, ..., N) for the sensitivity function

|S(fi)| < ri, fi1 ≤ fi ≤ fi2, (5.1.27)

where fi1 and fi2 define the frequency range. For each specification on the resultant

sensitivity function in the frequency range, construct the LMI (5.1.9) in terms of

the variables U , V , and q, with r = ri.

Step 5. Obtain q, U , and V by solving these LMIs using Matlab LMI toolbox. If

the LMIs are not solvable, the specifications given in Step 4 are to be adjusted.

Step 6. Obtain the controller parameters from (5.1.17)-(5.1.20).

5.2 H2 Optimal Control

KYP lemma can be used to shape the loop transfer function to attenuate specific

disturbances. However, it can not achieve overall minimization of tracking error

which can be achieved by H2 optimal control.
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5.2 H2 Optimal Control

5.2.1 H2 Norm

The H2 norm of a matrix transfer function G(s) analytic in Re(s) > 0 (open

right-half plane) is defined as

‖G‖2 :=

√

sup
σ>0

{
1

2π

∫ +∞

−∞

Trace[G∗(σ + jω)G(σ + jω)]dω}, (5.2.28)

or equivalently [68]

‖G‖2 =

√

1

2π

∫ +∞

−∞

Trace[G∗(jω)G(jω)]dω. (5.2.29)

Although ‖G‖2 can be computed from its definition, there are some simple alter-

natives taking advantage of a state-space representation of G(s).

Lemma 5.2.1 Consider a system G(s) with a state-space representation (A,B,C,D).
If A is stable and D = 0, we have [69]

‖G‖22 = Trace(BTY2B) = Trace(CX2C
T ), (5.2.30)

where X2 and Y2 are the controllability and observability Gramians that can be
obtained from the following Lyapunov equations

AX2 +X2A
T +BBT = 0, (5.2.31)

ATY2 + Y2A+ CTC = 0. (5.2.32)

We also consider a discrete-time linear time-invariant system G(z) with the follow-

ing state-space representation

x(k + 1) = Ax(k) +Bw(k), (5.2.33)

z(k) = Cx(k) +Dw(k), (5.2.34)

where x ∈ Rn is the state vector of dimension n , z ∈ Rp is the controlled output

vector of dimension p , w ∈ Rq is the disturbance vector of dimension q. Let Tzw
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5.2 H2 Optimal Control

denote the transfer function from the input w to the output z. Then the H2 norm

is defined as

‖Tzw‖2 =

√

1

2π
Trace[

∫ π

−π
T ∗

zw(e
jω)Tzw(ejω)dω]. (5.2.35)

By Parseval’s Theorem, ‖Tzw‖2 can equivalently be defined as

‖Tzw‖2 =

√

√

√

√Trace[
∞
∑

k=0

g(k)gT (k)], (5.2.36)

where g(k) is the impulse response of Tzw.

Let the input w to the system be a wide-band stationary stochastic process. The

H2 norm of Tzw can also be interpreted as the RMS value of the output z(k) when

the system is subject to a white noise having zero mean and unit variance. That is

‖Tzw‖2 =
√

E[zTz]. (5.2.37)

The H2 norm for the discrete-time system Tzw can be computed as

‖Tzw‖2 =
√

Trace(DTD +BTY2B) =
√

Trace(DDT + CX2CT ), (5.2.38)

where Y2 and X2 are the reachability and observability Gramians that can be

obtained from the following Lyapunov equations

AY2A
T − Y2 +BBT = 0, (5.2.39)

ATX2A−X2 + CTC = 0. (5.2.40)

The following theorem presents an alternative LMI approach for bounding the H2

norm of the discrete-time system Tzw.

Lemma 5.2.2 Consider a discrete-time transfer function Tzw of realization (A,B,C,D).
Given a scalar µ > 0, ‖Tzw‖

2
2 < µ if and only if there exist X2 = XT

2 and Y2 = Y T
2
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5.2 H2 Optimal Control

such that Trace(Π) < µ and







Π CX2 D
X2C

T X2 0
DT 0 I





 > 0, (5.2.41)







Y2 AY2 B
Y2A

T Y2 0
BT 0 I






> 0. (5.2.42)

Observe that (5.2.41) and (5.2.42) are linear in X2 and Y2, and hence can be solved

by employing the LMI Tool [70] in Matlab. The H2 norm of the system can be

computed by minimizing µ using the function mincx.m in Matlab Optimization

Toolbox.

5.2.2 Continuous-time H2 Optimal Control

We consider the closed-loop system described by the block diagram in Figure 5.2.

The continuous-time linear time-invariant plant P (s) is described by the following

state-space equations:

ẋ(t) = Ax(t) +B1w(t) +B2u(t), (5.2.43)

z(t) = C1x(t) +D11w(t) +D12u(t), (5.2.44)

y(t) = C2x(t) +D21w(t) +D22u(t), (5.2.45)

where x ∈ Rn is the state, y ∈ Rm is the measurement output, z ∈ Rp is the

controlled output, w ∈ Rq is the disturbance input, u ∈ Rr is the control input,

and A, B1, B2, C1, D11, D12, C2, and D21 are constant matrices of appropriate

dimensions. We assume D22 = 0 without loss of generality [71].

Introduce the following dynamic output feedback controller C(s)

ẋc(t) = Acxc(t) +Bcy(t), (5.2.46)

u(t) = Ccxc(t) +Dcy(t). (5.2.47)
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5.2 H2 Optimal Control

Denote ξ = [xT xT
c ]

T . From (5.2.43)-(5.2.45) and (5.2.46)-(5.2.47), the closed-loop

system is given by

ξ̇(t) = Āξ(t) + B̄w(t), (5.2.48)

z(t) = C̄ξ(t) + D̄w(t), (5.2.49)

where

Ā =







A +B2DcC2 B2Cc

BcC2 Ac





 , B̄ =







B2DcD21 +B1

BcD21





 , (5.2.50)

C̄ = [C1 +D12DcC2 D12Cc] , D̄ = D12DcD21 +D11. (5.2.51)

The continuous-time H2 control problem is to find a proper and real rational con-

troller C(s) that stabilizes P internally and minimizes the H2 norm of the closed-

loop transfer function matrix Tzw from w to z in (5.2.48)-(5.2.49).

Figure 5.2: Configuration of standard optimal control.

Assume that the system (5.2.43)-(5.2.45) satisfies the following condition

Assumption 3.1

(1). D12 is of full column rank;

(2). The subsystem (A,B2, C1, D12) has no invariant zeros on the imaginary axis;

(3). D21 is of full row rank;
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5.2 H2 Optimal Control

(4). The subsystem (A, B1, C2, D21) has no invariant zeros on the imaginary axis.

Let X2 ≥ 0 and Y2 ≥ 0 be the solutions of the following Riccati equations

ATX2 +X2A− (X2B2 + CT
1 D12)(D

T
12D12)

−1(X2B2 + CT
1 D12)

T

+CT
1 C1 = 0, (5.2.52)

Y2A
T + AY2 − (Y2C

T
2 +B1D

T
21)(D21D

T
21)

−1(Y2C
T
2 +B1D

T
21)

T

+B1B
T
1 = 0. (5.2.53)

According to the H2 optimal control theory, an H2 optimal controller can be ob-

tained as [72]

Ac = A+B2F +KC2, Bc = −K, Cc = F, Dc = 0, (5.2.54)

where

F = −(DT
12D12)

−1(DT
12C1 +BT

2 X2),

K = −(Y2C
T
2 +B1D

T
21)(D21D

T
21)

−1. (5.2.55)

The minimal H2 norm of the transfer function Tzw is given by

‖Tzw‖2 =
√

Trace(BT
1 X2B1) + Trace[(ATX2 +X2A + CT

1 C1)Y2]. (5.2.56)

If any condition among (1)-(4) in Assumption 3.1 is not satisfied, the so-called per-

turbation method is applied [72] so that the above design method is still applicable

to find an appropriate controller.

5.2.3 Discrete-time H2 Optimal Control

Consider the discrete-time linear time-invariant system P (z) with the following

state-space representation

x(k + 1) = Ax(k) +B1w(k) +B2u(k), (5.2.57)
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5.2 H2 Optimal Control

z(k) = C1x(k) +D11w(k) +D12u(k), (5.2.58)

y(k) = C2x(k) +D21w(k) +D22u(k), (5.2.59)

where x ∈ Rn is the state, y ∈ Rm is the measurement output, z ∈ Rp is the

controlled output, w ∈ Rq is the disturbance input, u ∈ Rr is the control input,

and A, B1, B2, C1, D11, D12, C2, and D21 are constant matrices of appropriate

dimensions. D22 = 0 is also assumed for brevity but without loss of generality.

Introduce the following dynamic output feedback controller C(z),

xc(k + 1) = Acxc(k) +Bcy(k), (5.2.60)

u(k) = Ccxc(k) +Dcy(k). (5.2.61)

Denote ξ = [xT xT
c ]

T . From (5.2.57)-(5.2.59) and (5.2.60)-(5.2.61), the closed-loop

system is given by

ξ(k + 1) = Āξ(k) + B̄w(k), (5.2.62)

z(k) = C̄ξ(k) + D̄w(k), (5.2.63)

where

Ā =







A +B2DcC2 B2Cc

BcC2 Ac






, B̄ =







B2DcD21 +B1

BcD21






, (5.2.64)

C̄ = [C1 +D12DcC2 D12Cc] , D̄ = D12DcD21 +D11. (5.2.65)

The discrete-time H2 control problem is to find a proper and real rational controller

C(z) that stabilizes P (z) internally and minimizes the H2 norm of the transfer

function matrix Tzw(z) from w to z of the closed-loop system (5.2.62)-(5.2.63).

The counterpart of the Riccati equations (5.2.52)-(5.2.53) for discrete-time systems

is as follows.

ATX2A− (ATX2B2 + CT
1 D12)(D

T
12D12 +BT

2 X2B2)
−1(ATX2B2 + CT

1 D12)
T
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+CT
1 C1 = 0, (5.2.66)

AY2A
T − (AY2C

T
2 +B1D

T
21)(D21D

T
21 + C2Y2C

T
2 )

−1(AY2C
T
2 +B1D

T
21)

T

+B1B
T
1 = 0. (5.2.67)

A discrete-time H2 optimal controller can then be obtained as (5.2.54). And the

minimal H2 norm of the transfer function Tzw is given by

‖Tzw‖2 =
√

Trace(BT
1 X2B1) + Trace[(ATX2A+ CT

1 C1)Y2]. (5.2.68)

A parametrization of all H2 controllers is developed in terms of LMIs as in the

following theorem which linearizes the H2 norm conditions (5.2.41)-(5.2.42) for

synthesis.

Theorem 5.2.3 [73] Consider system (5.2.57)-(5.2.59). There exists a controller
(5.2.60)-(5.2.61) such that ‖Tzw‖

2
2 < µ if and only if the following linear matrix

inequalities and equality admit a solution:

Trace(Π) < µ, (5.2.69)






Π C1X +D12E C1 +D12DcC2

∗ X +XT − P2 I + ZT − J
∗ ∗ Y + Y T −H





 > 0, (5.2.70)

















P2 J AX +B2E A+B2DcC2 B1 +B2DcD21

∗ H U Y A+WC2 Y B1 +WD21

∗ ∗ X +X ′ − P2 I + Z ′ − J 0
∗ ∗ ∗ Y + Y T −H 0
∗ ∗ ∗ ∗ I

















> 0, (5.2.71)

and

D11 +D12DcD21 = 0, (5.2.72)

where ∗ denotes an entry that can be deduced from the symmetry of the matrix,
the matrices X, E, Y , W , U , Dc, Z, J , and the symmetric matrices P2, H and
Π are the variables. A feasible H2 controller is obtained by choosing N1 and M1

nonsingular such that N1M1 = Z − Y X and calculating

Cc = (E −DcC2X)M−1
1 , Dc = Dc, (5.2.73)

Bc = N−1
1 (W − Y B2Dc), (5.2.74)

Ac = N−1
1 [U − Y (A+B2DcC2)X −N1BcC2X − Y B2CcM1]M

−1
1 . (5.2.75)
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5.3 Combine H2 and KYP Lemma

5.3.1 Problem Formulation

Figure 5.3: H2 control scheme with Q parametrization for controller design.

In the previous section, specifications on sensitivity function S(z) are described as

|S(fi)| < ri, fi1 < fi < fi2, i = 1, 2, · · · , m (5.3.76)

where ri < 1 is a positive scalar, and fi1 and fi2 define the frequency range.

Such an upper-bound specification as in (5.3.76) will lead to a problem when the

frequency fi is larger than and especially near the 0-dB crossover frequency of S(z).

The 0-dB crossover frequency of S(z) will be pushed away towards a higher fre-

quency, which tends to destabilize the system and degrade the system performance

at high frequencies. In view of this, a lower-bound specification

|S(fi)| ≥ 1, fi1 ≤ fi ≤ fi2 (5.3.77)

is required, where fi1 is beyond the 0-dB crossover frequency.

The problem of the specific disturbance rejection by imposing such performance

specifications in (5.3.76) can be solved by using the KYP lemma-based control

design method in previous section. However, as shown in Figure 5.3 which is

associated with Fig. 2.17, the performance of servo system is affected by various

kinds of disturbances and sensing noise. The KYP lemma-based control design
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cannot include all disturbances and noises which contribute to the position error.

In view of this, we also need to take into account the overall performance of the

servo control system, which is represented as the so-called TMR in HDD servo.

The TMR is contributed by by w =
[

w1 w2 w3

]T

through D1(s), D2(s), and

N(s). It is expressed by the standard deviation σz of z, and

σz = ‖Tzw‖2 , (5.3.78)

where w is white noise with zero mean and identity covariance matrix, and Tzw is

the transfer function from w to z.

The problem can be stated as: To design a dynamic feedback controller C(z) for

plant P (z) such that the closed-loop system is stable and satisfy the specifications

in (5.3.76) and (5.3.77), and minimizing σz in (5.3.78) simultaneously.

5.3.2 Design Controller for Specific Disturbance Rejection and Overall
Error Minimization

Let (Ap, Bp, Cp, Dp) and (Ac, Bc, Cc, Dc) be the state-space model of plant P (z)

and controller C(z) respectively. In order to convexify matrix inequalities, the

Youla parametrization approach with the Q(z) in a FIR filter form is applied and

the controller structure is shown in Figure 5.3. K(z) is an observer based controller

that can be designed using the LQG method as in (5.1.13)-(5.1.14).

For the presentation of the KYP lemma, we denote

σ(S,Π) :=







S

I







∗

Π







S

I





 (5.3.79)

where S(z) = S(ejθ), I stands for an identity matrix, and Π a Hermitian matrix of

the form

Π =







Π11 Π12

Π∗

12 Π22





 , (5.3.80)

which specifies the frequency domain property to be investigated.
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5.3.3 Q Parametrization to Meet Specifications for Disturbance Rejec-
tion

A. Specification (5.3.76)

Recall from (5.1.15)-(5.1.16) that a set of sensitivity functions S(z): (Ã, B̃, C̃, D̃)

can be Q-parameterized. According to the denotation (5.3.79)-(5.3.80), the speci-

fication |S(z)| ≤ r is written as σ(S, Π) ≤ 0 with

Π =







Π11 Π12

Π∗

12 Π22






=







1 0

0 − r2






. (5.3.81)

Thus based on the KYP lemma,
∣

∣

∣S
(

ejθ
)∣

∣

∣ ≤ r for the frequency range θ1 ≤ θ ≤ θ2

can be achieved by solving the following matrix inequality







Ã B̃

I 0







∗

Σ







Ã B̃

I 0





+







C̃ D̃

0 I







∗

Π







C̃ D̃

0 I





 ≤ 0, (5.3.82)

which is equivalent to





















Ã B̃

I 0







∗

Σ







Ã B̃

I 0





+







0 0

0 −r2







[

C̃ D̃

]

∗

Π11

Π11

[

C̃ D̃

]

−Π11















≤ 0, (5.3.83)

where

Σ =







−U ejθcV

e−jθcV U − (2 cos θd)V






, (5.3.84)

θc = (θ1 + θ2)/2, θd = (θ2 − θ1)/2, (5.3.85)

since Π11 > 0. U and V are Hermitian matrices and V ≥ 0.

To convexify the matrix inequality (5.3.83), we shall give a state-space realization of

S(z) = T11 (z)+T12 (z)Q (z) T21 (z). Denote the state-space representation of T11(z)

and T12(z)T21(z) by (At11, Bt11, Ct11, Dt11) and (At, Bt, Ct, Dt), respectively. A

state-space model of S(z) can be written as (5.1.21)-(5.1.24).
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B. Specification (5.3.77)

Similarly, according to the denotation (5.3.79)-(5.3.80), the specification |S(z)| ≥ r

is equivalent to σ(S,Π) ≤ 0 with

Π =







Π11 Π12

Π∗

12 Π22





 =







−1 0

0 r2





 . (5.3.86)

However, because Π11 < 0, (5.3.82) can not be converted equivalently to (5.3.83),

which means (5.3.82) is not possibly convexified according to the method in Section

5.3.3. Hence, we resort to the following specification

σ (S,Π) = aR (S) + bI (S) + c, Π :=







0 a+ jb

a− jb 2c






(5.3.87)

where R and I denote the real and the imaginary parts of S(ejθ). When a, b, and

c are properly selected, |S(z)| ≥ r can be achieved. A simple selection is a = 0,

b = −1, and c = r, and

σ (S,Π) = −I (S) + r. (5.3.88)

Thus σ(S,Π) ≤ 0 means I (S) ≥ r, and subsequently |S(z)| ≥ r. In this situation,

Π =







Π11 Π12

Π∗

12 Π22





 =







0 −j

j 2r





 , (5.3.89)

where Π11 = 0 and (5.3.82) is equivalent to







Ã B̃

I 0







∗

Σ







Ã B̃

I 0






+







0 C̃∗Π12

Π∗

12C̃ D̃∗Π12 +Π∗

12D̃ +Π22






≤ 0,(5.3.90)

which is a linear matrix inequality with unknown variables in C̃ and D̃ only. This

can be solved using the same method as in Section 5.3.3 A.
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It should be mentioned that R (S) ≥ r can also be used to achieve |S(z)| ≥ r, if it

is suitable for a specific application. In this case,

Π =







Π11 Π12

Π∗

12 Π22





 =







0 −1

−1 2r





 , (5.3.91)

and the linear matrix inequality (5.3.90) remains applicable.

5.3.4 Q Parametrization to Minimize H2 Performance

Next we focus on the design of Q(z) to minimize the H2 norm ‖Tzw‖2. From Figure

5.3 we have

−z = N (z)w3 + S (z) [P (z)D1 (z)w1 +D2 (z)w2 −N (z)w3] . (5.3.92)

Denote a state-space realization of P (z)D1(z), D2(z) and N(z) by (A1, B1, C1, D1),

(A2, B2, C2, D2), and (A3, B3, C3, D3), respectively. It follows from (5.1.15) and

(5.1.21)-(5.1.24) that

x (k + 1) = Āx (k) + B̄w(k), (5.3.93)

−z (k) = C̄x (k) + D̄w(k), (5.3.94)

where,

Ā =





















A1 0 0 0

0 A2 0 0

0 0 A3 0

B̃C1 B̃C2 −B̃C3 Ã





















, B̄ =





















B1 0 0

0 B2 0

0 0 B3

B̃D1 B̃D2 −B̃D3





















, (5.3.95)

C̄ =
[

D̃C1 D̃C2 −D̃C3 + C3 C̃

]

, D̄ =
[

D̃D1 D̃D2 −D̃D3 +D3

]

.

The H2 norm ‖Tzw‖2 can be minimized as

min
(Ξ=ΞT>0, Ω=ΩT>0)

Trace (Ω) , (5.3.96)
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subject to

ĀTΞĀ− Ξ + C̄T C̄ < 0, (5.3.97)

B̄TΞB̄ + D̄T D̄ < Ω, (5.3.98)

or equivalently,







ĀTΞĀ− Ξ C̄T

C̄ −I





 < 0, (5.3.99)







−Ω + B̄TΞB̄ D̄T

D̄ −I






< 0, (5.3.100)

where

Ā =



































A1 0 0 0 0 0

0 A2 0 0 0 0

0 0 A3 0 0 0

Bt11C1 Bt11C2 −Bt11C3 At11 0 0

BtC1 BtC2 −BtC3 0 At 0

BqDtC1 BqDtC −BqDtC3 0 BqCt Aq



































,

B̄ =



































B1 0 0

0 B2 0

0 0 B3

B
t11
D1 B

t11
D2 −B

t11
D3

BtD1 BtD2 −BtD3

BqDtD1 BqDtD2 −BqDtD3



































,

C̄ =
[

(Dt11 +DqDt)C1 (Dt11 +DqDt)C2

(Dt11 +DqDt)C3 Ct11 DqCt Cq

]

,

D̄ =
[

(Dt11 +DqDt)D1 (Dt11 +DqDt)D2

− (Dt11 +DqDt)D3 +D3] . (5.3.101)
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Note that the Q(z) coefficients qi(i = 0, 1, . . . , τ) only appear in Cq and Dq. There-

fore from (5.1.21)-(5.1.24) and (5.3.101), we know that qi exists only in C̃, D̃, C̄,

and D̄. In this case, (5.3.83), (5.3.90), and (5.3.99)-(5.3.100) define the LMIs in

terms of the variables U , V , Ξ, Ω, and qi. Hence, the Q(z) coefficients qi can be

computed via convex optimization.

With the solved Q(z), the controller C(z) in terms (Aq, Bq, Cq, Dq) is then given

by

Ac =







Ap −BpM + LCp +BpDqCp BpCq

BqCp Aq






,

Bc =







L+BpDq

Bq





 ,

Cc =
[

−M +DqCp Cq

]

,

Dc = Dq.

(5.3.102)

5.3.5 Design Procedure

The design procedure for controller C(z) in previous section can be summarized as

follows.

Step 1. Design K(z) from (5.1.13)-(5.1.14).

Step 2. Compute T11(z), T12(z) and T21(z) from (5.1.16), and obtain the state

space model (Ã, B̃, C̃, D̃) in (5.1.21)-(5.1.24).

Step 3. Based on disturbance spectrum and bandwidth requirement, specify the

positive scalars ri and rj , the frequency points fi (i = 1, . . . , m), and fj (j = 1,

. . . , n) for the sensitivity function S(z) such that

|S (fi)| < ri, fi1 ≤ fi ≤ fi2, (5.3.103)

and

|S (fj)| > rj, fj1 ≤ fj ≤ fj2. (5.3.104)
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For each specification, construct the LMIs (5.3.83) and (5.3.90) in terms of the

variables U , V , Cq, and Dq.

Step 4. Construct the LMIs (5.3.99)-(5.3.100) in terms of the variables Ξ, Ω, Cq,

and Dq.

Step 5. Obtain Q(z) : (Aq, Bq, Cq, Dq) by solving the above LMIs using the Matlab

LMI toolbox.

Step 6. Obtain the controller C(z) from (5.3.102).

5.4 Experimental Setup and Results

5.4.1 Servo Writing Technologies

Servo track writer (STW) is the process of writing servo patterns on magnetic disks.

Position detection circuit in HDDs reads the servo patterns and demodulates the

PES for HDD servo controller. As the track density of HDD is achieving 300, 000

TPI and keeps increasing toward the target of areal density 10 Tb/in2, it is essential

to improve the tracking performance of STW to support writing of qualified servo

patterns at such a high track density. One of the major factors is the written-in

RRO, which directly affects linear characteristics of the PES transfer curve and

therefore the PES sensing noise [74] [75].

In STW technologies there are conventional STW (CSTW) [76], self STW (SSTW)

[77] and media level STW (MLSTW) [78]. In both CSTW and MLSTW, the feed-

back servo loop is constructed on the arm position measured by an optical sensor.

As such, the vibrations induced from disk, spindle, suspension, and slider are di-

rectly coupled into written-in RRO [79]. In SSTW, the servo system is closed with

the feedback of PES, thus it includes all the system vibrations into the servo loop.

In general, this configuration allows servo engineers to design optimal controller
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based on advanced loop shaping technology [19]. The authors in paper [80] dis-

cussed control strategies in STW for high TPI and proposed the idea of hybrid

dual-stage servo for STW (HSSTW).

5.4.2 STW Experimental Platform with Hybrid Dual-stage Servo

Figure 5.4 shows the STW experimental platform with two disk platters. It is

composed of MicroE optical positioning system, a specially designed arm with

a PZT actuator embedded in between the arm and suspension, a fluid bearing

spindle, load/unload ramp mechanism, and linear stages for regulation of z-height

and skew angles of data heads and clock head. A balancing clamp was designed

for the spindle to balance the disk-spindle pack [81]. The setup was placed on a

vibration isolation table under clean-hood.

Figure 5.4: Dual stage STW experimental platform.

The disk platters used are of 2.5 inch in diameter, 1.33 mm thickness, made from
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glass substrate. The spindle speed is 5400 RPM, and the number of servo sectors

in one revolution is 501.

5.4.3 System Functions of STW Platform

STW needs two essential functions to write well-aligned servo patterns on blank

disk (1) The circumferential angular position of R/W head needs to be known

precisely; (2) Ability to position R/W head in a radial direction accurately.

Figure 5.5: Functional block diagram of the HSSTW platform.

Figure 5.5 shows the functional block diagram of the experimental platform to

support the above two essential functions. The first function is achieved by clock

head together with phase-locked loop (PLL). A special sequence of clock timing

mark (clock track) can be written at outer diameter and read back by clock head.

All the servo patterns are generated synchronously aligned with clock track using
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PLL. The clock tracks work as reference to tell the circumferential angular position,

and the PLL is used to track the variations of spindle rotational speed.

In Figure 5.5, there are two servo loops to control the radial position of data head.

MicroE optical positioning servo system controls the radial position of arm, while

the PES servo loop with PZT actuator is used to control the position of data head

more accurately. This will be discussed in details in the next section.
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Figure 5.6: Hybrid dual-stage servo system.

5.4.4 Servo Mechanism of STW Platform

Figure 5.6 shows the block diagram of the hybrid dual-stage servo system (“hybrid”

means the mixture of optical positioning and PES servo loop). In Figure 5.6,

P1(s), C1(s), P2(s), and C2(s) are plants and controllers for MicroE actuator and

PZT micro-actuator, respectively. y1 is the position of the actuator arm, y2 is the

displacement of PZT, r1 and r2 are references for optical positioning, and PES

servo loop, respectively. h is the position of R/W head, v1 includes vibrations of

suspension, slider, and head, v2 includes vibrations of spindle and disk, and dt is
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the torque disturbance due to air flow and external vibrations. tn and tn−1 are the

positions of the current and the previous servo track, respectively, and n0 and nd

are the measurement noises of optical sensor and PES demodulator,respectively.

In perfect servo writing, tn−1 is expected to be zero, or written-in RRO will cause

AC/DC squeeze [79]. It can be measured by synchronous averaging [47] of pes

while positioning read head on (n−1)th track with only MicroE optical servo loop,

i.e., PZT servo loop is off.

If a compensation signal uc1 = tn−1 is injected, then

tn = h− v2

= T2(s)(r2 − nd) + S2(s)(v1 − v2) +

S2(s)T1(s)(r1 − n0) + S2(s)S1(s)P1(s)dt, (5.4.105)

where T1(s) S1(s) and T2(s) S2(s) are the complementary sensitivity functions and

sensitivity functions for the optical servo loop and the second servo loop respec-

tively. In this configuration, the optical servo loop roughly moves the R/W head to

the desired track, then enables the second loop to precisely control the head with

reference to the previous ideal track , by decoupling the previous written-in error

tn−1 from pes for writing current servo track.

(5.4.105) shows that no previous written-in error tn−1 is coupled into tn, which

means that there is no error propagation problem as that in SSTW [82]. Also

note that the written-in errors due to (v1 − v2), no, and dt are all filtered by

S2(s). Therefore, the written-in error induced from these vibrations will be reduced

significantly using advanced loop shaping technologies such as in [19] [83].

The feedback signals for optical loop and PES loop are from independent sensors.

As such, the two servo loops are completely decoupled. The measurement noise

and torque disturbance in optical servo loop can be looked as a lumped output
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disturbance to the PZT servo loop. The performance of the MicroE optical po-

sitioning system is limited by the dynamic performance of the actuator, and its

control firmware has very little flexibility to shape the loop transfer function. In

this section, we focus on the controller design for the PZT micro-actuator loop.

 

y 

tn-1 = 0 pest 
d 

pes 

P(z) C(z) 

nd 

u 

Figure 5.7: Equivalent PZT servo loop.

5.4.5 Measurement and Modeling of Vibrations and Noises

As discussed previously, the PES servo loop with PZT actuator is independent.

Its equivalent discretized model is shown in Figure 5.7, where d(t) is the lumped

output disturbances. We measure the spectrum of non-repeatable runout(NRRO)

of PES and decompose the spectrum model of d(t) and nd(t) [47].

Figure 5.8 shows the spectrum of PES NRRO, where the low frequency modes

(1, 2, 3) are due to the environmental vibrations such as vibrations of motors on

clean-hood and ionizer, and air flow induced torque disturbance. The modes (4, 5,

6, 7) at the middle frequencies are caused by disk vibrations, and the other modes

(8, 9) are suspension torsion and sway modes. These modes can be approximately

modeled as d = D(s)× ω with a white noise ω (σ=1) and

D(s) = 0.00163×
s2 − 2.69s+ 5.26e5

s2 + 0.75s+ 3.95e5
×

s2 − 585.6s+ 3.76e6

s2 + 0.20s+ 1.01e6
×

s2 + 4161s+ 2.0e7

s2 + 245s+ 1.67e7
×

s2 + 2402s+ 5.63e8

s2 + 477s+ 5.7e8
. (5.4.106)

The straight baseline is generally due to the PES demodulation noise nd(t) (σ = 5
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Figure 5.8: Spectrum of PES NRRO without the second loop.

nm). It can be assumed to be white.

The PES demodulation noise is caused by media noise, head noise, and electronic

noise in demodulation circuits such as A/D converter. We can experimentally verify

its spectrum model.

Figure 5.9: The format of servo bursts and typical servo pattern readback signal.

Figure 5.9 shows the conventional quadric servo bursts and the corresponding read
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back signal when position R/W head (block ‘H’) exactly over A servo bursts. The

PES demodulated from the relative amplitude difference between A and B or C

and D bursts tells the R/W head’s off-track position. We can write a special servo

pattern, which is the same as conventional one, but without A, B, C, and D servo

bursts. Because the PES demodulation circuit still works well while the R/W

head’s off-track position is not sensed in PES, PES is all contributed by sensing

noise. As such, its NRRO spectrum is exactly the spectrum of demodulation noise

as shown in Figure 5.10 which has the same level as the straight baseline in Figure

5.8.
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Figure 5.10: Spectrum of PES demodulation noise.

Suppose that PES(k), PESt(k), D(k), and Nd(k) are the discrete Fourier trans-

form results of pes, pest, d, and nd, respectively. From Figure 5.7, we have

PESt(k) = S(k)D(k)− T (k)Nd(k),

S(k) =
1

1 + P (k)C(k)
,

T (k) =
P (k)S(k)

1 + P (k)C(k)
, (5.4.107)
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where S(k) is the sensitivity function of the servo loop, and T (k) is the comple-

mentary sensitivity function. Usually, D(k) and Nd(k) are uncorrelated in practice,

and the expected value of the spectral intensity |PESt(k)|
2 is

E{|PESt(k)|
2} = |S(k)|2E{|D(k)|2}+ |T (k)|2E{|Nd(k)|

2}.

As the mean value of pest is zero for a closed-loop servo with bias compensation,

the expected variance of pest is [84],

σ2
pest

≡ E{pest(n)
2} = 1

N2

∑N−1
k=0 E{|PESt(k)|

2}

= 1
N2

∑N−1
k=0 |S(k)|2E{|D(k)|2}+

N2

d0

N

∑N−1
k=0 |T (k)|2, (5.4.108)

where Nd0 is the RMS value of demodulation noise and N is number of samples

which is sufficiently large.

Figure 5.11: Frequency response for piezo chip.

(5.4.108) directly links the servo characteristic (sensitivity and complementary sen-

sitivity function) and spectrum characteristics of disturbances and sensing noise
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with the tracking performance of servo system. It clearly shows that increasing

bandwidth can reduce the RMS of pest induced from disturbances, but will enlarge

the contributions from demodulation noise. Therefore, there exists an optimal

servo bandwidth.

Figure 5.11 shows the modeled and the measured frequency responses of the PZT

actuator. With the known plant model, we can use H∞ loop shaping method to

design series of controllers with different bandwidths and calculate the RMS of pest

according to (5.4.108) with the known disturbances and noise models. As shown

in Table 5.1, the optimal bandwidth (the 0 dB crossover frequency of open-loop

transfer function) is around 885 Hz.

Table 5.1: Tracking accuracy for different servo bandwidth.
Open-loop Bandwidth (Hz) 3σpest (nm)

360 8.6
770 7.6
885 7.1
1060 8.6
1160 9.7

5.4.6 Experimental Verification of the Controller Performance for PZT
Loop

In (5.4.108), the RMS value of |S(k)| cannot be made arbitrarily small by increas-

ing the bandwidth as it is limited by Bode’s integral theorem [85]. Disturbance

observers [86] [87] can be designed for attenuating external vibrations at low fre-

quencies. An appropriate controller design is required to shape the sensitivity

function to have a sufficient attenuation for disturbances with known frequency

ranges.

For comparison, we designed C(z) using the following three methods: (1) phase-

lead peak filter (PLPF) [88]; (2) generalized KYP lemma; (3) KYP lemma com-

bined with H2. The PLPF was applied to concern more on the attenuation of
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the significant fourth-mode of disturbance, while the KYP lemma was applied for

better attenuation of those major disturbances distributed from 100 Hz to 1000 Hz

in Figure 5.8. All three controllers were implemented on the STW experimental

platform.

For the frequency responses of the microactuator shown in Figure 5.11, six resonant

modes at 3.7, 4.9, 6.9, 9, 12.7, and 15 kHz are included in the model.

The disturbance distribution is reflected in the non-repeatable runout power spec-

trum of the measured PES in Figure 5.8. It is noticed that there is a vibration

mode at 650 Hz due to disk vibration. The objective here is to use the above KYP

method to design a linear dynamic output feedback controller C(z) for the microac-

tuator in Figure 5.6, such that its closed-loop system is stable and the disturbance

centering at 650 Hz is suppressed sufficiently. A 45 kHz sampling rate is used in

the servo control design. The control algorithm is implemented with the digital

position error signal generated from DSP TMS320C6711. Currently due to the

limitation by the DSP speed, the platform can support to implement a controller

up to 10th order .

Because 650 Hz is at a relative low frequency range, we involve the static part of

the microactuator represented by a pade delay in the control design with the KYP

lemma. After that, notch filters for the resonant modes at 3.7, 9, and 15 kHz will

be used to compensate the dynamic part, which will not significantly change the

obtained performance of the low frequency part. The 4.9 and 6.9 kHz resonant

modes, seen in Figure 5.11, have relatively small magnitudes and can be ignored

as long as they are not excited in the control loop. The resonant mode at 12.7 kHz

is not considered in the control design as it is not excited easily and does not affect

the whole loop stability when the 15 kHz mode is compensated.

The pade delay model is given by

Ppade−delay = −5.6234
s− 2 · π · 17000

s+ 2 · π · 17000
, (5.4.109)
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which is pre-compensated by the proportional-integral (PI) controller

Int(z) = 0.027(−
z

z − 0.999
+ 0.5). (5.4.110)

The desired specifications for the sensitivity function S(z) are set as:

Spec.(a) |S(f)| < 0 dB, f ≤ 500 Hz,

Spec.(b) |S(f)| < −10 dB, 610 Hz ≤ f ≤ 670 Hz,

Spec.(c) |S(f)| < 9.54 dB, f ≥ 19 kHz.

Spec. (b) means to attenuate the disturbances centering at 650 Hz by 10 dB at

least. The parameters of Q(z) in (5.1.25) with τ = 1 are attained by solving three

LMIs of the form (5.1.9) corresponding to Spec. (a), (b) and (c). The resultant

C(z) is a 10th order controller.

The phase-lead peak filter (PLPF) of the form in [88] with values K = 0.4,

φ = −0.584, ω0 = 2π × 650, and ξ = 0.0632, is also applied to suppress the low

frequency disturbances around 650 Hz. The comparison of the sensitivity func-

tions is shown in Figure 5.12. It can be seen that the KYP method achieves better

disturbance rejection from 60 Hz to 1 kHz, although they have almost the same

rejection capability in the very narrow band around 650 Hz. However, the KYP

method gives a poorer disturbance rejection performance for frequency below 60

Hz than the PLPF method.

In the comparison of open loop frequency response in Figure 5.13, the phase margin

(PM) with the PLPF method is higher, while the bandwidth is lower. The gain

margin (GM) is comparable with the KYP lemma method. Consistent with the

sensitivity functions in Figure 5.12, the PES NRRO power spectrum comparison is

shown in Figure 5.14 which clearly shows that the KYP lemma-based design gives

a better disturbance rejection around 650 Hz than the PLPF although at 650 Hz

they offer a similar performance.
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Figure 5.12: Sensitivity function simulated. (solid: KYP; dashed: PLPF).

Figure 5.13: Open loop frequency response. (solid: KYP; dashed: PLPF).
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From Figure 2.16, it is known that the spectrum of the true PES, y, is given by

Sy = |P (z)S(z)|2 × |d1|
2 + |S(z)|2|d2|

2 + |T (z)|2 × |n|2 (5.4.111)

= Se − |S(z)|2 × |n|2 + |T (z)|2 × |n|2, (5.4.112)

where Se is in (5.1.1), and T (z) = 1−S(z) is the closed-loop transfer function. As

such, the 3σ value of the true PES can be assessed from the power spectrum Se in

Figure 5.14 with the known level of noise n. As a result, it is improved from 6.4

nm with the PLPF method to 6 nm with the KYP lemma method.

In the above design, only the first order Q(z) is used. A higher order Q(z) offers

more design freedom and has the potential of achieving better results. However,

the resultant sensitivity function has to comply with the Bode integral theorem

for whatever Q(z) is used, meaning that it is not possible to achieve disturbance

rejection across the entire frequency range.

Figure 5.14: Spectra of PES NRRO with the secondary loop (solid: KYP; dashed:
PLPF).

With considerations of both the disturbances in Figure 5.8 and minimization the

position error signal, a suitable feedback controller, C(z) has to be designed for the
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system so that the overall system is stable and the disturbance around 650 Hz is

suppressed sufficiently, while ensuring that the H2 norm of the position error signal

is minimized. Hence, the desired specification of the sensitivity function S(z) is

|S (f)| < −10 dB for 610 Hz ≤ f ≤ 670 Hz. The position error signal is to be

minimized at the same time.

The parameters of a first-order FIR Q(z) are obtained by solving the three LMIs

(5.3.83), (5.3.99), and (5.3.100) with consideration of both H2 minimization and

suppression of the vibration around 650 Hz. The frequency response of the open-

loop C(z)P (z) and the sensitivity function S(z) are depicted in Figure 5.15 and

Fig. 5.16. It is seen that the hump of S(z) is reduced to about 3 dB with the

controller designed by the combined method, i.e., the combined H2 optimization

and specific disturbance rejection method. On the other hand, Figure 5.15 shows

that the proposed combined method offers better stability margins although the

open-loop crossover frequency is a bit lower.

Comparing the sensitivity functions in Figure 5.16 and Figure 5.17, the experi-

mental results matched well with the simulation results. It also shows that the

sensitivity function resulted from KYP+H2 has lower hump than the one from

KYP only from 2 to 4 kHz. This is also verified in the PES spectrum shown in

Figure 5.18.

The performances for different controllers are summarized in Table 5.2. With the

combined control design method using KYP and H2, the servo loop can attenuate

specific narrow band disturbances and minimize the tracking error as well.

Table 5.2: Performance with different controllers for PZT loop.
Design Method 3σpest Gain Margin Phase Margin Bandwidth

(nm) (dB) (deg) (Hz)
No PZT loop 15.1 nil nil nil

PLPF 6.4 6 50 1400
KYP 6.0 7.9 36 1700

KYP+H2 5.6 12.6 45.9 1560
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Figure 5.15: Frequency response of open-loop transfer functions. (solid: KYP+H2;
dashed: KYP).
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Chapter 6

Conclusions and Future Work

6.1 Summary of Results

This dissertation gives a full picture of the servo control issues in HDDs which

includes seeking, tracking, and settling. Meanwhile, it addresses some important

issues regarding to the HDDs in consumer electronics applications, such as acoustic

noise problem and residual vibrations problem in seeking, smooth settling problem

in dual-stage servo control, and tracking accuracy problem in the existence of

significant vibrations.

To reduce the seeking noise for HDDs in consumer electronics applications, we pro-

posed a smooth pseudo-sinusoidal seek current profile for arbitrary seek length with

minimum jerk in acceleration. A systematic method with a set of design parame-

ters for the current profile is proposed to minimize the residual vibrations caused

by the most significant resonant mode. The simulation results have shown the ad-

vantage and performance improvement of the proposed method over conventional

PTOS method with respect to both the seek time and residual vibrations.

This dissertation presents an effective and easily implemented settling scheme,

namely IES, to achieve fast and smooth track settling for dual-stage servo system.

In this settling scheme, a feedforward compensator is used to cancel the error
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caused by the initial position and velocity of VCM actuator during mode-switching.

Based on ZPET, a detailed pole/zero cancelation scheme is used in the design of

the feedforward compensator. The experiment results show that settling time can

be significantly reduced from 0.7 ms to 0.3 ms.

The dissertation also presents an advanced systematic loop shaping method using

KYP Lemma to optimize the track-following controller with considerations of the

spectrum models of torque disturbances, output disturbances and sensing noise.

The Youla parametrization approach is first used to parameterize the closed-loop

transfer function. The search for the coefficients of the parameter Q(z) is then con-

verted to a linear matrix inequality problem within the generalized KYP lemma

framework. Next, considering the system with an augmented disturbance model,

the generalized KYP lemma is combined the H2 method to design a controller

for minimization of tracking error as well as attenuation of dominant disturbances

at certain frequencies. We applied this method to design a track-following con-

troller and implemented it on our STW experiment platform. The performances

for controllers using different design method are summarized in Table 6.1. With

the combined control design method using KYP and H2, the servo loop can achieve

better tracking accuracy and provide better robustness with more gain margin and

phase margin than the other methods. As such, we achieved servo-writing track

density of 420, 000 TPI on the STW experiment platform.

Table 6.1: Performance of servo controllers using different design method.
Design Method 3σpest Gain Margin Phase Margin Bandwidth

(nm) (dB) (deg) (Hz)
PLPF 6.4 6 50 1400
KYP 6.0 7.9 36 1700

KYP+H2 5.6 12.6 45.9 1560
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6.2 Future Work

For the smooth seeking using pseudo-sinusoidal current profile, we know that jerk

in acceleration causes seeking noise from practical experience. The relationship

between them is not rigorously proved. As such, the determination of the value for

the frequency of sine wave in current profile is based on trial and error. Further-

more, the design parameters for current profile can be selected only to minimize

the residual vibration induced from one of the most significant mode. In future,

this method can be extend to reduce residual vibrations caused by multi-modes.

For the IES settling scheme for dual-stage servo systems, the feedforward compen-

sator is designed for any initial position and velocity of VCM actuator as long as the

micro-actuator is not saturated. In experimental implementation, we notice that

the settling performance is different at different switching conditions. In future, it

is valuable to study the optimal switching conditions for this settling scheme as we

can chose when to switch from seeking mode to tracking mode in practice.

To achieve positioning accuracy of less than a few nanometers for future HDDs

with areal density of multi-Tb/in2, the servo mechanism in HDDs will integrate

with different type of sensors to detect vibrations, such as PZT sensor for detecting

suspension vibrations [83], strain-type sensors for detecting butterfly mode of VCM

actuator [89], and accelerometers for detecting external rotational vibrations [10].

As such, the whole servo system becomes a complicated multi-sensing dual-stage

servo system consisting of several components such as suspensions, sensors and

actuators. For such a complicated system, the optimal control will not only take

into account the dynamics of actuators and vibrations, it also need to take into

account the dynamics of sensors. The combined design method using KYP and H2

should be extended to solve a more complicated synthesis problem including the

dynamics of sensors.
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