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Summary

The presence of “uncertainty” in dynamical systems is inevitable. Different imper-

fections such as manufacturing tolerances, different raw materials and slight change

in the environmental condition of the production line contribute to slight difference in

the dynamics over a batch of products. In robust control, this difference is modeled as

parametric and non-parametric (dynamic) uncertainties. Dynamic uncertainty can

be handled efficiently using µ−theory however, coming to parametric uncertainty,

most deterministic approaches suffer from conservatism and computational complex-

ity. Motivated by this, in the present thesis we propose two classes of randomized

algorithms: i) Sequential randomized algorithms for solving uncertain convex opti-

mization problems and ii) Randomized algorithms for solving uncertain linear and

bilinear matrix inequalities using statistical learning theory.

Motivated by the complexity of solving convex scenario problems in one-shot,

in Chapter 2 we provide a direct connection between this approach and sequential

randomized methods. A rigorous analysis of the theoretical properties of two new

algorithms, for full constraint satisfaction and partial constraint satisfaction, is pro-



vii

vided. These algorithms allow enlarging the applicability domain of scenario-based

methods to problems involving a large number of design variables. In this approach,

we solve a set of scenario optimization problems with increasing complexity. In par-

allel, at each step we validate the candidate solution using Monte-Carlo simulation.

Simulation results prove the effectiveness of the proposed algorithms.

In the second class of randomized algorithms, in Chapter 3 we consider the prob-

lem of minimizing a linear functional subject to uncertain linear and bilinear matrix

inequalities, which depend in a possibly nonlinear way on a vector of uncertain pa-

rameters. Motivated by recent results in statistical learning theory, we show that

probabilistic guaranteed solutions can be obtained by means of randomized algo-

rithms. In particular, we show that Vapnik-Chervonenkis dimension (VC-dimension)

of the two problems is finite, and we compute upper bounds on it. In turn, these

bounds allow us to derive explicitly the sample complexity of these problems. Using

these bounds, we derive a sequential scheme based on a sequence of optimization and

validation steps. The effectiveness of this approach is shown using a linear model of

a robot manipulator subject to uncertain parameters.

In the second part of thesis, we consider the problem of parametric uncertainty

in hard disk drive servo systems and using the proposed algorithms of Chapter 2, we

design robust H2 dynamic output feedback controllers to handle multiple parametric

uncertainties entering in plant description in a nonlinear fashion. We also design

the same controller using sequential approximation methods based on cutting plane
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iterations. Extensive simulations compare the worst case track following performance

and stability margins.
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Chapter 1

Introduction

Recently, there have been significant efforts devoted to solving uncertain control

problems. Introducing uncertainty in the problem data makes the resulting problem

very difficult to solve. On the other hand, almost all industrial problems involve

a number of uncertain parameters resulted from factors such as manufacturing tol-

erances or slightly different raw materials and environmental conditions. Ignoring

uncertainty in the system can tend to erroneous result which may cause significant

damages or loss. In general, there are two paradigms to tackle uncertain problems.

The first approach is based on deterministic min-max or worst-case methodology.

The solution obtained using this approach is feasible for the entire uncertainty set.

The second approach is based on chance constraint programming in which the un-

certainty vector is considered as random variable and by introducing a risk term, the

solution is enforced to be feasible with the desired high probability. Chance constraint
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programming is very difficult to solve exactly and even if the original problem is con-

vex, the chance constraint problem becomes non-convex in general. In contrast, in

min-max approach the convexity is preserved; but, infinite number of constraints are

involved which makes the problem difficult to solve. For this reason some relaxation

techniques are usually employed in order to recast the infinite number of constraints

into a finite number. Unfortunately, relaxation techniques are just applicable to cases

where uncertain parameters appear in a “simple” form such as affine, multi-affine

or rational. However, in most real world problems the uncertainty structure is very

complicated. Hence, very recently, researchers proposed using randomized algorithms

in which by generating random choices we can settle the difficulty associated with

chance constraint programming.

Randomized strategies in solving complex problems have gained more attention

than the recent past. Randomized strategies are useful in two classes of problems:

analysis and design problems. Analysis problems arise when we want to validate a

given solution and design problems appear when we want to find a solution. In the

subsequent sections, we review the major contributions in both deterministic worst-

case approach and probabilistic methods based on randomized algorithms.

1.1 Classical Robust Techniques

In this section we review major contributions in classical robust literature. We

highlight that the discussion of the section is not a comprehensive review of all robust
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techniques. Interested readers are referred to [21, 23, 18, 45, 55, 108, 136, 103, 63,

49, 56, 113] for extensive discussions.

1.1.1 Historical Notes

Linear Quadratic Gaussian (LQG) and Kalman filter can be considered as the

earliest efforts addressing uncertainty. In this form, uncertainty is observed as ex-

ogenous disturbance having stochastical representation, while the dynamical plant is

assumed to be known exactly. The approach is known as classical stochastic method.

There have been some efforts since early 1980s to introduce uncertainty directly into

the dynamical plant. In most cases the goal is to design a controller that remains ro-

bust against all possible uncertainty scenarios. The paradigm is known as worst-case

approach. The most important breakthrough in the worst case methodology was the

formulation of Zames forH∞ problem [135] in 1981. In early 1990s, robust control was

well-known in industry with applications in aerospace, chemical, electrical and me-

chanical engineering. At the same time, some of the theoretical limitations of classical

robust techniques such as conservatism and computational complexity were realized

in the robust control community. A few years latter, some tools from robust opti-

mization discipline such as semidefinite programming (SDP) [120] were introduced

in robust control. Most robust control problems such as H2, H∞, and µ−synthesis

were formulated into the form of linear matrix inequalities (LMIs) which is a convex

optimization problem encompassing linear, quadratic and conic programs. Introduc-
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∆

M (s)w z

Figure 1.1: M −∆ configuration with disturbance w and output z.

ing LMI in robust control can be considered as the second breakthrough after Zame’s

formulation. A number of numerically efficient softwares and algorithms such as in-

terior point method in particular [94] were developed for solving LMIs. See [21] for a

comprehensive discussion on LMIs in systems and control theory.

1.1.2 Robustness Analysis

All sources of uncertainty can be categorized into two main groups:

• Parametric uncertainty

• Dynamic uncertainty

The former refers to the case where some parameters in the plant are uncertain such

as uncertain resonance frequency or damping ratio. The later refers to the case where
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nothing is known about the source of uncertainty except that it is bounded such

as high frequency un-modeled dynamics. In order to handle dynamic uncertainty,

the uncertain system needs to be formulated in the standard description of M − ∆

configuration shown in Figure 1.1. M(s) represents the combination of the nominal

plant and controller transfer matrices while ∆ contains parametric as well as non-

parametric uncertainties in its diagonal element:

∆ = {Blockdiag[∆1,∆2, . . . ,∆nd
,q1I1,q2I2, . . . ,qnp

Inp
]}

where qi, i ∈ {1, . . . , np} are parametric uncertainties, Ii is the identity matrix of

dimension i and ∆i, i ∈ {1, . . . , nd} are dynamic uncertainties extracted from the

uncertain control system. The earliest approach for evaluating robustness of the

uncertain control system depicted in Figure 1.1 was based on small gain theorem (see

e.g. [136]) in which the internal stability of the interconnected system is examined by

evaluating H∞ norm of M(s) and ∆. However, small gain theorem is conservative

in the sense that it does not take into consideration the structure of ∆. Structured

singular value also known as µ−theory [97] was introduced to overcome this limitation.

Nevertheless, computing structured singular value µ is an NP-hard problem [22] for

which there is no polynomial time algorithm.

In cases where the uncertain system contains a number of parametric uncertain-

ties, the optimization problem used for computing µ , known as D−K iteration, fails

to converge. Therefore, µ−analysis is not an efficient tool for evaluating robustness

when the uncertain plant contains a number of parametric uncertainties. The earliest
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attempt directly dealing with analysis of polynomials affected by parametric uncer-

tainty was the Kharitonov theorem [79]. In this approach, four specially designed

polynomials known as “Kharitonov polynomials” are formulated; the stability of the

uncertain polynomial is evaluated by checking the stability of Kharitonov polyno-

mials. This approach has been improved in [59, 71, 130]. Kharitonov approach is

very powerful in the sense that it only requires checking four “extreme” polynomials.

Nevertheless, it is only applicable to cases where polynomial coefficients are indepen-

dent and bounded in an interval. This limitations was partially addressed using edge

theorem [12]. In order to apply edge theorem to a polynomial, the dependence of

polynomial coefficients on uncertain parameter needs to be “affine”. The value set

analysis [23] is another important tool for evaluating the stability of a given uncertain

polynomial in frequency domain. This approach can handle cases where coefficients

of polynomial are “multi-affine” function of uncertainty vector.

The polynomial techniques which are presented very recently are deterministic

methods based on tools from algebraic geometry leading to generalization of the

linear matrix inequality and semi-definite programming. Recent activities in this

line of research are mainly due to sum of squares relaxations [36, 100] and moment

problems formulation in dual spaces [83]. This approach reformulate the control and

optimization problems subject to multivariate polynomial inequalities. The question

regarding when a non-negative polynomial can be expressed as sum of squares was

studied in classical texts, see [19] for historical notes on polynomial non-negativity.
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The link between sum of squares and convexity is discussed in [107] and the specific

relation with semi-definite programming is discussed in many papers, see e.g. [36,

100, 83, 81]. These relaxation techniques build a hierarchy of convex relaxations of

the uncertain optimization problems. The relaxations provide a conservative solution

to the original uncertain optimization problem. Under mild assumptions they provide

asymptotic convergence of the solution of the convex relaxations to the solution of

the uncertain optimization problem. The main difficulty in using such relaxations is

their complexity making such approaches difficult to use in practice.

1.1.3 Robust Synthesis

The formulation of Zames for H∞ [135] was the first attempt to introduce uncer-

tainty directly into the plant description. Later, some classical optimal methods were

developed such as the idea of structured singular value also known as µ−theory [97]

which led to the µ-synthesis controller, the optimization methods based on semi def-

inite programming which in engineering is known as Linear Matrix Inequality (LMI)

[21] and l1 optimal control theory [42]. Later on the state feedback design based

on multi objective optimization was introduced [15, 78, 47]; however, these meth-

ods were suffering from two drawbacks: Firstly, the design procedure was based on

state feedback. Secondly, they required selected input or output channels to be the

same for all the objectives. In 1997, the design of multi objective dynamic output

feedback was proposed by Scherer [105]. The proposed design procedure by Scherer
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didn’t suffer from two previously mentioned limitations. The design objective could

be combination of H2 and H∞ performance, passivity, asymptotic disturbance re-

jection, time domain constraints and constraints on the closed loop pole location.

The whole idea was to express the closed loop objectives in terms of LMI; usually

expressing the closed loop state space matrices in terms of plant model and controller

matrices (or design parameters) causes the problem to be non-linear (or rather non-

affine) with respect to design parameters. Hence, by introducing some non-linear

transformations and change of variables the problem is changed back to LMI format.

In the design approach base on [105], all Lyapunov matrices were required to be

the same for all objectives which is rather conservative. The idea of using multiple

Lyapunov functions was proposed by De Oliveira in [43] and the controller design

based on this approach was presented in [44] by the same authors. In this framework

control variables were independent from Lyapunov matrices that are used to test

stability of the closed loop system; this feature allows using parameter dependent

Lyapunov function which considerably reduces conservatism. In all approaches which

are mentioned so far, no uncertainty is considered in the plant model. In case where

controller parametrization does not explicitly depends on the state space matrices

of the controlled system, extension to polytypic uncertainty is trivial. For instance,

state feedback controller design for H2 and H∞ control [98] can be mentioned. It is

well known that design of a globally optimal full order output feedback controller for

polytypic uncertain system is non-convex NP-hard optimization problem which can
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be represented in the form of Bilinear Matrix Inequality (BMI) optimization problem

[119]. In [74] a computationally efficient locally optimal controller was presented. The

design procedure is guaranteed to converge to a local optimum. There are a couple

of approaches for solving BMI optimization problems. The simplest one is based on

coordinate decent method which fixes one variable (change BMI to LMI) and solves

the LMI optimization problem next, fixes the other design variable and does the same

[69]. This approach is not guaranteed to converge to a local optimum. The interior

point method [85], path following [57], rank minimization [68] are some other alterna-

tives. Nevertheless, non of them is guaranteed to converge to a local optimum. The

method of center [53] has guaranteed local convergence, nevertheless, it is computa-

tionally very expensive. Considering above mentioned points the approach proposed

in [74] is the best for dealing with parametric uncertainty; however, the computational

complexity grows exponentially with respect to the number of uncertain parameters.

Hence, it can only manage a limited number of uncertain parameters.

1.2 Limitation of Deterministic Worst-Case Ap-

proach

Although classical robust methods have been improved since 1980’s, there are still

some limitations and bottlenecks for applying this approach to practical problems. AS

an example, computing the structured singular value µ is proved to be NP−hard.



10

In general, the limitations of deterministic paradigm can be categorized into two

different classes discussed in the next two subsections.

1.2.1 Computational Complexity

Running any arithmetic operation takes an specific amount of time in processing

unit. Hence, running time is the sum of all time intervals which are required to solve

the problem under consideration. When an algorithm runs in “polynomial time”, it

means that there exists an integer k such that:

T (n) = O(nk)

where T (n) is the running time which is a function of the size of problem at hand

n. Generally speaking, problems which have polynomial time algorithm are solvable.

Then the term NP−hard stands for non-deterministic polynomial time-hard prob-

lems for which there is no polynomial time algorithm. In other words, when a problem

is NP−hard, it implies there is no upper limit in terms of time that we can make sure

that the problem will be solved within this time interval. There are a lot of problems

in robust control which belong to the category of NP−hard problems. On the other

hand, even when a problems has a polynomial-time algorithm, it does not mean that

it can be solved efficiently. There are some problems which have polynomial-time al-

gorithms and can’t be solved due to the huge computational burden associated with

them.
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1.2.2 Conservatism

In addition to the complexity problem, conservatism is also a challenge for the

deterministic robust approach. It is well known that in cases where real paramet-

ric uncertainty enters affinely into plant transfer function, it is possible to compute

the robustness margin exactly. However, in real world problems, we usually deal with

non-linear non-convex uncertainty. In order to handle this problem in classical robust

paradigm, the non-linear uncertainty is embedded into affine structure by replacing

the original set by a larger one. In other words, multipliers and scaling variables are

introduced to relax the problem [14] which are associated with an evident conser-

vatism. On the other hand, it is well known that robustness and performance are two

contradicting requirements, which means increase in robustness tends to degradation

in performance. In critical applications where performance is of vital importance,

unnecessary conservatism is not desired and should be avoided.

1.3 Probabilistic Methods in Robust Control

In this section, we discuss the probabilistic and randomized methods used in

robust control for analysis and synthesis of uncertain systems. Interested readers are

referred to [30, 113] for a comprehensive treatment.
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1.3.1 Historical Notes

The concept of probabilistic robust control is quite recent although its root goes

back to 1980 in the field of flight control [109]. Some papers have been published

during 1980’s and early 1990’s mostly dealing with analysis problem based on Monte

Carlo simulation. The concept of probability of instability was introduced in this pe-

riod. The new era of this field was started by papers [77, 112] in 1996 which derived

an explicit sample bound based on which, we can estimate probability of satisfaction

or violation of a given cost function. Subsequently, the results based on statistical

learning theory [125, 124] by Vidyasagar was proposed which plays an important role

in solving non-convex problems. Randomized algorithms for solving uncertain lin-

ear quadratic regulator (LQR) [101] and uncertain linear matrix inequalities (LMIs)

[24] were a stepping stone in the field of randomized algorithms. Nevertheless, this

approach can only solve feasibility problems. The non-sequential method for solv-

ing uncertain convex optimization problems, the so-called scenario approach, was

introduced in 2004 [26] which was the only approach capable of directly solving op-

timization problems. The direct application of statistical learning theory for solving

non-convex problem were also introduced in [5]. The class of sequential probabilistic

validation algorithms were recently presented in [4] proposing a unified scheme which

can be efficiently used in sequential synthesis methods such as gradient iteration.
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1.3.2 Randomized Algorithms for Analysis

The main ingredient in analysis techniques based on randomized algorithms is to

extract N independent and identically distributed (iid) samples from the uncertainty

set and examine a performance function for all the random samples. In general, there

are two problems to be tackled in probabilistic analysis:

1. Reliability estimation.

2. Performance level estimation.

In reliability estimation, we aim at “estimating a probability” which can be the prob-

ability of satisfaction (or violation) of a given performance index such as H∞ norm.

This problem historically goes back to Markov [88] and Chebychev [35] inequalities.

Hoeffding [61] and Bernstein [17] derived the required sample bounds for estimating

an unknown probability. This line of research has a very rich background, interested

readers are referred to [111, 102, 99, 89].

In Performance level estimation, the goal is to estimate the “worst case” perfor-

mance of a given performance index over the uncertainty set. Worst case H∞ norm

estimation is an example for which this methodology can be effectively used. The

famous log-over-log bound [112] propose a sample complexity bound for solving such

problems. We highlight that introducing log-over-log bound was a stepping stone

in probabilistic robustness analysis. Sequential probabilistic validation algorithms

(SPV) highly rely on log-over-log bound. This class of algorithms was formally in-
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troduced in [4]. Nevertheless, they have been widely used in probabilistic robust

literature such as [29, 95, 52, 41] as a part of sequential randomized algorithm for

controller synthesis.

1.3.3 Randomized Algorithms for Control Synthesis

Figure 1.2 shows an overview of all techniques which are used in probabilistic ro-

bust design. Starting from the top, problems can be divided into two classes: convex

Non-Convex Problems

Sequential Non-Sequential

The Scenario ApproachFeasibility

Gradient Iteration Sequential Randomized Method

Cutting PlaneEllipsoid

Statistical Learning Theory

Convex Problems

Optimization

Localization Method

Figure 1.2: Probabilistic design methods

and non-convex problems. For convex problems, there are two classes of sequential

and non-sequential randomized methods. Sequential methods are based on a sequence
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of design and validation steps which are performed iteratively to find a probabilistic

solution. The design part is purely deterministic which roots in stochastic optimiza-

tion techniques for feasibility problems. The simplest one is the gradient method

while more sophisticated methods such as ellipsoid [73, 95] and cutting-plane [29, 41]

are localization methods trying to shrink a localization set at each iteration. At

each iteration of such algorithms, a candidate solution is constructed in the design

step and is then validated using a Monte Carlo simulation. In the case that Monte

Carlo simulation declares the solution as a probabilistic robust feasible solution, the

algorithm is terminated otherwise the algorithm goes back to the design step and

constructs another candidate solution. The convergence of such algorithms is proved

under some mild assumptions. Sequential randomized methodology for optimization

was first introduced in [34], see Chapter 2 for a detailed discussion of this approach.

The non-sequential algorithm (the scenario approach) [26] is based on extracting ran-

dom samples from the uncertainty set and solving an optimization problem subject

to finite number of constraints. The approach was extended in [31, 27, 32, 25] dealing

with the so called scenario with discarded constraints in which we purposely discard

a number of constraint in favor of improving the objective value. Statistical learning

theory [125, 5] is the only approach for which the convexity does not play any role and

hence is suitable for non-convex problems. Nevertheless, it is not very easy to apply

this concept on control problems since it requires the computation of a combinatorial

parameter called Vapnik-Chervonenkis dimension (VC-dimension). In probabilistic
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methods for controller design, the stability of the closed loop system is treated in

a probabilistic sense, then the closed loop plant may tend to instability for some

very unfortunate scenarios. This limitation was addressed in [28] which divides the

performance specifications into two categories, hard and soft. Hard ones are those

which must satisfy in deterministic sense (such as stability) and soft ones are those

which their violation does not result in a big failure. This approach, tries to find the

stabilizing controller set based on Youla parametrization and next, the stabilizing set

is searched for a controller which gives the best performance.

1.4 Outline of the Thesis

This section aims at providing an outline of the thesis. In particular, we provide

an overview of the relationship between different contributions presented in different

chapters. The reader can use this section to find his/her way through the thesis.

1.4.1 Sequential Randomized Algorithms for Samples Con-

vex Optimization

The approach presented in the Chapter 2 aims at alleviating the conservatism asso-

ciated with the scenario approach also known as sampled convex program. As briefly

mentioned earlier, the scenario approach is a non-sequential method in which we

solve an optimization problem subject to finitely many random constraints extracted
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from the uncertainty set. In other words, this approach reduces infinite number of

constraints to a finite number. The drawback of the scenario approach is its computa-

tional complexity. The number of random constraints needs to be extracted from the

uncertainty set is sometimes very large leading to a very complex optimization prob-

lem which is beyond the capability of the current computational tools. Motivated by

this limitation, we mixed the scenario approach with sequential randomized methods

used in sequential approximation methods based on gradient [24, 101], ellipsoid [73]

and cutting plane [29] iterations and introduced sequential randomized algorithms

for solving uncertain convex optimization problems. The main philosophy is to form

a temporary solution by solving a “reduced size” scenario problem and then to check

the candidate solution in a validation (analysis) step to see if the solution satisfies

the desired probabilistic behaviour. In the case that validation step fails declaring

the candidate solution a “bad” solution, an optimization problem subject to larger

number of random constraints is solved to obtain a “more robust” solution. In the

algorithm the two steps are iteratively performed to obtain a probabilistic robust solu-

tion. The convergence of algorithms are rigorously proved in Chapter 2. We highlight

that the proposed sequential randomized algorithms are the first sequential methods

capable of directly solving uncertain optimization problems. They also extend the ap-

plicability domain of the scenario approach: there are problems for which the scenario

approach cannot solve the optimization problem due to its complexity but, using the

sequential randomized algorithms developed in this thesis we can efficiently solve the
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problem.

1.4.2 Vapnik-Chervonenkis Dimension of Uncertain LMI and

BMI

Statistical learning theory is a very powerful tool in solving uncertain complex

problems. In this line of research statistical learning theory is used to extend the con-

vergence property of the empirical mean, which can be obtained using a Monte Carlo

simulation, from finite families to infinite family of functions. Nevertheless, applying

results from statistical learning theory to control problems requires the computa-

tion of a parameter called Vapnik-Chervonenkis dimension (VC-dimension) which is

very difficult in general. There are some attempts in the literature to compute the

VC-dimension for some control problems such as static output feedback control pre-

sented in [127]. Motivated by this results, we computed VC-dimension for uncertain

linear and bilinear matrix inequalities frequently encountered in robust and optimal

control. In particular, we reformulated the problem of checking positive (negative)

definiteness (semi-definiteness) as binary functions and computed the corresponding

VC-dimension. Given the computed VC-dimension, we developed randomized al-

gorithms capable of finding probabilistic guaranteed solutions. The only drawback

of the approaches based on statistical learning theory is that they usually come up

with huge sample bounds making the optimization problem very difficult to solve.

To circumvent this, we used the developed strategy discussed in subsection 1.4.1 to
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develop a sequential randomized algorithm which can efficiently solve the problem

with manageable computational effort.

1.4.3 Robust Track Following Control of Hard Disk Drives

Using the developed randomized algorithms, we solved a challenging industrial

problem regarding the track following control of hard disk drives. In particular,

we designed an H2 dynamic output feedback controller addressing several uncertain

parameters which appear in the dynamical equations in a non-affine manner. To make

a comparison we also designed a controller using sequential approximation method

base on cutting plane iteration presented in [29] and compared the designed controller

with two controllers designed by the sequential randomized algorithms discussed in

subsection 1.4.1. We highlight that the performance of all controllers are fairly similar

but, the controllers designed using the proposed methodology take considerably less

time to design compared to the one designed by the sequential approximation method

based on cutting plane algorithm.
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Chapter 2

Sequential Randomized Algorithms

for Uncertain Convex Optimization

2.1 Introduction

The approach that has emerged recently regarding non-sequential randomized

methods is the so-called scenario approach, which has been introduced in [26, 27].

Taking random samples of the uncertainty q ∈ Q, the main idea of this particular line

of research is to reformulate a semi-infinite convex optimization problem as a sampled

optimization problem subject to a finite number of random constraints. Then, a key

problem is to determine the sample complexity i.e., the number of random constraints

that should be generated, so that the so-called probability of violation is smaller than

a given accuracy ǫ ∈ (0, 1), and this event holds with a suitably large confidence
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1 − δ ∈ (0, 1). A very nice feature of the scenario approach is that the sample

complexity is determined a priori, that is before the sampled optimization problem

is solved, and it depends only on the number of design parameters, accuracy and

confidence. On the other hand, if accuracy and confidence are very small, and the

number of design parameters is large, then the sample complexity may be huge, and

the sampled convex optimization problem cannot be easily solved in practice.

Motivated by this discussion, in this chapter we develop a novel sequential method

specifically tailored to the solution of the scenario-based optimization problem. The

proposed approach iteratively solves reduced-size scenario problems of increasing size,

and it is particularly appealing for large-size problems. This line of research follows

and improves upon the schemes previously developed for various control problems,

which include linear quadratic regulators, linear matrix inequalities and switched sys-

tems discussed in [30, 113]. The main idea of these sequential methods is to introduce

the concept of validation samples. That is, at step k of the sequential algorithm, a

“temporary solution” is constructed and, using a suitably generated validation sam-

ple set, it is verified whether or not the probability of violation corresponding to the

temporary solution is smaller than a given accuracy ε, and this event holds with

confidence 1−δ. Due to their sequential nature, these algorithms may have wider ap-

plications than the scenario approach, in particular in real-world problems where fast

computations are needed because of very stringent time requirements due to on-line

implementations.
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Compared to the sequential approaches discussed above, the methods proposed in

this chapter have the following distinct main advantages: 1. no feasibility assumption

of the original uncertain problem is required; 2. the termination of the algorithm does

not require the knowledge of some user-determined parameters such as the center of

a feasibility ball; 3. the methods can be immediately implemented using existing off-

the-shelf convex optimization tools, and no ad-hoc implementation of specific update

rules (such as stochastic gradient, ellipsoid or cutting plane) is needed. We also

remark that the methods presented here directly apply to optimization problems,

whereas all the sequential methods discussed in [30, 113] are limited to feasibility.

In this chapter, we study two new sequential algorithms for optimization with

full constraint satisfaction and partial constraint satisfaction, respectively, and we

provide a rigorous analysis of their theoretical properties regarding the probability of

violation. These algorithms fall into the class of Sequential Probabilistic Validation

(SPV) algorithms, but exploit specific convexity and finite convergence properties of

scenario methods, thus showing computational improvements upon those presented

in [4], see Section 2.3.1. In particular, the sample complexity of both algorithms

is derived and it enters directly into the validation step. The sample complexity

increases very mildly with probabilistic accuracy, confidence and number of design

parameters, and depends on a termination parameter which is chosen by the user. In

the worst case, an optimization problem having the same size of the scenario approach

should be solved.



23

In the second part of the chapter, using a non-trivial example regarding the control

of a multivariable model for the lateral motion of an aircraft, we provide extensive

numerical simulations which compare upfront the sample complexity of the scenario

approach with the number of iterations required in the two sequential algorithms

previously introduced. We remark again that the sample complexity of the scenario

approach is computed a priori, while for sequential algorithms, the numerical results

regarding the size of the validation sample set are random. For this reason, mean

values, standard deviation and other related parameters are experimentally computed

for both proposed algorithms by means of extensive Monte Carlo simulations. Please

see Chapter 4 for more sophisticated numerical example regarding the track-following

control of hard disk drive.

2.2 Problem Formulation and Preliminaries

An uncertain convex problem has the form

min
θ∈Θ

cT θ (2.1)

subject to f(θ, q) ≤ 0 for all q ∈ Q

where θ ∈ Θ ⊂ Rnθ is the vector of optimization variables and q ∈ Q denotes random

uncertainty acting on the system, f(θ, q) : Θ × Q → R is convex in θ for any fixed

value of q ∈ Q and Θ is a convex and closed set. We note that most uncertain

convex problems can be reformulated as (2.1). In particular, multiple scalar-valued
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constraints fi(θ, q) ≤ 0, i = 1, . . . , m can always be recast into the form (2.1) by

defining f(θ, q) = max
i=1, ..., m

fi(θ, q).

In this chapter, we study a probabilistic framework in which the uncertainty vector

q is assumed to be a random variable and the constraint in (2.1) is allowed to be

violated for some q ∈ Q, provided that the rate of violation is sufficiently small. This

concept is formally expressed using the notion of “probability of violation”.

Definition 2.1 (Probability of Violation). The probability of violation of θ for the

function f : Θ×Q → R is defined as

V (θ)
.
= Pr {q ∈ Q : f(θ, q) > 0} . (2.2)

The exact computation of V (θ) is in general very difficult since it requires the

computation of multiple integrals associated to the probability in (3.3). However,

this probability can be estimated using randomization. To this end, assuming that a

probability measure is given over the set Q, we generate N independent identically

distributed (i.i.d.) samples within the set Q

q = {q(1), . . . , q(N)} ∈ QN ,

where QN .
= Q×Q× · · · ×Q (N times). Next, a Monte Carlo approach is employed

to obtain the so called “empirical violation” which is introduced in the following

definition.

Definition 2.2 (Empirical Violation). For given θ ∈ Θ the empirical violation of
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f(θ, q) with respect to the multisample q = {q(1), . . . , q(N)} is defined as

V̂ (θ,q)
.
=

1

N

N∑

i=1

If(θ, q
(i)) (2.3)

where If(θ, q
(i)) is an indicator function defined as

If(θ, q
(i))

.
=





0 if f(θ, q) ≤ 0

1 otherwise.

It is clear that, based on the definition of If(θ, q
(i)), the empirical violation is a random

variable bounded in the closed interval [0, 1].

2.2.1 The Scenario Approach

In this subsection, we briefly recall the so-called scenario approach, also known

as random convex programs, which was first introduced in [26, 27], see also [31] for

additional results. In this approach, a set of independent identically distributed ran-

dom samples of cardinality N is extracted from the uncertainty set and the following

scenario problem is formed

min
θ∈Θ

cT θ (2.4)

subject to f(θ, q(i)) ≤ 0, i = 1, . . . , N.

The function f(θ, q) is convex for fixed q ∈ Q and a further assumption is that the

problem (2.4) attains a unique solution θ̂N . These assumptions are now formally

stated.
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Assumption 2.1 (Convexity). Θ ⊂ Rnθ is a convex and closed set and f(θ, q) is

convex in θ for any fixed value of q ∈ Q.

Assumption 2.2 (Uniqueness). If the optimization problem (2.4) is feasible, it ad-

mits a unique solution.

We remark that the uniqueness assumption can be relaxed in most cases by in-

troducing a tie-breaking rule (see Section 4.1 of [26]).

The probabilistic property of the optimal solution obtained from (2.4) are stated

in the next lemma taken from [25]. The result was first established in [31] under the

additional assumption that the scenario problem is feasible with probability one (in

this case nθ in (2.5) can be replaced by nθ − 1).

Lemma 2.1. Let Assumptions 2.1 and 2.2 hold and let δ, ε ∈ (0, 1) and N satisfy

the following inequality
nθ∑

i=0

(
N

i

)
εi(1− ε)N−i ≤ δ. (2.5)

Then, with probability at least 1−δ either the optimization problem (2.4) is unfeasible

or its optimal solution θ̂N satisfies the inequality V (θ̂N) ≤ ε.

2.2.2 Scenario with Discarded Constraints

The idea of scenario with discarded constraints [25, 32] is to generate N i.i.d.

samples and then purposely discard r < N − nθ of them. In other words, we solve
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the following optimization problem

min
θ∈Θ

cT θ (2.6)

subject to f(θ, q(i)) ≤ 0, i = 1, . . . , N − r.

The r discarded samples are chosen so that the largest improvement in the optimal

objective value is achieved. We remark that the optimal strategy to select r discarded

samples is a mixed-integer optimization problem, which may be hard to solve numer-

ically. The following lemma [25] defines the probabilistic properties of the optimal

solution obtained from (2.6).

Lemma 2.2. Let Assumptions 2.1 and 2.2 hold and let δ, ε ∈ (0, 1), N and r < N−nθ

satisfy the following inequality

(
r + nθ

r

) r+nθ∑

i=0

(
N

i

)
εi(1− ε)N−i ≤ δ. (2.7)

Then, with probability at least 1−δ either the optimization problem (2.6) is unfeasible

or its optimal solution θ̂N satisfies the inequality V (θ̂N) ≤ ε.

Note that there exist different results in the literature that derive explicit sample

complexity bounds on the N such that (2.5) or (2.7) are satisfied for given values

of ε, δ ∈ (0, 1), see e.g. [6] and [25]. These bounds depend linearly on 1/ε and nθ

and logarithmically on 1/δ. However, in practice, the required number of samples

can be very large even for problems with moderate number of decision variables.

Therefore, the computational complexity of the random convex problems (2.4) and
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(2.6) might be beyond the capability of the available computational tools. Motivated

by this limitation, in the next section we propose two novel sequential randomized

algorithms for optimization.

2.3 The Sequential Randomized Algorithms

The main philosophy behind the proposed sequential randomized algorithms lies

on the fact that it is easy from the computational point of view to evaluate a given

“candidate solution” for a large number of random samples extracted from Q. On

the other hand, it is clearly more expensive to solve the optimization problems (2.4)

or (2.6) when the sample bound N is large. The sequential randomized algorithms,

which are presented next generate a sequence of “design” sample sets {q(1)d , . . . , q
(Nk)
d }

with increasing cardinality Nk which are used in (2.4) and (2.6) for solving the opti-

mization problem. In parallel, “validation” sample sets {q(1)v , . . . , q
(Mk)
v } of cardinality

Mk are also generated by both algorithms in order to check whether the given can-

didate solution, obtained from solving (2.4) or (2.6), satisfies the desired violation

probability.

The first algorithm is in line with those presented in [29] and [95], in the sense

that it uses a similar strategy to validate the candidate solution. However, while these

algorithms have been designed for feasibility problems, the proposed algorithms deal

with optimization problems. More generally, the two presented algorithms fall into

the class of general SPV algorithms studied in [4].
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2.3.1 Full Constraint Satisfaction

The first sequential randomized algorithm is presented in Algorithm 2.1, and its

theoretical properties are stated in the following theorem.

Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 hold. If at iteration k Algo-

rithm 2.1 exits with a probabilistic solution θsol, then it holds that V (θsol) ≤ ε with

probability no smaller than 1− δ, that is

Pr {V (θsol) ≤ ε} ≥ 1− δ.

Proof. See Appendix 2.6.1.

We note that in steps 3 and 4, to preserve the i.i.d. assumptions, the design and

validation samples need to be redrawn at each iteration, and sample-reuse techniques

are not applicable.

Remark 2.1 (Optimal Value of α). The sample bound (2.10) has some similarities

with the one derived in [30, Theorem 2], originally proven in [41], and also used in

[4]. However, since we are using a finite sum1, thanks to the finite scenario bound ob-

tained solving (2.8), we can use the finite hyperharmonic series Skt−1(α) =
∑kt−1

j=1 j
−α

(also known as p-series) instead of the Riemann Zeta function
∑∞

j=1 j
−α. Indeed,

the Riemann Zeta function does not converge when α is smaller than one, while in

the presented bound (2.10) α may be smaller than one, which improves the overall

sample complexity in particular for large values of kt. The optimal value of α which

1See in particular the summation (2.18) in the proof of Theorem 2.1.
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Algorithm 2.1 Sequential Randomized Algorithm: Full Constraint

Satisfaction

1. Initialization

Set iteration counter to zero (k = 0). Choose probabilistic levels ε, δ and

number of iterations kt > 1.

2. Update

Set k = k + 1 and Nk ≥ N k
kt

where N is the smallest integer satisfying

nθ∑

i=0

(
N

i

)
εi(1− ε)N−i ≤ δ/2. (2.8)

3. Design

• Draw Nk i.i.d. samples qd = {q(1)d , . . . , q
(Nk)
d } ∈ Q based on the underlying

distribution.

• Solve the following reduced-size scenario problem

θ̂Nk
=argmin

θ∈Θ
cT θ (2.9)

subject to f(θ, q
(i)
d ) ≤ 0, i = 1, . . . , Nk.

• If the optimization problem (2.9) is not feasible, the original problem (2.1)

is not feasible as well.

• Else if the last iteration is reached (k = kt), set θsol = θ̂Nk
and Exit.

• Else, continue to the next step.
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4. Validation

• Draw

Mk ≥ α ln k + ln
(
Skt−1(α)

)
+ ln 2

δ

ln
(

1
1−ε

) (2.10)

i.i.d. samples qv = {q(1)v , . . . , q
(Mk)
v } ∈ Q based on the underlying distribu-

tion, and Skt−1(α) =
∑kt−1

j=1 j
−α, where α > 0 is a tuning parameter.

• If If(θ̂Nk
, q

(i)
v ) = 0 for i = 1, . . . ,Mk; set θsol = θ̂Nk

and Exit.

• Else, goto step (2).

minimizes the sample bound (2.10) has been computed using numerical simulations

for different values of the termination parameter kt. The “almost” optimal value of α

minimizing (2.10) for a wide range of kt is α = 0.1. The bound (2.10) (for α = 0.1)

improves upon the bound (17) in [30], by 5% to 15% depending on the termination

parameter kt. It also improves upon the bound in [95], which uses finite sum but in a

less effective way. Finally, we note that the dependence of Mk upon the parameters ε

and δ is logarithmic in 1/δ and substantially linear in 1/ε.

2.3.2 Partial Constraint Satisfaction

In the “design” and “validation” steps of Algorithm 2.1, all elements of the design

and validation sample sets are required to satisfy the constraint in (2.1). However,

it is sometimes impossible to find a solution satisfying the constraint in (2.1) for the
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entire set of uncertainty. For this reason, in Algorithm 2.2, we consider the scenario

design with discarded constraints where we allow a limited number of design and

validation samples to violate the constraint in (2.1).

We now provide a theorem stating the theoretical properties of Algorithm 2.2.

Theorem 2.2. Suppose that Assumptions 2.1 and 2.2 hold. If at iteration k Algo-

rithm 2.2 exits with a probabilistic solution θsol, then it holds that V (θsol) ≤ ε with

probability no smaller than 1− δ

Pr {V (θsol) ≤ ε} ≥ 1− δ.

Proof. See Appendix 2.6.2.

Algorithm 2.2 is different from the algorithm presented in [5], which was derived

for non-convex problems, in a number of aspects. That is, the cardinality of the

sequence of sample sets used for design and validation increases linearly with iteration

counter k, while it increases exponentially in [5]. Furthermore, the cardinality of the

validation sample set at the last iteration Mkt in [5] is chosen to be equal to the

cardinality of the sample set used for design at the last iteration Nkt while, in the

presented algorithm Mkt and hence βw are chosen based on the additive Chernoff

bound which is less conservative.

We also note that both Algorithms 2.1 and 2.2 fall within the class of SPV algo-

rithms in which the “design” and “validation” steps are independent, see [4]. As a

result, in principle we could use the same strategy as Algorithm 2.1 to tackle discarded
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Algorithm 2.2 Sequential Randomized Algorithm: Partial Constraint

Satisfaction

1. Initialization

Set the iteration counter to zero (k = 0). Choose probabilistic levels ε, δ,

number of iterations kt > 1, number of discarded constraints r and define the

following parameters:

βv
.
= max

{
1, βw

(
kt ln

2kt
δ

)−1}
, βw

.
=

1

4ε
ln

1

δ
. (2.11)

2. Update

Set k = k + 1, Nk ≥ N k
kt

and Nk,r ≥ (N−r)k
kt

where N is the smallest integer

satisfying
(
r + nθ

r

) r+nθ∑

i=0

(
N

i

)
εi(1− ε)N−i ≤ δ/2. (2.12)

3. Design

• Draw Nk i.i.d. samples qd = {q(1)d , . . . , q
(Nk)
d } ∈ Q based on the underlying

distribution.

• Solve the following reduced-size scenario problem

θ̂Nk ,r =argmin
θ∈Θ

cT θ (2.13)

subject to f(θ, q
(i)
d ) ≤ 0, i = 1, . . . , Nk,r.

• If the optimization problem (2.13) is not feasible, the original problem

(2.1) is not feasible as well.
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• Else if the last iteration is reached (k = kt), set θsol = θ̂Nk ,r and Exit.

• Else, continue to the next step.

1. Validation

• Draw

Mk ≥ 2kβv
1

ε
ln

2kt
δ

(2.14)

i.i.d. samples qv = {q(1)v , . . . , q
(Mk)
v } ∈ Q based on the underlying distribu-

tion.

• If

1

Mk

Mk∑

i=1

If(θ̂Nk ,r, q
(i)
v ) ≤

(
1− (kβv)

−1/2) ε (2.15)

set θsol = θ̂Nk ,r and Exit.

• Else, goto step (2).

constraints problems. Nevertheless, Algorithm 2.2 appears to be more suitable for

discarded constraints problems, since (2.13) forces the solution to violate some con-

straints.
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2.3.3 Algorithms Termination and Overall Sample Complex-

ity

Note that the maximum number of iterations of both Algorithms 1 and 2 is chosen

by the user by selecting the termination parameter kt. This choice affects directly the

cardinality of the sample sets used for design Nk and validation Mk at each iteration,

although they converge to fixed values (independent of kt) at the last iteration. In

problems for which the original scenario sample complexity is large, we suggest to

use larger kt. In this way, the sequence of sample bounds Nk starts from a smaller

number and does not increase significantly with the iteration counter k.

We also remark that, in Algorithm 2.2, the right hand side of the inequality (2.15)

cannot be negative, which in turn requires βv to be greater than one. This condition is

taken into account in defining βv in (2.11). However, we can avoid generating βv < 1

by the appropriate kt. To this end, we solve the inequality βv ≥ 1 for kt as follows:

βw

(
kt ln

2kt
δ

)−1
≥ 1 ⇒ kt ln

2kt
δ

≤ βw ⇒ 2kt
δ

ln
2kt
δ

≤ 2βw
δ
.

For implementation purposes, it is useful to use the function “LambertW” also known

as “Omega function” or “product logarithm”2

kt ≤
βw

LambertW
(
2βw

δ

) .

Furthermore, note that the overall sample complexity of Algorithm 2.1 and 2.2 is a

random variable, because the number of iterations is random. Indeed, the number of

2This function is the inverse function of f(W ) = WeW . In other words, W = LambertWf(W );
see e.g. [40] for more details.
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iterations in which the algorithm terminates (Nk and Mk) is only known a posteriori,

while in the scenario approach we can establish a priori sample bounds. We remark

that the computational cost of solving convex optimization problems does not increase

linearly with the number of constraints. Hence, we conclude that, if the algorithms

terminate with smaller number of design samples than the original sample complexity

of the scenario problem, which is the case most of the times, the reduction in the

number of design samples can significantly improve the overall computational cost.

In the particular case when the constraints are linear matrix inequalities (LMIs), then

the reduced-size scenario problem (2.9) can be reformulated as a semidefinite program

by combining Nk LMIs into a single LMI with block-diagonal structure. It is known,

see [13], that the computational cost of this problem with respect to the number of

diagonal blocks Nk is of the order of N
3/2
k . Similar discussions hold for Algorithm

2.2. We conclude that a decrease in Nk, can significantly reduce the computational

complexity.

Finally, note that the computational cost of validation steps in both presented

algorithms is not significant since they just require analysis of a candidate solution

for a number of i.i.d. samples extracted from the uncertainty set.

2.4 Numerical Simulation

In this section, we employ the developed sequential randomized algorithms of

Section 2.3 to solve a non-trivial control problem. The plant under consideration is a
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Table 2.1: Uncertainty vector q and its nominal value q

Lp Lβ Lr g/V Yβ Nβ̇ Np Nβ Nr Lδa Yδr Nδr Nδa

−2.93 −4.75 0.78 0.086 −0.11 0.1 −0.042 2.601 −0.29 −3.91 0.035 −2.5335 0.31

multivariable model for the lateral motion of an aircraft. The example is studied in

[7] and [113], and it is adopted originally from [117]. The state space description of

the model is given by



ẋ1

ẋ2

ẋ3

ẋ4




=




0 1 0 0

0 Lp Lβ Lr

g/V 0 Yβ −1

Nβ̇(g/V ) Np Nβ +Nβ̇Yβ Nr −Nβ̇







x1

x2

x3

x4




+




0 0

0 Lδa

Yδr 0

Nδr +Nβ̇Yδr Nδa






u1

u2


 (2.16)

where x1 is the bank angle, x2 its derivative, x3 is the sideslip angle, x4 the yaw

rate, u1 the rudder deflection and u2 the aileron deflection. The objective is to design

a state feedback controller of the form u = Kx which, firstly, stabilizes the plant

(2.16); secondly, enforces all the eigenvalues of the closed loop system to have real

part smaller than −α (α > 0) and, finally, we would like the trace of Lyapunov matrix,

used for testing the stability of closed loop system, to be minimized. All parameters

appearing in the model (2.16) are considered to be uncertain. Representing the plant
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Table 2.2: Simulation results obtained using Algorithm 2.1

ε δ kt Design Validation Iteration Computational
Samples Samples Number Time (S)

Mean Standard Worst Mean Standard Worst Mean Standard Worst Mean Standard Worst
Deviation Case Deviation Case Deviation Case Deviation Case

0.1 10−4 10 211.8 53.4 291 109.9 0.31 110 5.1 1.3 7 10.9 11.2 58

0.05 10−5 12 308.5 134.4 451 272.7 1.25 274 4.1 1.8 6 24.7 25.5 135.1

0.02 10−6 20 1035.2 499.1 1827 832.5 2.5 836 8.5 3.7 15 65.1 56.1 239.1

0.01 10−8 25 2149.8 1045.7 4030 2152.5 4.7 2160 9.6 4.7 18 144.6 124 643.1

0.005 10−9 30 4689 434.9 5166 4813.6 2.2 4816 11.8 1.1 13 325 338.2 1774.7

(2.16) as

ẋ = A(q)x+B(q)u

the uncertainty vector q is of dimension 13 and the uncertainty set Q is assumed to

be a 13 dimensional hyperrectangle centered at the nominal value q with radius R

i.e.,

Q = {qi ∈ R : qi ∈ [(1− R)q, (1 +R)q], i = 1, . . . , 13} .

Using the approach of [21], we solve the following optimization problem

minimize
P,Y

Tr (P )

subject to A(q)P + PAT (q) +B(q)Y + Y TBT (q) + 2αP � 0 (2.17)

where P ∈ R4×4 is a symmetric positive definite matrix and Y ∈ R2×4 is an auxiliary

variable. The feedback gain K can be constructed as K = Y P−1. We note that the

constraint (2.17) is in the form of a linear matrix inequality (LMI) and by introducing

the convex function λmax(.), which represents the maximum eigenvalue of the matrix,

the problem can be recast in the form (2.1).
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Table 2.3: Simulation results obtained using Algorithm 2.2

ε δ kt Design Validation Iteration Computational
Samples Samples Number Time (S)

Mean Standard Worst Mean Standard Worst Mean Standard Worst Mean Standard Worst
Deviation Case Deviation Case Deviation Case Deviation Case

0.1 10−4 10 108.2 23 125 599 125.9 691 2.6 0.54 3 12.8 4.4 25.6

0.05 10−5 12 266 53 301 1680 395.9 2240 3 0.7 4 31 12.5 58.7

0.02 10−6 20 389.8 133.1 487 5380.2 1841.4 6725 3.2 1.1 4 115.7 51.7 301.1

0.01 10−8 25 761.6 122.7 896 14715 2370.5 17312 3.4 0.54 4 324.1 127.6 557.7

0.005 10−9 30 1431.2 466.4 2385 49737 16217 82894 3.6 1.17 6 854 355.5 2170.7

Table 2.4: The scenario bound and the required computational time for the same
probabilistic levels as Tables. 2.2 and 2.3

ε δ The Scenario Bound Computational Time (S)

0.1 1× 10−4 414 13

0.05 1× 10−5 901 24.6

0.02 1× 10−6 2434 108.4

0.01 1× 10−8 5596 479.3

0.005 1× 10−9 11920 2295

Sequential algorithms of Section 2.3 are implemented in Matlab using the the

toolbox Randomized Algorithm Control Toolbox (RACT) [116]. In the simulation, we

assumed that the relative uncertainty is 15% (R = 0.15) and the probability density

function of all uncertain parameters is uniform. The choice of uniform distribution

is chosen due to its worst case nature [10]. The vector of nominal values q is given

in Table 2.1. The optimization problem (2.17) is solved for different values of ε and

δ. Furthermore, we run the simulation 100 times for each pair of ε and δ. The

mean, standard deviation and worst case values of the number of design samples,

optimization samples, the iteration number in which the algorithm exits and the
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total computational time are tabulated in Tables 2.2 and 2.33. Table 2.4 shows the

scenario bound along with the computational time required for solving the random

convex problem for the same probabilistic levels as Tables 2.2 and 2.3. It can be

seen that using the proposed algorithm, we can achieve the same probabilistic levels

with much smaller number of design samples. The computational time of Tables 2.2

and 2.3 is much smaller than Table 2.4 which further proves the effectiveness of the

proposed sequential randomized algorithms. We note that the number of validation

samples in Table 2.3 is bigger than the one in Table 2.2 which means Algorithm 2.2

needs more validation samples to verify the feasibility of the candidate solution. The

increase in the number of validation samples in Algorithm 2.2 has two reasons: i)

since we allow a number of validation samples to violate the constraint in (2.1), the

algorithm requires more samples to be checked; and ii) the boundMk in Algorithm 2.2

is purely based on Chernoff inequalities which is more conservative than log-over-log

bounds.

2.5 Conclusions

We proposed two new sequential methods for solving in a computational efficient

way uncertain convex optimization problems. The main philosophy behind the pro-

posed sequential randomized algorithms stems from the consideration that it is easy,

3All the simulations are carried on a work station with 2.83Giga Hertz Core 2 Quad CPU and
8Giga Byte RAM.
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from a computational viewpoint, to validate a given “candidate solution” for a large

number of random samples. The algorithms have been tested on a numerical exam-

ple, and extensive numerical simulations show how the total computational effort is

“diluted” by applying the proposed sequential methodology.
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2.6 Appendix

2.6.1 Proof of the Theorem 2.1

Following the same reasoning as in [95], we introduce the events

Iterk
.
= {the kth outer iteration is reached},

Feask
.
= {θ̂Nk

is declared as feasible in the “validation” step},

Badk
.
= {V (θ̂Nk

) > ε},

ExitBadk
.
= {Algorithm 2.1 exits at iteration k ∩ Badk},

ExitBad
.
= {Algorithm 2.1 exits at some unspecified

iteration k ∩ Badk}.

The goal is to bound the probability of the event “ExitBad”. Since ExitBadi ∩

ExitBadj = ∅ for i 6= j, the probability of the event “ExitBad” can be reformu-

lated in terms of the event “ExitBadk” as

Pr{ExitBad} = Pr{ExitBad1 ∪ ExitBad2 ∪ · · · ∪ ExitBadkt}

= Pr{ExitBad1}+ Pr{ExitBad2}+ · · ·+

Pr{ExitBadkt−1}+ Pr{ExitBadkt}. (2.18)

From the definition of the event “ExitBadk” and by considering that to exit at iter-

ation k ≤ kt−1, the algorithm needs i) to reach kth iteration and ii) to declare θ̂Nk
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feasible in the validation step, for k = 1, . . . , kt−1, we arrive at

Pr{ExitBadk} = Pr{Feask ∩ Badk ∩ Iterk}

= Pr{Feask ∩ Badk | Iterk}Pr{Iterk}

≤ Pr{Feask ∩ Badk | Iterk}

= Pr{Feask | Badk ∩ Iterk}Pr{Badk | Iterk}

≤ Pr{Feask | Badk ∩ Iterk}. (2.19)

Using the result of Theorem 1 in [29], we can bound the right hand side of (2.19)

Pr{Feask | Badk ∩ Iterk} < (1− ε)Mk . (2.20)

Combining (2.18) and (2.20) results in

Pr{ExitBad} < (1− ε)M1 + (1− ε)M2 + · · ·+ (1− ε)Mkt−1

+ Pr{ExitBadkt} =
kt−1∑

k=1

(1− ε)Mk + Pr{ExitBadkt}. (2.21)

The summation in (2.21) can be made arbitrary small by an appropriate choice of

Mk. In particular, by choosing

(1− ε)Mk =
1

kα
1

Skt−1(α)

δ

2
, (2.22)

we have
kt−1∑

k=1

(1− ε)Mk =

kt−1∑

k=1

1

kα
1

Skt−1(α)

δ

2
=
δ

2
. (2.23)

Note that the choice of the number of design samples in the last iteration guarantees

that Pr{ExitBadkt} ≤ δ/2. The statement follows, combining (2.21) with (2.23) and

noting that the bound (2.10) is obtained solving (2.22) for Mk.
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2.6.2 Proof of the Theorem 2.2

To prove the statement, define the events Iterk,Feask, Badk,ExitBadk and ExitBad

as in the proof of Theorem 2.1. Then, note that the event Feask can be written as

follows

Feask =
{
V̂ (θ̂Nk,r

,qv) ≤
(
1− (kβv)

−1/2) ε
}
,

that is, θ̂Nk
is declared feasible whenever the feasibility test (2.15) is passed. Again,

the goal is to bound the probability of the event “ExitBad”, which can be written as

the summation of the events “ExitBadk” as in (2.18). In turn, for k ≤ kt−1, we can

write

Pr{ExitBadk} ≤ Pr{Feask ∩ Badk | Iterk} .
= Pr{MisClassk},

where we denoted MisClassk the event of misclassification at iteration k.

MisClassk =
{
V̂ (θ̂Nk,r

,qv) ≤
(
1− (kβv)

−1/2) ε
}
∩
{
V (θ̂Nk,r

) > ε
}
, k = 1, . . . , kt−1.

By defining ρk
.
=

(
1− (kβv)

−1/2) ε and εk
.
= (kβv)

−1/2ε, this event can be rewritten

as

MisClassk =
{
V̂ (θ̂Nk,r

,qv) ≤ ρk

}
∩
{
V (θ̂Nk,r

)− V̂ (θ̂Nk,r
,qv) > εk

}
, k = 1, . . . , kt−1.

Applying the results of [5, Theorem 1], we can bound this event as follows

Pr {MisClassk} ≤ Pr

{
V (θ̂Nk,r

)− V̂ (θ̂Nk,r
,qv)√

V (θ̂Nk,r
)

>
εk√

εk + ρk

}
. (2.24)
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For any η ∈ (0, 1), the one-sided multiplicative Chernoff inequality [113] guarantees

that

Pr{V (θ̂Nk,r
)− V̂ (θ̂Nk,r

,qv) ≥ ηV (θ̂Nk,r
)} ≤ e

−V (θ̂Nk,r
)Mkη2

2 . (2.25)

Setting η = εk√
εk+ρk

1√
V (θ̂Nk,r

)
in (2.25), combining with inequality (2.24), we obtain,

for k = 1, . . . , kt−1

Pr {MisClassk} ≤ e
−ε2

k
Mk

2(εk+ρk) ≤ δ

2kt

where the last inequality follows from the choice ofMk in (2.14). Notice also that the

choice of the number of design samples at the last iteration Nkt guarantees that the

probability of misclassification at the last iteration (k = kt) is at most δ/2. Therefore,

we can write

Pr{ExitBad} ≤
kt∑

k=1

Pr{MisClassk}

≤
kt−1∑

k=1

δ

2kt
+ Pr{MisClasskt} =

δ(kt − 1)

2kt
+
δ

2
≤ δ

which proves the statement.
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Chapter 3

A Statistical Learning Theory

Approach to Uncertain LMI and

BMI

3.1 Introduction

Statistical learning theory is a very effective tool in dealing with various appli-

cations, which include neural networks and control systems, see for instance [126].

The main objective of this theory is to extend convergence properties of the empirical

mean, which can be computed with a Monte Carlo simulation, from finite families

to infinite families of functions. For finite families, these properties can be easily

established by means of a repeated application of the so-called Hoeffding inequality,
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and are related to the well-known law of large numbers, see for instance [113]. On

the other hand, for infinite families much deeper technical tools are needed and have

been developed in the seminal work of Vapnik and Chervonenkis [123]. In this case,

the main issue is to establish uniform convergence of empirical means. In particu-

lar, this requires to establish whether or not a combinatorial parameter called the

Vapnik-Chervonenkis dimension (VC-dimension) is finite, see [122].

Subsequent contributions on statistical learning theory by Vidyasagar [125] fol-

lowed two main research directions: First, to demonstrate that this theory is indeed

an effective tool for control of systems affected by uncertainty. Second, to “invert”

the bounds provided by Vapnik and Chervonenkis, introducing the concept of sample

complexity. Roughly speaking, when dealing with control of uncertain systems, the

sample complexity provides the number of random samples of the uncertainty that

should be drawn to derive a stabilizing controller (or a controller which attains a

given H∞-norm bound on the closed-loop sensitivity function), with sufficiently high

probabilistic accuracy and confidence. Since the sample complexity is a function of

the accuracy, confidence and the VC-dimension, specific bounds on this combinato-

rial parameter should be derived. In turn, this involves a problem reformulation in

terms of Boolean functions, and the evaluation of the number of required polynomial

inequalities, their order and the number of design variables.

For various stabilization problems, which include stability of interval matrices and

simultaneous stabilization with static output feedback, bounds on the VC-dimension
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have been derived in [127]. In this chapter, we continue this specific line of research,

and we compute the VC-dimension for control problems formulated in terms of un-

certain linear matrix inequalities (LMIs) and bilinear matrix inequalities (BMIs). It

is well-known that many robust and optimal control problems can be indeed formu-

lated in these forms, see for instance [21, 54, 74, 119]. However, due to the presence

of uncertainty it is often unclear how uncertain LMIs and BMIs can be effectively

solved, for example when the uncertainty enters nonlinearly into the control system.

In these cases, relaxation techniques are usually introduced, leading to conservative

results.

We provide new bounds for the VC-dimension for uncertain LMIs and BMIs.

These bounds are then combined with recent results in [5] to establish the sample

complexity of uncertain LMIs and BMIs. We remark that the sample complexity is

independent from the number of uncertain parameters entering into the LMIs and

BMIs, and on their functional relationship. Hence, the related randomized algorithms

run in polynomial-time. However, for relatively small values of the probabilistic

accuracy and confidence, the sample complexity turns out to be very large, as usual

in the context of statistical learning theory. For this reason, randomized algorithms

based on a direct application of these bounds may be of limited use in practice. To

alleviate this difficulty, in the second part of the chapter we propose a sequential

algorithm specifically tailored to the problem at hand. This algorithm has some

similarities with other sequential algorithms previously developed for other problems
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in the area of randomized algorithms for control of uncertain systems, see [4, 5, 82]

and in particular sequential randomized methods of Chapter 2 (Algorithms 2.1 and

2.2).

Finally, the effectiveness of this approach is shown by a numerical example related

to the static output feedback stabilization of an uncertain robot manipulator joint.

In particular, the objective is to design a static output feedback controller which

minimizes the worst-case H∞ norm. The numerical performance of the proposed se-

quential algorithm is evaluated and compared with the theoretical sample-complexity

previously derived.

3.2 Problem Formulation

We now formally state the uncertain LMI and BMI problems discussed in the

Introduction.

Problem 3.1 (Uncertain strict LMI optimization). Find the optimal value of x, if it

exists, which solves the optimization problem

minimize
x

cTxx (3.1)

subject to FLMI(x, q)
.
= F0(q) +

mx∑

i=1

xiFi(q) ≻ 0, ∀q ∈ Q

where x ∈ Rmx is the vector of optimization variables, q ∈ Q ⊂ Rℓ is the vector of

uncertain parameters bounded in the set Q and Fi = F T
i ∈ Rn×n, i = 0, . . . , mx. The

inequality FLMI(x, q) ≻ 0 means that FLMI(x, q) is positive definite.



50

Problem 3.2 (Uncertain strict BMI optimization). Find the optimal values of x and

y, if they exist, which solve the optimization problem

minimize
x,y

cTxx+ cTy y

subject to FBMI(x, y, q)
.
= F0(q) +

mx∑

i=1

xiFi(q)

+

my∑

j=1

yjGj(q) +

mx∑

i=1

my∑

j=1

xiyjHij(q) ≻ 0, ∀q ∈ Q (3.2)

where x ∈ Rmx and y ∈ Rmy are the vectors of optimization variables, q ∈ Q ⊂ Rℓ

is the vector of uncertain parameters, F0 = F T
0 ∈ Rn×n, and Fi = F T

i ∈ Rn×n,

Gj = GT
j ∈ Rn×n, Hij = HT

ij ∈ Rn×n, i = 1, . . . , mx, j = 1, . . . , my.

In order to allow a unified treatment of Problems 1 and 2, we now formally define

the design parameters for LMIs and BMIs.

Definition 3.1 (Design parameters for LMIs/BMIs). For Problem 1, we define

θ
.
= x, mθ = mx, cθ = cx;

and, for Problem 2, we define

θ
.
=

[
x

y

]
, mθ = mx +my, cθ =

[
cx
cy

]
.

Next, we assume that q is a random variable and a probability measure Prq over

the Borel σ-algebra of Q ⊂ Rℓ is given. Then, the constraints in (3.1) and (3.2)

become chance-constraints, see e.g. [118], which may be violated for some q ∈ Q.

This concept is formally expressed using the notion of “probability of violation”.
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Definition 3.2 (Probability of violation). The probability of violation of θ for the

binary-valued function g : Rmθ ×Q → {0, 1} is defined as

Vg(θ)
.
= Prq {q ∈ Q : g(θ, q) = 1} (3.3)

where, for Problem 3.1,

g(θ, q)
.
=





0 ifFLMI(θ, q) ≻ 0

1 otherwise

(3.4)

and, for Problem 3.2,

g(θ, q)
.
=





0 ifFBMI(θ, q) ≻ 0

1 otherwise

. (3.5)

We remark that the probability of violation is in general very hard to evaluate,

due to the difficulty of computing the multiple integrals associated with (3.3). Nev-

ertheless, we can “estimate” this probability using randomization. To this end, we

extract N independent identically distributed (i.i.d) samples from the set Q

q = {q(1), . . . , q(N)} ∈ QN ,

according to the measure Prq, where QN .
= Q × Q × · · · × Q (N times). Next, a

Monte Carlo approach is employed to obtain the so called “empirical violation”; see

e.g. [126].
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Definition 3.3 (Empirical violation). For given θ ∈ Rmθ the empirical violation of

g(θ, q) with respect to the multisample q = {q(1), . . . , q(N)} is defined as

V̂g(θ,q)
.
=

1

N

N∑

i=1

g(θ, q(i)). (3.6)

3.2.1 Randomized Strategy to Optimization Problems

There are several randomized methodologies in the literature which are based

on randomization in the uncertainty space, design parameter space or both. For

example, in [125] randomization in both uncertainty and design parameter spaces is

employed for minimizing the empirical mean. Similarly, a bootstrap learning method

and a min-max approach are presented in [82] and [51], respectively, but these papers

deal with finite families. In [5] the authors proposed a randomized algorithm for

infinite families which is applicable to convex and non-convex problems. Finally, a

non-sequential randomized methodology for uncertain convex problems is introduced

in [26, 27, 31]. In Algorithm 3.1 we present a non-sequential randomized strategy for

solving Problems 3.1 and 3.2.

We remark that introducing the level parameter ρ > 0 enables us to handle prob-

abilistic (soft) constraints, in the same spirit of [5]. The main objective of the present

chapter is to derive the explicit sample complexity bound on N based on statistical

learning theory results. Finally, we remark that, in the case of LMI constraints, prob-

lem (3.7) is a semidefinite optimization problem (SDP) that can be solved efficiently,

see [121] and [115] for a discussion on the numerical aspects of solving SDP problems.
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Algorithm 3.1 A Randomized Strategy for Uncertain LMIs/BMIs

• Given the underlying probability density function (pdf) over the uncertainty

set Q and the level parameter ρ ∈ [0, 1), extract N independent identically

distributed samples from Q based on the underlying pdf

q = {q(1), . . . , q(N)}.

• Find the optimal value, if it exists, of the following optimization problem

minimize
θ

cTθ θ

subject to V̂g(θ,q) ≤ ρ (3.7)

In the case of BMI constraints, efficient solvers such as PENBMI [80] are available,

but global solutions to the optimization problem in general cannot be obtained.

3.3 Vapnik-Chervonenkis Theory

In this section, we give a very brief overview of the Vapnik-Chervonenkis theory.

The material presented is classical, but a summary is instrumental to our next de-

velopments. In particular, we review some bounding inequalities which are used in

the subsequent sections to derive the explicit sample bounds for solving Problems 3.1

and 3.2.

Definition 3.4 (Probability of two-sided failure). Given N, ε ∈ (0, 1) and g : Rmθ ×
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Q → {0, 1}, the probability of two-sided failure denoted by qg(N, ε) is defined as

qg(N, ε)
.
= Prq

{
q ∈ QN : sup

θ∈Rmθ

|Vg(θ)− V̂g(θ,q)| > ε

}
.

The probability of two-sided failure determines how close the empirical violation is

to the true probability of violation. In other words, if we extract a multisample q with

cardinality N from the uncertainty set Q, we guarantee that the empirical violation

(3.6) is within ε of the true probability of violation (3.3) for all q ∈ Q except for

a subset having probability measure at most qg(N, ε). The parameter ε ∈ (0, 1) is

called accuracy.

Let G denote the family of functions {g(θ, q) : θ ∈ Rmθ} where g : Rmθ×Q → {0, 1}

is defined in (3.4) or in (3.5). The family G is said to satisfy the property of uniform

convergence of empirical mean (UCEM) if qg(N, ε) → 0 as N → ∞ for any ε ∈ (0, 1).

We remark that if G includes finite family of functions, it indeed has the UCEM

property. However, infinite families do not necessarily enjoy the UCEM property,

which means even if we extract infinite number of samples from the uncertainty set

and form the empirical violation, the probability of two-sided failure doesnot go to

zero, see [126] for several examples of this type. Problems 3.1 and 3.2 belong to the

class of infinite family of functions.

We define the family Sg containing all possible sets Sg
.
= {q ∈ Q : g(θ, q) = 1}, for

g varying in G. Now consider a multisample q = {q(1), . . . , q(N)} of cardinality N .

For the family of functions G, let

NG(q)
.
= Card (q ∩ Sg, Sg ∈ Sg) .
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In words, we say that Sg “shatters” q when NG is equal to 2N . The notion of “shatter

coefficient”, also known as “growth function”, is now defined formally.

Definition 3.5 (Shatter Coefficient). The shatter coefficient of the family G, denoted

by SG(N), is defined as

SG(N)
.
= max

q∈QN
NG(q).

A bound on the shatter coefficient can be obtained by Sauer lemma [104], which

in turn requires the computation of the VC-dimension, defined next.

Definition 3.6 (VC-dimension). The VC-dimension of the family of functions G is

defined as the largest integer d for which SG(N) = 2d.

The following result establishes a bound on the probability of two-sided failure in

terms of VC-dimension.

Theorem 3.1 (Vapnik and Chervonenkis). Let d denote the VC-dimension of the

family of functions G. Then, for any ε ∈ (0, 1)

qg(N, ε) ≤ 4e2ε
(
2eN

d

)d

e−Nε2 (3.8)

where e is the Euler number.

This result has been proven in [123] and it is stated in [122, Theorem 4.4].
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3.4 Main Results

In view of Theorem 3.1, we conclude that families with finite VC-dimension d <∞

enjoy the UCEM property. Hence, it is important i) to show that the collection G

of functions has finite VC-dimension and, ii) to derive upper bounds on the VC-

dimension.

3.4.1 Computation of Vapnik-Chervonenkis Dimension

In the next theorem, which is one of the main contributions of this chapter, we de-

rive an upper bound on the VC-dimension of the uncertain LMI and BMI in Problems

3.1 and 3.2.

Theorem 3.2 (VC bounds for strict LMIs/BMIs). Consider the notation introduced

in Definition 3.1. Then, the VC-dimension of uncertain LMIs and BMIs (Problems

3.1 and 3.2) is upper bounded by

d ≤ 2mθ lg(4en
2) (3.9)

where lg(.) denotes the logarithm to the base 2.

Proof See Appendix 3.9.1.

It is interesting to observe that the VC-dimension of uncertain LMIs and BMIs is

linear in the number of design variables mθ. In the next subsection, we derive explicit

sample bounds to be used in Algorithm 3.1 for solving Problems 3.1 and 3.2.
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3.4.2 Sample Complexity Bounds

In this section, we study a number of sample bounds guaranteeing that the prob-

ability of failures is bounded by a confidence parameter δ ∈ (0, 1). We remark that

there are several results in the literature to derive sample complexity bounds. To the

best of our knowledge, the least conservative is stated in Corollary 3 in [5]. For given

ε, δ ∈ (0, 1), the probability of two-sided failure (see Definition 3.4) is bounded by δ

provided that at least

N ≥ 1.2

ε2

(
ln

4e2ε

δ
+ d ln

12

ε2

)
(3.10)

samples are drawn, where d <∞ denotes the VC-dimension of the family of functions

G, and ln is the natural logarithm. This result is exploited in the next corollary, that

provides the explicit sample complexity bound for the probability of two-sided failure.

Corollary 3.1. Consider the notation introduced in Definition 3.1, and suppose that

ε, δ ∈ (0, 1) are given. Then, the probability of two-sided failure is bounded by δ if at

least

N ≥ 1.2

ε2

(
ln

4e2ε

δ
+ 2mθ lg(4en

2) ln
12

ε2

)
(3.11)

samples are drawn for the Problems 3.1 and 3.2.

Proof The statement of Corollary 3.1 follows immediately by combining (3.10) and

the results of Theorem 3.2.

A weaker notion than the probability of two-sided failure is the “probability of

one-sided constrained failure” introduced in the following definition.
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Definition 3.7 (Probability of one-sided constrained failure). Given N, ε ∈ (0, 1), ρ ∈

[0, 1) and g : Rmθ × Q → {0, 1}, the probability of one-sided constrained failure, de-

noted by pg(N, ε, ρ), is defined as

pg(N, ε, ρ)
.
= Prq

{
q ∈ QN : there exists θ ∈ Rmθ

such that V̂g(θ,q) ≤ ρ and Vg(θ)− V̂g(θ,q) > ε

}
.

Following the same lines of Corollary 3.1, sample complexity bounds for the prob-

ability of one-sided constrained failure are derived.

Corollary 3.2. Consider the notation introduced in Definition 3.1, and suppose that

ε ∈ (0, 1), δ ∈ (0, 1) and ρ ∈ [0, 1) are given. Then, the probability of one-sided

constrained failure is bounded by δ if at least

N ≥ 5(ρ+ ε)

ε2

(
ln

4

δ
+ 2mθ lg(4en

2) ln
40(ρ+ ε)

ε2

)
(3.12)

samples are drawn for the Problems 3.1 and 3.2.

Proof This result is an immediate consequence of Theorem 7 in [5], which states

that, for given ε, δ ∈ (0, 1) and ρ ∈ [0, 1), the probability of one-sided constrained

failure is bounded by δ provided that at least

N ≥ 5(ρ+ ε)

ε2

(
ln

4

δ
+ d ln

40(ρ+ ε)

ε2

)
(3.13)

samples are drawn, where d <∞ denotes the VC-dimension of the family of functions

G. The statement in Corollary 3.2 is derived by substituting the results of Theorem

3.2 into (3.13).
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Figure 3.1: Sample complexity bounds for strict BMIs, for δ = 1×10−8,mx+my = 13,
and for different BMI dimensions: n = 10 (continuous line) n = 50 (dashed line) and
n = 100 (dash-dotted line). The red plots show the two-sided bound (3.11), while
the blue plots show the one-sided constrained failure bound (3.12) for ρ = 0.

Note that the sample complexity of Corollary 3.2 improves upon that of Corol-

lary 3.1, as shown in Figure 3.1. In particular, it is clear that the bound (3.11) grows

as O( 1
ε2
ln 1

ε2
), which implies that if the accuracy level ε is chosen to be very small,

the sample bounds can be very large, while (3.12) grows as O(1
ε
ln 1

ε
).
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3.5 Semidefinite Constraints

In this section, we compute upper bounds on the VC-dimension of the semidefinite

versions of Problems 3.1 and 3.2 where strict inequalities (≻ 0) are replaced with non-

strict inequalities (< 0)1. Semidefinite constraints appear in some control problems

such as dissipativity; furthermore, some modeling languages such as YALMIP [86]

treat strict inequalities using nonstrict ones by adding a slight perturbation. Hence,

it is important to derive sample complexities for uncertain semidefinite LMI and BMI

problems.

In the following theorem, we establish upper bounds on the VC-dimension of

uncertain semidefinite LMI and BMI problems. The proof of this result is reported

in Appendix 3.9.2.

Theorem 3.3 (VC bounds for nonstrict LMIs/BMIs). Consider the notation intro-

duced in Definition 3.1. Then, the VC-dimension of uncertain semidefinite LMI and

BMI problems is upper bounded by

d ≤ 2mθ lg(4en2
n).

Remark 3.1 (Strict and nonstrict LMIs/BMIs). Comparing the bounds of Theorems

3.2 and 3.3, it can be seen that the bounds on the VC-dimension of strict and nonstrict

LMIs/BMIs differ only in the terms n2 and n2n appearing in the arguments of the

logarithm. That is, the quadratic dependence on n of strict LMIs/BMIs becomes

1Throughout the chapter, nonstrict (semidefinite) versions of Problems 3.1 and 3.2 are called
“uncertain semidefinite LMI problem” and “uncertain semidefinite BMI problem” respectively.
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exponential for nonstrict ones. Note however that this effect is largely mitigated by

the logarithm. This difference is not surprising, and it follows from the fact that

checking positive semi-definiteness requires non-negativity of all principle minors, as

discussed in Appendix 3.9.2. To show this fact, consider the matrix




1 1 1

1 1 1

1 1 0




introduced in [16]. This matrix has leading principal minors equal to 1, 0 and 0,

which are nonnegative, but it is not positive semidefinite, because its eigenvalues are

2.732, 0, and −0.732. Note that the same issue arises in [127, Theorem 4], regarding

positive definiteness and semi-definiteness of interval matrices.

Remark 3.2 (Explicit sample complexity for nonstrict LMIs/BMIs). Using the re-

sults of Theorem 3.3, we can establish bounds on sample complexity which guarantee

the probability of two-sided failure and the probability of one-sided constrained failure

of uncertain semidefinite LMI and BMI problems to be bounded by the confidence pa-

rameter δ. It should be noted that for semidefinite problems of this section, Definition

3.2 is revised accordingly such that strict inequalities in (3.4) and (3.5) are replaced

with nonstrict ones. This also affects empirical violation, probability of two-sided

failure and probability of one-sided constrained failure.

Then, the results of Corollaries 3.1 and 3.2 for the uncertain semidefinite LMI and

BMI problems immediately hold provided that the VC-dimension bound 2mθ lg(4en
2)
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is replaced by 2mθ lg(4en2
n). The sample complexity bounds for semidefinite BMIs

are illustrated in Figure 3.2.
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Figure 3.2: Sample complexity bounds for nonstrict BMIs, for δ = 1×10−8, mx+my =
13, and for different BMI dimensions: n = 10 (continuous line) n = 50 (dashed line)
and n = 100 (dash-dotted line). The red plots show the two-sided bound, while the
blue plots show the one-sided constrained failure bound for ρ = 0.

It should be also noted that the sample complexity bounds derived in this chapter

for the uncertain strict and semidefinite LMI and BMI problems can be quite large.

This is a usual situation in the context of statistical learning, that may lead to com-

putationally expensive optimization problems if Algorithm 3.1 is applied in one-shot.

This motivates the developments of the next section, where a sequential randomized

algorithm for bounding the probability of one-sided constrained failure is presented.
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The sequential algorithm can alleviate the computational burden of directly solving

(3.7).

3.6 Sequential Randomized Algorithm

Sequential methods in probabilistic design usually follow an iterative scheme which

includes optimization steps to update the design parameters, followed by randomiza-

tion steps to check the feasibility of the candidate solution [113]. The first step

is deterministic, while the second one is probabilistic. Examples of such scheme are

probabilistic design methods based on gradient [101, 24], ellipsoid [73, 95] and cutting

plane [29] update rules, see [113] for more details.

Recently [4] introduced a general framework for nonconvex problems, defining the

class of sequential probabilistic validation (SPV) algorithms. In this section we pro-

pose a sequential randomized algorithm specifically tailored for the problem at hand,

which mitigates the conservatism of the bound (3.12) or its corresponding sample

bound for the uncertain semidefinite LMI and BMI problems. This is accomplished

by generating a sequence of “design” sample sets {q(1)d , . . . , q
(Nk)
d } with increasing

cardinality Nk which are used in (3.7) for solving the optimization problem. In paral-

lel, “validation” sample sets {q(1)v , . . . , q
(Mk)
v } of cardinality Mk are also generated by

the algorithm in order to check whether the given candidate solution, obtained from

solving (3.7), satisfies the desired probability of violation. The proposed scheme is

reported in Algorithm 3.2.
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Algorithm 3.2 A Sequential Randomized Algorithm

1. Initialization

Set the iteration counter to zero (k = 0). Choose the desired accuracy ε ∈ (0, 1),

confidence δ ∈ (0, 1) and level ρ ∈ [0, 1) parameters and the desired number of

iterations kt > 1.

2. Update

Set k = k + 1 and Nk ≥ N k
kt

where N satisfies (3.12).

3. Design

• Draw Nk i.i.d samples qd = {q(1)d . . . q
(Nk)
d } from the uncertainty set Q

based on the underlying distribution.

• Solve the following optimization problem

minimize
θ

cTθ θ

subject to V̂g(θ,qd) ≤ ρ. (3.14)

• If the optimization problem (3.14) is not feasible, the original problem is

not feasible as well.

• Else if, the last iteration is reached (k = kt), θ̂Nk
is a probabilistic robust

solution and Exit.

• Else, continue to the next step.
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1. Validation

• Draw

Mk ≥ α ln k + ln (Skt(α)) + ln 1
δ

ln
(

1
(ρ+ε)aρ−1+aρ(1−(ρ+ε))

) (3.15)

i.i.d. samples qv = {q(1)v . . . q
(Mk)
v } from the uncertainty set Q based on the

underlying distribution.

• If

V̂g(θ̂Nk
,qv) ≤ ρ

then, θ̂Nk
is a probabilistic solution and Exit.

• Else, goto step (2).

Note that step (3) of this Algorithm is for the case of strict LMIs/BMIs. In

the nonstrict case the bound (3.12) needs to be replaced by the bound discussed in

Remark 3.2. Note also that, the validation bound (3.15) in step (4), the parameters

a ≥ 1 and α > 0 are real and Skt(α) is a finite hyperharmonic series also known as

p-series, i.e.

Skt(α) =
kt∑

k=1

1

kα
.

The theoretical properties of Algorithm 3.2 are summarized in the next theorem,

see Theorem 5 in [33] for proof.

Lemma 3.1. Suppose ǫ, δ ∈ (0, 1) are given. Then, if at iteration k Algorithm 3.2

exits with a probabilistic solution θ̂Nk
, then it holds that Vg(θ̂Nk

) ≤ ρ+ε with probability
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no smaller than 1− δ, i.e.

Prq

{
Vg(θ̂Nk

) ≤ ρ+ ε
}
≥ 1− δ.

Remark 3.3 (Comments on Algorithm 3.2 and related results). Algorithm 3.2 follows

the general scheme of other sequential algorithms previously developed in the area of

randomized algorithms for control of uncertain systems, see [30], and in particular

[4, 5, 34, 82]. However, we remark that the sample bound Mk in Algorithm 3.2

is strictly less conservative than the bound derived in [4] because the infinite sum

(Riemann Zeta function) is replaced with a finite sum, following ideas similar to

those recently introduced in [34]. This enables us to choose α < 1 in (3.15) resulting

in up to 30% improvement in the sample complexity.

Another important difference is on how the cardinality of the design sample set Nk

appears in the sequential algorithm. In [34, Algorithm 1], the constraints are required

to be satisfied for all the samples extracted from the set Q while, in Algorithm 3.2,

we allow a limited number of samples to violate the constraints in (3.1) and (3.2),

or their semidefinite versions, in both “design” and “validation” steps. Finally, we

note that the sequential randomized algorithm in [34, Algorithm 2] is purely based on

additive and multiplicative Chernoff inequalities and hence may provide larger sample

complexity than (3.15).

It should also be remarked that the optimal values of the constants a and α depend

on other parameters of the algorithm, such as the termination parameter kt, the ac-

curacy level ε, and the level parameter ρ. Suboptimal values of a and α for which the
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sample bound (3.15) is minimized for a wide range of probabilistic levels are a = 3.05

and α = 0.9. Note also that for ρ = 0 the optimal value of these parameters is a = ∞

and α = 0.1, and the bound (3.15) reduces to bound (12) in [34] . The parameter

ρ plays a key role in the algorithm. Note that, as pointed out in [4], the choice of

ρ = 0 may lead to an unfeasible optimization problem in (3.14) whenever the original

robust LMI/BMI is unfeasible. On the other hand, if ρ > 0, problem (3.14) becomes

immediately a mixed-integer program, which is numerically hard to solve even in the

LMI case.

Finally, we point out that the termination parameter kt defines the maximum

number of iterations of the algorithm which can be chosen by the user. For problems

in which the bound NMI in Algorithm 3.2 is large, larger values of kt may be used.

In this way, the sequence of sample bounds Nk would start from a reasonably small

number and would not increase dramatically with the iteration counter k.

3.7 Numerical Simulations

We illustrate the effectiveness of the previous results for a linear model of a robot

manipulator joint taken from [75]. The state-space model of the plant is given by




ẋ(t) = Ax(t) +Bu(t)

z(t) = C1x(t) +D11w(t)

y(t) = Cx(t) +D21w(t)
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where

A =




0 1 0 0

0 0 c
M2Im

0

0 0 0 1

0 − β
Ison

− c
M2Im

− c
Ison

− β
Ison




,

B =




0

Lt

MIm

0

− Lt

MIm




, C =




0 M 0 0

1 0 1 0


 , D21 =




1

0


 ,

C1 =

[
1 0 1 0

]
and D11 = 1.

The nominal values of the parameters are as follows: gearbox ratio M = −260.6,

motor torque constant Lt = 0.6, damping coefficient β = 0.4, input axis inertia

Im = 0.001, output system inertia Ison = 400, spring constant c = 130. We considered

all plant parameters to be uncertain by 15%. The objective is to design a static output

feedback controller which minimizes the worst case H∞ norm of the transfer function

from the disturbance channel w to the controlled output z. This problem can be
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formulated in terms of a bilinear matrix inequality [84] of the form

minimize
F,X,γ

γ (3.16)

subject to X ≻ 0,



AT
FX +XAF X(B1 +BFD21) (C1 +D12FC)

T

⋆ −γ (D11 +D12FD21)
T

⋆ ⋆ −γ



≺ 0

where AF
.
= A+BFC, X = XT ∈ R4×4, F ∈ R1×2 and ⋆ denotes entries that follow

from symmetry.

Algorithms 3.1 and 3.2 were implemented using the Randomized Algorithm Con-

trol Toolbox (RACT) [116], and we used PENBMI [80] for solving BMI optimization

problems. The probability density functions of all 6 uncertain parameters was as-

sumed to be uniform due to its worst-case nature. The level parameter ρ in all

simulations was chosen to be zero (ρ = 0). A bound on the VC-dimension of the BMI

problem (3.16) can then be computed using Theorem 3.2, taking into account that

mx +my = 13 (for the design variables F,X and γ), and that n = 6 + 4 + 1 = 11.

Applying Corollary 3.2, the corresponding bounds necessary for applying Algorithm

1 can be computed, and are reported in Table 3.1 (third column) for different values

of δ and ǫ.

Clearly, these sample bounds are quite large. For this reason, we used Algorithm

3.2 to efficiently solve the problem. Since the sample complexities Mk and Nk in

which Algorithm 3.2 terminates are random variables, we run the simulations 100
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Table 3.1: Sample complexity bounds and simulation results obtained using Algo-
rithm 3.2. The third column is the original sample complexity bound (3.11) for strict
BMIs, and the fifth column is the sample complexity achieved using Algorithm 3.2.

ε δ Bound (3.11) kt Design samples Validation samples Iteration

Mean Standard Worst Mean Standard Worst Mean Standard Worst
Deviation Case Deviation Case Deviation Case

0.2 10−2 3.58× 104 5× 103 60.6 24.04 149 56.74 0.44 57 4.8 1.9 12

0.1 10−4 8.12× 104 5× 103 149.5 58.7 336 163.2 0.49 164 5.34 2 12

0.05 10−6 1.82× 105 104 268.7 117.8 594 437.5 0.98 439 8.6 3.7 19

0.01 10−8 1.13× 106 104 1276.5 484.8 2522 2686.5 3.9 2694 6.6 2.5 13

0.005 10−10 2.45× 106 104 2881.9 1093.3 6310 6305.9 7.9 6323 6.8 2.6 15

times for each pair of probabilistic accuracy and confidence parameters. The mean,

standard deviation and worst case values of the number of design samples, validation

samples and the iteration number in which the algorithm exits are tabulated in Table

3.1. We conclude that with Algorithm 3.2 we can achieve the same probabilistic levels

with a much smaller number of design samples.

3.8 Conclusions

In this chapter, we computed explicit bounds on the Vapnik-Chervonenkis dimen-

sion (VC-dimension) of two problems frequently arising in robust control, namely

the solution of uncertain LMIs and BMIs. In both cases, we have shown that the

VC-dimension is linear in the number of design variables. These bounds are then

used in a sequential randomized algorithm that can be efficiently applied to obtain

probabilistic optimal solutions to uncertain LMI/BMI. Since the sample complexity
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is independent of the number of uncertain parameters, the proposed algorithm runs

in polynomial time.
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3.9 Appendix

3.9.1 Proof of Theorem 3.2

First, we introduce the following definition.

Definition 3.8 ((γ, η)-Boolean Function). The function g : Rmθ × Q → {0, 1} is

a (γ, η)-Boolean function if for fixed q it can be written as expressions consisting of

Boolean operators involving η polynomials

β1(θ), . . . , βη(θ)

in the components θi, i = 1, . . . , mθ and the maximum degree of these polynomials

with respect to θi, i = 1, . . . , mθ is no larger than γ.

The following lemma [126] which is an improvement on the original result of [76],

states an upper bound on the VC-dimension of (γ, η)−Boolean functions.

Lemma 3.2. Suppose that g : Rmθ ×Q → {0, 1} is an (γ, η)-Boolean function, then

VCg ≤ 2mθ lg(4eγη). (3.17)

In view of this lemma, in order to find the VC-dimension of the uncertain LMI and

BMI problems, it suffices to represent the constraints in (3.1) and (3.2) as polynomial

inequalities. It is well known that an n×n real symmetric matrix is positive definite if

and only if all 2n principal minors are positive. However, this condition is equivalent

to checking positivity of all n leading principal minors.
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Since LMIs are a special case of BMIs, we first prove Theorem 3.2 for the more

general case of BMIs. Let FBMI,ij(x, y, q) be the ij-th element of the BMI in (3.2).

The leading principal minors of FBMI(x, y, q) are

FBMI,11(x, y, q),

det






FBMI,11(x, y, q) FBMI,12(x, y, q)

FBMI,21(x, y, q) FBMI,22(x, y, q)





 , . . . ,

det







FBMI,11(x, y, q) · · · FBMI,1k(x, y, q)

...
...

FBMI,k1(x, y, q) · · · FBMI,kk(x, y, q)






, . . . ,

det (FBMI(x, y, q)) .

Since the number of leading principal minors is n, we need to check n polynomial

inequalities. Next, we need to find the maximum degree of each polynomial inequality

with respect to design variables xi, i = 1, . . . , mx and yj, j = i, . . . , my. Based on

the definition of determinant, k-th leading principal minor of the BMI in (3.2) for

k = 3, . . . , n can be written as

Dk =
k∑

ℓ=1

(−1)ℓ+1FBMI,ℓ1(x, y, q)Mℓ1 (3.18)

where Dk is the k-th principal minor and Mℓ1 is the (ℓ, 1) minor of a matrix formed

by the first k rows and columns of the BMI in (3.2). Then, we have that the k-

th leading principal minor has maximum degree k with respect to design variables

xi, i = 1, . . . , mx and yj, j = 1, . . . , my. From the definition of the BMI in (3.2), it
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is clear that every element of the BMI, including the first leading principal minor,

has maximum degree 1 with respect to the design variables xi, i = 1, . . . , mx and

yj, j = 1, . . . , my. The second leading principal minor of the BMI in (3.2)

D2 =FBMI,11(x, y, q)FBMI,22(x, y, q)−

FBMI,21(x, y, q)FBMI,12(x, y, q)

is a polynomial of maximum degree 2. For k > 2, the maximum degree of Dk in

(3.18) is defined by the multiplication of FBMI,ℓ1(x, y, q) and Mℓ1. The former has

the maximum degree 1 and the latter has maximum degree equal to Dk−1 because

they are of the same order. Hence, the maximum degree of the k-th leading principal

minor with respect to the design variables for k = 1, . . . , n is k.

Therefore, checking positive definiteness of the BMI in (3.2) is equivalent to check-

ing n polynomial inequalities of degree ranging from 1 to n which can be represented

as an (γ, η)−Boolean function with γ = η = n. The result of Theorem 3.2 follows

by substituting the obtained values of γ and η into (3.17). We notice that the same

reasoning holds for the case of LMI and we can represent the LMI in (3.1) as an

(γ, η)−Boolean function with γ = η = n.

3.9.2 Proof of Theorem 3.3

The result follows observing that an n× n symmetric matrix is positive semidef-

inite if and only if all 2n principal minors are nonnegative. Then, following similar
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reasoning as in the proof of Theorem 3.2, it follows that checking positive semidef-

initeness of (3.1) and (3.2) is equivalent to evaluating 2n polynomial inequalities of

degree ranging from 1 to n. This can be represented as (γ, η)−Boolean function with

γ = n and η = 2n. The results of Theorem 3.3 follow by substituting the obtained

values of γ and η in (3.17).

3.9.3 Proof of Theorem 3.1

The following lemma is instrumental to prove the result of Theorem 3.1.

Lemma 3.3. At the iteration k of Algorithm 3.2, if a candidate solution θ̂Nk
is

declared as feasible by the “validation” step then, with probability no larger than

(
(ρ+ ε)aρ−1 + aρ

(
1− (ρ+ ε)

))Mk

it holds that Vg(θ̂Nk
) > ρ+ ε.

Proof. The objective is to bound the probability of obtaining θ̂Nk
which satisfies

V̂g(θ̂Nk
,qv) ≤ ρ and Vg(θ̂Nk

) > ρ+ ε. In the following chain of inequalities, we bound

this probability using a binomial distribution

Pr

{
V̂g(θ̂Nk

,qv) ≤ ρ and Vg(θ̂Nk
) > ρ+ ε

}
=

Pr

{
Mk∑

i=1

g(θ̂Nk
, q) ≤ ρMk and Vg(θ̂Nk

) > ρ+ ε

}
≤

Pr

{
Mk∑

i=1

g(θ̂Nk
, q) ≤ ρMk and Vg(θ̂Nk

) = ρ+ ε

}
=

ρMk∑

i=1

(
Mk

i

)
(ρ+ ε)i

(
1− (ρ+ ε)

)Mk−i ≤

aρMk

(
ρ+ ε

a
+ 1− (ρ+ ε)

)Mk

.
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We note that the last inequality results from Lemma 1 in [6].

We begin the proof of Theorem 3.1 by introducing the following events

Iterk
.
= {the kth outer iteration is reached},

Feask
.
= {θ̂Nk

is declared as feasible in the “validation”

step},

Badk
.
= {Vg(θ̂Nk

) > ρ+ ε},

ExitBadk
.
= {Algorithm 3.2 exits at iteration k ∩ Badk},

ExitBad
.
= {Algorithm 3.2 exits at some unspecified iteration

k ∩ Badk}.

The goal is to bound the probability of the event “ExitBad”. Since ExitBadi ∩

ExitBadj = ∅ for i 6= j, the probability of the event “ExitBad” can be reformu-

lated in terms of the event ‘ExitBadk” as

Pr{ExitBad} = Pr{ExitBad1 ∪ ExitBad2 ∪ . . . ∪ ExitBadkt}

= Pr{ExitBad1}+ Pr{ExitBad2}+ . . .+

Pr{ExitBadkt}. (3.19)

From the definition of the event “ExitBadk” and by considering the point that to exit

at iteration k, Algorithm 3.2 needs to reach kth iteration and declares θ̂Nk
as feasible,
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we arrive at

Pr{ExitBadk} = Pr{Feask ∩ Badk ∩ Iterk}

= Pr{Feask ∩ Badk | Iterk}Pr{Iterk}

≤ Pr{Feask ∩ Badk | Iterk}

= Pr{Feask | Badk ∩ Iterk}Pr{Badk | Iterk}

≤ Pr{Feask | Badk ∩ Iterk}. (3.20)

Using the result of Lemma 3.3, we bound the right hand side of (3.20)

Pr{Feask | Badk ∩ Iterk} <
(
(ρ+ ε)aρ−1 + aρ

(
1− (ρ+ ε)

))Mk

. (3.21)

Combining (3.19) and (3.21) results in

Pr{ExitBad} <
kt∑

k=1

(
(ρ+ ε)aρ−1 + aρ

(
1− (ρ+ ε)

))Mk

. (3.22)

The summation in (3.22) can be made arbitrary small by an appropriate choice of

Mk. By choosing

(
(ρ+ ε)aρ−1 + aρ

(
1− (ρ+ ε)

))Mk

=
1

kα
1

Skt(α)
δ (3.23)

where δ ∈ (0, 1) is a (small) desired probability level, we have

Pr{ExitBad} <
kt∑

k=1

1

kα
1

Skt(α)
δ

=
1

Skt(α)
δ

kt∑

k=1

1

kα

=
1

Skt(α)
δSkt(α) = δ.
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Therefore, the appropriate choice of Mk which guarantees Pr{ExitBad} < δ can be

computed by solving (3.23) for Mk which results in the bound (3.15).
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Chapter 4

Application to Hard Disk Drive

Servo Systems

4.1 Hard Disk Drive Servo Design

Hard disk drive (HDD) is one of the most important means of data storage. The

first random access memory in the form of hard disk drive was RAMAC which was

presented in 1956 (Figure 4.1). It could store up to 5 MB of data on 50 disks of two

feet diameter. The average seek time for RAMAC was 600 milliseconds (ms). One of

the most important factors which shows the ability of HDD to store user data is aerial

density. Aerial density is represented in bit per square inch (bit/in2) and indicates

how many bits can be stored in a square inch of disk surface. Aerial density has been

roughly following Moore’s law since 1956. There have been a number of milestones
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contributing to rapid growth in aerial density such as giant magnetoresistance (GMR)

or secondary actuators. The amount of data storage worldwide is estimated to be

600 Exabyte which is equivalent to 600 million disk drives each with a capacity of 1

terabyte (TB). More than 52% of this data storage requirement is met by using HDDs

[60]. Continuing trend in the growth of internet, cloud computing and other similar

technologies means a growing demand for higher data storage capacity and hence

number of HDDs produced. To meet such increasing demand, it is important not

only to increase the production volume but also to increase storage density in each

HDD. Commercially produced drives at present have achieved storage density less

than 500 gigabits per square inch (Gb/in2). The HDD industry projects to achieve

storage density of 10 Tb/in2 in the near future.

Data is stored in concentric data tracks on circular disks of magnetic media.

Higher storage density implies smaller dimensions for each bit, which requires reduc-

tion in distance between adjacent data tracks as well as reduction in length of each

bit on a track. Assuming a bit aspect ratio (ratio between bit length and bit width)

of 2:1, storage density of 10 Tb/in2 demands track density of 2,200,000 tracks per

inch (TPI). Achievable track density depends on the performance of the head posi-

tioning servomechanism of HDD, i.e., how well the read/write head is made to follow

the center of a data track. The most important performance measure in HDD servo

is track misregistration (TMR) which is the variance of the deviation of read/write

head from the center of a data track [87]. Writing and readback of data with bit
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Figure 4.1: First HDD presented by IBM [2]

error rate less than required tolerance level, demands for TMR to be less than 10%

of track pitch (distance between the center of two adjacent tracks). This translates

into a TMR less than 1.16 nanometer to meet the requirements for 10 Tb/in2 storage

density.

4.1.1 Hard Disk Drive Components

A commercially available hard disk drive, with its cover removed, is shown in

Figure 4.2. User data is written on some concentric data tracks on disk surface.

Disks are spinning with constant speed by means of spindle motor. Spinning speed

varies from 5400 revolutions per minute (rpm) to more than 22000 rpm in some
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disk

spindle motor

secondary actuator

E-block

pivot

voice coil motor

suspension

slider and head

Figure 4.2: Components of hard disk drive [1]

enterprize hard disk drives. Voice coil motor (VCM) is located between two strong

permanent magnets. The applied current in the coil generates a magnetic field and

the interaction between generated magnetic field and the field of permanent magnets

creates the required torque to move the E-block. In some disk drives additional

secondary actuator is used to enhance the positioning accuracy. There are three types

of secondary actuators used in hard disk drive which are shown in Figure 4.3. One of

the differences between three types of actuators depicted in Figure 4.3 is the location

of actuator with respect to actuator arm and read/write head. Actuated suspension
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Figure 4.3: Different secondary actuators

is the most common used type in which the push-pull actuator is placed between arm

and suspension. It generates the largest displacement of the head compared to the

other two types; the maximum displacement is around 500nm. In actuated slider,

the actuator moves the slider and has smaller displacement than actuated suspension

(around 40nm). In actuated head, the actuator is placed inside the slider and it

moves the read/write head and hence it has the smallest displacement. We highlight

that the actuated head has larger bandwidth than the other two types and its first

resonance mode occurs at very high frequency.

4.1.2 Servo Algorithm in Hard Disk Drive

The goal in servo design is to access the target track in minimum time (track

seeking) and to keep read-write head on desired track in the presence of different dis-
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turbances (track following). Time optimal controllers such as proximate time optimal

servo-mechanism (PTOS) [131, 64] is usually used for track seeking. Optimization

based technique such as reference signal shaping [20] was also recently proposed to

minimize the seeking time while generating minimum vibration. Track following con-

troller tries to reject all the disturbances and keep read/write head on the center

of data track. There are two types of disturbances in disk drive [3]: i) repeatable

runout (RRO) and ii) non-repeatable runout (NRRO). As it is inferred from their

names, the former has repeatable and hence predictive nature while the later does

not enjoy such a property. Disk eccentricity, spindle motor induced motion and servo

writing written in error are the main contributors of RRO. Due to predictive nature of

RRO, it can be compensated by adaptive feedforward [132, 133] or repetitive control

[72]. Actuator windage, external shock and disk flutter are main sources of NRRO.

Because of their unpredictable nature, it is difficult to compensate them. External

sensor [129], instrumented suspension [65] and self sensing actuator [46, 8, 134] are

three common techniques for compensating such disturbances. We remark that the

mentioned compensation techniques are independent from the controller doing the

main task of positioning such as PID, state feedback, etc.; we call such a controller

the central controller. Recently in some robust techniques the compensator is de-

signed along with the central controller and there is no clear distinction between

central controller and disturbance compensator, see e.g. [37]. Track density in hard

disk drive is determined by the performance of its servomechanism. As mentioned
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earlier, aerial density of 10 Tb/in2 requires TMR to be less than 1.16nm. Such high

performance has to be achieved in a robust manner, that is, for all drives produced

in a mass production line. A number of sources of uncertainty in HDD, for example,

manufacturing tolerance, change in environmental condition, different raw materials,

etc., can contribute to deterioration in performance of HDD servo. We cannot expect

exactly the same characteristics over a batch of HDDs and changes in system dy-

namics are unavoidable. These changes can be modeled as uncertainties and a robust

controller is required to mitigate those uncertainties. Such approach was not essential

in the past when TMR tolerance was not very stringent. The trend in increasing data

density now makes use of robust controller essential for HDD.

There are two types of uncertainties in hard disk drive: i) parametric uncertainty

and ii) non-parametric (dynamic) uncertainty. Therefore, there are two categories

of robust controllers used in servo design for handling parametric and dynamic un-

certainties. Coming to dynamic uncertainty, µ-synthesis is the most commonly used

technique. In a historical point of view, [58] can be considered as the first paper using

µ−synthesis for hard disk drive. Mixed H2/H∞ [106] minimizes H2 norm while con-

straining H∞ norm of the uncertainty channel to be smaller than a prescribed value

to keep the closed loop stable against dynamic uncertainty. The sampling rate of

positioning signal in HDD is limited by rotational speed and the number of servo sec-

tors hence, the controller can only compensate disturbances up to Nyquist frequency.

In multi-rate and multi-sensing control design, the suspension is instrumented with
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a pizo-electric sensor where the sensor information is used for compensating dis-

turbances in the feedback loop. Since the sampling frequency of the sensor is not

limited, the controller can be designed to use higher sampling rate for the instru-

mented sensor and lower sampling rate for the positioning signal which is read from

the disk surface. Multi-rate multi-sensing mixed objective control for disk drive servo

design was presented in [67], [66], and [93]. In this approach, the H2 norm of the

sensitivity transfer function is minimized while the H∞ norm bound of closed-loop

complimentary sensitivity transfer function for both VCM and micro actuator loops

are guaranteed to be smaller than a prescribed value. Coming to parametric un-

certainty, there are not a lot of results due to its complexity. To the best of our

knowledge, the first paper dealing with parametric uncertainty is [92] where the idea

of local BMI optimization [74] is used for designing a robust H2 controller. Neverthe-

less, this approach has a number of disadvantages: i) it is computationally expensive

and ii) the design procedure is conservative due to replacement of the original non-

linear uncertainty set with a larger affine one and iii) this approach cannot take into

account dynamic uncertainty. To partially address conservativeness, the design based

on parameter dependent Lyapunov function was presented in [37]; however, the com-

putational complexity associated with this approach is significantly larger than [92]

up to the point that the number of parametric uncertainties is reduced to two in

order to solve the problem. The other approach capable of handling parametric and

dynamic uncertainty is based on H2 guaranteed cost technique in [39] and [38]. How-
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ever, it turns out that the worst case performance of the closed loop system obtained

using Monte Carlo is significantly different from the guaranteed cost defined in the

control algorithm.

In this chapter, we use the results presented in Chapter 2 and design a dynamic

output feedback controller minimizing the worst case -over the uncertainty set- H2

norm of the transfer function from disturbance to output. We also compare the ob-

tained results with sequential approximation method based on cutting plane iteration.

4.2 Problem Formulation

In this section, we first present the experimental setup and then we discuss the

identification technique used for obtaining the voice coil motor (VCM) and pizo-

electric actuator (PZT) models. Next, the problem of designing robust track follow-

ing H2 dynamic output feedback controller is formulated in the form of uncertain

linear matrix inequality (LMI) to be solved using randomized methodologies in the

subsequent sections.

4.2.1 System Identification

A widely accepted technique for obtaining the mathematical model of hard disk

drive servo system is frequency domain system identification technique in which the

voice coil motor (VCM) and pizo-electric actuator (PZT) are excited using a sweep
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sine signal and the displacement is measured from written in servo pattern or by

using laser doppler vibrometer (LDV). The experimental set-up consists of LDV1,

VCM amplifier, PZT amplifier, dynamic signal analyzer2 (DSA) and the real-time

processor which is a DSP based system3. LDV is used for measuring the displacement

of the read/write head; the DSA is used for generating the required sweep sine signal

and to measure the frequency response of the actuators based on the generated sine

signal and the displacement signal obtained from LDV. VCM amplifier is a current

amplifier for driving the VCM while PZT amplifier amplifies its input voltage by a

large factor (20 in our case) and finally, the designed control algorithm is executed in

a real-time processor which is equipped with high accuracy analog input and outputs.

A commercial disk drive is chosen as the platform to examine the designed controller.

In order to let the head tip to be accessible to the LDV, the aluminium foil which

is covering a small hole on the casing is replaced with a transparent glass. The

glass isolates the internal environment from dust and keeps the internal airflow the

same as normal operating condition. As shown in Figure 4.4, a touchlight is used

as illumination module in order to make read/write head and slider visible. The

rotational speed is fixed at 7200 rpm using spindle motor driver4 and all experiments

are carried on a vibration free table to minimize the effect of external vibrations.

In order to identify VCM and PZT actuator models, starting from low frequency

1Polytec OFV 5000, Polytec, Waldbronn, Germany.
2HP 35670A, Hewlett Packard Company, Washington.
3DSpace DS1103, product of dSPACE GmbH, Paderborn, Germany.
4Spin-Box SPB-NL-1205, DSI, Singapore
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LDV

Laser gun equipped with internal camera

VCM driver

Vibration free table

Touchlight HDD

Transparent glass

Laser dot

Figure 4.4: Experimental set-up

we apply a sine signal to the actuator and at the same time the displacement of VCM

or PZT is measured using LDV. The magnitude and phase of bode plot representing

the frequency response of actuator can be obtainn by comparing input and output

signals. By increasing the frequency of sine signal we can obtain the frequency re-

sponse for the entire frequency range which is usually 10 Hz to 20 KHz for VCM

and 100 Hz to 30 KHz for PZT. The measured frequency response obtained from

these experiments as well as the identified one are shown in Figure 4.5 and 4.6 for

VCM and PZT, respectively. The transfer function of VCM and micro-actuator are
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Figure 4.5: Measured as well as identified frequency response of VCM actuator

Table 4.1: Nominal VCM parameters

Parameter ω1 ζ1 A1 ω2 ζ2 A2 ω3 ζ3 A3 ω4 ζ4 A4

Nominal Value 207.55 0.5 5.96×108 3.64×104 0.04 -8.70×108 5.79×104 0.05 -7.19×108 9.8×104 0.03 1.49×109

in the form

GV CM =

4∑

i=1

Ai

s2 + 2ζiωis+ ω2
i

GPZT =

2∑

i=1

APi

s2 + 2ζPi
ωPi

s + ω2
Pi

where parameters ωi, ζi, Ai, ωPi
, ζPi

and APi
are plant parameters. The nominal value

of all plant parameters are reported in Tables. 4.1 and 4.2 for VCM and PZT,

respectively. All damping ratios ζi (ζPi
) and natural frequencies ωi (ωPi

) are assumed
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Figure 4.6: Measured as well as identified frequency response of PZT actuator

Table 4.2: Nominal PZT parameters

Parameter ωP1 ζP1
AP1 ωP2 ζP2

AP2

Nominal Value 2.31×104 0.014 -5.8×107 4.4×104 0.02 -2.1×108

to be uncertain by 10% and 5% respectively. The parametric uncertainty is expressed

in multiplicative form as

ζi = ζ i(1 + 0.1ηzi), ωi = ωi(1 + 0.05ηwi), i = 1, . . . , 4.

ζPi
= ζPi

(1 + 0.1ηzpi), ωPi
= ωPi

(1 + 0.05ηwpi), i = 1, 2.

where η’s are unknown but bounded within the interval [−1, 1].
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Figure 4.7: Augmented open loop

4.2.2 H2 Controller Formulation

In disk drive track following servo design, the goal is to minimize root mean

square (RMS) of the positioning error signal (PES) while disturbance applied to the

system is assumed to be Gaussian white noise. Using Parseval’s Theorem, we can
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represent PES minimization as a standard H2 control synthesis. The plant needs

to be augmented with necessary weighting functions to tune the performance of the

designed controller in terms of closed loop bandwidth and the control input applied

to the plant. The block diagram of the augmented open loop system is shown in

Figure 4.7. WuV
, WuP

and Wp are the weighting functions and K(s) is the dynamic

output feedback controller to be designed. Since the closed loop sensitivity transfer

function roughly follows the inverse of the performance weighting function Wp, we

should design Wp in a way that it is large for low frequencies and tends to smaller

values for higher frequencies. The crossover frequency can roughly be determined by

the frequency in whichWp crosses the 0 dB line. The control weightingsWuV
andWuP

are chosen to be a high-pass filters with different cutoff frequencies. Therefore, high

frequency signals are prevented from being applied to the plant. The performance

weighting function Wp is chosen to be in the form

Wp =

(
s/S + wc

s+ wcS

)k

for which wc is the desired crossover frequency , S determines the desired bound on the

sensitivity peak, S determines the minimum level of the closed loop sensitivity transfer

function in low frequencies and finally, k determines the slope of the closed loop

sensitivity transfer function. The crossover frequency should be chosen very carefully

as it directly affect the value of track misregistration (TMR). In the presented H2

methodology, we can easily achieve the crossover frequency of larger than 3 KHz by

the appropriate choice of weightings. However, due to limitations imposed by Bode’s
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sensitivity integral, pushing the crossover frequency to extremes would increase the

peak of the closed loop sensitivity transfer function and hence, increases the value of

TMR.

The state space realization of the augmented open loop plant depicted in Figure

4.7 is in the form

P (s) :




z

y


 =




A(q) Bw Bu(q)

Cz(q) 0 Dzu(q)

Cy(q) Dyw 0







w

u


 (4.1)

where q ∈ Q is the vector of uncertain parameters and z = [ep, euV
, euV

]T is the vector

of controlled outputs, y is the vector of measurement signals and u = [uV , uP ]
T is the

vector of control inputs. The goal is to design a dynamic output feedback controller

of the form

y = K(s)u =




Ak Bk

Ck Dk


 u (4.2)

which minimizes the worst case (over the uncertainty set) H2 norm of the transfer

function matrix from disturbance to output channel in the closed loop system. In

other words, we aim at solving the following problem

minimize
K(s)

max
q∈Q

‖Tz←w‖2 (4.3)

where Tz←w represents the closed-loop transfer function matrix from w to z. The

optimization problem (4.3) can be reformulated in linear matrix inequality form [105].

Since Dzw = Dyu = 0, the simplified form of the LMI equivalent to (4.3) is presented
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in the next problem.

Problem 4.1 (Optimal H2 Track Following Controller Design). Solve the following

uncertain LMI optimization problem

minimize
X,Y,W,Â,B̂,Ĉ,γ

γ

trace(W) < γ,



W Cz(q)X+Du(q)Ĉ Cz(q)

⋆ X I

⋆ ⋆ Y



≻ 0,




A(q)X+Bu(q)Ĉ+XA(q)T + ĈTBu(q) A(q) + Â

⋆ YA(q) + A(q)TY + B̂Cy(q) + Cy(q)
T B̂T

⋆ ⋆

Bw

YBw + B̂Dyw

−I



≺ 0 (4.4)

where X,Y,X,Y,W, Â, B̂, Ĉ and γ are optimization variables and I is the identity

matrix of appropriate dimension.

For controller reconstruction, first we need to compute M and N having the same

block structure as X and Y and satisfying

NMT = I −XY.
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The controller parameters can be computed by solving the following equations for

Ak, Bk and Ck





Â = NAkM
T +NBkCyX+YBu(q)CkM

T +YAX

B̂ = NBk

Ĉ = CkM
T

.

We note that the presence of uncertainty vector q in the LMI (4.4), makes the opti-

mization problem very difficult to solve. In the next section we study a number of

randomized algorithms for solving the LMI (4.4) with arbitrary high accuracy.

4.3 Randomized Algorithms for H2 Track-Following

Design

In this section, we solve the uncertain LMI optimization Problem 4.1 using ran-

domized algorithms. Mainly, we examine two approaches for solving (4.4):

1. Sequential methods for optimization.

2. Sequential methods for feasibility.

The former is the sequential randomized algorithms proposed in Chapter 2 which is

capable of “directly” solving uncertain convex optimization problems. We highlight

that the scenario approach [25, 26, 31] and Algorithms 2.1 and 2.2 are the only

randomized algorithms capable of directly solving uncertain optimization problems.
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Randomized algorithms for solving feasibility problems are sequential approxi-

mation methods based on gradient, ellipsoid and cutting plane iterations. These

approaches cannot directly solve optimization problems although, there are modified

versions of such algorithms capable of solving optimization problems please see e.g.

[9, 50, 128] for further details. In [9] for instance authors used the idea of objective

cuts to reduce the objective value after finding a feasible point. However, objective

cut may result in loosing feasibility of the candidate solution and hence another set

of feasibility cuts need to be performed to recover feasibility. Sequential feasibility

methods are iterative algorithms having two main steps: i) probabilistic oracle and

ii) update rule. The former is probabilistic and the later is deterministic. The role

of probabilistic oracle is to examine the feasibility of the candidate solution at each

iteration. The update rule is to update the previous candidate solution with the new

one.

The first step in using the randomized feasibility methods is to formulate the

feasibility version of optimization problem presented in Problem 4.1.

Problem 4.2 (Suboptimal H2 Track Following Controller Design). For fixed value
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of γ, check if the following set of uncertain LMIs are feasible

trace(W) < γ,



W Cz(q)X+Du(q)Ĉ Cz(q)

⋆ X I

⋆ ⋆ Y



≻ 0,




A(q)X+Bu(q)Ĉ+XA(q)T + ĈTBu(q) A(q) + Â

⋆ YA(q) + A(q)TY + B̂Cy(q) + Cy(q)
T B̂T

⋆ ⋆

Bw

YBw + B̂Dyw

−I



≺ 0. (4.5)

Algorithm 4.1 demonstrates a sequential randomized scheme for solving feasibility

Problem 4.2. For simplicity of notation we denote the set of design parameters in

(4.5) with θ ∈ Θ ⊂ Rnθ , the set of uncertain LMIs are also denoted by F (θ, q) and it

can be decomposed as

F (θ, q) = F0(q) +

nθ∑

i=1

θiFi(q). (4.6)

The equivalent version of Problem 4.2 with the new notation is presented next.

Problem 4.3. Find the value of θ, satisfying the uncertain LMI constraint

F (θ, q) = F0(q) +

nθ∑

i=1

θiFi(q) � 0. (4.7)
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Algorithm 4.1 A Randomized Feasibility Scheme

• Initialization

Set the iteration counter to zero (k = 0) and select an initial condition θ0.

• Probabilistic Oracle

– Draw M(k) independent and identically distributed (iid) samples q =

{q(1), . . . , q(M(k))} from the uncertainty set based on the underlying prob-

ability density function.

– For i = 1 :M(k)

If F (θk, q
(i)) ≻ 0, then, goto Update Rule.

end

– Return θk as a probabilistic solution and exit.

• Update Rule

Having “violation certificate” q(i) for which F (θk, q
(i)) ≻ 0, update θk by

θk+1 = ψupd(θk, q
(i)) (4.8)

where ψupd(θk, q
(i)) is based on gradient, ellipsoid or cutting plane iterations.

• Outer Iteration

Increase the iteration counter by one (k = k+1) and goto Probabilistic Oracle.

In the next two subsections we study probabilistic oracle and update rule.
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4.3.1 Probabilistic Oracle

As briefly mentioned earlier, probabilistic oracle checks the probabilistic feasibil-

ity of the candidate solution by means of Monte Carlo simulation [91]. Monte Carlo

has been widely used in simulation of very complex systems in physics and mathe-

matics. The modern era of Monte Carlo algorithm is contributed from physicists N.

Metropolis, S.M.Vlam, J. Von Neumann, and E. Fermi [91, 90]. The name Monte

Carlo is originated from a very famous casino in Monaco and has some implications

that the nature of the algorithm is similar to gambling in casinos [114]. A key prob-

lem is to determine the sample complexity, i.e., the number of random samples that

should be generated, so that the so-called probability of violation is smaller than

a given accuracy ǫ ∈ (0, 1), and this event holds with a suitably large confidence

1− δ ∈ (0, 1).

Definition 4.1 (Probability of Violation). The probability of violation of θ is defined

as

V (θ)
.
= Pr {q ∈ Q : F (θ, q) ≻ 0} . (4.9)

From historical point of view, Markov [88] and Chebychev [35] inequalities are the

first attempts to derive probability inequalities bounding the distance between true

probability of violation and the empirical violation obtained using Monte-Carlo. Next

theorem [77, 112] presents a sample bound on assessing the worst case performance.

Theorem 4.1. For any small probabilistic level ǫ ∈ (0, 1), with probability greater
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then 1 − (1 − ε)M(k), either the candidate solution θk is declared as infeasible by

“probabilistic oracle” of Algorithm 4.1 or the probability of violation of θk is not

larger than ε (V (θk) ≤ ε).

Corollary 4.1 (Sample Complexity). By bounding (1 − ε)M(k) with a desired small

confidence parameter δ ∈ (0, 1), we can derive the explicit sample complexity M(k)

guaranteeing the same results as Theorem 4.1

M(k) >
ln 1

δ

ln 1
1−ǫ

. (4.10)

The result of Theorem 4.1 and Corollary 4.1 derives sample complexity bounds for

bounding the probability of violation at “each iteration” of Algorithm 4.1. However,

since Algorithm 4.1 is a sequential method, we need to bound its “probability of

misclassification”.

Definition 4.2 (Probability of Misclassification). It is the probability by which Algo-

rithm 4.1 declares a candidate solution θk as feasible and V (θk) > ε.

Assumption 4.1. It is assumed that the update rule is such that it can find a robust

feasible solution in finite (kt) number of outer iterations.

The theoretical properties of Algorithm 4.1 is summarized in the next theorem.

Theorem 4.2. For any small probability levels ε, δ ∈ (0, 1), let Assumption 4.1 holds.

If the sample complexity M(k) is chosen such that

Mk >

⌈
α ln k + ln (Skt(α)) + ln 1

δ

ln
(

1
1−ε

)
⌉

(4.11)
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where the parameter Skt(α) in (4.11) is a finite hyperharmonic series Skt(α) =

∑kt
k=1

1
kα

then, if Algorithm 4.1 terminates at some outer iteration k < kt the proba-

bility of misclassification of the obtained solution θk is smaller than δ.

Proof. The proof is very similar to the proof of Theorem 2.1 and hence is not presented

here.

Remark 4.1 (Optimal Value of α). The optimal value of α which minimizes the

sample bound (4.11) has been computed using numerical simulations for different

values of the termination parameter kt. The almost optimal value of α minimizing

(4.11) for a wide range of kt is α = 0.1. The bound (4.11) (for α = 0.1) improves

upon the bound (17) in [30], by 5% to 15% depending on the termination parameter

kt. It also improves upon the bound in [95], which uses finite sum but in a less effective

way.

Remark 4.2 (Comparison with Other Results). The sample complexity (4.11) im-

proves upon the similar result in two ways:

1. The finite sum Skt(α) enables us to choose α < 1 which considerably improves

the sample complexity.

2. The finite sum Skt(α) is clearly smaller than its infinite version which corre-

sponds to Riemann Zeta function used in similar results.

We note that the sample complexity (4.11) is exactly the same as (2.10) derived

in Chapter 2.
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4.3.2 Update Rule

Update rule is a purely deterministic procedure which roots in stochastic optimiza-

tion. The very early update rule was based on gradient [24, 101] iteration. Latter

algorithms based on localization methods such as ellipsoid [73] and cutting plane

[29, 41] iterations were introduced into the literature. In this subsection, we study

the update rule based on cutting plane iteration. In order to solve Problem 4.3, a

scalar function τ(θ, q), related to the constraint (4.7), is introduced. The function

τ(θ, q) measures the level of violation of performance function and is called perfor-

mance violation function. There are two performance violation functions introduced

in the literature: i) largest eigenvalue of the LMI and ii) norm of projection of the

LMI on the cone of symmetric positive semi-definite matrices which is defined as the

following

[F (θ, q)]+
.
= arg min

X∈S
‖F (θ, q)−X‖

where S denotes the cone of symmetric positive semi-definite matrices and ‖ · ‖ is

the Frobenius norm. We used maximum eigenvalue as the performance violation

function hence, τ(θ, q) = λmax(F (θ, q)) where λmax represents the largest eigenvalue

and F (θ, q) is defined in (4.7). The function τ(θ, q) is non-differentiable whenever

the largest eigenvalue has multiplicity of greater than one [96]. We can still compute

the sub-gradient using variational characterization of the largest eigenvalue [62]. A
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subgradient of τ(θ, q) at θ = θk has been computed as

∂θτ(θk, q) =
[
ξTmaxF1(q)ξmax, . . . , ξ

T
maxFnθ

(q)ξmax

]

where ξmax is a unit norm eigenvector associated with the largest eigenvalue of F (θk, q).

The subgradient ∂θτ(θk, q) is obtained observing that λ(F (θ, q)) = ξTF (θ, q)ξ =

ξTF0(q)ξ +
∑nθ

i=1 θiξ
TFi(q)ξ which is affine and hence convex function of θ. Letting

ξmax be the a vector such that the largest eigenvalue is attained, we obtain the sub-

gradient ∂θτ(θk, q). In localization methods such as cutting plane algorithm, at each

iteration we update a localization set Lk which is guaranteed to contain the feasible

set S. Having the violation certificate q(i) for which F (θk, q
(i)) ≻ 0, Lk is updates

with a smaller polytope. Since F (θk, q
(i)) ≻ 0, hence the largest eigenvalue is greater

than zero which implies τ(θk, q
(i)) > 0. From convexity of τ(θ, q) and the definition

of subgradient it holds that

τ(θ, q(i)) ≥ τ(θk, q
(i)) + ∂θτ(θk, q

(i))(θ − θk).

Therefore, for all points in the half spaceHk = {θ : ∂θτ(θk, q(i))T θ > ∂θτ(θk, q
(i))T θk},

the violation function τ(θ, q(i)) is non-negative (τ(θ, q(i)) ≥ 0) and we can conclude

that the solution is not in the intersection of the current polytope Lk and the half

space Hk and it can be cut from the solution set. The procedure is graphically

depicted in the Figure 4.8. We note that there are a number of strategies for obtaining

the updated candidate solution θk+1. The new query point θk+1 can be the center

of gravity of Lk+1, the center of the maximum volume ellipsoid containing Lk+1,
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b
b θk

θk+1

Lk

Lk+1

∂θτ(θk, q
(i))θ = ∂θτ(θk, q

(i))θk

Figure 4.8: Analytic center cutting plane method

Chebyshev center of Lk+1 or its analytic center. Nevertheless, analytic center of Lk+1

is the most popular method used in the literature which can be efficiently computed

using Newton algorithm by minimizing a logarithmic barrier function.

Remark 4.3 (Convergence). The maximum number of outer iterations kt required

for convergence in the analytic center cutting plane method is bounded by, see [29]

kt = max

{
50nθ, 13.87n

2
θ, 8n

2
θ

(
R

r

)2.1
}

(4.12)

where R is the radius of the initial hypercube L0 guaranteed to contain the feasible set

S and r is the radius of a ball contained in the feasible set.
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4.4 Simulation Study

In this section, we first study the performance of the H2 dynamic output feedback

controller designed of Section 4.3. Next, we solve the same problem using the proposed

methodologies of Chapter 2. Finally, we compare controllers in terms of robustness

and track following performance.

4.4.1 Randomized Feasibility Design

Simulations are performed to prove the effectiveness of the designed controller in

Section 4.3. The objective is to design a dynamic output feedback controller minimiz-

ing the worst case (over the uncertainty set) H2 norm of the transfer function from the

disturbance channel w to outputs ep, euV
and euP

, see Figure 4.7. In a classical robust

approach, in cases where uncertainty is non-parametric (e.g. high frequency unmod-

eled dynamics), it can be represented in the form of linear fractional transformation

(LFT) and thanks to small gain theorem (or µ−synthesis), the controller objective

can be reformulated into controller design in the absence of uncertainty. However, for

parametric uncertainty following the same approach is over-conservative and when

the number of parametric uncertainties increase, the optimization procedure fails to

converge. Hence, one of the novelties in probabilistic controller design is that by ac-

cepting a very small risk, the H2 controller is designed which robustly stabilizes the

closed-loop plant with the desired probabilistic levels. To reduce the number of outer

iterations of Algorithm 4.1, we solved the H2 problem for the nominal plant using
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YALMIP [86] and formed a hypercube centered at the solution to the nominal case.

The hypercube is given to Algorithm 4.1 as the initial localization set guaranteed to

contain a feasible set. After a number of iterations which depends on the user defined

parameters ε and δ , Algorithm 4.1 comes up with the design parameters that make

the closed-loop plant robustly stable (in a probabilistic sense). The probabilistic lev-

els ε and δ are user defined parameters in the algorithm. As it is clear from (4.11),

smaller ε and δ tend to larger sample bound requiring more computational effort in

the “Probabilistic Oracle” to validate the candidate solution. Therefore, there is a

tradeoff between computational complexity and smaller probabilistic risk and confi-

dence levels. We chose 10−2 and 10−6 for ε and δ respectively and using Algorithm

4.1 which was implemented in Matlab [116], we solved the control design problem.

We remark that, it is very difficult (if not impossible) to determine the probability

density function (pdf) of the uncertain parameters in practice. Nevertheless, uniform

pdf exhibits a worst case property [10] and is used in cases where the underlying

pdf is unknown. Therefore, in this chapter we used uniform pdf while sampling the

uncertainty set.
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Figure 4.9: The VCM controller transfer function designed using Algorithm 4.1 while
the iterative method based on cutting-plane update rule has been used.
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Figure 4.10: The PZT controller transfer function designed using Algorithm 4.1 while
the iterative method based on cutting-plane update rule has been used.
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Figure 4.11: The sensitivity transfer function resulted from the controller designed
using Algorithm 4.1 while the iterative method based on cutting-plane update rule
has been used.
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Figure 4.12: The performance weighting function along with VCM and PZT control
weighting functions leading to the controller transfer function depicted in Figure 4.9
and 4.10.
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Figure 4.13: The closed-loop transfer function resulted from the controller designed
using Algorithm 4.1 while the iterative method based on cutting-plane update rule
has been used.

The designed controller is depicted in Figure 4.9 and 4.10. The sensitivity trans-

fer function representing the ability of the controller to reject external disturbances

is also shown in Figure 4.11. The smallest frequency in which the sensitivity trans-

fer function crosses 0 dB line is called the crossover frequency. As it is clear from

Figure 4.11 for frequencies bellow the crossover frequency, the controller attenuates

external disturbances applied to the system while, right after the crossover frequency

the disturbance is amplified rather than attenuated. This property is referred to as

“water bed effect” and results from bode integral theorem. It worth pointing that

this property holds in all linear control systems. With these ingredients in mind, it is

very important to i) identify the frequencies in which major disturbances occur and

ii) design the weighting functions such that the crossover frequency does not coincide
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with these frequencies. For this reason, we designed weighting functions with great

attention. In particular, there is a tradeoff between the performance of the controller

which is reflected in sensitivity transfer function and the amplitude of the control sig-

nal applied to the plant. We performed extensive simulations with different weighting

functions to find those with (sub)-optimal performance. The dynamical equation of

the selected weighting functions are reported here and their bode plot is depicted in

Figure 4.12.

WP =
150000s2 + 7.069× 109s+ 8.327× 1013

6.25s3 + 9.493× 105s2 + 1.773× 109s+ 8.327× 1011

WuV
=
s+ 10000

s+ 70000

WuP
=

5s2 + 100000s+ 5× 108

4s2 + 800s+ 40000

The closed loop transfer function is also shown in Figure 4.13.

4.4.2 Randomized Optimization Design

We directly applied Algorithms 2.1 and 2.2 of Chapter 2 to the formulated problem

of Section 4.2.2. One of the most important superiorities of Algorithms 2.1 and 2.2

compared to the “feasibility” Algorithm 4.1 is that they can directly solve uncertain

“optimization” problems while, Algorithm 4.1 is only capable of solving feasibility

problems. The controller, sensitivity and closed loop transfer functions of the two

designed controllers using Algorithms 2.1 and 2.2 are reported in Figure 4.14 to Figure

4.17 respectively. The number of design and validation samples in which Algorithms
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2.1 and 2.2 terminate are summarized in Table 4.3. The sample complexity bound

derived based on the scenario design [25] is also reported in the same table. As

clear, using Algorithms 2.1 and 2.2, we can achieve the same probabilistic accuracy

and confidence levels with much smaller number of design samples compared to the

scenario bound. Solving this problem using the scenario bound is way beyond the

capability of current computational tools.
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Figure 4.14: The VCM controller transfer function designed using Algorithm 2.1
(solid line) and Algorithm 2.2 (dash-dotted line).
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Figure 4.15: The PZT controller transfer function designed using Algorithm 2.1 (solid
line) and Algorithm 2.2 (dash-dotted line).
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Figure 4.16: The sensitivity transfer function resulted from the controller designed
using Algorithm 2.1 (solid line) and Algorithm 2.2 (dash-dotted line).
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Table 4.3: The number of design and validation samples in which Algorithms 2.1 and
2.2 terminate along with the corresponding iteration number. The scenario bound for
the same probabilistic accuracy and confidence level is also reported in forth column

Algorithm ε δ kt Scenario Bound Design Samples Violation Samples Iteration

Algorithm 2.1 0.01 10−5 250 93618 1873 1667 5

Algorithm 2.2 0.01 10−5 500 93618 1688 31910 9
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Closed−Loop Transfer Function Using Algorithm 2.1
Closed−Loop Transfer Function Using Algorithm 2.2

Figure 4.17: The closed loop transfer function resulted from the controller designed
using Algorithm 2.1 (solid line) and Algorithm 2.2 (dash-dotted line).

4.4.3 Robustness Analysis

To further validate our design, a posteriori analysis using Monte-Carlo simulation

is carried for the designed controllers. To do so, 500 random uncertain plants are

chosen from the uncertainty set, then we closed the loop for each of them. A modified

version of the standard disturbance [70], which includes repeatable as well as non-
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Table 4.4: Comparison of the nominal and worst case (among 500 scenarios) perfor-
mance specifications

Design Approach TMR (nm) RMS(uV ) (mV) ‖uV ‖∞(mV)

Nominal Worst Case Nominal Worst Case Nominal Worst Case

Cutting-Plane 8.39 8.81 7.5 8.1 30 31

Algorithm 2.1 8.5 8.85 7.43 8.2 30 31

Algorithm 2.2 8.4 8.8 7.4 8 30 31

Table 4.5: Comparison of the nominal and worst case (among 500 scenarios) stability
margins

Design Approach Gain Margin (dB) Phase Margin (Degree)

Nominal Worst Case Nominal Worst Case

Cutting-Plane 6.35 1.73 38.2 36.26

Algorithm 2.1 6.3 1.52 35.65 34.32

Algorithm 2.2 6.34 1.58 36.35 35.61

repeatable runouts (RRO and NRRO), is used in order to evaluate the track-following

performance of the designed controller. The track misregistration (TMR), root mean

square (RMS) and peak values of the control input signals are tabulated in Table 4.4

for nominal as well as worst case scenarios of the 500 randomly selected uncertain

plants. The nominal and worst case stability margins (phase and gain margins) are

also compared for all the controllers in Table 4.5.

We note that ignoring uncertainty in the design procedure can lead to significant

damage. To show this, we designed a non-robust H2 dynamic output feedback con-
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troller using h2syn command in Matlab and evaluated the closed-loop stability in

the presence of uncertainty. Figure 4.18 demonstrates the closed-loop eigenvalues for

500 randomly selected uncertain plants. As it is clear, the closed-loop plant becomes

unstable for some of the random scenarios extracted from the uncertainty set. Figure

4.19 to 4.21 also show the same plot for the designed probabilistic controllers. All the

eigenvalues are in the open left-half plane which means the probabilistic controllers

robustly stabilize the uncertain plant for all random uncertain plants. We remark

that the main purpose of Figure 4.19 to 4.21 is to show that the non-robust controller

cannot stabilize the uncertain plant and hence, a robust controller is a must for the

plant under consideration.
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Figure 4.18: The closed loop eigenvalues for 500 randomly selected plants from the
uncertainty set when a non-robust H2 dynamic output feedback controller is designed
using h2syn command in Matlab.



117

−20000 −15000 −10000 −5000 0 5000
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

5

Real

Im
ag

in
ar

y

Figure 4.19: The closed loop eigenvalues for 500 randomly selected plants from the
uncertainty set when a probabilistic robust H2 dynamic output feedback controller is
designed using cutting-plane method.
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Figure 4.20: The closed loop eigenvalues for 500 randomly selected plants from the
uncertainty set when a probabilistic robust H2 dynamic output feedback controller is
designed using Algorithm 2.1.
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Figure 4.21: The closed loop eigenvalues for 500 randomly selected plants from the
uncertainty set when a probabilistic robust H2 dynamic output feedback controller is
designed using Algorithm 2.2.

4.5 Real Time Implementation

Simulation results in the previous section confirmed that the designed controllers

achieve robust stability and performance in the presence of parametric variations in

the dynamical system. The validity of the designed controllers is testified through

experiment. The control algorithm designed using probabilistic sequential scheme is

discretized and implemented in real time using the DSP based system with sampling

frequency of 50 kHz. Since the problem is of regulation type, the output sensitivity

transfer function, which shows the ability of the system in rejecting different output

disturbances, is of vital importance. The transfer function from reference input to

the error which represents the output sensitivity transfer function is experimentally
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measured using DSA for the designed probabilistic controller. The result of this

experiment along with the closed-loop transfer function are shown in Figure 4.22. The

controller and plant are discretized using “Tustin” and “zero-order-hold” respectively.

The designed controller was also evaluated with a 50 Hz square wave signal. Figure

4.23 shows the output displacement for a step responses of 150 nm as well as the

corresponding input signals to the VCM and PZT drivers. Each rise and fall in the

reference signal is considered as a step trigger. The fluctuating signals on the step

response is mostly due to disk rotation and the air-flow induced vibration.

There are a number of factors which affect the servo performance in our imple-

mentation setup and cause the experimental results to deviate slightly from the ones

obtained in the simulation. The first, and the most important, factor is the com-

putational delay in the DSP system. Starting from low frequency, the phase of the

implemented controller drifts from the actual one; the phase drift increases with the

frequency. For instance, the phase drift is 10 degrees at 2 kHz and increases to 30

degrees at 10 kHz. Secondly, in order to perform the experiment some modifications

needs to be done to HDD e.g. the hole on the casing, applying transparent glass, etc.

which requires disassembling and reassembling most of the components. This process

can affect the original optimal structural dynamic of the VCM.
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Figure 4.22: The experimental sensitivity and closed-loop transfer functions for the
controller designed using sequential approximation method.
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Figure 4.23: Displacement output for step trigger of 150 nm and the corresponding
input signals to VCM and PZT drivers.
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4.6 Conclusions

Uncertainty in the plant’s dynamic is inevitable for HDDs; on the other hand,

higher performance has always been in demand due to the rapid growth in world

wide generated digital information. In the classical robust controller design, per-

formance is sacrificed considerably in order to achieve robustness specially in cases

where parametric uncertainty enters non-linearly into plant description. However, in

the studied approach which benefits from probabilistic concepts and randomization,

no conservatism has been introduced. Furthermore, classical robust design suffers

from considerable computational complexity while handling parametric uncertainty.

The approach based on probabilistic robust design and randomized algorithms has

broken the curse of dimensionality thanks to randomization. In our case study, we

designed a H2 dynamic output feedback controller which achieves robust stability

and performance in the presence of various non-linear parametric uncertainties. Un-

certainty was considered as random variable with uniform probability density. The

choice of uniform probability density is chosen due to its worst case nature. We

solved the problem using sequential optimization techniques of Chapter 2 and com-

pared them with a controller designed using sequential approximation methods based

on cutting-plane iteration.
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Chapter 5

Summary

In this chapter, we first summarize our findings and next, we propose two promis-

ing future research directions.

5.1 Findings

This thesis addressed the problem of designing robust controllers for uncertain

systems. In particular, we addressed two problems:

1. Finding the optimal value of an uncertain convex optimization problems

2. Solving uncertain linear and bilinear matrix inequalities

Many robust and optimal control problems can be formulated in either forms men-

tioned above. In contrary to deterministic worst-case approaches, typically associated

with some degree of conservatism, we followed a probabilistic framework in which the
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obtained solution is guaranteed to be feasible for the entire set of uncertainty ex-

cept for a very unfortunate subset having arbitrary small probability measure. We

considered uncertain parameters as random variables and assumed that a probability

measure is given over the Borel σ−algebra of the uncertainty set. This enabled us

to extract random samples from the uncertainty set and evaluate the probabilistic

behavior of the obtained solution.

Motivated by above mentioned problems, we proposed randomized algorithms to

“efficiently” solve the problems at hand. Two sequential randomized algorithms for

full constraint satisfaction (Algorithm 2.1) and partial constraint satisfaction (Algo-

rithm 2.2) were presented for solving uncertain convex optimization problems. The

main contribution in these algorithms is to mix the well-known scenario approach

and sequential randomized algorithms previously used in the literature for feasibil-

ity problems. The main motivation behind proposing Algorithms 2.1 and 2.2 was

the conservatism of the scenario bound for even relatively moderate size optimization

problems. The scenario bound depends almost linearly on the number of optimization

variables therefore, it turns out to be large for moderate to large size optimization

problems resulting in a computationally complex random convex problem which is

sometimes way beyond the capability of current computational tools. Introducing

“validation step” in the randomized algorithms enabled us to find solutions guaran-

teeing the same probabilistic accuracy and confidence levels as the scenario approach

using much smaller design samples which led to computationally less expensive op-
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timization problem. The difference between full constraint satisfaction algorithm

(Algorithm 2.1) and partial constraint satisfaction algorithm (Algorithm 2.2) is that

in the later, we allow a limited number of samples to violate constraints which is done

in favor of improving the objective value. This is in the same spirit of the scenario

approach with discarded constraints. We highlight that the sample complexity bound

in the validation step of Algorithm 2.1 improve upon similar bounds by up to 30%.

The improvement was achieved thanks to replacing Riemann Zeta function, used con-

ventionally in similar results, with a finite sum. The effectiveness of both Algorithms

2.1 and 2.2 was shown through extensive simulation regarding a multivariable model

for the lateral motion of an aircraft.

We also proposed randomized algorithms for solving uncertain linear and bilinear

matrix inequalities (LMIs/BMIs) frequently arising in robust control design. The

algorithm was based on statistical learning theory which is an effective tool dealing

with various applications. In this approach, we extract a finite number of samples,

as training samples, from the uncertainty set and solve the LMI/BMI optimization

problem “simultaneously” for all the samples. The goal was to derive the number of

samples required to guarantee that the obtained solution remains feasible for “unseen”

samples with a probability arbitrary close to one. Using statistical learning theory

in robust control design requires computation of a combinatorial parameter called

Vapnik-Chervonenkis dimension (VC-dimension) which is very difficult to compute

in general. One of our main contributions was to firstly show that the VC-dimensions



125

of uncertain strict and non-strict LMIs/BMIs are finite and next to derived upper

bounds on them. The bounds were used in obtaining sample complexity bounds to

be used in the randomized Algorithm 3.1. However, it turned out that the sample

bounds are very large whenever the accuracy and confidence requirements are strin-

gent which is typical in the context of statistical learning theory. For this reason,

we proposed a sequential randomized framework in the same spirit of Algorithms 2.1

and 2.2 but tailored for the specific problem at hand. Using sequential randomized

Algorithm 3.2, we efficiently solved a non-trivial example regarding static output

feedback stabilization of an uncertain robot manipulator joint.

A common feature of all randomized algorithms presented in this thesis is that

they broke the curse of dimensionality. That is, the computational complexity of the

algorithms is independent form the number of uncertain parameters appearing in the

problem. This feature was obtained thanks to randomization.

To see the effectiveness of the probabilistic robust theory and randomized methods

on an industrial platform, we considered the problem of designing H2 dynamic output

feedback controller for track following controller of hard disk drives (HDDs) affected

by various parametric uncertainties. Due to large number of uncertain parameters en-

tering into plant description in a nonlinear fashion, deterministic worst-case methods

are unable to design the controller without imposing conservatism. That is, replac-

ing the original nonlinear uncertainty set with a larger affine one. Using randomized

algorithms we successfully designed two probabilistic controllers with manageable
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computational effort. In particular, we designed a suboptimal controller using prob-

abilistic iterative methods based on cutting-plane update rule and compared it with

optimal controllers designed using Algorithms 2.1 and 2.2. The robustness and track

following performance of the two class of controllers were rigorously studied through

extensive simulations. A probabilistic controller was also implemented in real-time

on a commercial disk drive to show that the deigned controllers using this method in

indeed “implementable”.

5.2 Future Research

In this section we briefly study two future research directions with good potential

in improving the field of randomized algorithms and probabilistic robust theory. The

first one is on using randomized algorithms for non-parametric uncertainties and the

second one is regarding the problem of occasional instability of controllers designed

using randomized algorithms.

5.2.1 Randomized Algorithms for Non-parametric Uncertainty

The idea of probabilistic robust and randomized algorithms has shown great po-

tential in handling parametric uncertainty nevertheless, their use in dealing with

non-parametric uncertainty is not systematically evaluated yet. Generating random

transfer function in the H∞ ball with the desired probability density function is not
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trivial. To the best of our knowledge [110] is the only paper concerned about uniformly

sampling suitably chosen subset of H∞. The idea used in the mentioned paper is to

use Carathéodory − Fejér interpolation result (see e.g. [11]). However, there is still

a significant room for improvement and there are a number of problems in this line

of research which are still largely open. For instance sequential randomized methods

based on stochastic optimization techniques can be developed on designing robust

controllers for uncertain systems affected by uncertainty. The main difficulty here

seems to be generating random transfer functions in H∞ with the desired probability

density function.

5.2.2 Randomized Algorithms for Guaranteed Stability and

Probabilistic Performance

In controller design using randomized algorithms, the stability of the closed-loop

system is treated in a probabilistic fashion. That is, the closed-loop system “might”

become unstable for an arbitrary small subset of the uncertainty set. In critical ap-

plications where instability can cause significant damage or loss, using probabilistic

controllers is not recommended. For instance, no one is interested in boarding an

aircraft which is 99.999% stable. Therefore, for such a critical application we need to

design controller such that the stability is guaranteed for the entire set of the uncer-

tainty but performance can be violated for a subset having arbitrary small probability

measure. The idea is to use Youla parametrization also known as Q-parametrization
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Figure 5.1: Interconnection of the plant P (s) with uncertainty block ∆, central con-
troller K(s) and Q(s)

to characterize the set of controllers robustly stabilizing the closed-loop system and

use this set as a search space to find the controller guarantying the performance in-

dex in a probabilistic sense. Consider the interconnected uncertain plant of Figure

5.1. The primary objective is to find a controller K0(s) which makes the closed-loop

system to satisfy the inequality

‖Tz∆w∆
(s,K0)‖∞ < γ (5.1)

where Tz∆w∆
represent the transfer function matrix from w∆ to z∆, γ is a desired

level and K0 is called the central controller. Satisfaction of (5.1) guarantees robust

stability for all ∆ ∈ ∆H where ∆H is defined as

∆H = {∆ ∈ RH∞ : ‖∆‖∞ ≤ 1

γ
}.



129

All controllers achieving internal stability and satisfying the norm bound (5.1) can

be parameterized [48] by the set Q(γ) = {Q(s) ∈ RH∞ : ‖Q(s)‖ ≤ γ} . Therefore

the set of all stabilizing controllers which achieve the norm bound (5.1) is defined as

KQ(s) = Fl(K0(s), Q(γ)) and Fl denotes the standard lower fractional transforma-

tion.

Having the stabilizing controller set KQ(s), we next search for a controller min-

imizing the performance objective (H2 norm, time domain specifications, etc.) in a

probabilistic fashion. In [28] a random search in the controller space was used to

find the probabilistic controller however, this method is not efficient since the opti-

mal controller is a rare event and using a pure random search in design parameter

space does not seem to be a viable solution. Optimization techniques for finding the

optimal transfer function Q(s) lead to a bilinear matrix inequality which in this case

is numerically very difficult to solve. Therefore, finding a solution to this problem

can solve one of the most important drawbacks of probabilistic robust theory and

randomized methods in controller synthesis.
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[60] M. Hilbert and P. López. The world’s technological capacity to store, commu-

nicate, and compute information. Science, 332:60 –65, 2011.

[61] W. Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58:13–30, 1963.

[62] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press,

1990.

[63] C.H. Houpis. Quantitative Feedback Theory: Fundamentals and Applications.

Taylor & Francis, New York, August 1999.



139

[64] B. Hredzak, G. Herrmann, and G. Guo. A proximate-time-optimal-control

design and its application to a hard disk drive dual-stage actuator system.

IEEE Transactions on Magnetics, 42:1708 –1715, 2006.

[65] F-Y. Huang, T. Semba, W. Imaino, and F. Lee. Active damping in HDD

actuator. IEEE Transactions on Magnetics, 37:847 –849, 2001.

[66] X. Huang and R. Horowitz. Robust controller design of a Dual-Stage disk

drive servo system with an instrumented suspension. IEEE Transactions on

Magnetics, 41:2406–2413, 2005.

[67] X. Huang, R. Nagamune, R. Horowitz, and L. Yunfeng. Design and analysis of

a dual-stage disk drive servo system using an instrumented suspension. In In

Proc. American Control Conference., volume 1, pages 535–540 vol.1, 2004.

[68] S. Ibaraki and M. Tomizuka. Rank minimization approach for solving BMI

problems with random search. In Proc. of American Control Conference, vol-

ume 3, pages 1870–1875. IEEE, 2001.

[69] T. Iwasaki. The dual iteration for fixed-order control. IEEE Transactions on

Automatic Control, 44:783–788, 1999.

[70] IEEE Japan. -Technical commitee for novel nanoscale servo control (NSS)

systems. http://mizugaki.iis.u-tokyo.ac.jp/nss/, 2007.



140

[71] A.A. Kale and A.L. Tits. On kharitonov’s theorem without invariant degree

assumption. Automatica, 36:1075–1076, 2000.

[72] K. Kalyanam and T-C. Tsao. Two-period repetitive and adaptive control for

repeatable and nonrepeatable runout compensation in disk drive track following.

IEEE/ASME Transactions on Mechatronics, 17:756 –766, 2012.

[73] S. Kanev, B. De Schutter, and M. Verhaegen. An ellipsoid algorithm for prob-

abilistic robust controller design. Systems & Control Letters, 49:365–375, 2003.

[74] S. Kanev, C. Scherer, M. Verhaegen, and B. De Schutter. Robust output-

feedback controller design via local BMI optimization. Automatica, 40:1115–

1127, 2004.

[75] S. Kanev and M. Verhaegen. Controller reconfiguration for non-linear systems.

Control Engineering Practice, 8:1223–1235, 2000.

[76] M. Karpinski and A. Macintyre. Polynomial bounds for VC dimension of sig-

moidal and general pfaffian neural networks. Journal of Computer and System

Sciences, 54:169–176, 1995.

[77] P. Khargonekar and A. Tikku. Randomized algorithms for robust control anal-

ysis and synthesis have polynomial complexity. In Decision and Control, 1996.,

Proceedings of the 35th IEEE, volume 3, pages 3470–3475, 1996.



141

[78] P. P Khargonekar and M. A Rotea. Mixed H2/H∞ control:a convex optimiza-

tion approach. IEEE Transactions on Automatic Control, 36:824–837, 1991.

[79] V.L. Kharitonov. Asymptotic stability of an equilibrium position of a family of

systems of linear differential equations. Differentsial’nye Uraveniya, 14:61–71,

1978.
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