1,689 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Metaheuristic-Based Neural Network Training And Feature Selector For Intrusion Detection

    Get PDF
    Intrusion Detection (ID) in the context of computer networks is an essential technique in modern defense-in-depth security strategies. As such, Intrusion Detection Systems (IDSs) have received tremendous attention from security researchers and professionals. An important concept in ID is anomaly detection, which amounts to the isolation of normal behavior of network traffic from abnormal (anomaly) events. This isolation is essentially a classification task, which led researchers to attempt the application of well-known classifiers from the area of machine learning to intrusion detection. Neural Networks (NNs) are one of the most popular techniques to perform non-linear classification, and have been extensively used in the literature to perform intrusion detection. However, the training datasets usually compose feature sets of irrelevant or redundant information, which impacts the performance of classification, and traditional learning algorithms such as backpropagation suffer from known issues, including slow convergence and the trap of local minimum. Those problems lend themselves to the realm of optimization. Considering the wide success of swarm intelligence methods in optimization problems, the main objective of this thesis is to contribute to the improvement of intrusion detection technology through the application of swarm-based optimization techniques to the basic problems of selecting optimal packet features, and optimal training of neural networks on classifying those features into normal and attack instances. To realize these objectives, the research in this thesis follows three basic stages, succeeded by extensive evaluations

    An Efficient Fuzzy Based Multi Level Clustering Model Using Artificial Bee Colony For Intrusion Detection

    Get PDF
    Network security is becoming increasingly important as computer technology advances. One of the most important components in maintaining a secure network is an Intrusion Detection System (IDS). An IDS is a collection of tools used to detect and report network anomalies. Threats to computer networks are increasing at an alarming rate. As a result, it is critical to create and maintain a safe computing environment. For network security, researchers employ a range of technologies, including anomaly-based intrusion detection systems (AIDS). These anomaly-based detections face a major challenge in the classification of data. Optimization algorithms that mimic the foraging behavior of bees in nature, such as the artificial bee colony algorithm, is a highly successful tool. A computer network's intrusion detection system (IDS) is an essential tool for keeping tabs on the activities taking place in the network. Artificial Bee Colony (ABC) algorithm is used in this research for effective intrusion detection. More and more intrusion detection systems are needed to keep up with the increasing number of attacks and the increase in Internet bandwidth. Detecting developing threats with high accuracy at line rates is the prerequisite for a good intrusion detection system. As traffic grows, current systems will be overwhelmed by the sheer volume of false positives and negatives they generate. In order to detect intrusions based on anomalies, this research employs an Efficient Fuzzy based Multi Level Clustering Model using Artificial Bee Colony (EFMLC-ABC). A semi-supervised intrusion detection method based on an artificial bee colony algorithm is proposed in this paper to optimize cluster centers and identify the best clustering options. In order to assess the effectiveness of the proposed method, various subsets of the KDD Cup 99 database were subjected to experimental testing. Analyses have shown that the proposed algorithm is suitable and efficient for intrusion detection system

    Water filtration by using apple and banana peels as activated carbon

    Get PDF
    Water filter is an important devices for reducing the contaminants in raw water. Activated from charcoal is used to absorb the contaminants. Fruit peels are some of the suitable alternative carbon to substitute the charcoal. Determining the role of fruit peels which were apple and banana peels powder as activated carbon in water filter is the main goal. Drying and blending the peels till they become powder is the way to allow them to absorb the contaminants. Comparing the results for raw water before and after filtering is the observation. After filtering the raw water, the reading for pH was 6.8 which is in normal pH and turbidity reading recorded was 658 NTU. As for the colour, the water becomes more clear compared to the raw water. This study has found that fruit peels such as banana and apple are an effective substitute to charcoal as natural absorbent

    Performance Evaluation of an Intelligent and Optimized Machine Learning Framework for Attack Detection

    Get PDF
    In current decades, the size and complexity of network traffic data have risen significantly, which increases the likelihood of network penetration. One of today's largest advanced security concerns is the botnet. They are the mechanisms behind several online assaults, including Distribute Denial of Service (DDoS), spams, rebate fraudulence, phishing as well as malware attacks. Several methodologies have been created over time to address these issues. Existing intrusion detection techniques have trouble in processing data from speedy networks and are unable to identify recently launched assaults. Ineffective network traffic categorization has been slowed down by repetitive and pointless characteristics. By identifying the critical attributes and removing the unimportant ones using a feature selection approach could indeed reduce the feature space dimensionality and resolve the problem.Therefore, this articledevelops aninnovative network attack recognitionmodel combining an optimization strategy with machine learning framework namely, Grey Wolf with Artificial Bee Colony optimization-based Support Vector Machine (GWABC-SVM) model. The efficient selection of attributes is accomplished using a novel Grey wolf with artificial bee colony optimization approach and finally the Botnet DDoS attack detection is accomplished through Support Vector machine.This articleconducted an experimental assessment of the machine learning approachesfor UNBS-NB 15 and KDD99 databases for Botnet DDoS attack identification. The proposed optimized machine learning (ML) based network attack detection framework is evaluated in the last phase for its effectiveness in detecting the possible threats. The main advantage of employing SVM is that it offers a wide range of possibilities for intrusion detection program development for difficult complicated situations like cloud computing. In comparison to conventional ML-based models, the suggested technique has a better detection rate of 99.62% and is less time-consuming and robust

    A Secure 3-Way Routing Protocols for Intermittently Connected Mobile Ad Hoc Networks

    Get PDF
    The mobile ad hoc network may be partially connected or it may be disconnected in nature and these forms of networks are termed intermittently connected mobile ad hoc network (ICMANET). The routing in such disconnected network is commonly an arduous task. Many routing protocols have been proposed for routing in ICMANET since decades. The routing techniques in existence for ICMANET are, namely, flooding, epidemic, probabilistic, copy case, spray and wait, and so forth. These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth. Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS) routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters. The algorithm along with efficient routing ensures higher degree of security. The security level is cited testing with respect to possibility of malicious nodes into the network. This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET

    An improved bees algorithm local search mechanism for numerical dataset

    Get PDF
    Bees Algorithm (BA), a heuristic optimization procedure, represents one of the fundamental search techniques is based on the food foraging activities of bees. This algorithm performs a kind of exploitative neighbourhoods search combined with random explorative search. However, the main issue of BA is that it requires long computational time as well as numerous computational processes to obtain a good solution, especially in more complicated issues. This approach does not guarantee any optimum solutions for the problem mainly because of lack of accuracy. To solve this issue, the local search in the BA is investigated by Simple swap, 2-Opt and 3-Opt were proposed as Massudi methods for Bees Algorithm Feature Selection (BAFS). In this study, the proposed extension methods is 4-Opt as search neighbourhood is presented. This proposal was implemented and comprehensively compares and analyse their performances with respect to accuracy and time. Furthermore, in this study the feature selection algorithm is implemented and tested using most popular dataset from Machine Learning Repository (UCI). The obtained results from experimental work confirmed that the proposed extension of the search neighbourhood including 4-Opt approach has provided better accuracy with suitable time than the Massudi methods
    corecore