3,229 research outputs found

    Design Control and Power Management of Small Satellite Microgrids

    Get PDF

    Maximum power point tracking and control of grid interfacing PV systems

    Get PDF
    Grid interfacing of PV systems is very crucial for their future deployment. To address some drawbacks of model-based maximum power point tracking (MPPT) techniques, new optimum proportionality constant values based on the variation of temperature and irradiance are proposed for fractional open circuit voltage (FOCV) and fraction short circuit current (FSCC) MPPT. The two MPPT controllers return their optimum proportionality values to gain high tracking efficiency when a change occurred to temperature and/or irradiance. A modified variable step-size incremental conductance MPPT technique for PV system is proposed. In the new MPPT technique, a new autonomous scaling factor based on the PV module voltage in a restricted search range to replace the fixed scaling factor in the conventional variable step-size algorithm is proposed. Additionally, a slope angle variation algorithm is also developed. The proposed MPPT technique demonstrates faster tracking speed with minimum oscillations around MPP both at steady-state and dynamic conditions with overall efficiency of about 99.70%. The merits of the proposed MPPT technique are verified using simulation and practical experimentation. A new 0.8Voc model technique to estimate the peak global voltage under partial shading condition for medium voltage megawatt photovoltaic system integration is proposed. The proposed technique consists of two main components; namely, peak voltage and peak voltage deviation correction factor. The proposed 0.8Voc model is validated by using MATLAB simulation. The results show high tracking efficiency with minimum deviations compared to the conventional counterpart. The efficiency of the conventional 0.8 model is about 93% while that of the proposed is 99.6%. Control issues confronting grid interfacing PV system is investigated. The proposed modified 0.8Voc model is utilized to optimise the active power level in the grid interfacing of multimegawatt photovoltaic system under normal and partial shading conditions. The active power from the PV arrays is 5 MW, while the injected power into the ac is 4.73 MW, which represents 95% of the PV arrays power at normal condition. Similarly, during partial shading conditions, the active power of PV module is 2 MW and the injected power is 1.89 MW, which represents 95% of PV array power at partial shading conditions. The technique demonstrated the capability of saving high amount of grid power.Grid interfacing of PV systems is very crucial for their future deployment. To address some drawbacks of model-based maximum power point tracking (MPPT) techniques, new optimum proportionality constant values based on the variation of temperature and irradiance are proposed for fractional open circuit voltage (FOCV) and fraction short circuit current (FSCC) MPPT. The two MPPT controllers return their optimum proportionality values to gain high tracking efficiency when a change occurred to temperature and/or irradiance. A modified variable step-size incremental conductance MPPT technique for PV system is proposed. In the new MPPT technique, a new autonomous scaling factor based on the PV module voltage in a restricted search range to replace the fixed scaling factor in the conventional variable step-size algorithm is proposed. Additionally, a slope angle variation algorithm is also developed. The proposed MPPT technique demonstrates faster tracking speed with minimum oscillations around MPP both at steady-state and dynamic conditions with overall efficiency of about 99.70%. The merits of the proposed MPPT technique are verified using simulation and practical experimentation. A new 0.8Voc model technique to estimate the peak global voltage under partial shading condition for medium voltage megawatt photovoltaic system integration is proposed. The proposed technique consists of two main components; namely, peak voltage and peak voltage deviation correction factor. The proposed 0.8Voc model is validated by using MATLAB simulation. The results show high tracking efficiency with minimum deviations compared to the conventional counterpart. The efficiency of the conventional 0.8 model is about 93% while that of the proposed is 99.6%. Control issues confronting grid interfacing PV system is investigated. The proposed modified 0.8Voc model is utilized to optimise the active power level in the grid interfacing of multimegawatt photovoltaic system under normal and partial shading conditions. The active power from the PV arrays is 5 MW, while the injected power into the ac is 4.73 MW, which represents 95% of the PV arrays power at normal condition. Similarly, during partial shading conditions, the active power of PV module is 2 MW and the injected power is 1.89 MW, which represents 95% of PV array power at partial shading conditions. The technique demonstrated the capability of saving high amount of grid power

    Editorials from EE Faculty

    Get PDF
    The newsletter section of the department of electrical engineering. Our newsletters are filled with educational information, events, news, faculty research and publications, students and alumni

    AMPA experimental communications systems

    Get PDF
    The program was conducted to demonstrate the satellite communication advantages of Adaptive Phased Array Technology. A laboratory based experiment was designed and implemented to demonstrate a low earth orbit satellite communications system. Using a 32 element, L-band phased array augmented with 4 sets of weights (2 for reception and 2 for transmission) a high speed digital processing system and operating against multiple user terminals and interferers, the AMPA system demonstrated: communications with austere user terminals, frequency reuse, communications in the face of interference, and geolocation. The program and experiment objectives are described, the system hardware and software/firmware are defined, and the test performed and the resultant test data are presented

    Multi-input Fuzzy Logic Controller for Brushless dc Motor Drives

    Get PDF
    The brushless dc motors are used in various applications such as defence, industries,robotics, etc. In these applications, the motor should be precisely controlled to give the desiredperformance. The proposed controller systems consist of multi-input fuzzy (two-and three-input)logic controller (FLC) and multi-input integrated fuzzy logic controller (IFLC) for the speed controlof brushless dc servomotor drive. The input for the controllers are error e(k), change in error[first derivative of error ce(k)] and change of change in error [second derivative of error cce(k)]with a single-output. The error cce(k) is substantial at the overshoots/undershoots and is thereforeessential for accurate speed control of brushless dc motor. The error cce(k) has been introducedfor the first time in the literature as one of the input in the FLC and IFLC design. The IFLC isdesigned using FLC and proportional derivation integral (PID) controllers. The controller systemshave been studied systematically for the transient and steady-state conditions. The three-inputIFLC is found to be superior, more robust, faster, flexible, and is insensitive to the parametervariations as compared with the FLC (with two-and three-input) and conventional two-inputIFL

    Double Resonant High-Frequency Converters for Wireless Power Transfer

    Get PDF
    This thesis describes novel techniques and developments in the design and implementation of a low power radio frequency (40kHz to 1MHz) wireless power transfer (WPT) system, with an application in the wireless charging of autonomous drones without physical connection to its on-board Battery Management System (BMS). The WPT system is developed around a matrix converter exploiting the benefits such as a small footprint (DC-link free), high efficiency and high power density. The overall WPT system topology discussed in this thesis is based on the current state-of-the-art found in literature, but enhancements are made through novel methods to further improve the converter’s stability, reduce control complexity and improve the wireless power efficiency. In this work, each part of the system is analysed and novel techniques are proposed to achieve improvements. The WPT system design methodology presented in this thesis commences with the use of a conventional full-bridge converter. For cost-efficiency and to improve the converters stability, a novel gate drive circuit is presented which provides self-generated negative bias such that a bipolar MOSFET drive can be driven without an additional voltage source or magnetic component. The switching control sequences for both a full-bridge and single phase to single phase matrix converter are analysed which show that the switching of a matrix converter can be considered to be the same as a full-bridge converter under certain conditions. A middleware is then presented that reduces the complexity of the control required for a matrix converter and enables control by a conventional full-bridge controller (i.e. linear controller or microcontroller). A novel technique that can maximise and maintain in real-time the WPT efficiency is presented using a maximum efficiency point tracking approach. A detailed study of potential issues that may affect the implementation of this novel approach are presented and new solutions are proposed. A novel wireless pseudo-synchronous sampling method is presented and implemented on a prototype system to realise the maximum efficiency point tracking approach. Finally, a new hybrid wireless phase-locked loop is presented and implemented to minimise the bandwidth requirements of the maximum efficiency point tracking approach. The performance and methods for implementation of the novel concepts introduced in this thesis are demonstrated through a number of prototypes that were built. These include a matrix converter and two full WPT systems with operating frequencies ranging from sub-megahertz to megahertz level. Moreover, the final prototype is applied to the charging of a quadcopter battery pack to successfully charge the pack wirelessly whilst actively balancing the cells. Hence, fast battery charging and cell balancing, which conventionally requires battery removal, can be achieved without re-balance the weight of the UAV

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    WIRELESS ANTENNA MULTIPLEXING USING TUNABLE ANTENNA FOR SPACE APPLICATIONS

    Get PDF
    Recent development in communication technologies shifts the communication paradigm from point to point to multi-user wireless systems. These developments eased the use of mobile telephone, satellite services, 5G cellular, smart application, and the Internet of Things. The proliferation of mobile devices has necessitated an elaborate mechanism to serve multiple users over a shared communication medium, and a multiplexing approach is introduced to serve this purpose. Multiplexing refers to a method that aims at combining multiple signals into one signal such that each user would be able to extract its desired data upon receiving the multiplexed signal. This spectrum sharing allows wireless operators to maximize the use of their spectrum to accommodate a large number of users over fewer channels. In Space applications, where sensors like temperature, attitude, IR, Magnetic, etc. send information using antennas operate at a different frequency, there is a need to collect all or some of these data using a single device. A wideband antenna requires a filtering process in order to remove unwanted signals that lead to a complex circuit design. Furthermore, the use of multiple antennas ends up with a larger size and additional complexity. Therefore, the tunable antenna is an excellent candidate which provides a perfect solution for such scenarios. A tunable antenna whose frequency characteristics shifted by applying tuning action can be used to operate as a multiplexing device that can collect signals from different surrounding antennas; each operates at a fixed frequency. A system architecture for wireless multiplexing using a tunable antenna is proposed in this project. An electronically tunable antenna using varactor diode as a tuning element is used as the multiplexing device that can collect signals from different surrounding antennas. The system consists of an RF front end and a control circuit/system for wireless multiplexing. The RF front end consists of a tunable antenna, tunable phase shifter, tunable bandpass filter, low noise amplifier, mixer, voltage-controlled oscillator, and an intermediate frequency filter. The control unit comprises a microcontroller, DAC, CMOS oscillator, power module, and a USB interface for communication with custom-built software installed on a PC. The device has functions for control, digital signal processing, and de-multiplexing. The device is fed with an input multiplexed signal, and the de-multiplexed output signals are extracted and displayed on the graphical user interface of the software. Due to the reconfigurability and programmability of the device, it presents a flexible, cost-effective solution for a variety of real-world applications

    Enhanced MPPT Controllers for Smart Grid Applications

    Get PDF
    Over the past years, the energy demand has been steadily growing and so methods of how to cope with this staggering increase are being researched and utilized. One method of injecting more energy to the grid is renewable energy, which has become in recent years an integral part of any country’s power generation plan. Thus, it is a necessity to enhance renewable energy resources and maximize their grid utilization, so that these resources can step up and reduce the over dependency of global energy production on depleting energy resources. This thesis focuses on solar power and effective means to enhance its efficiency through the use of different controllers. In this regard, substantial research efforts have been done. However, due to the current market and technological development, more options are made available that are able to boast the efficiency and utilization of renewables in the power mix. In this thesis, an enhanced maximum power point tracking (MPPT) controller has been designed as part of a Photovoltaic (PV) system to generate maximum power to satisfy load demand. The PV system is designed and simulated using MATLAB (consisting of a solar panel array, MPPT controller, boost converter, and a resistive load). The solar panel chosen for the array is Sun Power SPR- 440NE-WHT-D and the array is designed to produce 150 kW of power. The MPPT controller is designed using three different algorithms and the results are compared to identify each controller’s fortes and drawbacks. The three designed controllers used are based on Perturb and Observe (P&O) algorithm, Incremental Conductance (INC) with an Integral Regulator (IR) and Fuzzy Logic Control (FLC). Each controller was tested under two different scenarios; the first is when the panel array is subjected to constant amount of solar irradiance along with a constant atmospheric temperature and the second scenario has varying solar irradiance and atmospheric temperature. The performance of these controllers is analyzed and compared in terms of the output power efficiency, system dynamic response and finally the oscillations behavior. After analyzing the results, it is shown that Fuzzy Logic Controller design performed better compared to the other controllers as it had in most cases the highest mean power efficiency and fastest response

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization
    • …
    corecore