182 research outputs found

    An Innovations-Based Noise Cancelling Technique on Inverse Kepstrum Whitening Filter and Adaptive FIR Filter in Beamforming Structure

    Get PDF
    This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure

    Digital Signal Processing

    Get PDF
    Contains introduction and reports on seventeen research projects.U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)U.S. Navy - Office of Naval Research (Contract N00014-77-C-0266)National Science Foundation (Grant ECS80-07102)Bell Laboratories FellowshipAmoco Foundation FellowshipSchlumberger-Doll Research Center FellowshipSanders Associates, Inc.Toshiba Company FellowshipM.I.T. Vinton Hayes FellowshipHertz Foundation Fellowshi

    Real-Time Noise Cancelling Approach on Innovations-Based Whitening Application to Adaptive FIR RLS in Beamforming Structure

    Get PDF
    The techniques for noise cancellation have been developed with applications in signal processing, such as homomorphic signal processing, sensor array signal processing and statistical signal processing. Some exemplar applications may be found from kepstrum (also known as complex ceptstrum) method, beamforming and ANC (adaptive noise cancelling)

    A two-microphone noise reduction system for cochlear implant users with nearby microphones. Part II: Performance Evaluation

    Get PDF
    Users of cochlear implants (auditory aids, which stimulate the auditory nerve electrically at the inner ear) often suffer from poor speech understanding in noise. We evaluate a small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. The system is evaluated in simulated and real, anechoic and reverberant environments. Results from simulations show improvements of 3.4 to 9.3 dB in signal to noise ratio for rooms with realistic reverberation and more than 18 dB under anechoic conditions. Speech understanding in noise is measured in 6 adult cochlear implant users in a reverberant room, showing average improvements of 7.9–9.6 dB, when compared to a single omnidirectional microphone or 1.3–5.6 dB, when compared to a simple directional two-microphone device. Subjective evaluation in a cafeteria at lunchtime shows a preference of the cochlear implant users for the evaluated device in terms of speech understanding and sound quality

    Acoustic source separation based on target equalization-cancellation

    Full text link
    Normal-hearing listeners are good at focusing on the target talker while ignoring the interferers in a multi-talker environment. Therefore, efforts have been devoted to build psychoacoustic models to understand binaural processing in multi-talker environments and to develop bio-inspired source separation algorithms for hearing-assistive devices. This thesis presents a target-Equalization-Cancellation (target-EC) approach to the source separation problem. The idea of the target-EC approach is to use the energy change before and after cancelling the target to estimate a time-frequency (T-F) mask in which each entry estimates the strength of target signal in the original mixture. Once the mask is calculated, it is applied to the original mixture to preserve the target-dominant T-F units and to suppress the interferer-dominant T-F units. On the psychoacoustic modeling side, when the output of the target-EC approach is evaluated with the Coherence-based Speech Intelligibility Index (CSII), the predicted binaural advantage closely matches the pattern of the measured data. On the application side, the performance of the target-EC source separation algorithm was evaluated by psychoacoustic measurements using both a closed-set speech corpus and an open-set speech corpus, and it was shown that the target-EC cue is a better cue for source separation than the interaural difference cues

    Robust Automatic Speech recognition System Implemented in a Hybrid Design DSP-FPGA

    Get PDF
    The aim of this work is to reduce the burden task on the DSP processor by transferring a parallel computation part on a configurable circuits FPGA, in automatic speech recognition module design, signal pre-processing, feature selection and optimization, models construction and finally classification phase are necessary. LMS filter algorithm that contains more parallelism and more MACs (multiply and Accumulate) operations is implemented on FPGA Virtex 5 by Xilings, MFCCs features extraction and DTW ( dynamic time wrapping) method is used as a classifier. Major contribution of this work are hybrid solution DSP and FPGA in real time speech recognition system design, the optimization of number of MAC-core within the FPGA this result is obtained by sharing MAC resources between two operation phases: computation of output filter and updating LMS filter coefficients. The paper also provides a hardware solution of the filter with detailed description of asynchronous interface of FPGA circuit and TMS320C6713-EMIF component. The results of simulation shows an improvement in time computation and by optimizing the implementation on the FPGA a gain in space consumption is obtained

    Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments

    Get PDF
    This article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∼1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∼10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm. The background noise condition used three simultaneous time-reversed speech signals as interferers located at 90°, 180°, and 270°. Results indicated that the spatial-filtering algorithm can provide speech reception benefits of 5.8 to 10.7 dB SRT compared to an omni-directional response in a reverberant room with multiple noise sources. Given the observed SRT benefits, coupled with an efficient design, the proposed algorithm is promising as a CI noise-reduction solution.National Institutes of Health (U.S.) (Grant R01 DC 000117)National Institutes of Health (U.S.) (Grant R01 DC DC7152)National Institutes of Health (U.S.) (Grant 2R44DC010524-02

    Single- and multi-microphone speech dereverberation using spectral enhancement

    Get PDF
    In speech communication systems, such as voice-controlled systems, hands-free mobile telephones, and hearing aids, the received microphone signals are degraded by room reverberation, background noise, and other interferences. This signal degradation may lead to total unintelligibility of the speech and decreases the performance of automatic speech recognition systems. In the context of this work reverberation is the process of multi-path propagation of an acoustic sound from its source to one or more microphones. The received microphone signal generally consists of a direct sound, reflections that arrive shortly after the direct sound (commonly called early reverberation), and reflections that arrive after the early reverberation (commonly called late reverberation). Reverberant speech can be described as sounding distant with noticeable echo and colouration. These detrimental perceptual effects are primarily caused by late reverberation, and generally increase with increasing distance between the source and microphone. Conversely, early reverberations tend to improve the intelligibility of speech. In combination with the direct sound it is sometimes referred to as the early speech component. Reduction of the detrimental effects of reflections is evidently of considerable practical importance, and is the focus of this dissertation. More specifically the dissertation deals with dereverberation techniques, i.e., signal processing techniques to reduce the detrimental effects of reflections. In the dissertation, novel single- and multimicrophone speech dereverberation algorithms are developed that aim at the suppression of late reverberation, i.e., at estimation of the early speech component. This is done via so-called spectral enhancement techniques that require a specific measure of the late reverberant signal. This measure, called spectral variance, can be estimated directly from the received (possibly noisy) reverberant signal(s) using a statistical reverberation model and a limited amount of a priori knowledge about the acoustic channel(s) between the source and the microphone(s). In our work an existing single-channel statistical reverberation model serves as a starting point. The model is characterized by one parameter that depends on the acoustic characteristics of the environment. We show that the spectral variance estimator that is based on this model, can only be used when the source-microphone distance is larger than the so-called critical distance. This is, crudely speaking, the distance where the direct sound power is equal to the total reflective power. A generalization of the statistical reverberation model in which the direct sound is incorporated is developed. This model requires one additional parameter that is related to the ratio between the direct sound energy and the sound energy of all reflections. The generalized model is used to derive a novel spectral variance estimator. When the novel estimator is used for dereverberation rather than the existing estimator, and the source-microphone distance is smaller than the critical distance, the dereverberation performance is significantly increased. Single-microphone systems only exploit the temporal and spectral diversity of the received signal. Reverberation, of course, also induces spatial diversity. To additionally exploit this diversity, multiple microphones must be used, and their outputs must be combined by a suitable spatial processor such as the so-called delay and sum beamformer. It is not a priori evident whether spectral enhancement is best done before or after the spatial processor. For this reason we investigate both possibilities, as well as a merge of the spatial processor and the spectral enhancement technique. An advantage of the latter option is that the spectral variance estimator can be further improved. Our experiments show that the use of multiple microphones affords a significant improvement of the perceptual speech quality. The applicability of the theory developed in this dissertation is demonstrated using a hands-free communication system. Since hands-free systems are often used in a noisy and reverberant environment, the received microphone signal does not only contain the desired signal but also interferences such as room reverberation that is caused by the desired source, background noise, and a far-end echo signal that results from a sound that is produced by the loudspeaker. Usually an acoustic echo canceller is used to cancel the far-end echo. Additionally a post-processor is used to suppress background noise and residual echo, i.e., echo which could not be cancelled by the echo canceller. In this work a novel structure and post-processor for an acoustic echo canceller are developed. The post-processor suppresses late reverberation caused by the desired source, residual echo, and background noise. The late reverberation and late residual echo are estimated using the generalized statistical reverberation model. Experimental results convincingly demonstrate the benefits of the proposed system for suppressing late reverberation, residual echo and background noise. The proposed structure and post-processor have a low computational complexity, a highly modular structure, can be seamlessly integrated into existing hands-free communication systems, and affords a significant increase of the listening comfort and speech intelligibility

    A Study into Speech Enhancement Techniques in Adverse Environment

    Get PDF
    This dissertation developed speech enhancement techniques that improve the speech quality in applications such as mobile communications, teleconferencing and smart loudspeakers. For these applications it is necessary to suppress noise and reverberation. Thus the contribution in this dissertation is twofold: single channel speech enhancement system which exploits the temporal and spectral diversity of the received microphone signal for noise suppression and multi-channel speech enhancement method with the ability to employ spatial diversity to reduce reverberation
    corecore