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Abstract

Speech enhancement algorithms are in high demand in practice for scenarios sub-

ject to noisy environments, in which the speech signal is degraded by different

disturbances and noise such as room reverberation and background noise. This

degradation can impact the quality and intelligibility of the speech and decrease

the performance of other signal processing systems like automatic speech recog-

nition and speech coding. The main goal of speech enhancement algorithms is

to reduce or suppress the noise from the degraded speech signal while preserving

the original speech components. The work presented in this dissertation focuses

on providing speech enhancement solutions for voice communication applications

such as hands-free mobile phones, hearing aids and teleconferencing systems by

using different methods. In particular, two speech enhancement techniques are ex-

plored, namely single channel and multi-channel speech enhancement techniques.

For single channel speech enhancement techniques, the main purpose is to

suppress the background noise and musical noise without distorting the speech

components. The state of the art decision directed (DD) based a priori SNR

approach is the most used approach due to its efficiency in reducing the musical

noise. However, because of its slow adaptation towards abrupt changes in SNR,

DD approach prone to distort the speech components. In order to overcome

this problem, an a priori SNR estimation technique is introduced. Besides its

ability to eliminate the frame delay generated by the DD approach, the proposed

technique also increases the adaptation speed during abrupt changes in the SNR

estimation. Results show that the proposed a priori SNR estimation approach

outperforms the conventional approach in preserving weak speech components. In

conjunction with that, we utilize a Critical Band (CB) mapping from Short Time

Fourier Transform (STFT) analysis-resynthesis system in the speech enhancement

framework for human perceptual processing and lower complexity.

Since most of the speech enhancement techniques are performed in STFT,

this dissertation also studies the aforementioned proposed approach in STFT

ix



domain and under different noise conditions. Furthermore, it presents a cross

comparison between a priori SNR estimation methods integrated with different

time-frequency analysis techniques (CB and STFT) using subjective listening test

in order to test the efficiency of CB over STFT. The subjective results show that

the listeners preferred the speech signals that were processed with CB over those

processed with STFT in non-stationary noise conditions.

This dissertation also discusses the combination of noise reduction and dere-

verberation in indoor applications such as conference rooms. Since the single

channel speech enhancement system exploits the temporal and spectral diversity

of the microphone received signal, such method has a limited ability to sup-

press the reverberation. Thus, in this work, we employ a multi-channels speech

enhancement method to exploit the spatial diversity that induces by the rever-

beration. A robust broadband beamformer is formulated by including the room

reverberation as well as microphones characteristics (gain and phase) in the de-

sign procedure and by using mean performance optimization technique. Two

different error models (multiplicative and additive) models are considered in this

work. Compared to the non-robust beamformer design, robust indoor beam-

former design shows an improved performance in terms of less sensitivity against

mismatches in microphone characteristics (gain and phase). An extensive evalua-

tion using simulated and measured Room Impulse Response (RIR) is presented in

acoustically adverse environments to examine the efficiency of the investigated de-

signs. Results demonstrate that robust direct design using additive error model

can achieve almost the same results as including room response in the design

in many reverberation environments. Furthermore, it provides robustness over

larger variations in the reverberation environment. This means that the robust

direct path based method which is based on mean variations in gain and phase

can be used in low to medium (T60 = 100 - 300 ms) reverberant environments

with good result.
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Chapter 1

Introduction

The work presented in this thesis is motivated by the fast expanding market of

voice communication applications such as hearing aids, voice controlled devices

(VCDs) and teleconferencing systems. In many countries, using a mobile phone

while driving is illegal since it is considered fatal because of its potential for

causing distracted driving and accidents. In Australia, all states have banned

the use of a mobile phone while driving. Thats why its common now for cars to

offer VCDs integration. The main motivation of using such applications in cars

is to provide more convenience and safety where the driver can use the phone to

initiate phone calls or use the GPS while still keeping both hands on the wheel.

Automatic Speech Recognition (ASR) is the main signal processing technique that

is used to achieve the main task of voice commands. In such applications, since the

microphone is located at a distance from the speaker, this means that the received

speech signal is corrupted by different sources of noise such as background noise,

reverberation and other interference which provides substantial speech distortion

and poor speech quality. Thus, speech enhancement procedures are required to

attenuate the background noise while maintain the speech contents in order to

improve the human-machine interfacing.
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Speech enhancement has long been an attractive solution to problems of

VCDs. The main objective of speech enhancement is to extract the desired

speech signal while suppressing the background noise in order to improve the

speech perception by human or machines. Many studies focused mainly on sin-

gle channel speech enhancement approaches due to their simple implementation

and efficient noise reduction ability. However, the drawback of single channel

techniques is the limited capability to suppress the background noise without

attenuating the desired speech especially in adverse environments. Apart from

the speech distortion and residual noise, another drawback of many single chan-

nel speech enhancement techniques is the appearance of unnatural noise artifact

known as musical noise which is unpleasant to the listeners. Nevertheless, single

channel speech enhancement techniques are still preferable in many applications

such as hearing aids and mobile phones and hence, motivates us to propose a

novel single channel speech enhancement technique that can improve the trade

off between the speech transient distortion and musical noise in non-stationary

environments.

In addition to noise reduction, another challenge in indoor applications is

the presence of room reverberation. A reverberation scenario in closed spaces

has to be considered through speech processing and then has to be suppressed.

Since the room reverberation includes the spatial diversity, dereverberation with a

microphone array has to be observed in particular due to the ability of beamform-

ing to provide spatial selectivity through speech enhancement capabilities. Many

research works have focused on the dereverberation and noise reduction combina-

tion using multi-channels speech enhancement techniques. It has to be remarked

that beamformer design is usually sensitive to mismatches in microphone char-

acteristics such as gain, phase and element position. Hence it is important to

consider those deviations in the beamformer design formulation. To the best of

our knowledge no research work has been presented to include reverberation and

robustness in the design formulation which motivates us to present a simple and

yet efficient robust beamformer design in reverberant environment and against

mismatches in microphones characteristics.

1.1 Objective
Since the presence of background noise and reverberation can significantly de-

teriorate the overall performance of the speech enhancement techniques in speech

communication devices, we focus in this work on noise reduction and dereverber-

ation. The objective of this dissertation is twofold; first, to propose an improved
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single channel speech enhancement solution for voice communication devices in

adverse environments in order to improve the speech quality and suppress the

background noise. The proposed technique should be able to control the trade-

off between the speech transient distortion and the musical noise. Second, to

investigate and design a robust broadband beamformer for indoor applications.

The proposed design should be able to pick up the signals that are originating

from the region of interest while suppressing reverberation and interference that

are originating from undesirable directions. Namely, we focused on the following

aspects:

• To control the adaptation speed of the a priori SNR estimation in order to

preserve more weak speech components while maintaining the advantage of

decision directed based a priori SNR estimation methods in reducing the

musical noise.

• Perform a combination of noise reduction and dereverberation by intro-

ducing a robust broadband beamformer design formulation that includes

the room reverberation as well as robustness to mismatches in microphone

characteristics (gain and phase).

1.2 Contributions of the thesis
In this dissertation, the original contributions are divided into two parts, sin-

gle channel and multi-channels speech enhancement techniques to provide better

speech quality and less noise. This section highlights the main contributions of

this thesis as follows:

• It utilizes a critical band mapping from STFT analysis-resynthesis system

in the speech enhancement framework for human perceptual processing and

lower complexity.

• It emphasizes the efficiency of the critical band processing method in re-

ducing the musical noise due to its ability to lower the noise variance.

• It proposes an improved a priori SNR estimation approach by utilizing a

fusion function based on a sigmoidal shape in order to control the adaptation

speed of the a priori SNR estimation.

• It introduces a new evaluation technique which is called the modified Ham-

ming distance to measure the weak speech components.
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• It presents a cross comparison between STFT and CB spectral analysis

methods by using a subjective listening test.

• It proposes a beamformer design formulation as a minimization of cost

function with respect to filter coefficients and inter-element space between

adjacent microphones.

• It introduces robust design methods for broadband beamformers in rever-

berant environments. In the design formulation room reverberation as well

as robustness to amplitude and phase mismatches in the microphones has

been included.

• It provides an extensive evaluation to asses the efficiency of the robust direct

beamformer design in reverberant environments.

1.3 Thesis outlines
The remainder of this thesis is structured as follow.

• Chapter 2: “Literature Survey” gives a comprehensive overview of the

speech enhancement system and its applications. Preliminary studies on

single channel and multi-channels speech enhancement techniques are pre-

sented. These include discussions on the framework of single channel speech

enhancement techniques. Moreover, background information related to the

different beamformer designs are presented, i.e. narrowband , broadband

, fixed and adaptive beamformers. In addition, outlines the important de-

sign considerations that have to be included in the beamformer problem

formulation which can affect the overall performance.

• Chapter 3: “Single Channel Speech Enhancement ” proposes a modified a

priori SNR estimator by employing a model of speech absence probability

based on a sigmoid function to improve the adaptation speed of the a priori

SNR estimation and hence yields in preserving weak speech components.

Moreover, a critical band mapping for STFT analysis-synthesizes system is

used in the speech enhancement framework to reduce the musical noise and

computational complexity.

• Chapter 4: “Single Channel Speech Enhancement in STFT domain” ex-

amines the efficiency of the proposed a priori SNR estimation method in
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Chapter 3 but in STFT domain and under different noise conditions. More-

over, a cross comparison between STFT and CB spectral analysis methods

has been presented using a subjective listening test.

• Chapter 5: “Robust Broadband Beamformer in reverberant environment”

discusses several broadband beamformer designs for combined dereverber-

ation and noise reduction. Also it includes stochastic error models that are

representing mismatches in microphone characteristics (gain and phase).

The robust design procedure is formulated using mean performance opti-

mization method. Two different stochastic error models are presented in

this chapter; multiplicative error and additive error. These design meth-

ods achieved robust beamformer design against deviations in acoustically

adverse environments and mismatches in microphone characteristics (gain

and phase).

• Chapter 6: “Conclusion” concludes the findings and outlines the sugges-

tions for further research.

7



8



Chapter 2

Literature Survey

This chapter gives a comprehensive overview of the speech enhancement, and

signifies its necessity in numerous speech communication applications. Based on

the number of microphones, we outlined the main concepts of single channel and

multiple channels solutions to address the noise reduction and dereverberation

under different adverse environments.
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2.1 Introduction
For many speech communication applications, such as hands free communi-

cations, hearing aids and teleconferencing systems, speech quality and intelligi-

bility have a direct effect on the ease and accuracy of information exchange. In

acoustically adverse environments, due to the presence of different sources of dis-

turbances such as background noise, reverberation or interference, the desired

speech signal captured by the microphones is contaminated as shown in Figure

2.1, where a person (desired source) is talking in a busy conference room with

different sources of noise. Consequently, this leads to a significant degradation

in the quality of the picked up speech. Figure 2.2 shows the corrupted speech

signal received by the microphone array (bottom figure) and the clean speech

signal (top figure). It can be clearly noticed how the corrupted speech signal is

different from the clean speech, in which great portions of the speech spectra are

masked and less distinct. This can significantly impair the speech quality and

intelligibility. Moreover, it can increase listener’s fatigue and lower information

exchange ability. Therefore, speech enhancement systems are useful to clean up

the desired speech signal and mitigate the effect of the corruption in order to

improve the performance of the aforementioned applications [1].

Noise suppression or speech enhancement has attracted considerable research

effort in the last decades due to its uses in widely spread devices like for instance,

mobile phones, hearing aids, assistive listening devices and voice communication.

Particularly, hearable devices have been poised to assist people with hearing

difficulties in social environments. For noise suppression and speech enhancement

to work in those environments where acoustic noise becomes more intrusive, it is

important to preserve weak speech components while still balance the amount of

noise reduction. Accordingly, techniques that can enhance speech signals while

preserving weak speech components under a large variety of acoustic scenarios are

underpinning the success of different applications such as speech coding, speech

recognition and hand free telephony [2, 3, 4, 5].

The type of speech enhancement or noise reduction algorithm to be selected

depends on many factors that need to be considered such as, the noise type and

its characteristics, applications at hand and the number of microphones available.

These factors have significant impact on the quality of the estimated speech and

the overall performance of the speech processing systems.

Generally speaking, it is important to consider the characteristics of the noise

to achieve a speech enhancement/noise reduction method that works effectively
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in different conditions. Different types of noise based on characteristics of the

noise source, such as stationary noise (pink noise) which statistically does not

change over time, or non stationary noise with high variability and similar char-

acteristics as a speech signal (babble noise) [6]. Moreover, based on the way the

noise contaminates the speech signal, the noise can be categorized into additive

noise originating from different noise sources such as fans, air-conditions, traf-

fic, babble etc, and a noise caused by multi path propagation due to the room

acoustics (reverberation). Hence, according to the type of noise, different signal

processing techniques can be implemented, such as noise reduction and speech

dereverberation or a combination of both [7].

The goal of the speech enhancement algorithm is to remove noise and recover

the original signal with as little distortion and residual noise as possible. The pro-

cedure of denoising is being complicated by the fact that, no transform domain,

e.g. time, frequency or others, exists where signal and noise have non-overlapping

supports; hence aggressive removal of noise is always accompanied by signal dis-

tortion and efforts to reduce distortion are in conflict with the amount of reduced

noise [8].

For a computationally efficient implementation, most of the speech enhance-

ment techniques are utilizing the short time Fourier transform (STFT), where the

desired signal is estimated from the degraded speech by applying noise reduction

algorithm to the complex STFT coefficients [3, 5, 9, 10]. The main advantage

of using STFT is the flexibility in exploiting the noise statistics to optimize the

noise reduction performance since this type of decomposition helps to handle dif-

ferent frequencies independently. However, deploying STFT results in uniform

resolution for the whole band of frequencies, which is not the case for the hu-

man auditory system with a non uniform resolution. This fact has motivated

many researchers to propose alternative speech enhancement methods based on

the human auditory system in order to improve the speech quality and reduce the

annoying residual musical artifacts that known as musical noise [11, 12, 13, 14].

Human auditory spectrum model consists of a bank of bandpass filters which

follows a spectral bark scale or so-called critical bands [14, 15]. In [14], a standard

subtractive speech enhancement method is presented to eliminate the musical

artifacts in very noisy situations. The masking properties of the auditory system

are utilized to compute the subtraction parameter. In [16], a spectral subtraction

noise reduction method was proposed using a spatial weighting technique based

on the inhibitory property of the auditory system, which results in improving the

estimated speech while reducing the musical noise.
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Figure 2.1: Speech degradation scenario in noisy environment.

Besides noise reduction algorithm, dereverberation algorithm in adverse envi-

ronments has been discussed in this thesis. In such environment, the microphone

picked up the direct path signal as well as a multiple attenuated and delayed repli-

cas of the signal due to the room acoustics. This results in a severe degradation

in the observed signal. As such for more than four decades, researchers were try-

ing to improve the performance of speech applications in adverse environments,

and recent research is interested in a robust combination of noise reduction and

dereverberation technique under different noise conditions.

This chapter presents the main problem of speech communication in noisy

environments and reviews recent speech enhancement techniques depending on

the number of microphones available. First, some applications where speech en-

hancement is used are presented. Consequently, different speech enhancement

techniques for additive noise are described for both single microphone and mul-

tiple microphone techniques. Thereafter, convolutive distortion is discussed and

derverberation processing is described using some recent efficient methods.
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Figure 2.2: Spectrograms of clean speech signal and noisy speech signal consisting

of clean speech and pink noise at 0 dB SNR.

2.2 Applications of Speech enhancement tech-

nology
Prior to design speech enhancement algorithm, it is important to consider

the target application. What the industry is looking for is a way to provide a

clean voice signal (free of all ambient noise) to the desired application such as

Automatic Speech Recognition (ASR) engine. The key concept here is extract-

ing a clean voice signal in very noisy environments while mitigating the impact

of unwanted signals such as background noise, echo, other speech sources and

reverberation by using speech enhancement techniques [17, 18]. However, differ-

ent speech communication applications have different preferences and approaches

that need to be tailored to the specified application [19]. In many applications,

distance from the speaker, noise characteristics and levels are important proper-

ties to consider not only in single channel techniques but also in multi-channel

techniques. In this section, three types of voice communication systems will be

discussed.
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2.2.1 Aviation and military applications
Speech enhancement algorithms play an important role for effective aviation

and military operations. They can be used either as a stand alone component to

improve the speech quality or as a pre-processor in a larger speech communication

system to enhance the input signal prior to further processing. Many research

works have been presented in the literature that develop speech enhancement

technologies. These technologies have been employed in different military and

civic applications, such as for communication between pilot and civil air traffic

controller (ATC) systems [20] or advanced air traffic control training system in

military applications [21].

Air travel is an important part of our lives. Ensuring the highest level of

passenger safety is a key goal for ATC authorities. The ability to capture the

information from the verbal messages which are used to predict the current state

of the airspace, or providing an early warning to avoid hazard helps to ensure

passenger safety [22]. The main problem for ATC is the presence of background

noise, which can dramatically degrade the intelligibility of the verbal communi-

cations since low quality messages delivered to the ATC may have fatal effects

[23]. Thus, speech enhancement algorithm can be used as a pre-processor of the

noisy speech signal before being fed to an automatic speech recognizer (ASR) in

order to increase the robustness to background noise. This helps to enhance the

recognition accuracy in adverse environments [24].

Speech enhancement plays an important role for the voice communication

systems in military applications, since such systems can improve communication

ability among people or between humans and computers in airborne environ-

ments. In most of these applications, improving quality and intelligibility of the

desired speech signal that has been degraded and interfered due to the harsh

noisy environments are highly desirable. In [25], an advanced headphone tech-

nology was presented for speech communication application in military aircraft

environment such as an air fighter cockpit. The main task of such a system is to

reduce the noise in the listener’s ears in very noise environments. In [26], a speech

enhancement system is proposed as a pre-processor in order to improve the over-

all performance of the automatic speech recognition (ASR) in high performance

fighter aircraft. Moreover, a developed speech enhancement system called speech

enhancement unit (SEU) sponsored by the Rome Air Development Center [27]

was proposed to improve the speech readability and reduce the operator fatigue.
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2.2.2 Biomedical applications
In industrial and heavy manufacturing workplaces such as mining, and con-

struction sites, the workers are exposed to high level of noise for prolonged time

which may result in a temporary or permanent hearing impairment. Hearing

protection device (HPD) is a good solution to avoid the hearing impairment in

very loud noise environments.

Noise control is the most used noise reduction technique for HPD. It can

be classified into passive and active techniques. Passive noise control is used to

reduce the ambient noise in noisy environment such as areas surrounding airports

in order to sleep conveniently or listen to music without disturbance [28]. This

kind of protection devices is sound reduction by noise-isolating materials such

as insulation, sound-absorbing tiles, or a muffler. The main drawback of such a

technique is the reduction of the background noise as well as the wearer ability to

hear speech. This affect the verbally communication between workers and reduce

the awareness of their surroundings and any kind of hazard [29].

In contrast, active noise control (ANC) reduces offensive (especially low fre-

quency portions) of the noise by using cancellation techniques. ANC systems use

microphones, speakers and digital signal processor. The main advantage of such

devices is their ability to increase the efficiency of verbal communication and re-

ducing the background noise while achieving a hearing protection [30]. However,

they also result in speech distortion while reducing background noise. Hence, the

essential crucial point in HPD is to develop a speech enhancement algorithm in

order to isolate and enhance the signals of interest while reducing the harmful

background noise to a safe level. This allows the wearer to remain aware of their

surroundings while protecting their hearing [31].

Over the last three decades, the number of people with hearing problems

have been increased around the world. According to World Health Organization

(WHO) research, more than 200 million people around the world have hearing

impairment issues [32]. It is a fact that hearing impaired people struggle to recog-

nize necessary content from the original speech that degraded by different sources

of noise, like interference, background noise and echo sounds. Hence, Assistive

Listening Devices (ALD) such as Hearing Aids (HA) and Choclear Implant (CI)

have been widely employed to provide assistance for people with hearing loss [33].

The main aim of ALD is to reduce the background noise while enhancing the use-

ful signals. The efficiency of such devices is strongly depend on the performance

of the signal processing for the speech enhancement. Current research has focused
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on the speech enhancement algorithms in order to improve the speech quality and

intelligibility of the hearing aid devices. This is achieved by contrasting speech

and noise through a masking function or a gain function which localizes and pre-

serves the speech components while attenuates the undesired noise [34]. This

assist people with hearing loss to have a better verbal communication in noisy

environments [35]

2.2.3 Commercial applications
A part from the biomedical or civic and military applications, speech enhance-

ment plays an important role to most of the commercial voice applications. One

of the most popular applications of voice communication systems is the use of

voice controlled devices (VCD). It can be defined as a device that is controlled

by the human voice which can be found in mobile phones, cars, internet search

engine and home appliances.

In the automotive industry, an increasing number of new models feature voice-

activated controlled system. Hyundai Motors has been one of the major man-

ufacturers at the forefront of bringing this new technology to the market. The

VCD allows the driver to issue voice commands in order to control the mobile

phone, play music, send messages, give GPS navigation addresses or coordinates

all the above via the cars inbuilt microphone and without being distracted. Auto-

matic Speech recognition (ASR) system is the main speech processing technique

employed to achieve this task. For a robust ASR system in highly noisy environ-

ments, the speech enhancement technique is utilized as a pre-processing operation

which helps to mitigate unwanted signals such as background noise, echo or rever-

beration while preserving the desired speech signal for further processing. This

improves the robustness of ASR system and enables the human-machine commu-

nication.

Another important commercial application for speech enhancement system

is the teleconferencing application. This growing area of communication have

attracted much attention in the last decades as it provides convenience and flex-

ibility. The ultimate intention of any conference system is to facilitate commu-

nication between remote participants with high speech quality and low latency

technique. High quality teleconferencing also saves the environment by providing

the means to have effective remote meetings without the need to meet face to

face. Speech enhancement is an enabling technology for this application. Depend-

ing on the size of the conference room, or type of the activities such as, formal

presentation or distance learning, different speech enhancement techniques with
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different number of microphones and configuration need to be used [36].

2.3 Speech Enhancement Techniques
The speech enhancement system based on the number of microphones can be

classified into single and multi-channel speech enhancement techniques. Multi-

channel techniques can provide an improved dereverberation, strong noise sup-

pression and interference rejection as compared to the single channel techniques.

Single channel speech enhancement technique however, is still useful because of

its simple implementation. Accordingly, we provide an overview of single and

multi-channel speech enhancement techniques.

2.3.1 Single channel speech enhancement techniques
In real-time applications like mobile communications and hearing aids, single

channel speech enhancement is usually preferred. The main formulation of such

technique is to estimate the speech signal that is degraded by uncorrelated addi-

tive noise. It often consists of one microphone used to estimate the clean speech

using the temporal and spectral information of the degraded speech signal.

Background noise reduction in such applications is a hard challenge since there

is no second channel used as a reference for the background noise. This makes the

noise reduction without distorting the desired speech a very difficult task. The

main advantage of single channel speech enhancement is having the potential to

provide a very economic solution to the noise reduction problem because these

systems are easy to build with less power usage and less computational complexity

than multi channel systems [31]. In addition to their usage as a stand alone noise

reduction system, single microphone system can be used in multi microphone

systems as post filter to the beamformer algorithms. Over the last 30 years,

the single channel speech enhancement techniques have attracted a significant

amount of attention. One of the popular methods has been introduced by Boll is

the spectral subtraction (SS) approach [37]. This non-parametric based approach

is formulated to estimate the clean speech spectrum by subtracting an estimate

of the noise spectrum from the observation spectrum. The main drawback of this

approach is the appearance of unnatural sounding artifacts known as musical

noise which is annoying and unpleasant to the listeners. Several methods have

been presented to overcome this problem such as [38], which used a low variance

spectrum estimator based on wavelet denoising that is thresholding the multitaper

spectrum of the speech. Combining multitaper spectrum estimation with wavelet

thresholding suppressed the musical noise and improved the speech quality.

Many important factors have to be taken into account when design a single
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channel speech enhancement, such as the observed noisy spectrum estimate, noise

estimate and the spectral gain function.

Literature review for framework of single channel speech enhance-

ment technique

The overall architecture of the single channel speech enhancement framework

consists of four blocks as shown in Figure 2.3. Each block is fulfilling a spe-

cific task to achieve the main goal of speech enhancement system. In the real

time applications, only the contaminated observation signal is known, while the

noise characteristics are unknown. As a consequence, the noise, a priori and/or a

posteriori signal to noise ratio (SNR) have to be estimated. In many implementa-

tions where an efficient real-time performance is required, the observed signal is

first transformed into a transform domain, then passed through an adaptive filter

known as spectral gain function in order to estimate the clean speech spectrum.

Thereafter, the reconstructed estimated signal is synthesized by using Inverse

Fast Fourier Transform (IFFT) and overlap add method.

Observation 
Spectrum 

Suppression 
Rule 

Inverse  
Transformation 

Observed signal Estimated speech 

Noise Estimate 

Figure 2.3: Framework of single channel speech enhancement.

Observation Spectrum

In the speech enhancement system design, it is important to consider the

fact that speech is non-stationary. A common way to process the signal in order

to reflect the non-stationarity of speech is to decompose the input signal into

short frames and transform the signal into subbands. The choice of the spectrum

transformation has a significant impact on the performance of speech enhance-

ment systems in terms of speech quality and computational complexity [39]. The

most popular choice for the spectral analysis model is the Short Time Fourier

Transform (STFT). This can be achieved by dividing the observed time domain

speech signal into short time frames, particularly, about (20-30) ms by using an
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analysis window. Thereafter, transform each time frame into the frequency do-

main by implementing Fast Fourier transform (FFT). The significant benefits of

using STFT is that it enables us to distinguish between speech and noise. This

is especially the case for voiced speech components which can be clearly detected

from the time varying STFT coefficients that known as frequency bins [40].

The main drawback of STFT is that its analysis results in frequency bands

with uniform resolution which is not well adapted to the non uniform resolution of

the human auditory system [41]. Given that the human auditory system performs

some form of frequency signal analysis under adverse listening conditions, using

human auditory models as a pre-processor in speech enhancement system can

improve the subjective quality and/or intelligibility for the enhanced speech[11].

Many proposals in the field of speech enhancement have been represented the

speech signals according to the human auditory system. For instance, in [42] a

noise reduction technique is investigated based on an auditory filter bank with

equivalent rectangular bandwidth (ERB) rate scale. The denoising technique is

simply working by multiplying the output of each auditory filter by a weighting

factor calculated from the updated signal statistics. The proposed technique

improved the speech quality while reducing the musical noise level.

Wavelet Packet Transform (WPT) is another non uniform decomposition

method that has been incorporated in many speech enhancement systems. The

main advantage of such a method is its ability to simplify the mapping of audio

signals into a scale that helps to preserve the time frequency related informa-

tion. In [43], a speech enhancement method proposed that employed a bark-

scaled WPT for higher time and frequency resolution than conventional WPT

and critical band decomposition, respectively. The proposed technique improved

the noise reduction while preserving the quality and intelligibility of the speech

components. In this dissertation, the STFT coefficients are transformed into crit-

ical bands when calculating the gain function to study its impact on the overall

performance.

Noise Estimation

Generally, all the speech enhancement methods are heavily dependent on the

noise power spectral density (PSD). Since the spectral power of noise is unknown

in advance, it has to be estimated from the noisy data. The quality of the noise

PSD estimate can have a major impact on the quality of the enhanced signal.

An inaccurate tracking of noise power changes can lead to an underestimation or

overestimation of the noise PSD. The result of the underestimation and overesti-

mation is speech distortion and/or low noise suppression. Therefore, an accurate
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noise PSD tracking is essential to obtain a speech signal estimate that is close

to the true speech signal. Characterization of noise PSD estimate must be per-

formed during periods of silence between utterances, thus requiring a stationarity

assumption of the background noise [3]. Accurate tracking and low computational

complexity are the most important properties of noise estimators and are very

challenging especially in adverse noise conditions such as traffic noise or babble

noise.

A variety of different methods for estimation have been proposed over the

years. The most established estimators are those based on voice activity detec-

tion (VAD). For relatively stationary noise, this estimator can be used to exploit

the speech pauses to estimate and update the spectral noise [44]. However, tun-

ing off VADs are not an easy task. Furthermore, VADs are not accurate under

low SNRs which means that often low speech energy segments are not detected.

Moreover, in non stationary case, VAD fails to track the fast power variations of

the noise source, which might lead to high under-estimation or over-estimation

over a relatively long time frame i.e. 100ms or so. Many other approaches have

been proposed to estimate the noise PDS in non stationary noise environments.

In [45], a minimum statistics (MS) based method was presented that tracks the

minimum of the observed signal over a time span of about 1-3 seconds. This

method provides an alternative of using a VAD for the noise estimation. The

main advantage of MS based method is its ability to track the low variance noise.

Morover, it is capable of updating the noise PSD during speech activity. However,

if the noise power rises during the time span, it will result in either underesti-

mate of the noise power or overestimate depending on the time span length. As

a consequence, these bias could result in musical noise or speech distortion when

the noise estimation is applied to the speech enhancement framework. In order

to reduce the tracking delay, a noise estimation based on DFT domain subspace

is proposed [46], which exploits the STFT data over a few frames and estimates

a correlation matrix over those frames and decomposes it using eigenvalue de-

composition. The largest eigenvalues are assumed to belong to the speech signal

subspace and the smaller eigenvalues are corresponding to the noise subspace.

The main advantage of this approach is its ability to track slowly time varying

power in the noise source at the cost of increased computational complexity.

For applications with complexity constraints such as mobile phone and hear-

ing aids, low complexity noise PSD estimator is a crucial part in the noise reduc-

tion algorithm. Thus, [47] proposed high resolution discrete Fourier transform

subspace based method, which achieves a reliable fast tracking noise estima-
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tion and provides the same performance as DFT method when combined with

the speech enhancement framework but with less complexity. Compared to MS

based method, this approach improves the speech enhancement performance such

as Signal-to-Noise Ratio (SNR) and Perceptually Evaluation of Speech Quality

(PESQ) for non-stationary noise source with low computational complexity.

Suppression Rule

Noise reduction can be defined as a suppression rule or a non-negative real-

valued spectral weighting gain to the observed signal spectrum. The main aim of

most of the suppression rules is suppressing the spectral components of low SNR

which are dominated by noise while spectral components of speech not affected.

As such, the average SNR of the speech can be increased. As mentioned before,

SS method is the most popularly used method due to its simplicity. But the

enhanced signal derived by the SS method is not optimal since the enhanced

speech is accompanied by an annoying perceptible tonal characteristic known

as musical noise, which affects the human listening. This noise is sometimes

more disturbing not only for the human ear, but also for speaker recognition

systems [48]. Many solutions have been proposed to overcome this shortcoming,

such as using the noise overestimation method which could help to eliminate the

musical noise but at the cost of increasing the speech distortion. Another possible

way is to introduce a gain floor parameter in order to limit variance of the gain

function at low SNR. This solution can help to reduce the musical noise but not

eliminate it [49]. In [14] this problem addressed by introducing knowledge on

human perception in the subtraction style speech enhancement process. This

helps to reduce the musical noise and improve the speech quality at low SNRs (

< 10 dB).

Since the computation of spectral weighting rules in speech enhancement are

often driven by the a posteriori and the a priori SNR [50], many gain functions

were thus proposed, including the Wiener Filter (WF) [51] and the Minimum

Mean Square Error short time Log Spectral Amplitude estimation (MMSE-LSA)

gain functions [52]. However, the performance of most weighting rules is domi-

nantly determined by the a priori SNR, while the a posteriori SNR acts merely as

a correction parameter in case of low a priori SNR [49]. Hence, the suppression

rule can be improved by modifying the a priori SNR estimation, but that is not

enough since the joint temporal dynamics between the weighting function and

the a priori SNR estimate have to be taken into account due to its significant

impact on the performance of the speech enhancement system.

In many applications, improving the gain function and a priori SNR estima-
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tion approach are not enough to improve the limited performance of the single

channel speech enhancement. More effective solutions are in high demand to add

more degree of freedom in the speech enhancement system design. One possible

solution is to increase the number of microphones in order to exploit the spatial

information in addition to the temporal and spectral properties.

2.3.2 Multi-channel speech enhancement technique
Multi-channel speech enhancement technique consists of microphone array

with elements located at diverse spatial positions. The main advantage of using

a microphone array is its ability to exploit the spatial information of the received

signal in addition to the temporal and spectral information. Since the speech

signal and noise are located in different positions in the room, the desired signal

can be spatially separated from the noise [53]. This provides extra information

about the desired signal characteristics and the noise properties [54].

In real time applications, speech and noise sources are usually generated from

different locations while occupying overlapping frequency bands. As such employ-

ing microphone array as a speech enhancement technique can solve this problem

by exploiting the spatial diversity. The main concept behind using a microphone

array is the extraction of the desired speech signal that originates from a region

of interest (ROI), and at the same time reducing incoming signals that originate

from different locations other than ROI.

Many considerations have to be taken into account to design a microphone

array system. One of these considerations is the microphone placement. Depend-

ing on the target applications, the geometry of the microphone array plays an

important role in the design process and should not be neglected. In general,

different array configurations have different overall performance. For example,

linear uniform microphone arrays are the most common array configurations that

are used due to their simplicity and ability to improve the spatial resolution. An-

other important consideration is the aperture (array) size. In order to improve

the overall performance at a given frequency, it is necessary to increase the array

size [55]. However, the aperture size is limited by the inter element spacing and

the number of microphones. According to the Nyquist sampling theorem, the

limit requires for the inter element spacing should be less than half a wavelength

to avoid the spatial aliasing due to the under sampling of the received signal.

The main drawback of under sampling is the appearance of the side lobes which

reduces the attenuation of background noise and the undesired signals. More-

over, increasing the number of microphones is not an efficient solution since in
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Figure 2.4: Framework of multiple channel speech enhancement.

many speech applications such as mobile devices impose a constraint on the array

size. Therefore, new techniques have been attracted some attention to solve these

problems such as superdirectivity [56] and sparse array design [57].

2.3.3 Beamforming
Beamforming is a temporal and spatial processor used in conjunction with

the microphone array to perform the spatial filtering. The fundamental concept

of the beamforming relies on the spatial and spectrotemporal discrimination of

the desired components in the presence of background noise, reverberation and

interfering signals. That means the main task of the beamformer is to extract

the signal that originated from the region of interest while attenuating all other

signals coming from different locations. Figure 2.4 illustrates a general framework

for the microphone array system.

Beamforming has been applied in wide variety of application fields such as

communication, radar, sonar, and biomedical. Generally, beamformers can be

categorized into two types depending on the bandwidth of the signals received by

the array: narrowband and broadband beamformers. Narrowband beamformer

is basically based on the spatial selectivity to filter out the undesired signal that

originated outside ROI. Delay and sum beamformer (DAS) is an example of the

narrowband beamformer. The main concept of this kind of beamformer is syn-

chronizing and adding. It is simply applying a complex weight to the received

signals at each microphone and adding them together [58]. If the received signals

are originating from ROI, they will be constructively summed and hence rein-

forced, and destructively summed otherwise. Radar is one of the most common

applications of narrowband beamformer. However, in many speech applications,
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Figure 2.5: Beam-pattern comparison between narrowband beamformer and

broadband beamformer for a linear microphone array.

it is required that the beamformer performance should be adequately constant

over the entire frequency band of the speech signal [54]. Filter and sum beam-

former is an example of the broadband beamformer. The main conception for

such beamformer is that the signal at each microphone is processed by a finite

impulse response (FIR) filter before they are summed together. Conceptually,

narrow band beamformers are simpler than the broadband beamformers since

they can exclude the temporal frequency variable and are based on the spatial

separation only [59]. However, for speech communication applications, narrow

band beamformers are ineffective since they cannot perform the same directivity

pattern for a wide range of frequencies which degrades the performance of the

beamformer. In addition, the unwanted signals will not be uniformly attenuated

over its entire spectrum. Figure 2.5 shows beam pattern comparison between the

narrowband and broadband beamformers for different frequencies. It illustrates

the ability of the broadband beamformer in providing frequency invariant beam

pattern while the narrowband beamformer gives a spatial resolution varies with

frequency which is not useful for broadband applications.

For indoor applications such as conference rooms, nearfield broadband beam-

formers are required as the speaker would be in the near-field region. Far-field

assumption in the design of near-field broadband beamformer will result in a

24



severe degradation in the overall performance [60].

Generally, the broadband beamformer design problem is to calculate the fil-

ter coefficients such that the actual response of the beamformer optimally fits

the desired response, which is specified depending on the target application. In

the literature, there are wide variety of optimization techniques dedicated to the

design of broadband beamformers such as Least Square (LS), Weighted Least

Squares (WLS) [61], [62] and Minimax [63], [64] criteria. One of the major diffi-

culties in the design of broadband beamformer especially in the near-field region

is that it becomes a large scale optimization problem when the spatial domain is

a two or three dimensional region: the solution for such a problem may not be

available due to the sheer size of the problem [65]. In [65] an interesting approach

is presented to address this difficulty and a solution to the problem is suggested

by decomposing the problem into two stages resulting in a significant reduction

in the memory usage and computational complexity.

2.3.4 Beamforming classifications
The design of beamformers can be divided into two types: data independent

and data dependent beamformers. The filter coefficients of the data independent

beamformer (also known as fixed beamformer) do not depend on the target source

or environment conditions and are chosen based on a pre-specified beam-pattern.

In contrast, the filter coefficients of the data dependent beamformer (known as

adaptive beamformer) are chosen based on the statistics of the received data to

optimize the beamformer output. In the following subsection, more details about

both types are discussed.

2.3.4.1 Fixed beamformer

In data independent beamformer design, the filter coefficients are pre-determined

to extract the desired signal regardless of the statistical properties of the source

signals. The main goal of such design is to obtain the spatial focusing on the de-

sired source that originated from the ROI, which yields suppression to unwanted

signals such as interference, or background noise. Different types of fixed beam-

formers include filter and sum [59], differential [66] and superdirectivity beam-

formers [67]. Figure 2.6 shows a fixed beamformer (filter and sum) structure.

The main advantages of fixed beamformers are their ability to avoid signal dis-

tortion with no requirement of control algorithms and relatively simple numerical

complexity with ease of implementation [68]. However, fixed beamformers have

limited noise suppression since it is not well adapted to the changing acoustic

environments. Therefore, many recent research have been interested in investi-
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gating fixed beamformer designs that are robust for adverse conditions such as

[69], which discussed the beamformer design for indoor applications. It formu-

lated the fixed indoor beamformer design as a minimax optimization problem

and investigated its sensitivity against adverse noisy environmnets. The numer-

ical experiments showed that the proposed designs are more effective in adverse

environments than classic fixed beamformers.

2.3.4.2 Adaptive beamformer

Data dependent beamformer design is based on the statistical properties of

the received signals. Compared to the data independent beamformers, adaptive

beamformer exploits spectrotemporal signal properties and spatial filtering with

an adaptive noise suppression algorithm. This typically leads to better noise

suppression performance than fixed beamformer. Moreover, such design is con-

tinuously updated in order to track current statistics of the room propagation

conditions. One of the most popular examples of adaptive beamformer is lin-

early constrained minimum variance (LCMV) beamformer [70]. The basic idea

of the LCMV beamformer is to apply a linear constraint to the weight vector in

order to control the beamformer output and maintain a constant gain and phase

to the desired signals. This helps preserving the desired signal and minimizing

the contribution of the noise signals and interference [59]. Another example of

adaptive beamformer is the generalized sidelobes canceller (GSC) [71], which is

an alternative unconstrained design problem of LCMV beamformer.

Figure 2.7 shows the general structure of generalized side lobe canceler. It
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consists of three parts, the first part uses a fixed beamformer to form a beam

towards the ROI in order to pass the target signal that originated from the same

region while the other signals are attenuated. Second part uses a blocking matrix

to form a null in the look direction in order to suppress the target signal and

pass only the noise signals and interference. The third part uses multi channel

adaptive filter to eliminate the noise signals that leaks through the sidelobes of

the fixed beamformer. The main drawback of GSC is being sensitive to modeling

errors caused by widespread speech source, steering delay errors, microphone

characteristics and room reverberation. This might lead to a cancellation of

the target speech signal since the block matrix fails to block the source signal

which causes a leakage to the adaptive noise canceller. Different methods have

been proposed to overcome this drawback, for instance, [72] proposed a method to

design the blocking structure using a spatial filtering technique in order to broaden

the look direction and therefore prevent the adaptive filter from cancelling the

target signal.

As mentioned earlier, modeling errors can severely degrade the performance of

the broadband beamformers. Any violation in assuming model can significantly

degrade the overall performance. As such, it is important to model these errors

and take them into account in the design procedure to reduce the sensitivity of

the designed beamformer.

2.3.5 Sensitivity of beamformer design
Most of the beamformer design approaches assume the ideal microphone char-

acteristics such as gain, phase and element position. This is not applicable in

practice, and can lead to a severe degradation in the overall performance with

respect to any mismatches in sensor characteristics, imperfect array calibration,

mismatches in element position, and local scattering [73]. Hence, the develop-

ment of an effective broadband beamformer design robust against microphone

array imperfections has long been an important topic of research.

Numerous methods have been proposed to introduce robustness to such errors.

One of these methods is sensor calibration [74]. This useful measure can be

accomplished by using adaptive noise canceler. The main advantage of such

method is the ability to improve directivity at low frequencies. However, this

solution is less practical since it is kept fixed during the beamformer operation

while in practice the microphone parameters change with time which necessitate

re-calibration.

One of the most common methods used to improve the robustness of the
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Figure 2.7: Structure of Generalized Sidelobe Canceler as an example of Adaptive

beamformer.

beamformer design is White Noise Gain (WNG) constraint. In such technique,

the filter coefficients are obtained by minimizing the beamformer output power

subject to this constraint. The main reason for imposing a constraint into the

optimization design is to limit the norm of the beamformer coefficients which

results in lower beamformer sensitivity against mismatches in microphone char-

acteristics. Moreover, this kind of constrained optimal solution represents a good

trade off between increased array gain and sensitivity to errors [75] [76]. Although

WNG constraint method provides a quick and simple method to develop a ro-

bust beamformer design, in practice it is hard to choose a suitable value for the

minimum desired level of WNG for a range of microphone mismatches [77].

Another method to develop the robustness of the beamformer design is by

exploiting the statistical knowledge about the error in the design procedure, us-

ing the probability of the microphone characteristics as weights. The beamformer

filter coefficients are then calculated by optimizing either the weighted sum of the

cost function, which is known as mean performance optimization technique, or

the maximum cost function for all the feasible characteristics, which is known as

the worst case optimization technique. When comparing the mean performance

and the worst case optimization techniques, the main advantage of the worst case

technique is no explicit knowledge of probability density function (PDF) of the
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Figure 2.8: Simulated room impulse response using Image Source Method (ISM)

at reverberation time T60 = 0.3 s

.

element characteristics are required in the design process. In addition, beam-

former designed using the worst case optimization technique is robust under the

worst case scenarios. On the contrary, such scenarios might not occur frequently,

that makes the beamformer design more pessimistic [78]. On the other hand,

mean performance optimization technique provides a robust beamformer design

operates for mean conditions. However, if a sudden variance happenes in the

microphone characteristics, the overall performance may deteriorate.

2.3.6 Dereverberation
More challenging than a classical noise reduction problem is the dereverbera-

tion problem. In indoor applications, the microphones are picking up the desired

signal as well as attenuated and delayed replicas of the desired signal known

as reverberant parts due to the reflection from the walls, ceiling and furniture.

This distorts the observed signal and degrade the intelligibility of the speech sig-

nal. Figure 2.8 shows the simulated Room Impulse Response (RIR) using Image

Source Method (ISM) at T60 = 0.3 s, It can be seen that it consists of the direct

path in addition to the attenuated and delayed reverberant path.

For many decades, acoustics researchers have been focusing on derverberation
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in speech communication in addition to noise reduction. A combined algorithm

for both techniques is a very difficult task since the speech signal and noise are

non stationary, the impulse response of the acoustic channel is very long and not

a minimum phase style [79]. Therefore, an effective algorithm that is applicable

in real time implementation is a very challenging task. Numerous techniques were

developed using single channel noise reduction algorithm. Among them is Wu and

Wang [80] who proposed a dereverberation technique combined of inverse filtering

method to reduce the early reverberation and spectral subtraction to reduce the

late reverberation. However, this technique did not take into account the noisy

environments, which is not applicable in real time implementation where the

speech signal is contaminated by the additive background noise and reverberation.

Moreover, it is not effective in high reverberation conditions with low direct to

reverberant ratio (DRR). To overcome these drawbacks, Saeed in [81] provides

an accurate dereverberation technique that is robust to non stationary noise and

high reverberation condition. It consists of two stages, in the first stage, it blindly

estimates the inverse filter of the room impulse response in order to attenuate the

early reverberation. In the second stage, it reduces the effect of the background

noise and the residual reverberation by introducing an effective two step spectral

subtraction method.

Derverberation using multi-microphone speech enhancement have attracted

more attention as a topic for further research for dereverberation and noise re-

duction since the spatial filtering facility of the beamforming process can separate

the reverberation part from the direct part. Habets in [82] proposed a two stage

beamforming approach by combining two different types of beamformer, DAS

and MVDR beamformers. The first stage exploits DAS beamformer to spatially

filtering the observed signal and derverberate it, while the second stage is rep-

resented as multichannel noise reduction method to estimate the desired speech.

The main advantage of this approach is its ability to trade off between the noise

reduction and derverberation with low speech distortion. [83] proposed an im-

proved dereverberation method based on generalized side lobe canceler scheme

combined with prewhiting approach for speech signal. The main concept is to

design a blocking matrix to additionally block the early reverberant part under

the assumption that the late reverberant part can be modeled as a diffuse noise.

A hybrid dereverberation method is proposed in [84] to provide superior speech

quality. In this method, correlation based blind deconvolution and modified spec-

tral subtraction are combined in order to suppress the tail of the inverse filter

reverberation and improve the quality of the inverse filtered speech signal. In this
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thesis, we address the joint dereverberation and noise reduction issue using multi

channel speech enhancement techniques.

2.4 Chapter Summary
In hands free communication, the speech quality is degraded due to the pres-

ence of several types of signal degradation such as background noise, echo, re-

verberation, which prevents the listener to have a relaxed communication. This

implies a growing demand for speech enhancement or noise reduction in order

to improve the speech quality and to reduce the listener’s fatigue. This chap-

ter presented various speech communication applications in different fields that

exploited speech enhancement techniques to improve their performance.

We have discussed two basic speech enhancement techniques as the state of

the art. The first technique is the single channel speech enhancement which

is the most popular technique used in the hearing aids and mobile phones. The

main advantages of single channel speech enhancement techniques consist of being

simple, easy to implement in hardware and cost effective in practice. A detailed

framework of single channel speech enhancement is presented to discuss the design

decision considerations that have to be taken into account in the design procedure

in order to preserve the speech components while reducing the musical noise.

The other speech enhancement techniques are multi channel speech enhance-

ment techniques, which employ both the spatial and temporal filtering processes

using a microphone array. Depending on the source signal and the target ap-

plications, there are different types and structure of beamformers. There is no

optimal beamformer design that fits the desired response under all the condi-

tions. It has to consider different parameters to optimize the best solution for

the application at hand such as the array geometry, number of microphones and

design specifications. Due to the sensitivity of most beamformer designs towards

mismatches in microphone characteristics, there are high demands for developing

beamformer design methods which are robust against deviations in microphone

characteristics.

Furthermore, in the last section of this chapter, a brief overview was given

of recent single and multi channel derverberation techniques with their main

advantages and disadvantages.
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Chapter 3

Single Channel Speech

Enhancement

This chapter addresses two problems of single-channel speech enhancement mainly,

preservation of weak speech components, and musical noise. A modified a pri-

ori SNR estimation technique is proposed to improve faster tracking when SNR

changes. This improvement of onset tracking is achieved by developing an adap-

tive weighting factor. As a consequence, better preservation of speech components

is achieved. Moreover, we utilize a critical band mapping for STFT analysis-

synthesises system in the speech enhancement framework to reduce the noise

variance which results in a significant reduction in musical noise and computa-

tional complexity.

The main work in this chapter have previously appeared in the following publications:

1. L. Nahma, P. C. Yong, H. H. Dam, and S. Nordholm, ”Convex combinationframework

for a priori snr estimation in speech enhancement,” in IEEE International Conference

on Acoustics Speech and Signal Processing (ICASSP), March 2017, pp. 4975-4979.

2. L. Nahma, P. C. Yong, H. H. Dam, and S. Nordholm, An adaptive a priori SNR estimator

for perceptual speech enhancement, submitted to EURASIP journal on Audio, Speech

and Music Processing 2019.
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3.1 Introduction
Noise suppression and speech enhancement are important techniques em-

ployed in many products, for instance, mobile phones, hearing aids, hearables

and assistive listening devices. Particularly, hearable devices have been poised to

assist people with difficulties in hearing in social environments. For noise sup-

pression and speech enhancement to work in those environments where acoustic

noise becomes more intrusive, it is important to maintain weak speech compo-

nents while still balance the amount of noise reduction. Accordingly, techniques

that can enhance speech signals while preserving weak speech components under

a large variety of acoustic scenarios are key to successful products [2, 3, 4]. In this

context, it is important to not only consider the speech but also the quality of

noise after suppression. Unnatural sounding background noise is very disturbing

for users of hearable devices or hearing aids.

Traditionally, speech enhancement techniques have been utilizing the fre-

quency domain for the processing where short-time Fourier transform (STFT)

have been used as a tool to process the input data using frame-based over-

sampling techniques [3, 5, 9, 10]. When deploying STFT the bandwidth is

constant for each frequency bin which is not the case for the human auditory

system. Thus a natural extension has been to use human auditory models in

the speech enhancement in order to improve the speech quality and intelligibility

[13, 12, 11, 14].

Human auditory spectrum model consists of a bank of bandpass filters which

follows a spectral bark scale or so-called critical bands [14, 15]. In [14], a standard

subtractive speech enhancement method is presented to eliminate the musical

artifacts in very noisy situations. The masking properties of the auditory system

are utilized to compute the subtraction parameter. In [16], a spectral subtraction

noise reduction method is proposed using a spatial weighting technique based on

the inhibitory property of the auditory system, which results in improving the

estimated speech while reducing the musical noise.

Speech enhancement algorithms calculate a gain function which is in most

cases a function of a posteriori signal to noise ratio (SNR) or a combination of

a posteriori and a priori SNR [85]. One classic speech enhancement algorithm is

the spectral subtraction (SS) method proposed by Boll [37]. This algorithm is the

most commonly used mainly due to its straightforward implementation and low

computational complexity. In this method, a clean speech estimate is obtained

by subtracting an estimated noise power spectrum from the noisy speech power
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spectrum while keeping the phase of the degraded speech signal. The rationale

for using the noisy phase is based on the assumption that the phase distortion

is not perceived by the human ear. Even so, the spectral subtraction method

embeds erroneous estimation of noise statistics resulting in an annoying artifact

in the estimated speech signal commonly known as musical noise which can be

masked using perceptual thresholds [86, 14].

In contrast, the log spectral amplitude minimum mean square error (LSA)

estimator proposed by Ephraim [52], does not directly inherit the musical noise

artifact. This estimator uses a priori SNR estimation based on a decision directed

estimation which involves a weighted sum of two terms, the a priori SNR estimate

from the previous frame and the maximum likelihood (ML) SNR estimate from

the current frame. This estimation technique reduces the variance of the a priori

SNR estimates particularly during noise frames and as a result, the musical noise

artifact is eliminated [87]. However, the emphasis of the previous frame in the

decision directed estimation has as a consequence that it leads to a slow adapta-

tion towards speech onsets and offsets. Moreover, as the decision directed (DD)

approach depends on the a priori SNR estimation in the previous frame, an extra

one frame delay is included during speech transient and results in a degradation

of the speech quality [10].

The a priori SNR estimation algorithm has been improved in many ways,

e.g. Breithaupt et al. [88] proposed the temporal Cepstrum smoothing (TCS)

technique for speech enhancement. This technique improves the accuracy of the

a priori SNR estimation by exploiting the a priori knowledge of speech and noise

signal and selectively smooth the maximum likelihood estimate in the Cepstral

domain. This allows the preservation of speech components while simultaneously

achieving high noise attenuation. However, this method has limitations under

low SNR conditions where the noise components cannot be separated from the

speech components. Suhadi [49] suggested a data-driven technique employing

two trained neural networks to estimate the a priori SNR with one for speech

and another for noise. The use of neural networks requires a substantial training

process for estimating the a priori SNR since the proposed method is not robust

estimator under different noise environment, which results in a degradation of

the estimated speech quality under non-stationary noise conditions. In Plapous

[89], a two-step noise reduction technique (TSNR) was presented in order to

refine the estimation of the a priori SNR and increase the estimator adaptation

speed. The main disadvantage when using this TSNR method is its sensitivity

to the selection of the gain function. Different choices of the gain function give
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very different estimation results. A modified decision directed approach (MDD)

proposed by Yong et.al. [10] matches the current noisy speech spectrum with

the current a priori SNR estimate rather than the delayed one. This reduces the

one frame delay for speech onsets but the tracking speed of the a priori SNR

estimation is still too slow compared to the true SNR change since the recursive

smoothing factor is constant and close to one.

In this chapter, we presented an improved a priori SNR estimation based on

modeling the speech absence probability with a sigmoid function. This sigmoid

function was used to control the adaptation speed of the a priori SNR estimation.

The sigmoid function operates as an adaptive weighting function that emphasizes

either the DD term or the ML estimate in the a priori SNR estimate update. The

rationale used when developing the weighting function was that for positive SNR

values the a priori and the a posteriori SNR estimates are almost the same.

Accordingly, by adding flexibility to select either of the two terms for SNR values

below or above a certain threshold we provide an effective way to achieve the

advantage of both estimates. By utilizing a threshold and the sigmoid shape, an

improved adaptation of the a priori SNR estimate is obtained, which results in

better preservation of weak speech components. The contributions we make in

this chapter are fourfold:

• The robustness of the proposed method by employing different gain func-

tions has been evaluated.

• An analysis of the effect for the key parameters to control the shape and

the slope of the adaptive weighting function has been added.

• A new evaluation technique is introduced which is called the modified Ham-

ming distance.

• More extensive listening tests and a larger evaluation test set have been

investigated.

The choice of gain function plays a role since it is included in the DD esti-

mation resulting in different performance. In this work, we propose an improved

a priori SNR estimation using different gain functions namely Wiener filter [90]

and MMSE-LSA gain function [52]. Since we are particularly interested in weak

speech components, a new evaluation technique referred to as the modified Ham-

ming distance has been proposed. In normal objective measures, weak speech

components are not emphasized since they have small amplitudes or small energy.

36



+ STFT 

M 

x 

Calculate 
𝐺𝐺𝐶𝐶𝐶𝐶 (i,m) 

A 

ISTFT 
y(n) Y(k,m) s(n) 𝑆̂𝑆(𝑘𝑘,𝑚𝑚) 𝑠̂𝑠(𝑛𝑛) 

k 
k 

𝐺𝐺(k,m) 
k 

k 

i i 

v(n) 

Y𝐶𝐶𝐶𝐶(i,m) 

Figure 3.1: Block diagram for the critical band processing.

The proposed modified Hamming distance is based on VAD decision information

in each time-frequency bin. Since it is binary, data scaling that depends on am-

plitude is avoided. Also in this work, we utilise a critical band mapping for STFT

analysis-resynthesises system in the speech enhancement framework to better fit

auditory listening experience. The proposed technique helps to reduce computa-

tional complexity since critical band processing combines K FFT frequency bins

into I critical bands instead (I� K).

This chapter is organized as follows. In Section 3.2, a single channel speech

enhancement framework with critical band processing is developed. Section 3.3

shows the decision-directed based a priori SNR estimators. In Section 3.4 the

proposed a priori SNR estimation approach is developed, and an investigation

into the effect of the key parameters of the sigmoid function is presented. In

Section 3.5 the objective and subjective quality measurements used for evaluation

are outline. Section 3.6 presents the results of the experimental evaluation and

Section 4.6 concludes the chapter.

3.2 Critical band speech enhancement
A natural way to process speech signals is to use a perceptual filter bank

[39] since this would possibly improve the performance of the speech processing

system by employing the inhibitory property of the human auditory system and

combined with the speech enhancement algorithms [14]. There are many percep-

tual frequency warping scales used for the speech processing [91] and [92]. In this

work, we employed a bark scale filter bank with a non-uniform resolution and

incorporated it into a speech enhancement framework with the proposed a priori
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SNR estimation method. We assume that the speech and noise are additive and

uncorrelated, thus the noisy speech signal is given by

y(n) = s(n) + v(n) (3.1)

where s(n) and v(n) denote the clean speech signal and noise, respectively. The

block diagram for critical band speech processing is described in Figure 3.1.

In the sequel, we will outline the details of the processing. In the first step

the noisy signal is transformed to the time-frequency domain by applying STFT

with K frequency bins

Y (k,m) = S(k,m) + V (k,m) (3.2)

where k is the frequency bin index and m is the time frame index. Then, in order

to transform the output from the STFT domain Y (k,m) into the critical band,

an approximate analytical function is used to express the transformation between

frequency f (in Hz) and critical band z (in bark scale), which is defined by [93]

f = 600 sinh
(z

6

)
. (3.3)

The noisy spectrum is expressed in terms of the critical band numbers i and frame

index m by combining the FFT frequency bins into I critical bands as follows

YCB(i ,m) =

K/2+1∑
k=1

M(i, k) |Y (k,m)| (3.4)

where i = [1, 2, · · · , I]. The number of critical bands I is chosen with respect to

the bark scale [93]. Here, M(i , k) is the critical bandpass filter coefficients which

is defined as [94]

M(i, k)=


10(z(k)−zc(i)+0.5) z(k) < zc(i)− 0.5

1 zc(i)−0.5<z(k)<zc(i)+0.5

10−2.5(z(k)−zc(i)−0.5) z(k) > zc(i) + 0.5

(3.5)

where zc(i) represents the center frequency of the ith critical band. The main task

of the speech enhancement scheme is to enhance the speech signal by applying a

specific spectral gain function to the noisy spectrum. GCB(m) denotes the gain

vector in critical band for the mth frame

GCB(m) = [GCB(1,m), GCB(2,m), ..., GCB(I,m)]T
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There are many different gain functions proposed in the literature. Common

gain function often can be expressed as a function of the a priori SNR ξ(i,m),

such as WF method which can be defined as [90]

GWF,CB(i,m) =
ξ(i,m)

1 + ξ(i,m)
(3.6)

with ξ(i,m) denoting a priori signal to noise ratio SNR, which is defined as

ξ(i,m) =
λs(i,m)

λv(i,m)
(3.7)

where λv(i,m)=E
[
|V (i,m)|2

]
and λs(i,m) = E

[
|S(i,m)|2

]
are the power spec-

tral density of noise and clean speech, respectively.

MMSE-LSA [52] is another widely used speech estimator, which is obtained

by minimizing the mean square error of the logarithm of original and enhanced

speech spectra, and can be defined as a function of the priori SNR and the

posteriori SNR, given by

GLSA,CB(i,m) =
ξ(i,m)

1 + ξ(i,m)
exp

1

2

∞̂

νk

e−t

t
dt

 (3.8)

where the lower limit νk of the integral is given by

νk =
ξ(i,m)

1 + ξ(i,m)
γ(i,m) (3.9)

and γ(i,m) denotes a posteriori SNR defined as

γ(i,m) =
|YCB(i,m)|2

λv(i,m)
. (3.10)

Once the gain vector GCB(m) in critical band is calculated, it is interpolated

back to the STFT resolution G(m) through an interpolation matrix A,

G(m) = AGCB(m) (3.11)

where the A matrix can be defined by least square approximation as A =

(MTM)−1MT and M denotes the matrix with elements M(i, k). From empirical

findings, better results are obtained by simplifying the reconstruction matrix as

A = diag

(
1

1M

)
MT

39



where 1 is 1× I row vector. The estimated speech in the STFT domain is then

reconstructed by applying the interpolated gain function G(k,m) on the noisy

signal in Eq. (3.2)

Ŝ(k,m) = G(k,m)Y (k,m). (3.12)

Finally, the speech estimate is obtained by taking the inverse STFT of the

enhanced speech and using the overlap-add method

ŝ(n) = ISTFT
(
Ŝ(k,m)

)
. (3.13)

3.3 Conventional a priori SNR estimation
In many speech enhancement algorithms, a priori SNR estimation is a domi-

nant part of the gain function calculation as in Eq. (3.6) and Eq. (3.8). Inaccu-

racies in the estimation of the a priori SNR can lead to audible speech distortion

and musical noise. The state-of-the-art method to estimate the a priori SNR

from noisy speech while avoiding the musical noise is the decision directed (DD)

approach [50]. In this method, the a priori SNR estimation is expressed as a

weighting average of the amplitude estimate at the previous frame and the max-

imum likelihood estimate of the a priori SNR at the current frame. This method

is defined by

ξ̂DD(i,m) = β
|Ŝ(i,m− 1)|2

λ̂v(i,m− 1)
+ (1− β)P [γ̂(i,m)− 1] (3.14)

where Ŝ(i,m− 1) and λ̂v(i,m− 1) denote the amplitude estimate and the noise

estimate at the previous frame, respectively. P is the half wave rectification to

keep the a priori SNR value positive, and 0 < β < 1 denotes a weighting factor

that controls the trade-off between the a priori SNR from previous frame and the

posteriori SNR at current frame.

In this method, by setting the weighting factor close to 1, two different be-

haviors of the a priori SNR estimation can be observed as explained in [87] . In

the noise frames where the estimate a posteriori SNR is lower than or close to 0

dB, the a priori SNR estimate corresponds to a scaled version of the a posteriori

SNR since the second term of the DD approach is equal to zero. By substituting

Eq.(3.10) and Eq.(3.12) into Eq.(3.14), a priori SNR estimation can be expressed

by

ξ̂↓DD(i,m) ≈ βG2
CB(i,m− 1)γ̂(i,m− 1).
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This behavior reduces the variations in the a priori SNR estimate and thus reduces

the amount of musical noise produced. In the frames with speech onsets, the a

priori SNR follows the a posteriori SNR from the preceding frame as given by

ξ̂↑↑DD(i,m) = β
G2

CB(i,m−1)|YCB(i,m−1)|2

λ̂v(i,m)
+(1−β)P [γ̂(i,m)− 1]

≈ βG2
CB(i,m− 1)γ̂(i,m− 1) +(1−β)P [γ̂(i,m)−1]

where the second term that indicates the ML estimate would only have little

impact on the estimation process since β is very close to 1. In this case, the

tracking of change in the a priori SNR estimate is slow since the a priori SNR

estimation mainly depends on the posteriori SNR estimation in the previous

frame. This behavior can lead to speech transient distortion. In order to overcome

this problem, the authors in [10] proposed a modified decision directed (MDD)

approach. In that method, the a priori SNR estimate at the current frame is

matched with the a posteriori SNR in the current frame instead of the previous

one. Thus the one frame delay is reduced which results in less speech distortion

comparing to the conventional DD approach. The MDD a priori SNR estimate

is given by

ξ̂MDD(i,m) = β
G2

CB(i,m− 1) |YCB(i,m)|2

λ̂v(i,m)
+ (1− β)P [γ̂(i,m)− 1] . (3.15)

In addition, to maintain the advantage of the DD approach in eliminating the

musical noise, the magnitude square of noisy signal has been smoothed by using

first order recursive smoothing procedure as given by [10] to reduce the variance

of the a priori SNR estimate. The first order recursive averaging of the noisy

signal is given by

λy(i,m) = αyλy(i,m− 1) + (1− αy) |YCB(i,m)|2 (3.16)

where αy is a smoothing constant. The smoothed |YCB(i,m)|2 is replacing the

instantaneous power estimate in the a posteriori SNR in Eq. (3.10).

3.4 Proposed a priori SNR estimation
The drawback of the MDD approach is that the fix weighting factor β, e.g.

β = 0.98, reduces the influence from the second term towards the a priori SNR

update resulting in a scaled down a priori SNR estimate when compared to the

true a priori SNR. In the light of this, we can conclude that the fix weighting
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factor β gives low variability of the gain function during noise only periods but

does not provide a fast change of the gain function when a speech utterance

comes. Thus it is desirable to replace the fix weighting factor β with an adaptive

weighting factor β(i,m).

Recognizing that the speech absence probability is a key for the weighting

according to Eq. (3.15), we model the speech absence probability based on a

sigmoid function. As a remark, if the CDF is a sigmoid function, the pdf is similar

to a Gaussian pdf but with larger tails which is plausible for speech applications.

The sigmoid consists of two parameters, σ to control transition speed and ρ to

determine the threshold for active speech signal versus noise only. The selection

of these parameter values are based on the observation that the a priori SNR

equals the posterior SNR for high SNRs. An adaptive weighting function β̂(i,m)

is proposed based on the a posteriori SNR and is given by

β̂(i,m) =
β0

1 + exp[−σ(γ̃(i,m)− ρ)]
(3.17)

where β0 is a constant. The modified a priori SNR estimation approach is then

defined by

ξ̂prop(i,m) = β̂(i,m)
G2

CB(i,m− 1) |YCB(i,m)|2

λ̂v(i,m)
+(1− β̂(i,m))P [γ̃(i,m)− 1]

(3.18)

where γ̃(i,m) is the a posteriori SNR estimate employing the smoothed estimate

of the noisy speech from Eq. (3.16). Figure 3.2 describes the computation of

the gain function by using the proposed method with an adaptive weighting

function. In the following, we investigate the effect of two parameters σ and ρ on

the proposed adaptive weighting function β̂(i,m).

To retain similar property as a constant weighting factor β for speech only

and the noise only frames, we impose constraints on β̂(i,m) as:

β̂(i,m) =

{
β, for noise only frames or when γ̃(i,m) = 1

1− β, for speech only frames or when γ̃(i,m) = γu, γu >> 1.

(3.19)

For β = 0.98, the constraints in Eq. (3.19) lead to
β0

1+exp(−σ(1−ρ))
= 0.98

β0
1+exp(−σ(γu−ρ))

= 0.02
(3.20)
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Figure 3.2: Block diagram of the spectral gain function computation using the

proposed a priori SNR estimation method.

or  σ (1− ρ) = − ln
(
β0

0.98
− 1
)

σ (γu − ρ) = − ln
(
β0

0.02
− 1
)
.

(3.21)

We now calculate the parameters σ and ρ directly for different levels of γu.

From Eq. (3.21), we have

1− ρ
γu − ρ

=
ln
(
β0

0.98
− 1
)

ln
(
β0

0.02
− 1
) . (3.22)

As the right terms in Eq.3.21 β0
0.98

and β0
0.02

have to be larger than 1, β0 has to be

slightly larger than 0.98. Through speech enhancement experiments, good results

were obtained with β0=0.983. As such, the parameter ρ can be obtained from γu

as

ρ =
1− γu

ln( 0.983
0.98
−1)

ln( 0.983
0.02
−1)

1− ln( 0.983
0.98
−1)

ln( 0.983
0.02
−1)

. (3.23)

The parameter σ can be calculated as

σ =
− ln

(
0.983
0.98
− 1
)

1− ρ
. (3.24)
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Figures 3.3 and 3.4 show the pdf of a posteriori SNR for different noise types,

mapped with a different adaptive smoothing factor calculated at several posteri-

ori SNR values γu: (i) at γu=5 dB SNR with σ = −4.469, ρ = 2.295, (ii) at γu=7

dB SNR with σ = −2.408, ρ = 3.402, (iii) at γu=9 dB SNR with σ = −1.391,

ρ = 5.159 and (iv) at γu=15 dB SNR with σ = −0.315, ρ = 19.344. Adap-

tive smoothing factor with different parameters (slopes and means) can control

the trade off between the musical noise and the ability to preserve weak speech

components. In pink and white noise cases, SNR estimate in noise only case

is distributed approximately between 0 and 1. According to Eq. (3.19), adap-

tive smoothing factor should be almost β during this period to reduce the SNR

variance.

It can be noted from Figure 3.3 (first two plots on the left), where the adap-

tive smoothing factor is almost (0.983), which explains the ability of the proposed

method to maintain the advantage of the conventional decision directed and mod-

ified decision directed method in reducing the musical noise at low SNRs. More-

over, in the factory noise case where the SNR estimate is distributed between

0 and 2 during noise only period, the proposed smoothing factors designed at

βu = 9 and βu = 15 reached the imposed constraint (0.983) during the noise

variance, whereas adaptive factors designed at βu = 5 and βu = 7 starts reducing

during noise period which leads to increase the musical noise. However, for the

babble noise scenario as shown in Figure 3.4, figure on left shows the PDF of a

posteriori SNR estimate during noise only period. It can be observed that the

PDF has a large spread because of the non-stationary character of the babble

noise, which means that an adaptive smoothing factor designed at higher a pos-

teriori SNR γu is required to reduce the SNR variance during noise only frame

and reducing the effect of the musical noise. From the figure, it can be clearly

noted that adaptive smoothing factor designed at γu = 15dB is the best among

the other designed factors since it attained a higher value over the a posteriori

SNR distribution during the noise only frame.

In addition, it can be noted that the weighting factor is inversely proportional

to the a posteriori SNR γ. Thus during the noise frames, γ takes small values.

Consequently, the resulting weighting factor β̂(i,m) is close to 1, which means

that the proposed method will have the identical behaviour as the DD and the

MDD methods. This explains the ability of the proposed method to maintain the

advantage of DD method in reducing the musical noise in the low SNRs. Since

the second term is zero, the a priori SNR estimate in noise frames will be given

by
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Figure 3.3: Histogram of a posteriori SNR estimate for different background noise

(1st row) for pink noise, (2nd row) for white noise at 9th critical band mapped with

adaptive smoothing factor calculated with different sets of parameters ( adaptive

smoothing factor calculated at (i) γu=5 dB, (ii) γu=7 dB, (iii) γu=9 dB and (iv)

γu=15 dB). Left figure for noise period only and right figure for speech and noise

period.
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Figure 3.4: Histogram of a posteriori SNR estimate for different background

noise (1st row) for factory noise and (2nd row) for babble noise at 9th critical

band mapped with adaptive smoothing factor calculated with different sets of

parameters ( adaptive smoothing factor calculated at (i) γu=5 dB, (ii) γu=7 dB,

(iii) γu=9 dB and (iv) γu=15 dB). Left figure for noise period only and right

figure for speech and noise period.
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ξ̂↓prop(i,m) = β̂(i,m)G2
CB(i,m− 1)γ̂(i,m).

During speech activity frames, the resulting weighting factor takes values close

to 0. In that scenario the first term of Eq. (3.18) is almost negligible, the a priori

SNR estimate in speech activity frames will correspond to a smoothed version of

maximum likelihood estimate as given by

ξ̂↑↑prop(i,m) = (1− β̂(i,m))P [γ̃(i,m)− 1].

During the speech transition, the weighting factor decreases with the increment

of the instantaneous SNR. As a consequence, the a priori SNR estimation cor-

responds to a combination of the first and second terms in Eq. (3.18) as given

by

ξ̂↑prop(i,m) = β̂(i,m)G2
CB(i,m− 1)γ̂(i,m) + (1− β̂(i,m))P [γ̃(i,m)− 1] .

From Eq. (3.18), it can be noticed that the second term will have a varying

impact on the a priori SNR updating process depending on the instantaneous

SNR estimate. It is here the method makes a difference in tracking any abrupt

SNR changes. The apparent result is that more speech components are preserved

as well as a reduction in the speech transient distortion.

3.5 Objective and subjective quality measure-

ments
Speech quality evaluation can be classified into two measurements categories:

objective measurement and subjective measurement [3]. The first category is

based on the comparison between the original and the enhanced speech signals.

Many objective measurements have been proposed in the literature such as per-

ceptual evaluation of speech quality measure (PESQ) [95, 96], segmental SNR

measure SNRseg [97, 98] and kurtosis ratio measure (KurtR) [99]. In addition,

we propose a new evaluation method based on Hamming distance to measure

the weak speak components. The Hamming distance is a GF(2) measure that

takes into account speech presence or not for each time frequency point. By

measuring the difference between clean speech binary mask and processed speech

binary mask the measure takes into account the presence of speech in each time

frequency bin without amplitude weighting.

Perceptual evaluation of speech quality measure (PESQ) is the speech quality

assessment recommended by ITU-T P.862 for its ability to predict the speech
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quality with a high correlation versus subjective listening tests [100]. PESQ

implementation consists of first, estimating the bark spectrum of the input and

the degraded signals by using a perceptual model in order to compute the loudness

spectra, and then compare between them to predict the perceived quality of the

degraded signal. This objective means of quality assessment is expressed in terms

of the mean opinion scores (MOS), measured from 1 to 5, where higher scores

indicate higher quality. Here, we are using the implementation provided by Loizou

[3].

Time domain based segmental SNR is one of the widely used objective mea-

sures to evaluate the performance of speech enhancement algorithms, which is

formed by averaging the frame level of SNR estimate [97] as given by

SNRseg =
10

M

M−1∑
m=0

log10

‖s(m)‖2

‖s(m)− ŝ(m)‖2 (3.25)

where M denotes the number of frames, while ŝ(m) and s(m) are the estimated

and original speech vectors, respectively in time domain. The segmental SNR

values are limited in the range of [−10, 35] dB in order to exclude frames with no

speech.

Kurtosis ratio measure is a mathematical measure used to calculate the mu-

sical noise, which is defined by the estimated speech signal and the noisy speech

signal during noise frames only [99]. In order to detect the speech silence and

presence, a multi decision sub band VAD (MDSVAD) is employed [101], given

two hypothesis H0(k,m) and H1(k,m) indicate the speech absence and presence,

respectively. MDSVAD is given by

D(k,m) =

 1 H1(k,m)

0 H0(k,m)
(3.26)

and V (k,m) = 1 − D(k,m) denotes the activity detection of the noise periods.

Kurtosis ratio can be defined by

KurtR = E

{
κŝ(k)

κy(k)

}
(3.27)

where κŝ(k) and κy(k) indicate the kurtosis of the enhanced signal and the noisy

signal at the kth frequency bin, respectively. They are defined as follows

κŝ(k) =

M∑
m=1

∣∣∣Ŝs(k,m)V (k,m)
∣∣∣4{

M∑
m=1

∣∣∣Ŝs(k,m)V (k,m)
∣∣∣2}2 − 2 (3.28)
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and

κy(k) =

M∑
m=1

|Y (k,m)V (k,m)|4{
M∑
m=1

|Y (k,m)V (k,m)|2
}2 − 2. (3.29)

Based on the MDSVAD [102], we propose an evaluation method to measure

the capability of the speech enhancement technique for preserving more weak

speech components, referred to as the modified Hamming distance. It is deter-

mined by the difference of the time-frequency points detected using the MDSVAD

[102] applied on the clean speech signal and the estimated speech signal. The

detection of the MDSVAD decisions for the noisy speech signal and estimated

speech signal was performed only based on full band VAD decisions for clean

speech frames. The rationale for developing this new measure is that the result is

amplitude invariant which is important when measuring weak speech components.

Those weak speech components would otherwise be overshadowed by strong am-

plitude components. The modified Hamming distance measure is calculated as

HD =
2

KM

M∑
m=1

K/2∑
k=1

(
D̂(k,m)⊕D(k,m)

)
. (3.30)

where ⊕ performs a logical XOR operation that returns output containing ele-

ments set to either logical 1 (true) or logical 0 (false). Since the used signals

are real, the FFT will be symmetrical, thus we used half of the FFT length and

then multiply it by 2. Here, D(k,m) denotes the voice activity detection of the

clean signal and D̂(k,m) denotes the MDSVAD of the estimated speech signal

conditioned on clean speech detected which is computed initially by testing each

sub-band independently for speech activity using the decision device, then ana-

lyzed by further logic to reduce false-alarm. A lower HD score indicates more

weak speech components are preserved.

The second category of evaluations is based on the subjective listening tests,

which are considered more accurate and reliable [103]. For the subjective listening

test, a total of 10 subjects (5 males and 5 females) were recruited to compare and

rate between the estimated speech signals, the noisy signals and the clean speech

signals under different SNR conditions. Three different utterances from 1 female

and 2 male speakers have been concatenated and used for this test. They were

corrupted with pink noise or babble noise at 10 dB SNR. The listening test was

performed in a quiet office room using a DT-880 Beyerdynamic open air head-

phones. A laptop was connected through the USB interface to the headphones

49



Rating Description

Speech

5 very natural, no degradation

4 fairly natural, little degradation

3 somewhat natural, somewhat degraded

2 fairly unnatural, fairly degraded

1 very unnatural, very degraded

Background Noise

5 not noticeable

4 somewhat noticeable

3 noticeable but not intrusive

2 fairly conspicuous, somewhat intrusive

1 very conspicuous, very intrusive

Musical noise

5 not noticeable

4 somewhat noticeable

3 noticeable but not intrusive

2 fairly conspicuous, somewhat intrusive

1 very conspicuous, very intrusive

Table 3.1: Scale description of the listening test criteria

via a Topping VX-1 amplifier to provide good quality audio and consistent sound

level. The sound clips were embedded in a PowerPoint document which was also

used for recording the results. The listeners were required to listen to the sen-

tences enhanced by the different methods (DD, MDD and the proposed method)

and rate them on a scale goes from 1 to 5 by steps of 1. This rating takes into

account three criteria: speech quality, background noise, and musical noise [3].

The ranking instruction can be found in Table 3.1, which describes the scale of

the criteria used in the listening test. The clean speech signals and the noisy

signals were included in the listening tests as references.

3.6 Experimental results and discussion

3.6.1 Experimental setup
In this section, extensive experiments are conducted to evaluate the perfor-

mance of the proposed approach in different scenarios. First, the performance of

the proposed method is compared to the performances of the DD approach [50]
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and the MDD approach [104]. Second, we demonstrate the robustness of the pro-

posed a priori SNR estimator by employing different gain functions. The speech

sequences and noise are extracted from the NOISEUS and NOISEX database,

respectively [3]. In this work, 30 speech sentences are used (15 male speakers and

15 female speakers). Four different background noise types are employed which

include pink noise, white noise, factory noise and babble noise. The noisy signal

is obtained by combining the speech sequences with background noise at input

SNRs of 0, 5 dB and 10 dB. All the sequences have been re-sampled to fs = 8000

Hz. An STFT analysis with a length of K = 512 is used with a frame rate of

R = 256 and square-root Hanning window. Based on these values, the frequency

bins of the noisy spectrum are then grouped into I = 17 critical bands as shown

in Eq. (3.4).

Minimum mean square error (MMSE) noise power estimator based on the

speech presence probability [105] was employed to estimate the noise PSD for

all the a priori SNR estimators. The value of the smoothing constant in Eq.

(3.16) was chosen as αy = 0.3. The fixed weighting constants for DD and MDD

approaches were chosen as β = 0.98. As discussed in Section 4, the level γu in Eq.

(3.19) for the adaptive smoothing factor should be chosen lower for stationary

noise when compared with non-stationary noise. As such, for pink noise, white

noise, and factory noise, an adaptive smoothing factor is obtained with γu = 9

dB, resulting in σ = −1.391 and ρ = 5.159. For highly variance background noise

such as babble noise, the adaptive smoothing factor is obtained with γu = 15 dB

resulting in σ = −0.315 and ρ = 19.344 to keep the weighting factor close to 1

during noise frames, which helps to increase the robustness of the a priori SNR

estimation against the SNR fluctuations.

3.6.2 Evaluation the effect of the bark scale frequency

resolution on the noise characteristics
An extensive experiment is conducted to prove the efficiency of the proposed

bark scale based frequency method in eliminating the musical noise. For this

experiment, we have fitted Normal (Gaussian) distribution [106] and Weibull

distribution [107] to histograms of the noise data before and after the frequency

analysis. Figure 3.6 shows comparisons between the histogram and the fitted

distributions for different types of noise at frequency 546.87 Hz and the 6th critical

band. In the pink and white noise cases, it can be clearly seen that the noise

histograms fit well to a Gaussian distribution which is the common assumption

in most noise estimation methods. This can help to reduce the musical noise by
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Noise Type Variance before frequency analysis Variance after frequency analysis

Pink 0.1077 0.0387

White 0.0967 0.0080

Factory 0.1418 0.0789

Babble 0.2535 0.1590

Table 3.2: Noise variance comparison before and after frequency analysis and for

different noise types.

reducing the bias and provide a more precise estimate. Whereas in factory noise

case and babble noise case, although Gaussian distribution does not really fit the

noise distribution after the frequency analysis, it can be seen that the distribution

becomes more concentrated with shorter tail compared to the noise distribution

before the bark scale transformation.

In order to highlight the ability of the bark scale based processing in reducing

the effect of the musical noise, a variance comparison of the noise PDF before

and after the bark scale transformation is presented for different noise types as

shown in Table 3.2. It can be clearly observed the ability of the bark scale based

processing to significantly reduce the noise variance. This helps to reduce the

musical noise effect and make it unnoticeable.

3.6.2.1 Evaluation of a priori SNR estimation

Figure 3.8 demonstrates the behaviours of the decision directed (DD), modi-

fied decision directed (MDD) and the proposed a priori SNR estimators for 10 dB

input SNR and under pink, white, factory and babble background noise condi-

tions, respectively. Speech enhancement is performed by using Wiener filter [90]

as shown in the sub-figures on the left side, and MMSE- LSA [52] as shown in

the sub-figures on the right side. It is clearly observed that during noise only pe-

riod, the conventional decision directed and modified decision directed methods

provide a smoothed version of the a posteriori SNR. The proposed method has

identical behavior as DD and MDD since β̂ is very close to 1, which is aligned

with Eq. (3.19). This explains the ability of the proposed method to eliminate

the musical noise. During speech onset, the proposed a priori SNR estimation

with different gain functions is responding more quickly to abrupt changes in

the a posteriori SNR when compared to DD and MDD a priori SNR estimators.

Moreover, it can be observed that both DD and MDD a priori SNR estimation

follow the a posteriori SNR with a delay in the speech onset frames which results

in a speech distortion, whereas the proposed a priori SNR estimation reduces the
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Figure 3.5: Evaluation of bark scale based frequency analysis at 6th critical band

under different background noise: 1st row for pink noise and 2nd row for white

noise.
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Figure 3.6: Evaluation of bark scale based frequency analysis at 6th critical band

under different background noise: 1st row for factory noise and 2nd row for babble

noise.
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Gain SNR PESQ SNRseg HD KurtR

DD MDD Prop DD MDD Prop DD MDD Prop DD MDD Prop

WF 0 1.8228 1.8174 1.9736 −0.9732 −0.8229 0.2273 0.7679 0.7737 0.7270 1.0430 1.0043 1.0227

5 2.2936 2.3124 2.3994 1.6672 1.9328 3.0328 0.6633 0.6768 0.6085 1.2102 1.0450 1.1471

10 2.6543 2.6886 2.7450 4.5326 4.8639 5.9542 0.5192 0.5396 0.4623 1.5797 1.1759 1.4099

LSA 0 1.8461 1.8796 2.0226 −1.0655 −0.6178 0.3294 0.7334 0.7579 0.7082 1.2838 1.0150 1.0604

5 2.2692 2.3679 2.4450 1.4332 2.1557 3.1458 0.5960 0.6511 0.5803 1.7229 1.0795 1.2286

10 2.6157 2.7528 2.7999 4.3379 5.1146 6.0884 0.4318 0.5056 0.4312 2.0138 1.2402 1.6022

Table 3.3: Mean objective results for pink noise.

Gain SNR PESQ SNRseg HD KurtR

DD MDD Prop DD MDD Prop DD MDD Prop DD MDD Prop

WF 0 1.4678 1.4472 1.6641 −0.9955 −0.8243 0.4638 0.7912 0.7954 0.7612 1.0313 1.0072 1.0245

5 2.0679 2.0687 2.2245 2.0611 2.4195 3.7346 0.7066 0.7166 0.6644 1.1361 1.0438 1.1115

10 2.5211 2.5368 2.6171 5.3278 5.8086 7.2629 0.5940 0.6075 0.5513 1.3542 1.1430 1.3116

LSA 0 1.5311 1.5254 1.7159 −1.0150 −0.5611 0.6021 0.7674 0.7836 0.7478 1.1554 1.0160 1.0480

5 2.0948 2.1295 2.2749 1.8198 2.6550 3.8684 0.6598 0.6991 0.6442 1.4148 1.0674 1.1583

10 2.5062 2.5913 2.6604 5.0773 6.0663 7.3952 0.5341 0.5873 0.5290 1.7485 1.1754 1.3757

Table 3.4: Mean objective results for white noise.

delay and preserves more weak speech components.

3.6.2.2 Objective results

The performance of the proposed a priori SNR estimation method is evaluated

and compared to the performance of the conventional decision directed DD and

modified decision directed MDD methods for different noise types and under

various SNR conditions. The clean speech is corrupted by pink, white, factory

and babble noise at 0, 5 and 10 dB input SNRs.

Tables 3.3-3.6 show the mean objective results for the stationary background

noise cases (pink and white), and non-stationary background noise cases (fac-

tory and babble), respectively, with DD, MDD and the proposed a priori SNR

estimation methods combined with WF or MMSE-LSA gain functions.

The improvement in terms of speech quality is affirmed by the perceptual

Gain SNR PESQ SNRseg HD KurtR

DD MDD Prop DD MDD Prop DD MDD Prop DD MDD Prop

WF 0 1.8675 1.8796 1.9765 −1.0437 −0.9059 0.1235 0.7577 0.7632 0.7043 1.0631 1.0241 1.2544

5 2.2878 2.3027 2.3923 1.5133 1.7543 2.6996 0.6590 0.6704 0.5926 1.2117 1.0621 1.3116

10 2.6551 2.6931 2.7510 4.2072 4.5262 5.5700 0.5109 0.5287 0.4443 1.6213 1.2190 1.6007

LSA 0 1.8678 1.9167 2.0119 −1.1575 −0.7032 0.2029 0.7206 0.7430 0.6885 1.3199 1.0828 1.3544

5 2.2441 2.3559 2.4268 1.2664 1.9554 2.8143 0.5992 0.6431 0.5753 1.7276 1.1429 1.4545

10 2.6042 2.7541 2.7886 3.9769 4.7545 5.7060 0.4421 0.4986 0.4303 2.1698 1.3330 1.7427

Table 3.5: Mean objective results for factory noise.
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Figure 3.7: Comparison of the a priori SNR estimation over a short time period

between the true a priori SNR ξ (black solid line with a marker), ML a priori

SNR estimate (green dashed line), ξ̂DD (blue solid line), ξ̂MDD (cyan dot solid

line), and ξ̂prop (red solid line with a marker), at 9th critical band and 10 dB SNR

under different background noise: 1st row for pink noise and 2nd row for white

noise.
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Figure 3.8: Comparison of the a priori SNR estimation over a short time period

between the true a priori SNR ξ (black solid line with a marker), ML a priori

SNR estimate (green dashed line), ξ̂DD (blue solid line), ξ̂MDD (cyan dot solid

line), and ξ̂prop (red solid line with a marker), at 9th critical band and 10 dB SNR

under different background noise: 1st row for factory noise and 2nd row for babble

noise.
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Gain SNR PESQ SNRseg HD KurtR

DD MDD Prop DD MDD Prop DD MDD Prop DD MDD Prop

WF 0 1.9013 1.9099 1.9324 −1.3463 −1.1911 −0.9014 0.6871 0.6976 0.6872 1.1652 1.0721 1.0935

5 2.2140 2.2498 2.2612 0.9063 1.1306 1.4094 0.5507 0.5684 0.5528 1.4270 1.1932 1.2441

10 2.5338 2.5810 2.5842 3.4011 3.7187 4.1677 0.3872 0.4065 0.3898 1.8242 1.4378 1.5469

LSA 0 1.8844 1.9413 1.9609 −1.4671 −1.0636 −0.8349 0.6486 0.6811 0.6708 1.3932 1.1319 1.1600

5 2.1799 2.2825 2.2944 0.6878 1.2848 1.5080 0.4867 0.5491 0.5351 1.7315 1.2674 1.3205

10 2.4923 2.6254 2.6264 3.1910 3.9562 4.3286 0.3129 0.3901 0.3757 2.0249 1.5164 1.6185

Table 3.6: Mean objective results for babble noise.

evaluation of speech quality PESQ measures. The proposed a priori SNR estima-

tor always results in better speech quality than the conventional decision directed

and modified decision directed approaches, indicated by higher PESQ measures.

However, in babble noise case, PESQ measures reveal that the proposed estima-

tor achieves approximately same speech quality improvement as MDD approach,

while better than the conventional DD approach.

Moreover, the results indicate that the proposed method achieves better noise

reduction as it outperforms the conventional DD and MDD approaches in terms

of segmental SNR for all noise types and SNR conditions.

Besides speech quality and noise reduction, we also evaluate the weak speech

preservation performance of the proposed method. HD measure results indicate

that the proposed method delivers better speech preservation in terms of lower

HD scores than the conventional DD and MDD approaches, as the proposed

technique improved the tracking of onset changes in speech signal. In babble

noise case, although it achieves better results than MDD approach, it has slightly

higher HD measures than DD approach when combined with LSA gain function

at low SNR (<5 dB).

Kurtosis ratio results show the ability of the proposed method to maintain

the advantage of DD and MDD methods in reducing the musical noise. Under

different types of noise and SNR conditions, the proposed a priori SNR estimation

method delivers lower Kurtosis ratio scores than the conventional DD approach.

In factory noise case, although the proposed method has slightly higher Kur-

tosis ratio measures than DD method, it achieves significant improvements in

speech quality, noise reduction and speech preservation in terms of better PESQ,

segmental SNR and HD measures.

3.6.2.3 Evaluation of listening test

Tables 3.7 and 3.8 demonstrate the average results of the listening test. Ten

normal hearing participants in the age of (20-35) took part in this test. They
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Gain Categories Pink noise

DD MDD Prop

WF Speech 3.6 3.9 4.3

Background noise 3.7 3.8 4.1

Musical noise 4.0 4.6 4.6

Over all 3.8 4.1 4.3

LSA Speech 3.8 4.2 4.3

Background noise 3.7 4.0 4.1

Musical noise 3.8 4.5 4.3

Over all 3.8 4.2 4.3

Table 3.7: Listening test results for pink noise at 10 dB input SNR.

were asked to rate speech signals estimated by three different a priori SNR esti-

mators in terms of speech, background noise and musical noise as explained in the

previous section. The speech and background results show that the participants

preferred the proposed method compared to either of the DD method or the MDD

method and that aligned with the objective results of PESQ and segmental SNR.

Moreover, for the musical noise ratings, the proposed method combined with

different gain functions and different background noise scored approximately the

same as MDD method which is slightly higher than DD method. This means that

the proposed method maintains the advantage of the DD approach in generating

less musical noise which aligned with the objective measurement Kurtosis ratio.

Furthermore, the overall results of the 10 participants have been evaluated

using a statistical analysis to assess the differences between the ratings obtained

for each a priori SNR estimation method in term of overall quality. For this

purpose, we used analysis of variance (ANOVA) to indicate a significant difference

between scores if the level of significance is smaller than 0.05. A significant

difference between scores has been noted when LSA was combined with all the

different a priori SNR estimation methods with obtained p=0.03 and 0.005 for

pink noise and babble noise, respectively. Moreover, a significant difference noted

when WF was employed with all the different a priori SNR estimation methods

in pink noise with obtained p value=0.01. However, for the babble noise case,

the difference in scores was not found to be statistically significant.
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Gain Categories Babble noise

DD MDD Prop

WF Speech 3.7 4.1 4.1

Background noise 3.0 3.4 3.7

Musical noise 3.7 4.2 4.2

Over all 3.5 3.9 4.0

LSA Speech 3.8 4.3 4.4

Background noise 3.0 3.6 3.7

Musical noise 3.5 4.3 4.2

Over all 3.4 4.1 4.1

Table 3.8: Listening test results for babble noise at 10 dB input SNR.

3.6.2.4 Spectrograms

Figures 3.9 and 3.16 highlight the ability of the proposed a priori SNR estima-

tor in preserving more weak speech components than the decision directed (DD)

and modified decision directed (MDD) a priori SNR estimators under different

gain functions. The clean speech signal is corrupted by different background noise

(pink noise, white noise, factory noise and babble noise, respectively) with 10 dB

SNR. To compare the performance for different gain functions, we employed WF

and MMSE-LSA. It can be clearly seen that the proposed a priori SNR estima-

tor preserves more weak speech components than DD and MDD a priori SNR

estimators which leads to less speech transient distortion.

3.7 Summary
In this chapter, an adaptive a priori SNR estimator has been developed and

evaluated for different speech enhancement gain functions. As a basis for the

adaptation, the a priori SNR estimation employs a model of speech absence prob-

ability based on a sigmoid function. The sigmoid function can be tuned to provide

a trade-off between the speech onset sensitivity and the annoying noise artifacts

also known as musical noise. In combination with different gain functions include

the Wiener Filter (WF) and the log spectral amplitude (LSA) minimum mean

square error estimator, the objective results show that the proposed method out-

performs the conventional DD and MDD approaches with higher scores in PESQ,

SNRseg and lower scores in HD measures. One of the important findings in these

results is that the weaker speech components become more prominent. Moreover,

the proposed bark scale based frequency processing helps to reduce the effect of
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the musical noise and make it unnoticeable because of the significant reduction

in the noise variance which helps in the noise estimation needed for the SNR esti-

mation. The obtained objective evaluation results are supported by the averaged

results from the subjective listening tests, as the proposed method was preferred

by the listeners.
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Figure 3.9: Speech spectrograms for noisy speech corrupted with pink noise at

10 dB enhanced by Wiener filter speech estimation technique.
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Figure 3.10: Speech spectrograms for noisy speech corrupted with white noise at

10 dB enhanced by Wiener filter speech estimation technique.
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Figure 3.11: Speech spectrograms for noisy speech corrupted with factory noise

at 10 dB enhanced by Wiener filter speech estimation technique.
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Figure 3.12: Speech spectrograms for noisy speech corrupted with babble noise

at 10 dB enhanced by Wiener filter speech estimation technique.
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Figure 3.13: Speech spectrograms for noisy speech corrupted with pink noise at

10 dB enhanced by LSA speech estimation technique.
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Figure 3.14: Speech spectrograms for noisy speech corrupted with white noise at

10 dB enhanced by LSA speech estimation technique.
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Figure 3.15: Speech spectrograms for noisy speech corrupted with factory noise

at 10 dB enhanced by LSA speech estimation technique.
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Figure 3.16: Speech spectrograms for noisy speech corrupted with babble noise

at 10 dB enhanced by LSA speech estimation technique.
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Chapter 4

Single Channel Speech

Enhancement in STFT Domain

In the previous chapter, we have addressed the problem of single channel speech

enhancement in CB domain. This chapter examines the efficiency of the proposed

a priori SNR estimation method in STFT domain. The estimation method needs

to be modified in order to control the high variability of the a priori SNR estimate.

Thus, a modified adaptive smoothing factor with frequency dependent mean pa-

rameter is introduced to the MDD method. The advantage of the approach is that

weak speech components especially those at higher frequency range can be pre-

served. Furthermore, a cross comparison between STFT and CB processing has

been investigated using a subjective listening test under comprehensive selection

of noise conditions.

The main work in this chapter have previously appeared in the following publications:

1. L. Nahma, P. C. Yong, H. H. Dam, and S. Nordholm, Improved a priori snr estimation in

speech enhancement, 23rd Asia-Pacific Conference on Communications (APCC), 2017,

pp. 15.

2. L. Nahma, P. C. Yong, H. H. Dam, and S. Nordholm, Convex combination framework

for a priori snr estimation in speech enhancement, submitted to IEEE International

Conference on Acoustics Speech and Signal Processing (ICASSP) 2019.
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4.1 Introduction
The main challenge in single channel speech enhancement is to find the opti-

mal denoising filter to reduce the background noise while preserving the speech

components. In other words, the designed filter has to control the trade off be-

tween the noise reduction and speech distortion. One of the most important

considerations that needs to be taken into account in the filter design is the

speech characteristics. It is well known that speech is highly non stationary; thus

dividing the degraded noisy signal into short frames is necessary in order to be

able to treat the speech signal in each frame as approximately stationary.

Depending on the domain of processing, the denoising filter can be designed

either in the time domain or the frequency domain. Although time domain based

speech enhancement techniques do not generate notorious artifacts known as mu-

sical noise, which are unpleasant to listen to and increase the listener’s fatigue,

they are more computationally complex since they involve the computation of

a matrix inversion. On contrary, frequency domain based speech enhancement

overcomes the complexity issue by utilizing Discrete Fourier transform (DFT).

STFT is a widely used tool for speech spectral analysis and synthesis due to great

efficiency from arithmetic computational complexity point of view and that be-

cause it delivers approximately uncorrelated transform coefficients. Moreover, the

resulting statistically independent superposition coefficients lead to a straightfor-

ward interpretation in terms of spectral signal content.

The main task of spectral speech enhancement is to apply a denoising spectral

gain function to the noisy speech spectrum. The major issue in such approach

is the large variations of the spectral coefficients in the noisy frames. These

variations can lead to spectral outliers in the filter gain adaptation and result in

what is known as musical noise. The a priori SNR is the main quantity estimate

when determining the spectral gain function. Thus, improving the a priori SNR

estimate is one of the most important tasks for practical solutions. Ephraim and

Malah in [52] proposed decision directed (DD) based a priori SNR estimation

which is defined as a weighted combination of the a priori SNR estimation in the

previous frame and the maximum likelihood (ML) estimation of the a priori SNR

in the current frame [50]. This approach helps to reduce the variance of the a

priori SNR estimate and as a result, the musical noise is significantly reduced [87].

Since this estimation uses the a priori SNR estimate from the preceding frame,

there is a one frame delay between the estimated and the true a priori SNR. For

this reason, speech transient distortion occurs which degrades the quality of the
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estimated speech signal. Also, the weight in the DD estimator is controlled by a

smoothing factor that is usually a value close to 1 in order to avoid the musical

noise, which results in slow tracking of abrupt changes in the instantaneous SNR.

Many techniques have been proposed to overcome the drawbacks in the DD

approach [88], [108], [109], [49], [10] and [110]. Hasan et. al. [108] employs a

self-adaptive smoothing factor to estimate the a priori SNR. As a consequence,

the adaptation speed of the a priori SNR estimation is improved, but with the one

frame delay problem. Yong et. al. [10] proposed a modified DD approach (MDD)

by matching the ML a priori SNR estimate with the noisy speech spectrum in

the current frame. The advantage of this approach is its ability to reduce the one

frame delay in the a priori SNR estimate. However, the slow tracking speed for

speech onsets and offsets remain since it still uses a smoothing factor close to 1.

In order to overcome this problem, in the preceding chapter we proposed an

adaptive smoothing factor to the modified a priori SNR estimation method. A

time-frequency dependent weighting factor with a sigmoid shape is proposed to

control the smoothing factor. Accordingly, flexible smoothing of the a priori SNR

estimation is obtained to improve the tracking mechanism to abrupt changes in

instantaneous SNR. In conjunction with that, we utilize a critical band mapping

from STFT analysis-resynthesis system in the speech enhancement framework for

human perceptual processing and lower complexity. The proposed method does

not only eliminate the one frame delay generated by the well-known decision

directed approach but also increases the adaptation speed during abrupt changes

in the SNR estimation. This helps to preserve the weak speech components while

the advantage of low musical noise has been maintained.

Since most speech enhancement methods are performed in STFT domain, we

are investigating the proposed method in STFT domain. When processing the

noisy speech in STFT domain, we have a higher variability in the SNR estimation.

To improve that aspect, a modified adaptive smoothing factor with a frequency

dependent mean parameter is proposed to the MDD method. Objective results

show the ability of the proposed method to preserve weak speech components

in the high frequency region while maintain the same overall speech quality as

the MDD method. Furthermore, we present a cross evaluation for STFT and

CB processings using listening test and under different noise conditions. This

chapter is organized as follows. In section 4.2, a review of the single channel

speech enhancement is presented. Section 4.3 presents the proposed a priori SNR

estimation approach. Section 4.5 demonstrates the results of the experimental

evaluation. Section 4.4 presents a cross evaluation for STFT and CB processings.
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Section 4.6 concludes the chapter.

4.2 Single channel speech enhancement
Let y(t) be denoting the noisy signal in the discrete time domain, which

consists of the clean speech signal s(t) and additive noise signal v(t), as given by

y(t) = s(t) + v(t) (4.1)

where speech and noise signals are assumed to be uncorrelated. The noisy signal

is then sampled and transformed into the frequency domain by using short time

Fourier transform (STFT). The noisy spectrum is defined by

Y (k,m) = S(k,m) + V (k,m) (4.2)

where S(k,m) and V (k,m) represent the spectral components of speech signal

and noise at the frequency bin k and the time frame index m, respectively.

The estimate of the clean speech is obtained by applying a spectral gain

function G(k,m) to the noisy spectrum. In general, the spectral gain function

depends on the a priori SNR ξ(k,m) and/or the a posteriori SNR γ(k,m) which

are defined as

ξ(k,m) =
λs(k,m)

λv(k,m)
(4.3)

and

γ(k,m) =
|Y (k,m)|2

λv(k,m)
(4.4)

where λs(k,m) and λv(k,m) denote the clean speech PSD and noise PSD, respec-

tively.

In this chapter and for comparison reason, we have chosen the same gain

functions as in the previous chapter, i.e., Wiener filter (WF) gain function [90],

which is defined by

GWF(k,m) =
ξ(k,m)

1 + ξ(k,m)
(4.5)

and MMSE-LSA [52], which is obtained by minimizing the mean square error

of the logarithm of original and enhanced speech spectra, and can be defined as

a function of the priori SNR and the posteriori SNR, given by

GLSA(k,m) =
ξ(k,m)

1 + ξ(k,m)
exp

1

2

∞̂

νk

e−t

t
dt

 (4.6)
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where the lower limit νk of the integral is given by

νk(k,m) =
ξ(k,m)

1 + ξ(k,m)
γ(k,m) (4.7)

and γ(k,m) denotes a posteriori SNR defined as

γ(k,m) =

∣∣Y(k,m)
∣∣2

λv(k,m).
(4.8)

Then the estimated speech signal is obtained as

Ŝ(k,m) = G(k,m)Y (k,m). (4.9)

Since both clean speech and noise are unknown and only a noisy signal is acces-

sible, both a priori SNR and a posteriori SNR have to be estimated.

4.3 Proposed a priori SNR estimation
As mentioned in the previous chapter, the smoothing factor for the DD based a

priori SNR estimation plays an important role in controlling the trade-off between

the musical noise, speech distortion and noise reduction in the enhanced speech

signals. Hence, using a constant smoothing factor is not ideal, since using a factor

close to one which will reduce the musical noise, but will lead to speech transient

distortion during the speech frames [3].

In order to reduce the transient distortion as well as preserve weak speech

components, an adaptive smoothing factor is proposed for the MDD approach to

increase the speed of tracking during speech onsets. This is done by utilizing a

time-frequency varying smoothing factor based on a sigmoid function [111]. The

proposed adaptive smoothing factor is defined as given below

β̂(k,m) =
ρ

1 + exp [−a (γ̂(k,m)− σ(k))]
(4.10)

where 0 ≤ β̂(k,m) ≤ 0.98. a and σ(k) denote the slope and the mean of the

sigmoid function, respectively. ρ represents the parameter that control the upper

limit of the weighting factor in order to retain similar property as a constant

weighting factor

for the noise only frames.

In order to preserve speech components especially those at higher frequency

range, an adaptive mean factor σ(k) is proposed instead of a constant value. A

quadratic function in vertex form is used to control the sensitivity of the mean
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factor with respect to the increment of the frequency bins. σ(k) can be defined

as

σ(k) = ν ∗ (k − δ)2 + κ (4.11)

where δ and κ are the vertex of the parabola which control the x-axis and y-

axis shift, respectively. ν denotes a scale that controls the maximum limit for

the varying mean. The values of σ(k) for frequency bins after δ are set to κ to

preserve weak speech components at high frequency range. Fig. 4.1 demonstrates

the behavior of the adaptive mean parameter. It shows that σ(k) is inversely

proportional to the increment of the frequency bin, and becomes constant after

δ. It indicates that the sensitivity of the smoothing factor will be increased at

higher frequencies. The modified a priori SNR estimation approach is then given

by

ξ̂prop(k,m) = β̂(k,m)
|G(k,m− 1)Y (k,m)|2

λ̂v(k,m)

+ (1− β̂(k,m))P [γ̃(k,m)− 1] .

(4.12)
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Figure 4.1: Adaptive mean factor as a function of frequency bins.
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Fig. 4.2 shows the proposed adaptive smoothing factor β̂(k,m) as a function

of a posteriori SNR. It can be clearly seen that the smoothing factor attains

different values depending on the a posteriori SNR instead of a constant close

to one. This means that the a priori SNR estimation has become more flexible.

For instance, when γ̂ is less than 0 dB, a priori SNR estimation corresponds to a

smoothed version of the a priori SNR in the same way as the MDD does. In this

case, the proposed method has similar noise suppression and musical noise level as

MDD for noise-only frames. Meanwhile, when γ̂ is larger than 0 dB, a priori SNR

estimation is expressed as a weighted sum of the amplitude speech estimation and

the a posteriori SNR. Moreover, the frequency varying mean parameter plays

an important role in controlling the sensitivity of the smoothing factor which

improves the adaptation speed of the proposed estimation. This yields better

tracking of speech onsets especially at higher frequencies, which helps to avoid

unwanted attenuation of weak speech components.
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Figure 4.2: Adaptive smoothing factor as a function of instantaneous SNR at

different frequency bins.

4.4 Cross subjective evaluation
In order to test the efficiency of the critical band based frequency scale com-

pared to the conventional uniform scale (STFT), we present a cross evaluation of
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a priori SNR estimators integrated with different time-frequency analysis tech-

niques (STFT and CB) by a subjective listening test according to ITU-T rec-

ommendation P.835 and conducted by ten participants. Three speech sentences

consisting of 1 female speaker and 2 male speakers from the NOISEUS database

[3] have been concatenated and corrupted with two different background noise

(babble or pink) from NOISEX-92 database [112] for two levels of input SNR (0

dB and 10 dB). The noisy speech signals have been processed using three deci-

sion directed based a priori SNR estimation methods. The evaluated estimation

methods include DD method [113] processed either with STFT, denoted by (DD-

STFT) or processed with CB, denoted by (DD-CB). MDD method [10] processed

either with STFT, denoted by (MDD-STFT) or processed with CB, denoted by

(MDD-CB), critical band based a priori SNR estimation method (Proposed-CB),

which is presented in the previous chapter [111] and STFT based a priori SNR

estimation method (Proposed-STFT) [114] that is presented in this chapter. In

order to estimate the enhanced speech signals, the aforementioned a priori SNR

estimation methods are combined with either WF or MMSE-LSA gain function.

The listening test was performed in a tranquil office room utilizing DT- 880

Beyerdynamic open air headphone. In order to reduce the time consuming, the

subjects were divided into two groups, one group to rate the enhanced speech

signals using WF gain function, while the other group rated the enhanced speech

signals using MMSE-LSA gain function. The test was lasting around 25 minutes

for each participant. Prior to giving their scores on the processed speech signals,

the listeners were presented with the clean speech signal and the unprocessed

speech signal as a kind of perspective for the best case and the worst case, indi-

vidually. After that the participants were asked to listen and rate the enhanced

signals according to ITU-T recommendation P.835. This methodology guides

the participants to form the basis of their ratings regarding speech signal alone,

background noise, musical noise and overall quality as shown in Table 3.1 in the

previous chapter.

Furthermore, to assess the difference between the listening test ratings, a

statistical analysis of variance (ANOVA) is conducted to present a comparative

analysis in reference to the unprocessed speech signal. A significant difference

between scores was recognized depending on the obtained significance level (p-

value). H represents the equality hypothesis and is defined as follows

H =

{
No significant difference is recognized, p > 0.05

Significant difference is recognized, p < 0.05
(4.13)
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which means if p >0.05, equality hypothesis is accepted. Otherwise, the equality

hypothesis is rejected.

4.5 Experimental evaluation
In this section, the performance of the proposed a priori SNR estimation

approach was evaluated and compared with DD and MDD approaches. Based

on the equations (3.23) and (3.24) in the previous chapter, the slope and the

lower limit of the mean are calculated at γu = 15 dB for pink noise case and

γu = 18 dB for babble noise case, which result in α = −0.4 and κ = 19.344

and α = −0.11 and κ = 38.194, respectively. ρ is chosen to be 0.983. From the

speech enhancement experiments, the parameters for the adaptive mean factor

in Eq. (4.11) were set to the following values: ν = 0.0016, δ = 200. The value

of β in DD and MDD approaches was set to 0.98. The noise PSD estimation

was obtained by using the minimum mean square error (MMSE) noise power

estimator based on the speech presence probability [105] for all the a priori SNR

estimators. A sampling frequency of fs = 8000 Hz with K = 512 was used, and a

square root Hanning window with 50% overlapping was applied. The estimated

signal is reconstructed using overlap-add method.

4.5.1 Evaluation of a priori SNR estimation
Figures 4.3- 4.6 show comparisons of different a priori SNR estimators evalu-

ated in connection with different gain functions and under different noise condi-

tions. Figures on the left side depict the a priori SNR estimation when combined

with Wiener filter gain function, whereas figures on right side depict the a priori

SNR estimation when combined with MMSE-LSA gain function. It can be clearly

observed that the smoothing property of the decision directed based a priori SNR

estimators are depending on the gain function as well as the smoothing factor. For

MMSE-LSA gain function case, it can be demonstrated that the decision directed

(DD) a priori SNR estimate exhibit significant smoothing characteristics during

noise frames compared to the MDD and the proposed methods. That explains

the decision directed methods ability to eliminate musical noise better than the

other two methods. However, a priori SNR estimation methods in connection

with Wiener filter gain function show an improved smoothing characteristics for

the proposed method. It can be clearly observed that during noise-only frames

the proposed method follows the a posteriori SNR with lower values similar to the

patterns from both DD and MDD approaches which helps to reduce the musical

noise. Whilst during speech onsets, as the value of the adaptive smoothing fac-

tor decreases, the proposed method follows the a posteriori SNR with less delay
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compared to DD and MDD methods. As a consequence, less speech transient

distortion can be achieved.

4.5.2 Objective results
The proposed method was also evaluated by using four different objective

measures, namely the kurtosis ratio that evaluates the amout of musical noise

generated [99], the segmental SNR measures [97], the cepstral distance based on

Linear predictive coding (LPC) for speech transient distortion measure and the

perceptual evaluation of speech quality (PESQ) measure [3]. A better enhanced

speech is indicated by lower scores in kurtosis ratio and cepstral distance, and

higher scores in segmental SNR and PESQ. The evaluation was performed by

using 30 different utterances from six different speakers (3 males and 3 females)

corrupted by pink noise, white noise, factory noise and babble noise under dif-

ferent SNR conditions. Both speech signals and noise are taken from NOISEUS

and NOISEX database, respectively. The proposed method were compared with

DD and MDD methods.

Tables 4.1-4.4 show the mean performances of DD, MDD and the proposed

methods in terms of the four objective measures. It can be seen that at low SNRs,

the performance of the proposed method is similar to the MDD approach, since

the value of the adaptive smoothing factor is almost 0.98. As a result, the pro-

posed method generates less musical noise when compared to the DD method due

to its ability to reduce the sensitivity of the a priori SNR estimation during noise

frames. During speech onsets, the adaptive smoothing factor attains smaller val-

ues, which improves the tracking speed of the a priori SNR estimation as already

shown in Figures 4.3-4.6. This also helps to preserve the weak speech components

better than the DD and MDD methods as can be found in the cepstral distance

results. However, due to the increased sensitivity of the a priori SNR estimation

towards the abrupt changes in the instantaneous SNRs, a slight increase in the

musical noise is obtained when compared to the MDD approach. This can also

be reflected in terms of the segmental SNR results, where the proposed method

records a consistent improvement in SNR compared to both the DD and the

MDD approaches under different noise conditions. The PESQ results show that

the overall speech quality produced by the proposed method is slightly higher

than the DD approach and approximately similar to the MDD approach. How-

ever, in babble noise case as shown in Table 4.4, although the proposed method

outperforms the other methods in terms of better segmental SNR and higher

speech quality, it can be observed that it prone to generate higher musical noise
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due to its higher sensitivity to abrupt changes in SNR. Moreover, comparing be-

tween the performance of WF and MMSE-LSA gain functions, it can be clearly

noted that less musical noise is obtained for the DD method combined with the

MMSE-LSA gain function since it exhibits higher smoothing ability. However,

this comes at cost on speech quality and noise reduction.

4.5.3 Spectrograms
Figures 4.7-4.14 depict the spectrogram of the enhanced speech signal by using

different a priori SNR estimators in different noise scenarios at 10 dB. It can be

observed that the ability of the proposed method to preserve speech components

is better than the DD and MDD methods, especially in the high frequencies. At

the same time, the background noise is effectively reduced.
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Figure 4.3: Comparison of a priori SNR estimation over short time between Υ

(green solid line) , ξ̂DD (red solid line), ξ̂MDD (cyan solid line), and ξ̂prop (blue

solid line) at 10 dB pink background noise.

4.5.4 Evaluation of listening test
Figures 4.15 and 4.17 depict the results of the listening test in pink background

noise. Figure 4.15 shows the results when WF gain function was combined to dif-

ferent a priori SNR estimation methods for different levels of input SNR, whereas

Figure 4.17 shows the results when MMSE-LSA gain function was employed in-

stead. In terms of speech signal, listening test results for WF gain function case

show that the participants preferred STFT enhanced speech signals over CB in
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Gain Input PESQ SNRseg CD KurtR

function SNR DD MDD Prop DD MDD Prop DD MDD Prop DD MDD Prop

WF

0 2.3658 2.3623 2.3449 2.0960 2.3660 2.5946 5.1139 5.1322 5.1182 2.1820 1.9584 2.1741

5 2.6711 2.6843 2.6563 4.7877 5.0471 5.3099 4.8057 4.8452 4.7251 2.6031 2.1411 2.3904

10 2.9341 2.9604 2.9351 7.5057 7.7525 8.1430 4.4512 4.5024 4.3050 3.3627 2.5499 2.8891

LSA

0 2.2676 2.3650 2.3671 1.2054 2.0642 2.2619 4.9393 4.9296 4.9142 1.7315 2.2623 2.3911

5 2.5961 2.7116 2.7014 4.1715 5.0503 5.2937 4.5245 4.5082 4.4184 2.0758 2.4125 2.5623

10 2.8606 2.9961 2.9824 7.2672 8.0658 8.3820 4.1022 4.0898 3.9435 2.4719 2.6884 2.8849

Table 4.1: Mean objective results for pink noise.

Gain Input PESQ SNRseg CD KurtR

function SNR DD MDD Prop DD MDD Prop DD MDD Prop DD MDD Prop

WF

0 2.1961 2.1898 2.1924 2.4145 2.7077 2.9573 6.0770 6.1530 6.1862 1.8689 1.7216 1.8834

5 2.5201 2.5279 2.5116 4.9180 5.1936 5.4888 5.6564 5.7395 5.6934 2.0496 1.7835 1.9607

10 2.7929 2.8013 2.7997 7.4647 7.7047 8.1100 5.2932 5.3883 5.2507 2.4550 1.9737 2.1917

LSA

0 2.0545 2.1442 2.1636 1.4098 2.2833 2.5019 6.0655 6.1303 6.1499 1.4413 2.1291 2.2153

5 2.4167 2.5250 2.5288 4.1700 5.0507 5.3159 5.4737 5.5367 5.4976 1.6439 2.1970 2.2953

10 2.7050 2.8346 2.8283 7.1005 7.9159 8.2433 4.9775 5.0296 4.9261 1.9815 2.3400 2.4648

Table 4.2: Mean objective results for white noise.

Gain Input PESQ SNRseg CD KurtR

function SNR DD MDD Prop DD MDD Prop DD MDD Prop DD MDD Prop

WF

0 2.2566 2.2712 2.2259 1.8200 2.1551 2.2838 5.4677 5.4662 5.5764 2.8372 2.5646 2.8282

5 2.6011 2.6349 2.5994 4.8539 5.1756 5.3341 4.9038 4.9263 4.9007 3.1100 2.6999 2.9758

10 2.9068 2.9439 2.9301 7.8559 8.1593 8.4900 4.3538 4.3883 4.2506 3.5574 3.0309 3.3116

LSA

0 2.1774 2.2728 2.2534 1.0113 1.9133 2.0342 5.2757 5.2866 5.3589 2.0747 2.6813 2.8683

5 2.5387 2.6492 2.6263 4.1421 5.1460 5.2755 4.6522 4.6688 4.6506 2.2000 2.7740 2.9510

10 2.8437 2.9678 2.9466 7.4393 8.3790 8.6033 4.0440 4.0664 3.9745 2.3249 2.9665 3.1425

Table 4.3: Mean objective results for factory noise.

Gain Input PESQ SNRseg CD KurtR

function SNR DD MDD Prop DD MDD Prop DD MDD Prop DD MDD Prop

WF

0 1.9248 1.9155 1.9014 −0.6851 −0.5569 −0.5092 6.0480 6.1057 6.0693 2.8492 3.2080 3.2084

5 2.3076 2.3050 2.2970 2.3144 2.4745 2.5305 5.1040 5.1526 5.0575 2.8528 3.2428 3.2072

10 2.6588 2.6557 2.6483 5.7321 5.8815 5.9979 4.1042 4.1475 4.0454 2.7789 3.2029 3.1140

LSA

0 1.9301 1.9333 1.9226 −0.9637 −0.7017 −0.6500 5.7345 5.9067 5.8714 1.8794 2.7420 2.7117

5 2.2927 2.3055 2.3004 2.0138 2.3624 2.4111 4.8300 4.9749 4.9038 1.8271 2.7365 2.6922

10 2.6322 2.6530 2.6491 5.4629 5.8668 5.9522 3.8864 3.9960 3.9217 1.7471 2.6843 2.6166

Table 4.4: Mean objective results for babble noise.
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Figure 4.4: Comparison of a priori SNR estimation over short time between Υ

(green solid line) , ξ̂DD (red solid line), ξ̂MDD (cyan solid line), and ξ̂prop (blue

solid line) at 10 dB white background noise.

pink noise condition at low SNR values, whereas in high SNR (10 dB) the partic-

ipants could not recognize any difference between STFT and CB speech signals.

Moreover, in the MMSE-LSA scenarios, participants found STFT speech signals

sound better than CB speech signals for the tested input SNR levels. Background

noise results show that speech signals with STFT have less background noise than

CB methods for different gain function cases and varying levels of SNR.

However, musical noise results show that CB methods have recorded the least

amount of musical noise for different gain function cases and under different

levels of input SNR values. From the overall scores it can be observed that the

participants preferred the signals processed by STFT combined with the WF gain

function for low SNR values. In contrast, they preferred signals with CB at high

SNR. In the MMSE-LSA case, the participants preferred STFT methods over CB

for the evaluated SNR levels.

Figures 4.16 and 4.18 depict the results of the listening test in babble back-

ground noise. Figure 4.16 shows the WF gain function results for the different

a priori SNR estimation methods and varying levels of input SNR, whereas Fig-

ure 4.18 shows the corresponding results when MMSE-LSA gain function is used

instead. In terms of speech quality, the subjective listening results of the WF

gain function scenario show that speech signals processed with CB have recorded

higher scores than signals processed with STFT at low SNR levels, while achieve

approximately same scores at high SNR. This means that CB methods combined

with WF gain function achieve significant improvement in speech quality com-
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Figure 4.5: Comparison of a priori SNR estimation over short time between Υ

(green solid line) , ξ̂DD (red solid line), ξ̂MDD (cyan solid line), and ξ̂prop (blue

solid line) at 10 dB factory background noise.

pared to the STFT methods in adverse noise conditions. For MMSE-LSA case,

the participants could not recognize any difference between the speech signals

at different SNR levels. In terms of background noise, speech signals processed

by CB have recorded higher scores (better noise reduction) than speech signals

processed by STFT at low SNRs when the WF gain function is used, while in

high SNR the background noise scores between CB and STFT are almost same

which means all methods achieve same amount of noise suppression. For the

MMSE-LSA gain function scenario, although all methods achieve same amount

of noise suppression at low SNR, the participants preferred speech signals pro-

cessed by STFT at high SNR levels. Musical noise results show that speech

signals processed by CB achieved better results (less musical noise) than speech

signals processed by STFT for the different gain functions as well as for different

input SNR levels.

From the overall scores, it can be clearly seen that the participants preferred

speech signals with CB when WF gain function was used for low SNR levels.

While at high SNR all methods achieves almost the same results. Furthermore,

when MMSE-LSA gain function used, there was no significant difference between

speech signals in terms of overall scores for low SNR levels, but the participants

preferred speech signals with STFT for high SNR levels.

4.5.5 Statistical analysis
Table 4.5 reports the obtained p-values of ANOVA test under different noise

conditions. In terms of speech quality, The test shows that all obtained p-values
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Figure 4.6: Comparison of a priori SNR estimation over short time between Υ

(green solid line) , ξ̂DD (red solid line), ξ̂MDD (cyan solid line), and ξ̂prop (blue

solid line) at 10 dB babble background noise.

are higher than 0.05, i.e., there was no statistically significant difference in speech

quality between the obtained scores of the examined algorithms. This means

that the enhanced speech signals did not contain a detectable speech distortion

compared to the unprocessed speech signals. From background noise results, it

can be clearly observed that speech signals enhanced using WF gain function

provided significant differences when compared to the noisy speech signals in

pink noise. In contrast, although there was no significant difference deemed in

the babble noise case for low SNR, a significant improvement was achieved for

high SNRs. In the MMSE-LSA gain function case, results show that most of the

SNR estimation methods did not provide a significant noise suppression compared

to the noisy signal except for pink noise and low SNR level.

In terms of musical noise, there was no significant difference between the

enhanced speech signals that were estimated by the evaluated methods and the

unprocessed speech signals detected in the different noise conditions and for vary-

ing levels of SNR. From the overall results, we observed that WF method provides

significant difference than the unprocessed speech signal in pink noise condition

and high SNR level. In the MMSE-LSA scenarios, the estimation methods pro-

vide significant difference in pink noise case for varying SNR levels.

However, the above mentioned statistical analysis can not provide the answer

as to which method performed better than the unprocessed speech signal. As

such, along with ANOVA results, a post hoc comparison test according to Tukey’s

HSD test was also conducted to identify which method significantly improved the
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quality of the unprocessed speech signal. By comparing the scores obtained from

the unprocessed speech signals and the scores obtained with speech signals en-

hanced by the various methods, the results of Tukey’s HSD test are tabulated in

Table 4.6 for WF gain function case and Table 4.7 for MMSE-LSA gain function.

In these tables asterisk indicate significant differences between enhanced speech

signals and noisy signal. From Table 4.6 for WF gain function case, it can be

observed that some methods only provided significant differences when compared

to the unprocessed speech signal in terms of background noise and overall quality.

In pink noise case, (DD-STFT) and (Proposed-STFT) methods achieved signif-

icant noise suppression compared to noisy signal for different levels of SNR. In

contrast, the rest of the methods achieved better noise suppression performance

than noisy signals in higher SNR level only. In babble noise case, most of priori

SNR estimators for STFT and CB achieved significant noise suppression at high

SNR level. In terms of overall quality, the methods (DD-STFT) and (Proposed-

CB) significantly improved the overall quality when compared to the unprocessed

speech signal in pink noise case for high SNR levels.

From Table 4.7 for MMSE-LSA gain function case, only two methods (Proposed-

STFT) and (DD-CB) achieved significant difference in noise suppression perfor-

mance compared to the noisy speech signal in pink noise case and low SNR lev-

els. Moreover, in babble noise case (DD-STFT) and (Proposed-STFT) achieved

significant noise suppression only for low SNR levels. In addition, overall re-

sults show that the methods (DD-STFT), (MDD-STFT) and (Proposed-STFT)

achieved significant improvement when compared to noisy signal in pink noise for

low SNR levels, while at high SNR, only (Proposed-STFT) method achieved a

significant improvement over the noisy signal.

4.6 Summary
In this chapter, a modified a priori SNR estimation method with an adaptive

smoothing factor is presented. The proposed approach helps to improve the

tracking speed of the a priori SNR estimation by employing a time-frequency

varying smoothing factor based on a sigmoid function with a frequency dependent

mean parameter. As a consequence, the adaptation speed of the a priori SNR

estimation is improved during speech transitions while maintaining the advantage

of DD approach in reducing the musical noise during noise frame. Experimental

results show that more speech components are preserved compared to DD and

MDD methods, especially in higher frequency region. Moreover, an improvement

in the segmental SNR is achieved at different input SNRs.
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Gain Noise Input p-value

function SNR Speech Background noise Musical noise Overall

WF

Pink
0dB 0.806 0.013 0.723 0.312

10dB 0.235 0.0001 0.540 0.002

Babble
0dB 0.938 0.119 0.215 0.794

10dB 0.984 0.014 0.460 0.416

LSA

Pink
0dB 0.075 0.021 0.955 0.0004

10dB 0.275 0.901 0.967 0.019

Babble
0dB 0.993 0.842 0.997 0.530

10dB 0.332 0.807 0.963 0.504

Table 4.5: One way ANOVA test results to verify the statistically significant

difference between different frequency warping scales used in the listening test

under different noise conditions.

Furthermore, a cross evaluation for STFT and CB processing was conducted

by using subjective listening test. From the test results, it can be clearly noted

that although STFT method achieves better results in stationary background

noise in terms of better noise suppression and speech quality, its performance

degraded in non-stationary background noise and is generating more musical

noise. On the other hand, CB processing provides significant benefit in terms

of less musical noise under different noise conditions and different levels of input

SNR. In addition, it achieves better performance compared to STFT in non-

stationary noise (babble noise) especially for low SNR levels. This means that

the proposed critical band based frequency warping scale is more useful in adverse

noisy conditions such as low SNR and non- stationary background noise.
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Noise Input Rate STFT CB

SNR DD MDD Proposed DD MDD Proposed

Pink

0 dB

Speech

Noise * *

Musical noise

Overall

10 dB

Speech

Noise * * * * * *

Musical noise

Overall * *

Babble

0 dB

Speech

Noise

Musical noise

Overall

10 dB

Speech

Noise * * * * *

Musical noise

Overall

Table 4.6: Tukey’s HSD Comparison between the enhanced speech signal using

WF gain function and the unprocessed speech signal under different conditions.
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Figure 4.7: Speech spectrograms for noisy speech corrupted with pink noise at

10 dB enhanced by Wiener filter speech estimation technique.
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Figure 4.8: Speech spectrograms for noisy speech corrupted with white noise at

10 dB enhanced by Wiener filter speech estimation technique.
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Figure 4.9: Speech spectrograms for noisy speech corrupted with factory noise at

10 dB enhanced by Wiener filter speech estimation technique.
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Figure 4.10: Speech spectrograms for noisy speech corrupted with babble noise

at 10 dB enhanced by Wiener filter speech estimation technique.
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Figure 4.11: Speech spectrograms for noisy speech corrupted with pink noise at

10 dB enhanced by LSA speech estimation technique.
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Figure 4.12: Speech spectrograms for noisy speech corrupted with white noise at

10 dB enhanced by LSA speech estimation technique.
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Figure 4.13: Speech spectrograms for noisy speech corrupted with factory noise

at 10 dB enhanced by LSA speech estimation technique.

95



F
re

qu
en

cy
 (

H
z)

clean−signal

 

 

0 2 4 6 8 10
0

2000

4000

−50 −40 −30 −20 −10 0 10 20 30

F
re

qu
en

cy
 (

H
z)

noisy−signal

0 2 4 6 8 10
0

2000

4000

F
re

qu
en

cy
 (

H
z)

DD method

0 2 4 6 8 10
0

2000

4000

F
re

qu
en

cy
 (

H
z)

MDD method

0 2 4 6 8 10
0

2000

4000

Time (sec)

F
re

qu
en

cy
 (

H
z)

Proposed method

0 2 4 6 8 10
0

2000

4000

Figure 4.14: Speech spectrograms for noisy speech corrupted with babble noise

at 10 dB enhanced by LSA speech estimation technique.

96



 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

DD MDD Prop DD MDD Prop NOISY

STFT CB

SPEECH

NOISE

MUSICAL
NOISE

OVERALL

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

DD MDD Prop DD MDD Prop NOISY

STFT CB

SPEECH

NOISE

MUSICAL
NOISE
OVERALL

Figure 4.15: Mean subjective listening test scores for speech processed by different

a priori SNR estimation methods combined with WF gain function and evaluated

in pink background noise for two SNR levels (left side) 0 dB and (right side) 10

dB.
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Figure 4.16: Mean subjective listening test scores for speech processed by different

a priori SNR estimation methods combined with WF gain function and evaluated

in babble background noise for two SNR levels (left side) 0 dB and (right side)

10 dB.
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Figure 4.17: Mean subjective listening test scores for speech processed by different

a priori SNR estimation methods combined with MMSE-LSA gain function and

evaluated in pink background noise for two SNR levels (left side) 0 dB and (right

side) 10 dB.
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Figure 4.18: Mean subjective listening test scores for speech processed by different

a priori SNR estimation methods combined with MMSE-LSA gain function and

evaluated in babble background noise for two SNR levels (left side) 0 dB and

(right side) 10 dB.
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Noise Input Rate STFT CB

SNR DD MDD Proposed DD MDD Proposed

Pink

0 dB

Speech

Noise * *

Musical noise

Overall * * *

10 dB

Speech

Noise

Musical noise

Overall *

Babble

0 dB

Speech

Noise * *

Musical noise

Overall

10 dB

Speech

Noise

Musical noise

Overall

Table 4.7: Tukey’s HSD Comparison between the enhansed speech signal us-

ing MMSE-LSA gain function and the unprocessed speech signal under different

conditions.
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Chapter 5

Robust Broadband Beamformer

in Reverberant Environment

In indoor applications with reverberation where spatial diversity is also included,

single channel speech enhancement techniques cannot suppress the reverberation

since it exploits only the time-frequency information of the received signal. In or-

der to exploit the spatial diversity, multi-channel speech enhancement techniques

are required. In this chapter, we will investigate different designs of broadband

beamformers in reverberant environments. In addition to room reverberation, ro-

bustness to amplitude and phase mismatches in the microphones will be included.

The main work in this chapter have previously appeared in the following publications:

1. L. Khalid, S. Nordholm, and H. H. Dam, Design study on microphone arrays, IEEE

International Conference on Digital Signal Processing (DSP), Singapore, 2015.

2. Nahma, L., Dam, H.H.D., Nordholm, S., ”Robust beamformer design against mismatch

in microphone characteristics and acoustic environments,” InternationalWorkshop on

Acoustic Echo and Noise Control (IWAENC), Tokyo, Japan 2018.

3. L. Nahma, H. H. Dam, Cedric Ka Fai Yiu, and S. Nordholm, Robust Broadband Beam-

former Design for Noise Reduction and Dereverberation, submitted to Multidimensional

Systems and Signal Processing (MSSP).
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5.1 Introduction
Microphone arrays are used to extract signals of interest while reducing or

canceling undesired signals by employing an array of spatially separated micro-

phones. The microphone array measures the wave field in space and beamformer

filters provide a spatial and temporal filtering of the signals from each microphone

[54, 79, 115].

In open space applications where the sound propagates unencumbered a free

field Green function describes the transmission between a sound source and each

microphone [116]. In contrast to this scenario, we have indoor applications, where

the sound wave propagates inside an enclosure. In this situation, the microphone

signals contain not only the direct path source signal but also delayed and at-

tenuated duplicate signals created by reflections from the enclosure and objects

inside it. For this scenario, RIR becomes more complex [53, 54, 69, 82].

In order to describe the wave propagation from a source to each microphone

element inside an enclosure, room acoustic simulators are useful tools. There are

different methods for room acoustic model depending on application and range

of frequencies. They can be classified into three types for different ranges of fre-

quencies: firstly, wave-based model, which is more suitable for low frequencies

and small enclosures. Secondly, a statistical model which is valid for many prac-

tical situations under different ranges of frequencies, [117], and thirdly, ray-based

model, which is a geometrical acoustics modeling technique. One implementation

of such a geometric model is the image source method (ISM) [118]. This method

is one of the most commonly used techniques for simulating room acoustics. It

is simple and yet efficient and provides a good model correspondence over the

audible frequency range. The main drawback of this method is the high compu-

tational cost as the computation of energy time-curves is very demanding [119].

Accordingly in [120] Lehmann et. al. proposed the diffuse reverberation model

(DRM), which is based on modeling the diffuse reverberation part as decaying

random noise by decomposing room impulse response into three parts; direct

path, early reflections and late (diffuse) reverberation. In this method, the first

two parts are simulated by ISM method while the last diffuse part is simulated

by using a DRM approach.

Joint dereverberation and noise reduction algorithms have become a major

research subject in the last decade since reverberation and noise typically result

in a degradation of speech quality and intelligibility as well as reduced listening

comfort. Recently renewed interest in such algorithms has been driven by com-
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mercial speech recognition applications [121]. Many different studies have been

done in reverberant environments while considering different aspects of process-

ing [79]. In the paper by Li et. al. [69] several multi-criteria optimization models

were formulated based on L-1 norm for the fixed indoor beamformer design. The

proposed method separates the early and late reverberation in the design process.

A two stage beamforming approach was proposed for dereverberation and

noise reduction [82]. A combination of fixed and adaptive beamformers have

been employed in two stage approach to achieve a joint dereverberation and

noise reduction. In [122] a combination of MVDR beamformer and signal channel

spectral enhancement scheme was presented for a joint dereverberation and noise

reduction. The proposed system aims to suppress noise and reverberation by

first employing a minimum variance distortion-less response beamformer, then

the beamformer output is processed by a single channel speech enhancement

method to suppress the residual noise and reverberation.

Due to the sensitivity of beamformer designs to mismatches in microphone

characteristics such as gain, phase and position or source spreading and local

scattering, any violation in these characteristics can lead to a significant degra-

dation in the overall performance [62, 123]. Hence, developing a robust beam-

former design techniques which accounts for arbitrary unknown model mismatch

is desirable. In principle it would be possible to calibrate each microphone as

well as the combined array. However, the drawbacks of calibration are: Firstly,

microphone characteristics change over time which means that calibration does

not provide a long term solution. Secondly, they are time consuming as every

individual microphone as well as the combined array is required to be calibrated.

Another robustness technique is achieved by considering the array characteris-

tics in the beamformer design procedure, either by using the mean performance

optimization [69, 124] or the worst case optimization method [68].

To the best of our knowledge, no extended indoor design which includes the

robustness against mismatch in element characteristics has previously been car-

ried out. To bridge this literature gap, in this chapter we extend the indoor

beamforming design [69] by including robustness towards the microphone charac-

teristics (gain and phase) into the design. Specifically, the mean performance of

the designed beamformer for all possible microphone characteristics according to

a given distribution and uncertainty has been developed. We have investigated

the robust design using multiplicative and additive error models. The beamformer

design methods that have been considered in this study are:
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i Design using direct path only of the RIR.

ii Robust design using direct path.

iii Using RIR based on the Image Source Method (ISM) with a specific rever-

beration time.

iv Robust Indoor beamformer design which combines steps ii and iii.

The aforementioned beamformer designs are examined for different acous-

tically adverse environments using simulated and measured room impulse re-

sponses. By comparing the sensitivity performance of non-robust and robust

designs, an improved performance is pointed out in terms of significant reduction

in error sensitivity for the robust beamformer designs. Moreover, evaluation re-

sults from the four designs show that the robust direct path based beamformer

can achieve almost the same performance as the indoor beamformer design under

different reverberant environments despite being a much simpler and faster de-

sign method. Moreover, robust direct design shows robustness in the beamformer

response in presence of local scattering perturbation. In addition, the robust in-

door design provides stronger robustness towards combinations of reverberation

and microphone perturbations in amplitude and phase. This chapter is orga-

nized as follows: In Section 5.2 the problem is formulated. Section 5.3 describes

indoor broadband beamformer design problem as WLS problem where RIR is

simulated using ISM room simulator. Section 5.4 demonstrates the robust broad-

band beamformer design using mean performance optimization method and by

using two different error models:additive and multiplicative. Section 5.5 discusses

the aperture size optimization problem while Section 5.6 outlines the objective

measurements used for performance evaluation. Section 5.7 presents evaluation

results and Section 5.8 concludes the paper.

5.2 Problem formulation
Consider a microphone array with M elements in positions rm , m = 1, 2, . . . ,M ,

and an L taps FIR filter behind each microphone as depicted in Figure 5.1. As-

sume S(f) is the spectral density of source signal at position vector r traveling in

a homogeneous non-dispersive free field. The received signals are sampled syn-

chronously at a rate of f s. The transfer function (Green function) between the

source signal and each microphone array element can be written as

Rm(r, f) =
1

‖r− rm‖
exp(−j2πf ‖r−rm‖

c ), 1 ≤ m ≤M (5.1)
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Figure 5.1: Block diagram of the broadband beamformer.

where f is the frequency and c is the speed of the sound. The array response

vector can be obtained by combining the transfer function from the source to

each microphone element with FIR filter response

d(r, f) = R(r, f)⊗ d0(f) (5.2)

where ⊗ denotes for the Kronecker product,

R(r, f) = [R1 (r, f), . . . . . . ,RM (r, f)]T

d0(f) is the FIR filter response vector,

d0(f) =
[
1, e−j2πf/fs , . . . ,−j2πf(L−1)/fs

]T
(5.3)

and the subscript [.]T represents the vector transpose. The beamformer response

can be given by

G(r, f) = wTd(r, f) (5.4)

where w ∈ RML×1 is the FIR filter coefficients vector and d(r, f) is a column

vector of length ML. The beamformer frequency domain output is given by

Y (r, f) = G(r, f)S(f). (5.5)
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5.3 Indoor Broadband Beamformer Design
Consider a speech source and a microphone array in an indoor room envi-

ronment according to Figure 5.1. Now the source signal will be convolved by an

individual RIR between the source to each microphone element. To model the

room, an acoustic room simulator using the image source method (ISM) was used

to obtain RIRs. The frequency domain room response from the speech source to

the microphone array can be written as

R(r, f) = Rdir(r, f) + Rrev(r, f). (5.6)

where Rdir(r, f) denotes the direct path frequency response and Rrev(r, f) de-

notes the frequency response of the reverberation path i.e. RIR with direct path

excluded.

In general, the broadband beamformer design problem is to calculate the

filter coefficients w such that the actual response G(r, f) fits the desired response

Gd(r, f), which is specified depending on the application with

Gd(r, f) =

{
e−j2πf(

‖r−rc‖
c

+L−1
2
T), ∀(r, f) ∈ P

0, ∀(r, f) ∈ S
(5.7)

where P and S denote the passband and the stopband regions, respectively. rc

is the location of the reference point, and T = 1/fs. The problem is to minimize

the Weighted Least Square (WLS) error JWLS (w) as

JWLS(w) =

ˆ

Ω

ˆ

R

V (r, f) |G(r, f)−Gd(r, f)|2 drdf (5.8)

where G(r, f) is the beamformer response as defined in Eq. (5.4), Ω is the fre-

quency domain and R is the spatial domain, and V (r, f) is a positive weighting

function. According to Eq. (5.8) the reverberation path cannot be controlled

directly as it is part of the whole room impulse response as in Eq.(5.6) [69].

Therefore, the design problem has been modified in order to include deviation

from the direct path with the desired frequency response and the error due to the

reverberation path as follows

Jmod ,WLS (w) =

ˆ

Ω

ˆ

R

(V1(r, f) |Gdir(r, f)−Gd(r, f)|2 + V2(r, f) |Grev(r, f)|2)drdf

=

ˆ

Ω

ˆ

R

(V1(r, f)
∣∣wTddir(r, f)−Gd(r, f)

∣∣2
+ V2(r, f)

∣∣wTdrev(r, f)
∣∣2)drdf,
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where V1(r, f) and V2(r, f) are positive weighting functions. The above cost

function can be simplified to a quadratic cost function,

Jmod ,WLS (w) = wTQmod ,WLSw − 2pTmod ,WLSw + const (5.9)

where

Qmod ,WLS =

ˆ

Ω

ˆ

R

(V1(r, f)<
{
ddir(r, f)dHdir(r, f)

}
+ V2(r, f)<

{
drev(r, f)dHrev(r, f)

}
)drdf

pmod,WLS =

ˆ

Ω

ˆ

R

V1(r, f)<
{
ddir(r, f)GH

d (r, f)
}
drdf

const =

ˆ

Ω

ˆ

R

V1(r, f) |Gd(r, f)|2 drdf

and ddir(r, f) = Rdir(r, f)⊗ d0(f), drev(r, f) = Rrev(r, f)⊗ d0(f). The optimal

filter coefficients vector that minimizes Jmod ,WLS (w) is obtained by

w = Q−1
mod ,WLSpmod ,WLS . (5.10)

5.4 Robust Beamformer Design
Broadband beamformers designed with Minimax or WLS techniques are highly

sensitive to errors in microphone characteristics such as gain, phase and position

[123]. Even small changes can lead to a severe degradation in beamformer perfor-

mance. Thus, to design beamformers for practical applications it is important to

consider robustness in the beamformer design procedure. Generally, errors can be

formulated as multiplicative or additive models. In this chapter, we considered

both models to microphone characteristics error (gain and phase) [54].

5.4.1 Additive error model
Denote by adir(r, f) and arev(r, f) the complex model error random vectors for

the direct and the reverberation parts, respectively, where mth elements adir(r, f)

and arev(r, f) can be characterized by the gain errors aρ,dir(r, f) = |adir(r, f)|,
aρ,rev(r, f) = |arev(r, f)| and the phase errors aγ,dir(r, f) =arg(adir(r, f)), aγ,rev(r, f)

=arg(arev(r, f)). The perturbed response vectors are given by

R̃dir(r, f) = Rdir(r, f) + adir(r, f)

R̃rev(r, f) = Rrev(r, f) + arev(r, f).
(5.11)

Following from Eq. (5.2), the perturbed array response vector is given by
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d̃dir(r, f) = R̃dir(r, f)⊗ d0(f) (5.12)

= (adir(r,f)⊗ d0(f)) + ddir(r, f)

and

d̃rev(r, f) = (arev(r,f)⊗ d0(f)) + drev(r, f)

where 1L is an L× 1 vector with all unity elements. We have

Q̃dir(r, f) = d̃dir(r, f)d̃Hdir(r, f) (5.13)

= (adir(r,f)⊗ d0(f) + ddir(r, f))

×(adir(r,f)⊗ d0(f) + ddir(r, f))H

= Qdir(r,f) + (adir(r,f)aHdir(r,f) + adir(r,f)RH
dir(r, f)

+Rdir(r, f)aHdir(r,f))⊗ d0(f)dH0 (f)

Q̃rev(r, f) = d̃rev(r, f)d̃Hrev(r, f) (5.14)

= (arev(r,f)⊗ d0(f) + drev(r, f))

×(arev(r,f)⊗ d0(f) + drev(r, f))H

= Qrev(r,f) + (arev(r,f)aHrev(r,f) + arev(r,f)RH
rev(r, f)

+Rrev(r, f)aHrev(r,f))⊗ d0(f)dH0 (f)

where Qdir(r, f) = ddir(r, f)dHdir(r, f) and Qrev(r, f) = drev(r, f)dHrev(r, f). Also,

p̃dir = d̃dir(r, f)GH
d (r, f) (5.15)

= pdir(r, f)) + (adir(r, f)⊗ d0(f))GH
d (r, f)

where pdir(r, f) = ddir(r, f)GH
d (r, f). We now consider a random matrix that

contains the perturbation elements for the direct path,

Ξdir = adira
H
dir. (5.16)

Here, the term (r, f) is dropped from adir for convenience. Now as we aim

to use mean performance optimization technique by using probability density

function of the gain and phase
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Ξ̄dir = E [Ξdir] = E
[
adira

H
dir

]
(5.17)

=

ˆ

a1

· · ·
ˆ

aM

ΞdirfΞ(a1)...fΞ(aM)da1 · · · daM

and

ādir = E [adir] (5.18)

=

ˆ

a1

· · ·
ˆ

aM

adirfΞ(a1)...fΞ(aM)da1 · · · daM .

where fΞ(am), 1 ≤ m ≤ M , is the PDF for mth sensor’s errors. In order to

simplify the design problem we assume that each sensor’s error is independent of

frequency and space. Then, using expectation on Eq. 5.13 to Eq. 5.15

Q̄dir(r, f) = E
[
Q̃dir(r, f)

]
(5.19)

= (Ξ̄dir + ādirR
H
dir(r, f) + Rdir(r, f)āHdir)⊗ d0(f)dH0 (f) + Qdir(r, f)

Q̄rev(r, f) = E
[
Q̃rev(r, f)

]
(5.20)

= ((Ξ̄rev + ārevR
H
rev(r, f) + Rrev(r, f)āHrev)⊗ d0(f)dH0 (f)) + Qrev(r, f)

and

p̄dir(r, f) = E [p̃dir(r, f)] (5.21)

= (ādir ⊗ d0(f))GH
d (r, f) + pdir(r,f)

For simplicity, we assume that the error model for the direct path and the

reverberation part are the same. As such,

Ξ̄dir = Ξ̄rev = Ξ̄. (5.22)

and

ādir = ārev = ā. (5.23)

The matrix Ξ̄ can be written as

Ξ̄ = (āāH)� (1M1TM − IM) + σ (5.24)

where σ denotes the variance of the gain pdf.
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By assuming the gain and phase errors are independent, the expectation of

the error vector ā can be simplified into

ā = āρ � (ācγ + jāsγ) (5.25)

where

āρ =

ˆ
aρfΞρ

(
aρ)d

(
aρ) (5.26)

ācγ =

ˆ
cos
(
aγ)fΞγ

(
aγ)d

(
aγ) (5.27)

āsγ =

ˆ
sin
(
aγ)fΞγ

(
aγ)d

(
aγ) (5.28)

The robust weighted least square error can be given as

Jmod,WLS,rb(wrb) = wT Q̄rbwrb − 2p̄Trbwrb + const (5.29)

where

Q̄rb =

ˆ

Ω

ˆ

R

(V1(r, f)<
{
Q̄dir(r, f)

}
+ V2(r, f)<

{
Q̄rev(r, f)

}
)drdf

p̄rb =

ˆ

Ω

ˆ

R

V1(r, f)<{p̄dir(r, f)} drdf.

The design of robust beamformer can be obtained by

wrb = Q̄−1
rb p̄rb . (5.30)

5.4.2 Multiplicative error model
We now develop a robust beamformer design using a stochastic multiplicative

error model to microphone characteristics (gain and phase) instead of the additive

error model, i.e

R̃dir(r, f) = Rdir(r, f)� a(r, f)

R̃rev(r, f) = Rrev(r, f)� a(r, f)
(5.31)

where � denotes the element-by-element product. Following from (5.2), the per-

turbed array response vector is given by

d̃dir(r, f) = R̃dir(r, f)⊗ d0(f) (5.32)

= (a(r,f)⊗ 1L)� ddir(r, f)
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and

d̃rev(r, f) = (a(r,f)⊗ 1L)� drev(r, f)

where 1L is an L× 1 vector with all unity elements. We have

Q̃dir(r, f) =d̃dir(r, f)d̃Hdir(r, f)

=(a(r, f)aH(r, f)⊗ 1L1TL) (5.33)

�Qdir(r, f)

Q̃rev(r, f)=(a(r, f)aH(r, f)⊗ 1L1TL) (5.34)

�Qrev(r, f)

where Qdir(r, f) = ddir(r, f)dHdir(r, f) and Qrev(r, f) = drev(r, f)dHrev(r, f). Also,

p̃dir = d̃dir(r, f)GH
d (r, f) (5.35)

= (a(r, f)⊗ 1L)� pdir(r, f)

where pdir(r, f) = ddir(r, f)GH
d (r, f). Then, by following the same procedure as

in the additive error model in Section 5.4.1

Q̄dir(r, f) = E
[
Q̃dir(r, f)

]
(5.36)

= (Ξ̄⊗ 1L1TL)�Qdir(r, f)

and

p̄dir(r, f) = E [p̃dir(r, f)] (5.37)

= (ā⊗ 1L)� pdir(r,f)

The robust weighted least square error can be given as

Jmod,WLS,rb(w) = wT Q̄rbwrb − 2<
{
p̄Hrbwrb

}
+ const (5.38)

where

Q̄rb = (Ξ̄⊗ 1L1TL)�Qmod,WLS

p̄rb = (ā⊗ 1L)� pmod,WLS.

The design of robust beamformer can be obtained by

wrb = Q̄−1
rb p̄rb . (5.39)
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5.5 Aperture Size Optimization
So far the formulation of the beamformer design problem has only considered

one specific array size and configuration as in Eq. (5.8). But it is well estab-

lished that there is an impact of array aperture size on the design performance.

Beamformer design problem in this case can be formulated as a minimization of

cost function with respect to filter coefficients w and interelement space between

adjacent microphones (d) which can be written as [124]

JWLS,opt(w, d) =

ˆ

Ω

ˆ

R

V (r, f) |G(r, f, d)−Gd(r, f)|2 drdf (5.40)

This problem can be solved by combining Weighted Least Square and Golden

Section Search optimization [125, 126]techniques, by first optimizing the cost

function with respect to w while searching for the optimal interelement space

(d). Algorithm 1 shows how this combined optimization has been performed.

Algorithm 1 Array aperture size optimization algorithm

Step 1: Initialize an interval [dl, du] and tol sufficiently small

Step 2: Set the golden ratio ϕ = (
√

5− 1)/2

Step 3: Set intermediate points, a = du − ϕ ∗ (du − dl) and b = dl + ϕ ∗ (du − dl)
Step 4: Evaluate the function at the intermediate points f(a) = JWLS(a) and

f(b) = JWLS(b)

Step 5: While ((a− b) > tol), number

If f(a)<f(b) then update the intermediate points

[du = b] ,[b = a] and a = du − ϕ ∗ (du − dl)
else

[dl = a], [a = b] and b = dl + ϕ ∗ (du − dl)
end

Step 6: Evaluate the functions in the updated points

end

Step 7: The minimum occurs at d = (du + dl)/2

5.6 Objective Measurements
There are different objective measurements in the literature to evaluate the

performance of the beamformer designs. For dereverberation performance, objec-

tive measurements can be classified into two categories: channel based measure-
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ment [116] and signal based measurement [79]. In this chapter, for the channel

based measurment, we used direct to reverberant ratio measurement to evaluate

the dereverberation ability of the designed beamformers. The direct to reverber-

ant ratio, DRR, is defined as follows [127]

DRR = 20 log10

DRRout

DRRin

[dB]. (5.41)

Where

DRRout =

∥∥wTddir(r, f)
∥∥2

2

‖wTd(r, f)−wTddir(r, f)‖2
2

(5.42)

DRRin =

∥∥1TRdir(r, f)
∥∥2

2

‖1T (R(r, f)−Rdir(r, f))‖2
2

(5.43)

where 1 is an M element vector with ones and ||(·)||22 denotes
´ ´
P
|(·)|2 drdf ,

∀(r, f) ∈ P where P is the passband region.

For the signal based measurement, segmental signal to noise and reverbera-

tion ratio SSNRR is used to measure the speech distortion because of noise and

reverberation. [128]. It can be formulated as

SSNRRseg =
1

Nseg

Nseg−1∑
l=0

10 log10

(
‖sd(l)‖2

‖sd(l)− y(l)‖2

)
[dB] (5.44)

where sd(l) represents desired signal, y(l) represents the estimated speech from

the beamformer output, and Nseg denotes the number of signal segments. This is

obtained by computing desired and estimated signals as short overlapping signal

segments and then an average of SSNRR values in dB is taken over all segments.

Moreover, to test the overall suppression performance in the stopband region,

signal suppression measurement is used as follows [69]

SUPP = 10 log10

‖S(f)‖2
2

‖Y (f)‖2
2

(5.45)

where S(f) and Y (f) denote the frequency spectrum of the input signal and the

output signal , respectively. Furthermore, ||(·)||22 denotes
´
F
|(·)|2 df , ∀(f) ∈ F

where F is the passband region.

5.7 Design Examples
This section presents a number of design examples with the aim to verify the

beamformer design formulations in Section 3 (indoor beamformer design) and
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Section 4 (robust beamformer design) using simulated data (room impulse re-

sponse) and real data. The parameters used in the simulation is given in Table

5.6. Those are the parameter values used unless otherwise specified. The fre-

quency domain expression of the room impulse response is computed using Eq.

(5.6). As a special case, direct path based beamformer is designed by using Eq.

(5.6) with a reverberation time T60 = 0 s, i.e. room response consists of direct

path response only. Whereas, indoor beamformers are designed with reverbera-

tion time T60 = 0.2 s

Eq. (5.10) is used for direct path and indoor beamformer designs. For robust

direct path and indoor beamformer design examples, mean performance opti-

mization method is used with amplitude and phase variation both following a

uniform distribution with intervals [±10% R(r, f)] and [-0.1 rad, 0.1 rad], respec-

tively. Eq. (5.11) is used as the perturbed response and Eq. (5.30) is used for

the beamformer design. The designed beamformers were tested using simulated

room impulse response from room acoustic simulator based on the ISM method

[118, 119]. We define a simple rectangular room with dimensions 4m× 8m× 3m

and uniform absorption coefficients characterizing the room surfaces. The pass-

band region is given as

P = {x = 1m, 3.5m ≤ y ≤ 4.5m, z = 1m, 200kHz ≤ f ≤ 3800Hz}

while the stop band region is

S = {x = 1m, 3.5m ≤ y ≤ 4.5m, z = 1m, 3850Hz ≤ f ≤ 4kHz}
∪{x = 1m, 1m ≤ y ≤ 2.5m ∪ 5.5m ≤ y ≤ 7m, z = 1m, 100Hz ≤ f ≤ 4000Hz}.

Different scenarios are presented to evaluate the designed beamformers. First,

the cost function and the beampattern performances in varying reverberant envi-

ronments are evaluated, then the suppression performance in stopband region for

different reverberation conditions are evaluated, finally, the joint de-reverberation

and noise suppression performance in environments which included both noise

and reverberation are evaluated using estimated Room Impulse Response (RIR)

or measured (RIR) [129].

5.7.1 Overall performance and cost function evaluation

for different reverberation time
The four design methods are evaluated by calculating the amplitude response

of the overall beamformer including the room response according to Eq. (5.4) as

a function of spatial coordinate and frequency. The designs have been evaluated

for (T60 = 0.1 s) and (T60 = 0.2 s).
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Figure 5.2: Magnitude response of direct beamformer and robust direct beam-

former using additive model under different reverberation time.

Figure 5.2 shows the magnitude frequency response of direct path and robust

direct beamformer designs applied for different reverberation time. Similarly,

Figure 5.3 shows the magnitude frequency response of indoor design and robust

indoor design applied for different reverberation time. It can be seen from the

figures that the robust direct path beamformer design has a similar performance

as the indoor design response while the direct path beamformer response perfor-

mance deteriorates in the presence of the reverberation. As such a simple robust

direct path beamformer can be employed to the indoor applications as it can

achieve approximately the same performance as the indoor beamformer design

while having a significantly lower computational complexity as the reverberation

part is not included.
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Figure 5.3: Magnitude response of indoor beamformer and robust indoor beam-

former using additive model under different reverberation time.
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Table 5.1 shows the values of cost function in Eq. (5.8) for different design

methods. We evaluate the cost function for different reverberation times using

the optimal weights with T60 = 0 s and T60 = 0.2 s for different design methods to

get an impression of the sensitivity of the cost function for changing reverberation

times. It can be seen from Table 5.1 that the cost function of the robust direct

design follows a similar trend as the indoor beamformer, whereas the cost function

of the direct design increased significantly with increasing reverberation time.

T60(sec) Cost function of

Direct Path

beamformer

design (dB)

Cost function of

Robust Direct

Path beamformer

design (dB)

Cost function of

Indoor

beamformer

design (dB)

Cost function of

Robust Indoor

beamformer

design (dB)

0.1 -7.53 -23.22 -23.29 -20.98

0.15 -2.13 -20.56 -22.02 -20.24

0.2 1.07 -18.50 -20.80 -19.43

0.25 3.35 -16.98 -19.76 -18.68

0.3 5.08 -15.79 -18.22 -17.98

0.35 7.53 -14.69 -17.32 -16.76

Table 5.1: Comparison of the cost function for different reverberation times for

the direct design and the robust direct design (T60 = 0 s) using additive model,

the indoor design and the indoor robust design (T60 = 0.2 s) using additive model.

5.7.2 Dereverberation performance
In this section, we evaluated the performance of the designed beamformers

in terms of DRR for different source distance and number of microphones while

the distance between the microphones remained constant. We assume a noise

free reverberant environment (T60=0.2 sec). The direct to reverberant ratio has

been studied as a function of the distance between the desired source and the mi-

crophone array as depicted in Figure 5.4 (left side). For the indoor beamformer

design case, it can be clearly noticed that for 1.5 m array-source distance, de-

signed beamformer achieves significantly better DDR scores than other designs.

Robust direct design and robust indoor design show less sensitive reaction to the

increasing in the distance between source and microphone array. Moreover, DRR

has been studied as a function of the number of microphones as shown in Figure

5.4 (right side), significant improvements in DRR with growing number of micro-

phone elements are obtained by the indoor designs and the robust direct design.
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Figure 5.4: Direct to reverberant ration performance under (a) different source-

microphone array distance, (b) different number of microphones. Robust beam-

formers designed using additive error model.

Whereas, the direct design does not show any improvement.

5.7.3 Suppression performance in stopband region
In this section, we present a comparison of the interference suppression capa-

bilities of the designed beamformers under different reverberation conditions. We

use a female speech signal as an interference in the stopband region from position

= (1, 6, 1)m. Table 5.2 shows the amplitude suppression results obtained from

the different designed beamformers under varying reverberation times. It can be

clearly observed that the indoor designs perform better than the direct design.

Moreover, the robust direct design follows the same trend as the indoor design

under different reverberation conditions. This demonstrates the suppression ca-

pability of the robust direct design in reverberant conditions.
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T60(sec) SUPP of Direct

Path beamformer

design (dB)

SUPP of Robust

Direct Path

beamformer

design (dB)

SUPP of Indoor

beamformer

design (dB)

SUPP Robust

Indoor

beamformer

design (dB)

0.1 -4.952 12.184 14.244 14.648

0.15 -5.989 10.247 12.579 13.323

0.2 -6.976 9.031 11.323 12.224

0.25 -7.271 8.210 10.401 11.389

0.3 -8.292 7.600 9.685 10.737

0.35 -8.750 7.113 9.112 10.206

Table 5.2: Comparison results among direct path based beamformer and its ro-

bust design (T60 = 0 s) using additive model, indoor beamformer and its robust

design (T60 = 0.2 s) using additive model on the interference suppression at dif-

ferent reverberation time.

5.7.4 Joint dereverberation and noise suppression perfor-

mance
Now the combined dereverberation and noise reduction performance for the

designed beamformers are evaluated in terms of segmental signal to noise and

reverberation ratio (SSNRR) [128], which is a measure of the distortion occurs

due to the interference (noise and reverberation). The reverberant signals are

generated using simulated room impulse response and measured room impulse

response.

In this example, a linear microphone array with 8 elements with inter-element

space of 0.08 m is placed in a reverberant room of size (6m × 6m × 2.4m) with

variable reverberation time T60 = 0.16 s and T60 = 0.36 s. The desired speaker

is 1 m from the microphone array at angle 0◦ and the noise source is 1 m from

the microphone array at angle 90◦. The room setup is depicted in Figure 5.5.

Different beamformer designs are tested both in simulated and real room envi-

ronments. The noisy environment consists of reverberation and directional white

noise source (jammer) with varied SJR levels (10-30 dB).

In the simulated room scenario, RIR is generated using image source method

(ISM) [118, 119]. The reverberant signals received by the microphone array are

obtained by convolving the simulated RIR with the source signal. For the real

room environment evaluation, we used measured RIR [129]. The reverberant
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Figure 5.5: Room setup with a linear microphone array.

signals received by the microphone array are generated by convolving the speech

signals with the measured room impulse response.

Figure 5.6 shows the results for the SSNRR using simulated RIR (left side) and

measured RIR (right side) under different reverberation time values T60 = 0.16 s

and T60 = 0.36 s. From the simulated results, it can be clearly observed that

the SSNRR results that are obtained by the indoor design and the direct designs

are almost identical at T60=0.16 sec. In higher reverberation time T60 = 0.36 s

the SSNRR results that are obtained by the indoor designs and the robust direct

design are much higher than those obtained by the direct design. The SSNRR

results that are obtained by using measured RIR show that robust direct design

performs almost identical as the indoor design and better than the direct design

under low reverberation time T60 = 0.16 s. Moreover, robust indoor beamformer

design shows significantly better results compared to direct designs and indoor

design. However, for higher reverberation time T60 = 0.36 s indoor designs per-

form clearly better than direct designs. Although robust direct design shows

similar results to direct design in SJR level < 10 dB, SSNRR starts to increase

at SJR level > 15 dB.
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Figure 5.6: SSNRR results obtained for different beamformer designsfor varying

SJR’s and reverberation times. The reverberant signals were generated using

simulated RIR (left side) and measured RIR (right side) with different reverber-

ation time, T60 = 0.16 s (top) and T60 = 0.36 s (bottom). Robust beamformers

designed using additive error model.
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5.7.5 Sensitivity test of beamformer designs

5.7.5.1 Perturbation in microphone characteristics

The next evaluation is on the sensitivity of the designed beamformers against

gain and phase mismatches in microphone characteristics. This evaluation is done

by performing a Monte-Carlo simulation of the gain and the phase mismatches

and evaluate the cost function with fix beamformer coefficients for each simulation

round. In Figure 5.7 the cost function distribution for the different beamformer

designs in form of histograms are presented: (i) non-robust and robust direct

path based beamformer with T60 = 0 s and (ii) non-robust and robust indoor

beamformer with T60 = 0.2 s. Robust broadband beamformer is designed using

mean performance optimization method with uniform gain and phase distribu-

tions of [0.997,1.007] and [-0.1,0.1] rad, respectively. The cost function have been

evaluated by using 100 Monte Carlo simulations with amplitude and phase errors

of the array response vector R(r, f). It can be seen from Figure 5.7 that non-

robust designs (direct path and indoor) beamformers are sensitive to mismatches

in microphone characteristics with the cost function values of non-robust direct

path design deviate in the range (−12.83 dB,−5 dB), and the cost function values

of non-robust indoor design deviate in the range (−13.22 dB,−8.35 dB). On the

other hand, the robust direct path and robust indoor design are less sensitive to

the mismatches in microphone characteristics as the cost function values deviate

significantly less than the non-robust direct path and non-robust indoor designs.

In order to explain the behavior of designed beamformers towards mismatches in

microphone characteristics (gain and phase) we calculate the condition number of

the correlation matrix Q for the different beamformer designs, see Table 5.3. The

results show that the matrix Q for the robust direct path and indoor designs have

a significantly lower condition number than non-robust direct path and indoor

beamformer designs. Since the correlation matrix for the robust beamformer has

lower condition number, it indicates that the solution is more numerically robust

in the design. As such, the robust direct path and robust indoor designs are

significantly less sensitive against errors in microphone characteristics than the

direct path and indoor designs.
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Figure 5.7: Histogram of cost function values distribution direct path based beam-

former and its robust design using multiplicative error model (T60 = 0 s), indoor

beamformer and its robust design using multiplicative error model (T60 = 0.2 s).

Beamformer design Condition number of correlation matrix

Direct path 2.1890e17

Robust direct path 1.6265e05

Indoor 1.6742e17

Robust indoor 1.6873e05

Table 5.3: Comparison of condition number of correlation matrix among direct

path based beamformer and its robust design (T60 = 0 s), indoor beamformer

and its robust design (T60 = 0.2 s).
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5.7.5.2 Evaluation for local scattering

In this section, an evaluation of the robustness towards local scattering is pre-

sented for all four design methods. In order to simulate local scattering we added

20 additional propagation paths to the direct propagation path, they were simu-

lated using a uniform distribution for the angle of arrival and standard deviation

(-π/9,π/9), and gain with Rayleigh distribution and variance (0.01).

Figure 5.8 shows the histogram of the cost function averaged over 50 runs. It

can be clearly seen that the robust designs demonstrate robustness against per-

turbed wave propagation compared to the direct design. This demonstrates the

efficiency of the indoor designs and robust direct design against local scattering.
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Figure 5.8: Histogram of cost function values distribution direct path based beam-

former and its robust design using additive error model (T60 = 0 s), indoor beam-

former and its robust design using additive error model (T60 = 0.2 s).

5.7.6 Evaluation of calculation time for different beam-

former designs
Some applications needs a recalculation of the beamformer weights thus an

interesting evaluations to compare the numerical complexity of the design. Table
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5.4 shows the running time on a I7-4600 CPU 2.1 GHz and 8 Gbyte RAM for the

different design methods and the different reverberation times. It can be clearly

seen that the running time increase significantly with increasing reverberation

time. In addition, the direct design and the robust direct design are significantly

faster to calculate compared to the indoor designs.

Beamformer design Calculation time (sec)

Direct path (T60 = 0) 4.796

Robust direct path (T60 = 0) 23.730

Indoor (T60 = 0.1) 38.077

Robust indoor (T60 = 0.1) 91.229

Indoor (T60 = 0.2) 141.424

Robust indoor (T60 = 0.2) 248.767

Indoor (T60 = 0.3) 506.926

Robust indoor (T60 = 0.3) 736.489

Table 5.4: Calculation time for different beamformer designs.

5.7.7 Results of aperture size optimization
Finally, we study the impact of array aperture size on the design performance

as described in Algorithm 1 schedule. The Golden Section Search optimization

technique has been used to search for an optimal inter-element spacing between

microphones. We investigated all four design methods: (i) direct path (T60 = 0 s);

(ii) indoor design with T60 = 0.2 s; (iii) robust direct path using multiplicative

model; and (iv) robust indoor design using multiplicative model. Table 4 shows

the cost function performance of the four different beamformer designs for inter-

element spacing (d) range from 0.01 m to 0.2 m. It can be seen from the table

that the direct beamformer designs have almost the same optimal inter-element

space with optimal value (d=0.11 m). While the indoor designs have an optimal

interelement space (d=0.08 m). Moreover, the designed beamformers are robust

against inter-element spacing as the cost function values deviate very slightly

with the changing of inter-element space as shown in Figure 5.9.
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Beamformer design Optimum Inter-element space (m) Minimum cost function (dB)

Direct path 0.110 -31.977

Robust direct path 0.115 -24.557

Indoor 0.0836 -21.092

Robust indoor 0.0873 -19.173

Table 5.5: Array aperture size optimization for different beamformer designs.
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Figure 5.9: Cost function comparison for different inter-element spacing for direct

path based beamformer and its robust design using multiplicative error model

(T60 = 0 s), indoor beamformer and its robust design using multiplicative error

model (T60 = 0.2 s)..

5.8 Summary
In this chapter, we have included robustness towards microphone character-

istics (gain and phase) into the direct design and the indoor design. The indoor
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design method employs a decomposition of the RIR into a direct path and re-

verberant path. To calculate the RIR, we have employed the ISM simulator.

Numerical results show that robust direct path beamformer can achieve approx-

imately the same performance as indoor beamformer design with a significantly

lower computational complexity. Also, the robust direct path design is less sensi-

tive to mismatches in microphone characteristics (gain and phase) than the indoor

beamformer design. In addition, robust direct design is also robust to aperture

size changes and follows the same trend as the indoor beamformer design.

Microphone

array system

parameters

Value

Number of

elements, M

9

Interelement

spacing

0.05 m

Position of

elements

(1.95,3.95,1) , ( 2,3.95,1) , (2.05,3.95,1) ,

(1.95,4,1) ,(2,4,1)

,(2.05,4,1),(1.95,4.05,1),(2,4.05,1),(2.05,4.05,1)

Sampling

frequency, fs

8 kHz

FIR filter

length, L

21taps

Weighting

functions V1and

V2

1

Table 5.6: Parameters for the evaluation of the microphone array.
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Chapter 6

Conclusions and Future work

In noisy environments, speech communications would cease and deteriorate due to

the noise contamination. Thus, speech enhancement systems are used as means

to provide adequate and effective noise suppression to enhance the quality of

speech in such adverse environments. The main goal of this dissertation is to

develop speech enhancement techniques that provide the ability to suppress the

background noise, room reverberation and other interference while preserving the

original speech signal without too much distortion. In order to achieve this goal,

different speech enhancement techniques have been investigated. In this chapter,

we summarize the main conclusions drawn from this work, as well as highlight

some suggestions for future research.
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6.1 Summary
In this dissertation, we have developed single and multi-channel speech en-

hancement techniques that are applicable in many speech communication systems

such as hands-free mobile phones and hearing aids. There are many considera-

tions that have to be taken into account when designing such systems such as good

noise reduction performance without too much speech distortion, quick response

to abrupt changes in the observed noisy signal and low computational complex-

ity for less power usage. The proposed speech enhancement techniques aim to

address these considerations in the design procedure. Moreover, in the proposed

techniques we focus on overcoming the drawbacks of the conventional speech en-

hancement systems. In single channel case, reduce the musical noise and improve

the tracking speed of the a priori SNR estimation are the main problems we aim

to reduce. Whereas in multi-channel speech enhancement technique, we focus

on improving the indoor beamformer design by including the robustness against

microphones characteristics (gain and phase) in order to reduce the sensitivity of

the beamformer design towards deviation in such characteristics.

Chapter 2 discusses the importance of speech enhancement in many voice

communication systems, particularly in adverse environments. Depending on the

number of microphones, speech enhancement system can be classified into single

channel and multi-channel speech enhancement techniques. In many applications,

single channel speech enhancement techniques are preferred due to its simplicity

and low cost. In addition, it provides sufficient noise suppression performance,

but that comes at the cost of speech distortion and also musical noise. Besides

the latter, single channel speech enhancement techniques usually exploit only the

temporal and spectral diversity of the received signals. This might be a serious

issue especially in reverberant environment, in which the reverberation induces

the spatial diversity as well. In order to overcome this problem, multi-channel

speech enhancement techniques are ideal solution due to their spatial filtering

facility that helps to suppress the reverberation as well as background noise.

In Chapter 3 an adaptive averaging a priori SNR estimation technique em-

ploying critical band processing is proposed. This technique is based on a convex

combination sigmoidal fusion function. Apart from combining the benefits of the

conventional decision directed estimation (DD) and the modified decision directed

(MDD) estimation, where a fixed weighting factor has been used, the fusion func-

tion in this approach provides a much faster adaptation when there is a speech

input. This improved tracking capability of the abrupt changes in SNR improves
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the preservation of weak speech components which is important for speech quality

and intelligibility. The objective comparison and listening test both indicate that

the proposed method is the preference approach over DD and MDD methods.

Furthermore, the utilized critical band processing helps to achieve less musical

noise because of its ability to significantly reduce the noise variance.

In Chapter 4, a modified adaptive smoothing factor with a frequency vary-

ing mean parameter is proposed to the modified decision directed a priori SNR

estimation method MDD in order to examine the efficiency of the proposed a

priori SNR estimation technique in STFT domain. Experimental results show

the ability of the proposed method to preserve weak speech components in the

high frequency region while maintain the same overall speech quality of MDD

approach. Moreover, to assess the efficiency of the CB processing over the con-

ventional uniform scale, a cross evaluation for STFT and CB processing is con-

ducted by using subjective listening test. The subjective test results revealed the

importance of CB processing in reducing the musical noise under different noise

conditions and different levels of input SNR. In terms of speech quality and noise

suppression, CB processing achieved better performance compared to STFT for

WF gain function case and under non-stationary noise (babble noise) especially

for low SNR levels.

In Chapter 5, the indoor beamforming design [69] is extended by including

robustness against mismatches or deviations in microphone characteristics (gain

and phase) using mean performance optimization. Multiplicative and additive

stochastic error models are formulated and integrated into the indoor beamformer

design. This extension provides a robust beamformer design in adverse environ-

ments. Design examples point out performance improvement in terms of signifi-

cant reduction in error sensitivity for the robust indoor beamformer design for-

mulation. Furthermore, evaluation results from the designed beamformers show

that robust direct path based beamformer can achieve almost the same perfor-

mance as the indoor beamformer design under different reverberant environments

despite being a much simpler and faster design method.

6.2 Future work
Throughout this work, we developed single and multi channel speech enhance-

ment techniques that are applicable in different applications such as hands-free

mobile phones, hearing aids and teleconferencing systems. The main goals of

the proposed technique are to extract the desired speech signal while mitigate

the unwanted signals. Different objective measurements are used to evaluate the
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performance of the developed algorithms in improving the speech quality and

suppressing the noise signals. In the following subsections, several issues that

may be addressed for further research are discussed.

6.2.1 Single channel speech enhancement techniques
In this dissertation, an improved a priori SNR estimation approach is intro-

duced to control the adaptation speed of the a priori SNR estimation. For this

purpose, a fusion function based on a sigmoidal shape is utilized as an adaptive

weighting factor which yields better preserving of the weak speech components.

Furthermore, a bark scale based filter bank is employed in the speech enhance-

ment framework in order to reduce the noise variance which leads to a significant

reduction in musical noise. Further investigation of the efficiency of the percep-

tual based filter bank in improving the speech intelligibility is of great importance.

This might improve the applicability of the proposed technique in different signal

processing systems such as speech recognition. Moreover, future research could

focus on different choices of filter banks to further improve the performance of

the speech enhancement techniques.

6.2.2 Multi-channel speech enhancement techniques
In this dissertation, we have discussed different beamformer designs for joint

noise reduction and dereverberation. Robust broadband beamformer designs in

adverse environment are proposed, which include room reverberation as well as

robustness to microphone mismatches (amplitude and phase) in the design for-

mulation. We evaluated the proposed beamformer designs using different ob-

jective measurements and under different acoustic conditions. However, one of

the interesting future work for the proposed multi-channel speech enhancement

techniques is to conduct a subjective listening test in order to justify the validity

of the obtained objective results. Another pathway to improve the current work

is to extend the design formulation to a steerable robust beamformer design in

order to steer the main beam of the beamformer. Farrow filter structure can be

used to formulate the steerable design [130]. In addition, further research can

combine the robust indoor beamformer design with the proposed perceptually

motivated single channel speech enhancement technique, which consists of apply-

ing a spectral gain to the beamformer output [122]. This may ultimately suppress

the unwanted signals and improve the speech quality.
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for a conference room,” Research Report, Australian Telecommunications

Research Institute, Bentley, Western Australia, Tech. Rep., 2001.

[37] S. Boll, “Suppression of acoustic noise in speech using spectral subtraction,”

IEEE Transactions on acoustics, speech, and signal processing, vol. 27,

no. 2, pp. 113–120, 1979.

[38] Y. Hu and P. C. Loizou, “Speech enhancement based on wavelet thresh-

olding the multitaper spectrum,” IEEE transactions on Speech and Audio

processing, vol. 12, no. 1, pp. 59–67, 2004.

[39] J. R. Deller Jr, J. G. Proakis, and J. H. Hansen, Discrete time processing

of speech signals. Prentice Hall PTR, 1993.

[40] T. Gülzow, A. Engelsberg, and U. Heute, “Comparison of a discrete wavelet

transformation and a nonuniform polyphase filterbank applied to spectral-

subtraction speech enhancement,” Signal processing, vol. 64, no. 1, pp. 5–19,

1998.

144
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